
On Preserving Secrecy in Mobile Social Networks

GABRIELA SUNTAXI, ABOUBAKR ACHRAF EL GHAZI, and KLEMENS BÖHM, Karlsruhe
Institute of Technology, Germany

Location-based services are one of the most important services offered by mobile social networks. Offering

this kind of services requires accessing the physical position of users together with the access authorizations,

i.e., who is authorized to access what information. However, these physical positions and authorizations are

sensitive information which have to be kept secret from any adversary, including the service providers. As

far as we know, the problem of offering location-based services in mobile social networks with a revocation

feature under collusion assumption, i.e., an adversary colludes with the service provider, has not been studied.

In this paper, we show how to solve this problem in the example of range queries. Specifically, we guarantee

any adversary, including the service provider, is not able to learn (1) the physical position of the users, (2)

the distance between his position and that of the users, and (3) whether two users are allowed to learn the

distance between them. We propose two approaches namely two-layer symmetric encryption and two-layer

attribute-based encryption. The main difference between them is that they use, among other encryption

schemes, symmetric and attribute-based encryption, respectively. Next, we prove the secrecy guarantees of

both approaches, analyze their complexity and provide experiments to evaluate their performance in practice.

CCS Concepts: • Security and privacy → Social network security and privacy; Mobile and wireless
security.

Additional Key Words and Phrases: mobile social networks; access control; location-based services

1 INTRODUCTION
1.1 Motivation
Mobile Social Networks (mSNs) like Foursquare or Badoo have become popular in the last years.

Similarly to traditional social networks, mSNs allow users to create virtual communities to share

content, but they also let users share their physical position with other users. Having access to

the physical position of the users, mSNs offer location-based services (LBS) such as querying

friends within a given distance. In this kind of network, each user specifies who is authorized to

learn information about his physical position, i.e., users establish authorization relationships with

others. Next, given the dynamic relationships between users that are inherent to human behavior,

revocation of such privileges is a fundamental feature of mSNs.

To deliver services in mSNs, one can consider different architectures with various components

[15]. The three major components are service providers, mobile users, and network infrastructure.

Depending on the features supported by mSNs, the service providers can be dedicated servers

(e.g., location server or access control server) that give services to the users through the network

infrastructure [15]. Mobile users (e.g., mobile phones, wearable devices) receive data or service

results from the service providers. The network infrastructure transfers data from a source (e.g.,

service providers) to a destination (e.g., mobile users). A typical mSN architecture consists of users

and two service providers: the LBS provider and the access control server (ACS). This architecture is

enough to provide typical LBS and has been considered by existing work in the area [25, 26, 43]. The

LBS provider stores the positions of the users, and the ACS stores the authorization relationships.

The physical positions of the users and authorization relationships are sensitive information

that should be kept secret from any adversary, including the service providers. This information is

particularly sensitive since it can be used to infer further personal information, e.g., one can use the

position of the users to infer their state of health or personal preferences [3]. The number of users

Authors’ address: Gabriela Suntaxi, gabriela.suntaxi@kit.edu; Aboubakr Achraf El Ghazi, elghazi@kit.edu; Klemens Böhm,

klemens.boehm@kit.edu, Karlsruhe Institute of Technology, Am Fasanengarten 5, Karlsruhe, 76131, Germany.

2 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

of these services may indicate a lack of secrecy concerns. However, studies [33, 44] have shown

that mobile users are not aware of various important characteristics of these systems: the data

they collect, who is using the data, and how they use it. That is, issues regarding mobile secrecy

remain poorly understood by end-users. We also argue that many users use these services without

explicitly criticizing secrecy not because they are careless about their secrecy, but because they

do not have a choice. Once the secrecy problems with LBS are solved, users may then switch to

more secure systems when they become available. Consequently, the information stored by these

systems has to be kept secret from unauthorized users, i.e., confidentiality.

Confidentiality is usually facilitated by trusting the entity in the system that manages the access

policies, i.e., the ACS. However, recent privacy breaches on existing social networks, such as the

Facebook-Cambridge Analytica scandal [12], have put this into question. In such attacks, the ACS

has allowed unauthorized entities, intentionally or unintentionally, to access private information.

Collusion attacks where adversaries, including malicious users, collude with the service provider

to gain unauthorized access to information, are an important problem in mSNs.

This paper studies how to facilitate LBS in mSNs while providing secrecy guarantees to the users

under collusion assumption. We focus on one specific service, namely querying friends within a

given distance. As motivated earlier, we also cover revocation. Regarding collusion, we study the

case of pairwise collusion in which a user colludes with either the LBS provider or the ACS to

try accessing unauthorized information. In Section 2.2, we define our adversary model. Regarding

secrecy guarantees, we provide users with the following guarantees:

• Gposition: Given a user u, only authorized entities can learn the physical position of u.
• Gdistance: Given a useru, only authorized entities can learn the distance between their physical

position and the one of u.
• Gauthorization: Given two users u and v , an adversary will not be able to learn whether u or v
are allowed to learn the distance between them.

Existing work [25, 26, 48], either does not consider collusion attacks or their system architectures

assume trusted entities, which does not solve the collusion problem but shifts it to the trusted

entity. Besides, these approaches do not provide a rigorous specification of the collusion strategy as

part of their adversary model, and they consider weaker adversaries, see Section 2.2. Next, none of

the existing work we are aware of does protectGauthorization against both the LBS provider and ACS.

1.2 Challenges
Encryption techniques are an effective way to keep the information secret from all but those

who are authorized to access it, without the presence of a trusted entity [29]. However, offering

the secrecy guarantees Gposition, Gdistance and Gauthorization under our collusion assumption with a

revocation feature in mSNs is challenging. First, the weak computing power of mobile devices

requires mobile users to outsource any heavy computation task. This not only restricts the choice

of encryption schemes that can be used but also the design alternatives for a solution.

Second, due to the collusion assumption, the typical encryption guarantee that only holders

of the right key can decrypt the information does not hold anymore. If an entity A that is not

authorized to decrypt a given ciphertext c colludes with an authorized entity B, A can get the

decryption key from B or send c to B to decrypt it and get back the plaintext. To solve this issue,

one can add further entities in the system, use multi-layer encryption, and assign the keys of the

encryption layers to the entities. Such an assignment has to ensure that in case of collusion, the

entities cannot access to unauthorized information, i.e., they cannot access either the ciphertext

or at least one key of a non-colluding entity to decrypt all encryption layers. Indeed, multi-layer

encryption with an adequate key distribution among the entities of the system is the core idea

On Preserving Secrecy in Mobile Social Networks 3

of our solution, as we explain in Section 4. Multi-layer encryption has been used previously in

systems like CryptDB [38], but the context is different from ours. In CryptDB, each encryption

layer gives a higher security level but reduces the capability of performing computation over the

encrypted data. Users in CryptDb have all the keys to decrypt the encryption layers and use these

keys during query processing.

Third, in a multi-user setting, such as our mSN scenario, several owners want to share information

with authorized users. To this end, one can consider two main encryption schemes: symmetric

and attribute-based encryption (ABE). Both schemes have advantages and disadvantages when

comparing them to each other. The advantage of symmetric encryption schemes is the efficiency

in the encryption/decryption operations. In the multi-user setting, however, key management

and revocation are known problems of these schemes that could overcome their advantage if not

implemented appropriately. Section 4.1 features an example illustrating that seemingly simple

solutions based on symmetric encryption schemes are not adequate, i.e., the illustrated solution has

a huge resource consumption in terms of storage and CPU usage, and users have to be online during

revocation. In contrast, an approach that uses ABE has two advantages: One does not need to deal

with multiple ciphertexts, and key management and revocation are straightforward. ABE generates

a single ciphertext based on an access control policy so that only users whose attributes fulfill the

policy can decrypt it. However, its encryption/decryption process involves bilinear pairing and

exponentiation operations, which in general have a significant impact on performance [34]. We

show that both approaches can solve the problem of sharing information in the multi-user setting

if implemented appropriately. However, based on the pros and cons of both encryption schemes, it

is not obvious to determine which one performs better in our specific scenario.

1.3 Contributions
This paper proposes two approaches, which combine existing encryption schemes, to allow users

of mSNs to query friends within a given distance. Both approaches include a revocation feature and

provide users with the secrecy guarantees Gposition, Gdistance and Gauthorization under the collusion

assumption. We start by describing our problem and our adversary model. Next, we present our

approaches, namely two-layer symmetric encryption (2lSE) and two-layer attribute-based encryp-

tion (2lABE). The main difference between them is that they use, among other encryption schemes,

symmetric encryption and ABE, respectively. We prove that both approaches fulfill our secrecy

guarantees and analyze their time complexity to evaluate their performance. Our analyses tell us

which approach is better at each entity involved in the system. Finally, we conduct experiments to

validate the results of our complexity analyses and to determine which approach performs better

in practice. Next to other insights, despite the advantages of the 2lABE approach compared to the

2lSE—a more straightforward key-management and the storage of a single encrypted copy of each

message at the service provider—, we have found that the 2lSE approach is on average twice as

efficient in our scenario. Therefore, we propose to consider the 2lSE approach, which not only

solves the secrecy problem existing in mSNs but also is more performant than the 2lABE approach.

2 PROBLEM FORMULATION
2.1 System Architecture
To provide LBS, mSNs require for each useru: (1) the physical position ofu denoted by pu = (xu ,yu),
(2) the set of users who have allowed u to learn the distance between their position and the one of u,
Grantoru , and (3) the set of users to whom u has allowed to learn the distance between his position

pu and their positions, called the set of grantees of u, Granteeu . We assume that an off-the-shelf

positioning technology like GPS, GSM, or BLE inputs the physical position of the user in the system,

4 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

and we consider a periodic positioning update policy [47]. Our system takes the physical positions

as delivered by the positioning technology used. We assume further that the positions of the users

that are input to the system are real, i.e., users have honestly disclosed their location and have not

manipulated it. We deem this assumption realistic – one can facilitate it by using technology such

as hardware trusted sensors [40], which provide a signature to verify the validity of the position,

or deep learning techniques, which detect abnormal traffic patterns to some extent [37].

As mentioned in Section 1, we consider a mSN system consisting of users and two service

providers: the LBS provider and the ACS, which store the physical position and the sets of grantors

and grantees of each user, respectively. In addition to these entities, there is a key-authority

responsible for key issuing. Figure 1 illustrates our system architecture. We have omitted from the

architecture illustration components related to the physical and network layers, such as physical

transmission medium and routers, to focus on the essence of our work. One can integrate our system

into other kinds of architectures like IoT by placing the physical devices of our system (positioning

and smart devices) at the perception layer, the network technology at the communication layer, the

cloud platform at the middleware layer, and the LBS application at the application layer.

Fig. 1. mSN System Architecture

Users can update their position and allow or revoke access from users at any time. Users send

access requests, Definition 2.1, to others to establish who can learn the distance between their

physical positions. To avoid that the servers learn information from the stored data, the users must

encrypt the information before outsourcing it. To obtain LBS, users send their queries to the ACS.

The ACS and the LBS provider interact with each other to compute the query result, which the ACS

sends to the user (see Section 4 for details). LBS support different types of queries. Here, we focus

on range queries, one of the most important queries in mSNs [51]. Let U and dist(pu ,pv) denote
the set of all users and the distance between the physical positions of users u and v , respectively.

Definition 2.1 (Access request). An access request accessReq : U ×U → {true, false} is a function
that takes as input two usersu,v ∈ U and indicates that useru requestsv for permission to learn the
distance between their physical positions. The function accessReq(u,v) outputs true if v authorizes

the access request. Otherwise, it outputs false. We call a user who authorizes an access request and

a user who receives an authorized access request, grantor and grantee, respectively.

Definition 2.2 (Range query). Given a user u and a distance d , a range query, Ranдe(u,d),
is a query that returns the users who are located within a distance d from u and who have

authorized u to learn the distance between their physical positions and the one of u. Formally,

Ranдe(u,d) = {v ∈ U | v ∈ Grantoru ∧ dist(pu ,pv) ≤ d}.

2.2 Adversary Model and Secrecy Guarantees
To formally define an adversary model under a collusion assumption, one needs to specify four

aspects [19]: (1) the collusion strategy, i.e., when or how entities come under the control of the

adversary, (2) the computational strategy, i.e., the computational complexity the adversary is

On Preserving Secrecy in Mobile Social Networks 5

assumed to have, (3) the adversarial behavior strategy, i.e., the actions that the colluding entities

might take, and (4) the protocol execution strategy, i.e., how many times the adversary is allowed to

execute the protocol. Next, we describe the main alternatives for each of these four aspects briefly

and specify ours. We define our model based on a just-strong-enough principle, in which the selected

alternatives for each of these aspects are just strong enough to model real-world adversaries under

a collusion assumption with revocation capability, as we explain in the remaining of this section.

Studying more complex settings that consider stronger adversary models is future work.

Collusion strategy: The main collusion strategies are: static and adaptive [19]. In the static

strategy, the adversary is given a set of entities to collude with, and the honest entities remain

honest during the protocol execution. In the adaptive strategy, the adversary can collude with any

entity in the system during the protocol execution. Here, we consider the static strategy. Although

the static strategy is weaker than the adaptive one, developing highly efficient schemes that are

secure under the static strategy serves as an important step for constructing secure schemes under

the adaptive one [19]. We refer to any entity that participates in a collusion as an adversary.

Computational strategy: The main computational strategies are: polynomial and unbound.

In the first one, adversaries run in polynomial time, while in the second one, they do not have

computational limits. Similar to existing works [19, 25], we consider the polynomial strategy.

Adversarial behavior strategy: The main adversarial behavior strategies are: semi-honest,

covert, and malicious [19]. In the semi-honest strategy, every colluding entity follows the protocol

specification, i.e., each entity performs the tasks assigned to it correctly. Adversaries can access

to the state of all colluding parties to try learning information from it. In the covert strategy,

adversaries may deviate from the protocol specification if honest entities fail to detect them. This

strategy represents many real-world scenarios like financial or political settings, where the involved

entities, i.e., companies or individuals, cannot afford the embarrassment, loss of reputation, and

law punishment associated with being caught cheating. In the malicious strategy, the colluding

entities can deviate arbitrarily from the protocol specification, according to the instructions of

the adversary. Since the security guarantees provided by schemes in the semi-honest strategy are

weak, and schemes that offer security guarantees under the malicious strategy are inefficient to be

implemented and used in practice [19], we opt for the covert strategy, which represents real-world

adversaries. However, since we aim to cover realistic scenarios where unauthorized entities try to

gain access to the information, we restrain the covert strategy further. Here, we limit adversaries to

deviate from the protocol only to advantage themselves, but they will not disadvantage any entity in

the system. Advantaging and disadvantaging an entity means to give the entity unauthorized access

to the information and to prevent the entity from accessing authorized information, respectively.

Protocol execution strategy: The main protocol execution strategies are: stand-alone and

concurrent-composition [9]. In the stand-alone strategy, the adversary is allowed to execute the

protocol a single time, while in the concurrent-composition one, he can execute the protocol several

times. Considering adversaries in the concurrent-composition strategy is a harder problem to solve,

however, having a scheme for the stand-alone strategy can be used to design schemes for the

concurrent-composition one [19]. Following our just-strong-enough principle for specifying the

adversary model, we consider the stand-alone strategy, and we extend it to fulfill our needs. Here,

we allow the execution of the protocol twice, which lets us evaluate the secrecy guarantees met

after a revocation takes place. Before describing the extension, we explain the need for it. In a

single protocol execution, the adversary can (1) collude with the entities of the system based on

the defined collusion strategy, (2) send a set of queries, and (3) get their respective answers based

on the information stored at each entity of the system at the moment of the protocol execution. In

our scenario, the information stored by the entities includes, among others, the encrypted sets of

6 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

grantors and grantees of the users. This information stays unmodified during the protocol execu-

tion. To evaluate the secrecy guarantees of a scheme under revocation, one needs to change the

authorizations, i.e., adjust the set of grantors and grantees of the users involved in the revocation.

Therefore, after updating the information, we need to allow the adversary to execute the protocol a

second time. In the second protocol execution, the adversary is allowed to repeat the steps (2)-(3)

of the first execution, but it is forbidden to collude with any entity. The purpose of the second

execution is to evaluate whether a revoked user can gain unauthorized access to information that

he could access on the first execution. We call this extension the twofold-composition strategy.

In the remaining of the paper, when we refer to adversaries, we imply adversaries with the power

specified in our adversary model. Note that, neither a user is an adversary of himself nor are the

entities that a user has allowed them to access his data. Having specified our adversary model, it

only remains to define the setting of the static strategy, i.e., specify the possible collusion scenarios.

Static strategy setting: Each execution of the protocol involves four entities: the key-authority,

a user, the ACS, and the LBS provider. First, the key-authority is an honest entity. We note that the

key-authority is only responsible for issuing keys during the registration of users in the system,

it does not participate in any other phase of the protocol specification, and it does not store any

information. Details of our protocol are in Section 4. Thus, considering the key-authority as an

honest entity does not shift the collusion problem to it. Second, the LBS provider, ACS, and the user

can be adversaries. However, we limit ourselves to the case of pairwise collusion, which is in line

with the selected adversary behavior strategy, i.e., the covert strategy. Since three entities participate

in the critical phases of the protocol execution, i.e., access request, query, and revocation phases, at

least one honest entity is needed to detect the deviation from the protocol of the adversaries.

In line with existing approaches [26, 48, 53], we assume: the LBS provider and ACS do not collude

with each other, and they cannot identify users by observing their IP addresses in the connections.

Regarding the first assumption, we find it reasonable because we assume that different companies

run the ACS, the LBS provider, and the internet provider. Regarding our second assumption, one

can solve it by using hidden IP techniques that guarantee network intractability such as Virtual

Private Network services [23], TOR encryption (The Onion Router) [14] or proxy servers [49].

Secrecy Guarantees: Based on our adversary model, we aim to offer the secrecy guarantees

Gposit ion , Gdistance and Gauthor ization stated in Section 1.

We note that given a resource r , an adversary is any entity that is not authorized to access r .
Given a useru, authorized users, i.e., the grantors ofu, can learn the distance between their position

and the one of u, and the physical position of u.

3 CRYPTOGRAPHIC TECHNIQUES USED
In this section, we define the cryptographic techniques that we consider in our approaches. In

Section 4, we explain how we apply them in our scenario. We write Enc(k,m) and Dec(k, c) for the
operations of encryptingm under key k and decrypting c under key k, respectively.

Definition 3.1 (Symmetric Encryption Scheme). A symmetric encryption scheme SE = (KGen,
Enc,Dec) consists of three algorithms: (1) A key generation algorithm KGen that returns a key k.
(2) An encryption algorithm Enc which can be probabilistic or deterministic and takes as input the

key k and a plaintextm to return a ciphertext c . (3) A deterministic decryption algorithm Dec that
takes as input the key k and a ciphertext c to return a plaintextm such that Dec(k, Enc(k,m)) =m.

Definition 3.2 (Asymmetric Encryption Scheme). An asymmetric encryption scheme AE =

(KGen, Enc,Dec) consists of three algorithms: (1) A key generation algorithm KGen that returns a

pair of public and secret keys (pk, sk). (2) A probabilistic encryption algorithm Enc which takes as

input the public key pk and a plaintextm to return a ciphertext c . (3) A deterministic decryption

On Preserving Secrecy in Mobile Social Networks 7

algorithm Dec that takes as input the secret key sk and a ciphertext c to return a plaintextm, such

that Dec(sk, Enc(pk,m)) =m.

Definition 3.3 (Somewhat Homomorphic Encyption Scheme). A somewhat homomorphic en-
cryption scheme (SHE) is an asymmetric encryption scheme in which the message space is a

ring (R,+, ·) and the ciphertext space is also a ring (R, ⊕, ⊗) such that for all messagesm1,m2 ∈ R,
and all pair of keys (pk, sk), m1 + m2 = Dec (sk, Enc(pk,m1) ⊕ Enc(pk,m2)), and m1 · m2 =

Dec (sk, Enc(pk,m1) ⊗ Enc(pk,m2)). A SHE supports limited computations on ciphertext, i.e., one

can perform a limited number of addition and multiplication operations.

We also use Ciphertext-Policy attribute based encryption (CP-ABE) [7]. In CP-ABE, the data is

encrypted based on an access policy, which itself consists of constraints on user attributes, like

role = “student" ∧memberO f = “Project1". The encryption is done so that only users who fulfill

the access policy can decrypt. Formally:

Definition 3.4 (Ciphertext-Policy Attribute based Encryption Scheme). ACP-ABE scheme consists
of four algorithms (Setup,KGen, Enc,Dec) (1) A setup algorithm, Setup, that selects two cyclic

groups G and GT and use them to generate and return a public key pk and a master key mk. (2) A
key generation algorithm KGen that takes as input a set of attributes ωu associated with a user u
and the master key mk, to return a secret key skωu . (3) A probabilistic encryption algorithm Enc
that takes as input a messagem, an access policy γ and the public key pk to return a ciphertext

cγ . (4) A deterministic decryption algorithm Dec which takes as input the public key pk, a secret
key skωu associated with the set of attributes ωu and a ciphertext cγ to return a messagem if ωu
satisfies the access policy γ ; otherwise it returns an error message ⊥. We write Enc(pk,mγ) for the

operation of encryptingm under the access policy γ and key pk, and Dec((pk, skωu , cγ)) for the
operation of decrypting cγ under the pair of keys (pk, skωu).

Note that general CP-ABE schemes do not guarantee the security of the access policy used to

encrypt a given ciphertext c , i.e., an entity who has access to c can learn who is authorized to

decrypt c . Learning this information is against the secrecy guarantee Gauthor ization that we aim to

offer. However, we consider stronger CP-ABE schemes with hidden policy as proposed in [27].

Next, for key distribution, we use in Section 4.1 the Diffie-Hellman key exchange protocol [13].

Definition 3.5 (Diffie-Hellman key exchange). The Diffie-Hellman key exchange (DH) is a pro-

tocol which allows two parties, A and B, that have no prior knowledge of each other to establish a

shared secret key jointly. The protocol is as follows: First, a trusted party chooses and publishes

two integers p and д, where p is large, e.g., 512 bits, and д is a primitive root modulo p.1 Second, the
parties A and B choose the secret integers, a and b, respectively. Next, A computes ZA ≡ д

a (mod p)
and sends ZA to B. B computes ZB ≡ д

b (mod p) and sends ZB to A. Finally, A computes the shared

key kba ≡ ZB
a (mod p). B computes the shared key kab ≡ ZA

b (mod p). The shared key value is

kba ≡ ZB
a (mod p) ≡ (дb)a (mod p) ≡ дab (mod p) ≡ (дa)b (mod p) ≡ ZA

b (mod p) ≡ kab.

Table 1 summarizes the encryption schemes and the encryption/decryption keys that we use.

4 OUR APPROACH
To fulfill the secrecy guarantees, users have to encrypt the information before outsourcing it to

the ACS and the LBS provider. There are different possibilities to do so. Due to the decryption and

revocation overhead at the users-side, we disregard naive solutions such as the one of Example 4.1.

The illustrated solution has the following shortcomings: it affects the storage capacity and limited

1
A primitive root modulo p is an integer д such that д (mod p) has multiplicative order p − 1.

8 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

Encryption scheme Enc/Dec Keys Description

Symmetric encryption (SE)
ku
kuv

Key of user u
Shared key between users u and v

Asymmetric encryption (AE)
pkACS , skACS
pkLBS , skLBS

Public and secret keys of the ACS

Public and secret keys of the LBS provider

Somewhat homomorphic

encryption (SHE)

pkH , skH Public and secret keys for SHE

Ciphertext-policy attribute-

based encryption (CP-ABE)

mkABE , pkABE
skωu

Master and public keys for CP-ABE

Secret key for CP-ABE of user u, where ωu
is the set of attributes of u,

Table 1. Summary of Encryption Schemes and the corresponding keys used

processing resources of mobile devices, and revocation is not only inefficient for data owners, but

it also requires authorized users to be online. Given a set S , let |S | denote the cardinality of S .

Example 4.1. Assume that each user u encrypts his name with a key ku , stores his encrypted
name at the LBS provider, and distributes ku to all authorized users. Such a solution has several

problems. First,u has to store as many keys as grantors. Second, during query processing,u receives,

as a result, a set of encrypted names corresponding to users who fulfill the query condition. Since

u stores one key for each of his grantors and u ignores which key to use to decrypt each ciphertext,

the decryption process has a worst-case complexity of O(|Grantoru |
2). Third, if u wants to revoke

access from a user,u has to generate a new key ku′ , encrypt his name with ku′ , replace his encrypted
name at the LBS provider with the new ciphertext and distribute ku′ to all still authorized users.

Next, we show how to use and combine existing cryptographic techniques to implement a scheme

under our secrecy guarantees. We come up with two approaches. To ease the explanation of them,

we first start by describing two basic schemes, called basic two-layer symmetric encryption, basic
2lSE, and basic two-layer attribute-based encryption, basic 2lABE. Our basic schemes meet our

secrecy guarantees under a weaker adversary model than the one defined in Section 2.2. With it,

we weaken the protocol execution strategy by considering the stand-alone strategy instead of the

twofold-composition strategy, i.e., the protocol is executed only once. We then show how to extend

the basic schemes to meet our secrecy guarantees under our actual adversary model, Section 2.2.

Themain difference between our basic schemes lies on the cryptographic schemes used to encrypt

the names which are sent as query answers. The basic schemes consist of four phases: initialization

phase, registration phase, access request phase, and query phase. In Sections 4.1 and 4.2, we explain

these phases for the basic 2lSE and the basic 2lABE schemes, respectively.

4.1 Basic two-layer symmetric encryption (basic 2lSE)
4.1.1 Initialization phase. In this phase, the key-authority generates and distributes keys. The ini-

tialization of the system happens once. The entities involved in this phase are the key-authority, the

ACS, and the LBS provider. The key-authority generates three pairs of keys (pkLBS , skLBS), (pkACS ,
skACS), and (pkH , skH). These keys are used during the registration, access request, and query

phases. The key-authority sends the secret keys skH and skACS to the ACS and the secret key skLBS
to the LBS provider. It also chooses the integers p and д of the DH protocol, Definition 3.5, which is

used to generate and share secret keys between a pair of users in the access request phase.

On Preserving Secrecy in Mobile Social Networks 9

4.1.2 Registration phase. In this phase, new users register in the system. It involves four entities:

the key-authority, the ACS, the LBS provider, and a user u. Figure 2 shows the steps of this phase.
First, the key-authority sends to u (1) two identifiers idACSu and idLBSu , (2) a secret key ku , (3) the

public keys pkLBS and pkACS , and (4) the integers p and д. Second, u selects an integer number ηu
and compute the value Zu ≡ д

ηu (mod p). We call ηu and Zu the secret and public numbers of u,
respectively. These two numbers are used as part of the DH protocol in the access request and query

phases, as we explain in Sections 4.1.3 and 4.1.4. Next, u stores at the LBS provider his identifier

idLBSu , his encrypted position Enc(pkH ,pu),
2
and his encrypted public number Enc(pkACS ,Zu).

The use of SHE allows the LBS provider to compute the encrypted square distance between the

encrypted positions of two users. The LBS provider cannot decrypt any of the ciphertexts because

it does not have the secret keys. Finally, u stores at the ACS his identifier idACSu and two empty sets

Grantoru and Granteeu . Information is added to these two sets in the access request phase. We

note that neither the LBS provider nor the ACS knows the link between users and their identifiers.

Key

Authority

User

u
LBS

provider
ACS

idACSu ,idLBSu ku , pkLBS ,
pkACS , pkH ,p,д Select integer ηu

Zu ← дηu (mod p)

idLBSu , Enc(pkH ,pu), Enc(pkACS ,Zu)

idACSu ,Grantoru = {},Granteeu = {}

Fig. 2. User Registration Phase - basic 2lSE

4.1.3 Access request phase. In this phase, a user u calls the function accessReq(u,v). If user v
authorizes the access request, i.e., accessReq(u,v) = true, v stores encrypted information at the

ACS and the LBS provider, as we will explain in this Section. The providers use this information

to process queries sent by u. Before explaining the steps of this phase, let us analyze how query

processing works to understand the information that v has to store. Example 4.2 illustrates two

design alternatives, querying-filtering and filtering-querying, to answer a given range query.

Example 4.2. Think of an LBS provider and an ACS. Assume that for each useru, the LBS provider
stores his encrypted physical position using SHE, and the ACS stores the set of grantors Grantoru .
Different design alternatives are conceivable to answer a given range query. In particular, one

can consider two designs: querying-filtering and filtering-querying. With the first alternative, the

LBS provider executes, first, the query and then sends the result to the ACS to filter it based on

the set Grantoru . With the second alternative, the ACS sends, first, the set Grantoru to the LBS

provider, and then the LBS provider executes the query using only the physical positions of users

in Grantoru . With both alternatives, since the LBS provider stores encrypted positions, it cannot

2
In reality, we encrypt a given position pu as Enc(pkH , xu) and Enc(pkH , yu).

10 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

use indexing, like B-tree or R-tree, for spatial query processing. Then in terms of performance, the

querying-filtering alternative is not a suitable option because

Due to performance reasons, as explained in Example 4.2, we opt for the filtering-querying
approach. Then the set of grantors of each user u has to contain information that allows the LBS

provider to reduce the computation cost during query execution. Specifically, if accessReq(u,v) =
true, v has to add, among other information, his encrypted identifier idLBSv in the setGrantoru , and
to store his encrypted name at the LBS provider. The encrypted names of the users are sent as query

answers, as we explain in Section 4.1.4. The access request phase involves the following entities: the

users that are part of the access request, u and v , the LBS provider, and the ACS. Figure 3 illustrates
the steps of this phase. We denote the concatenation of strings a and b by a∥b.
First, user u calls the function accessReq(u,v) and sends to user v his identifier idACSu and his

public number Zu . If accessReq(u,v) = true, v computes the shared key kuv ≡ Zu
ηv (mod p)

and selects two random numbers rACSuv , r
LBS
uv ∈ Z. Next, v encrypts his name using two layers

of encryption. v uses the shared key kuv for the inner layer of encryption and the public key

pkACS for the outer layer of encryption. Then, v stores at the LBS provider the resulting ciphertext,

Enc(pkACS , Enc(kuv ,v)), together with the random number rLBSuv . The LBS provider cannot decrypt

the ciphertext, even if it colludes with any of the users, because none of them has the key to decrypt

the outer layer of encryption. Secrecy proofs are in Section 5. Next,v sends to the ACS the identifier

of u, idACSu , together with a tuple t which consists of two elements: the random number rACSuv
and the ciphertext Enc(pkLBS , id

LBS
v ∥rLBSuv) The ACS adds t to the set Grantoru . The ACS uses the

ciphertext that is part of tuple t during query processing, as we will explain in the query phase.

Note that onlyv knows his identifier idLBSv , then he is the only one who can add his encrypted id to

the set of grantors of other users. Finally, to revoke access, v stores in his set of grantees,Granteev ,
at the ACS, the ciphertext c = Enc(kv ,u∥idACSu ∥rACSuv ∥r

LBS
uv). c contains the name of u and index

information that allows v to revoke access from u, i.e., v can delete both the tuple t added in the set

Grantoru and the encrypted name stored at the LBS provider. Only v knows the key to decrypt c .

User

u
User

v
LBS

provider
ACS

idACSu ,Zu
accessReq(u,v)

if accessReq(u,v) =true
kuv ← Zu

ηv (mod p)
Select random numbers:
rACSuv , r

LBS
uv ∈ Z

rLBSuv , Enc(pkACS , Enc(kuv ,v))

idACSu , t =
〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv)

〉
Add t to
Grantoru

idACSv , c = Enc(kv ,u∥idACSu ∥rACSuv ∥r
LBS
uv) Add c to

Granteev

Fig. 3. Access Request Phase - basic 2lSE

On Preserving Secrecy in Mobile Social Networks 11

4.1.4 Query phase. In this phase, users send range queries and get back query answers. This phase

involves three entities: the querying user u, the ACS, and the LBS provider. We use the following

notation: Given n strings, st1, · · · , stn , and the string st = st1∥st2∥ · · · ∥stn , the function дet(st , i),
where 1 ≤ i ≤ n, returns the i-th string in st . Given a tuple t which consist of n elements, we use ti ,
where 1 ≤ i ≤ n, to denote the i-th element of tuple t . Figure 4 illustrates the steps of this phase.

First, the querying user u sends his identifier idACSu , the constraint d of the range query and

his encrypted position Enc(pkLBS , (Enc(pkH ,pu)). u encrypts his position using two layers of

encryption because the encrypted position is sent thought the ACS to the LBS provider, and the

ACS knows the decryption key skH . The outer layer of encryption prevents the ACS from learning

the position of u. Second, using the id idACSu , the ACS retrieves the set of grantors of u, Grantoru .
Recall that each tuple t in Grantoru consists of two elements, a random number, and a ciphertext.

The ACS constructs a set C that contains the ciphertext of each tuple t in Grantoru , i.e., t2, and
sends C and the encrypted position of u to the LBS provider. Third, the LBS provider decrypts

each ciphertext c in C and obtains the plaintext st , which consists of an identifier id concatenated

with a random number rand . The LBS provider searches and retrieves the encrypted position and

the encrypted public number corresponding to the identifier id . We use pid and Zid to denote the

retrieved encrypted position and the encrypted public number, respectively. Using pid and the

encrypted position of u, the LBS provider computes the encrypted square distance between them,

Enc(pkH ,dist(pid ,pu)
2). It also searches and retrieves the encrypted name, corresponding to the

number rand . We denote this ciphertext by namerand . Then, it creates a tuple e that contains three
elements: namerand ,Zid , and Enc(pkH ,dist(pid ,pu)

2). It adds e to the result set Res and sends Res
to the ACS. Next, for each tuple e ∈ Res , the ACS decrypts the element e3, i.e., the encrypted square
distance. If the decrypted distance is less or equal than d2, the ACS (1) decrypts e1 and e2, i.e., the
outer layer of the encrypted name and the encrypted public number, (2) creates a tuple l containing
the decrypted information, and (3) adds l to the set of answersAns . The ACS sendsAns to u. Finally,
for each tuple l in Ans , u (1) uses l2, i.e., the public number, and his secret number ηu to compute

the shared key kshared ≡ l2ηu (mod p), and (2) decrypts l1, i.e., the usernames , using kshared . The
decrypted names correspond to users that fulfill the query condition.

Next, we provide a working example to show how our basic 2lSE approach works step by step.

Example 4.3. Consider two users Alice and Bob. Suppose that Alice wants to query the set of

users within a distance d . Assume further that Bob has allowed Alice to query the distance between

their physical positions. Figure 5 illustrates the query processing steps (numbers within black

circles). It also contains the information which each entity in the system stores. The data stored in

the tables at the LBS provider and ACS is information about Alice and Bob.

4.2 Basic two-layer attribute-based encryption (basic 2lABE)
To facilitate the understanding, before describing the basic 2lABE approach, we specify the dif-

ferences between our two approaches. With the basic 2lSE, the LBS provider stores, for each user

u, |Granteeu | copies of the encrypted name of u. Each ciphertext is generated using a shared key

between u and each v inGranteeu . The DH protocol is used to generate shared keys. In contrast,

with the basic 2lABE there is no need to store multiple copies of the encrypted name or to share

keys. Instead, each user encrypts his name using CP-ABE, Definition 3.4. Because of the properties

of CP-ABE, each user receives a secret key based on his set of attributes, and only users who fulfill

the access policy can decrypt a given ciphertext. In Sections 4.2.2 and 4.2.3, we specify the access

policy and the set of attributes used for the encryption and decryption process.

Next, we describe the initialization, registration, access request, and query phases of the basic
2lABE. For brevity, we only describe the differences between the basic 2lABE and basic 2lSE schemes.

12 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

User

u ACS

LBS

provider

idACSu ,d, Enc(pkLBS ,
(Enc(pkH ,pu))

Ranдe(u,d)

C = {};

foreach t in
Grantoru
Add t2 to C

C, Enc
(
pkLBS ,

Enc(pkH ,pu)
)

Res = {}
foreach c in C
st ← Dec(skLBS , c);
id ← дet(st , 1);

rand ← дet(st , 2);

e = ⟨ namerand ,Zid ;

Enc(pkH ,

dist(pid ,pu)
2) ⟩ ;

Add e to Res;

Res

Ans = {};
foreach e in Res

if Dec(skH , e3) ≤ d2

Add l = ⟨ Dec(skACS , e1),
Dec(skACS , e2) ⟩ to Ans;

Ansforeach l in Ans
kshared ← (l2)

ηu (mod p);

name ← Dec(kshared , l1);

Fig. 4. Query Phase - basic 2lSE

4.2.1 Initialization phase. This phase differs from that of the basic 2lSE, Section 4.1.1, only in the

selection of the parameters p and д of the DH protocol. Since the basic 2lABE uses CP-ABE, it does

not need the DH protocol for generating and sharing keys. The key-authority generates a public

key pkABE and a master key mkABE . It uses these keys during the registration phase (Section 4.2.2).

The key-authority keeps mkABE secret from all entities.

4.2.2 Registration phase. Before explaining the steps of this phase, let us analyze how CP-ABE

works in our scenario. The key-authority has to generate a secret key for each useru using attributes

associated with u. In our scenario, we consider only the attribute name of the users. That is because
the access policy used in this work considers the names of the users to establish who can decrypt a

given ciphertext. If one needs to use other attributes, one has to include them in the set of attributes

associated with the users. Given a useru, the access policy defined byu, γu , is a disjunction of terms

of the form (name=value), where name is a user attribute, and value refers to an atomic value.

Example 4.4. Consider a user u, the set Granteeu = {v,w}, and a messagem. User u wants to

encryptm and allow the users in Granteeu to decrypt it. u can use the usernames to identify the

users in Granteeu , and to generate the access policy γu needed to encryptm. u can specify the

access policy γu = (name = v) ∨ (name = w) and generate the ciphertext c = Enc(pkABE ,mγu). γu
indicates that c can be decrypted by users with name v orw . The secret keys of users v andw are

generated based on their attributes, e.g., the secret key of v , skωv , is generated based on the set of

attributes ωv = {name = v}. Only users whose secret key fulfill the access policy γu can decrypt c .

On Preserving Secrecy in Mobile Social Networks 13

Fig. 5. 2lSE Approach - Example

This phase differs from that of the basic 2lSE, Section 4.1.2, in the following: First, the key-authority
uses the master key mkABE and the set of attributes of the registering user u, ωu = {name = u} to
generate the secret key skωu . Second, the key-authority, instead of sending to u the parameters p
and д, sends the keys pkABE and skωu . Third, u does not follow the DH protocol. Instead, u stores

at the LBS provider, apart from his identifier idLBSu and his encrypted position, his encrypted name

Enc(pkACS , Enc(pkABE ,uγu)), with access policy γu =
(
(name = u)

)
. Note that, since u has not

authorized any access request, yet, γu specifies that only u can decrypt his encrypted name.

4.2.3 Access request phase. This phase differs from that of the basic 2lSE, Section 4.1.3, in the

following: First, since the basic 2lABE does not use the DH protocol, users u and v do not compute

the shared key kuv . Instead, v has to update his access policy γv by adding to the disjunction

the term “(name = u)”. Second, v does not generate the random number rLBSuv . That is because,

the LBS provider stores, together with the identifier idLBSv , a single ciphertext containing the

encrypted name of v , which can be decrypted by all his grantors. Then, v selects only one random

number, rACSuv ∈ Z, instead of two. As a consequence, the tuple t added to the set Grantoru is t =

14 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm〈
rACSuv , Enc(pkLBS , id

LBS
v)

〉
, instead of t =

〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv)

〉
, and the ciphertext added

to the set Granteev is c = Enc(kv ,u∥idACSu ∥rACSuv), instead of c = Enc(kv ,u∥idACSu ∥rACSuv ∥r
LBS
uv).

Third, v encrypts and updates at the LBS provider his name using, for the inner layer of encryption,

the public key pkABE , and the access policy γv , instead of using the shared key kuv .

4.2.4 Query phase. This phase differs from that of the basic 2lSE, Section 4.1.4, in the following:

First, the set of ciphertexts C that the LBS provider receives from the ACS contains only encrypted

identifiers, instead of encrypted identifiers concatenated with random numbers. Second, the LBS

provider neither retrieves public numbers nor uses the decrypted random numbers to retrieve

encrypted names. Instead, it only uses the decrypted identifiers to retrieve the encrypted positions

and encrypted names. Third, the set of tuples that the ACS receives from the LBS provider does not

contain encrypted public numbers. Fourth, the querying user u does not need to compute shared

keys to decrypt the ciphertexts received as query answer. Instead, u uses his secret key skωu .

4.3 Extending the basic schemes
Having the basic schemes, basic 2lSE and basic 2lABE, we now show how to extend them to meet

our secrecy guarantees Gposit ion , Gdistance and Gauthor ization under our actual adversary model

defined in Section 2.2. That is, we consider the twofold-composition strategy in which the protocol

is executed twice. The only problem of the basic schemes under the twofold-composition strategy

relies on the revocation process. With both approaches, a revoked user, in case of collusion with

the LBS provider, could gain access to unauthorized information, as explained in Example 4.5. In

the case of collusion with the ACS, there is no information leakage, as we prove in Section 5.

Example 4.5. Consider Example 4.3 and assume that Alice colludes with the LBS provider and

sends a range query. The ACS sends to the LBS provider, during query processing, a message

containing, among others, the identifier idLBSBob . If the system does not receive other queries while

it computes the query of Alice, the LBS provider and Alice can learn that idLBSBob is the identifier

of Bob. Assume now that Bob revokes access to Alice. Alice can regain this access by following

herself the steps of the access request phase. Specifically, with the basic 2lSE, Alice can follow all

the steps of the access request phase that Bob, i.e., the grantor, should execute (Section 4.1.3). With

the basic 2lABE, Alice can follow the steps of the access request phase and store information at

the ACS (Section 4.2.3). But she cannot update the ciphertext c containing the name of Bob, stored

at the LBS provider, because she does not know the access policy γBob that Bob used to generate

c . Nevertheless, during querying processing, with the information added at the ACS, Alice will

receive the encrypted name of Bob, which she cannot decrypt, but she knows it corresponds to Bob.

4.3.1 Extended two-layer symmetric encryption (2lSE). If a revoked user colludes with the LBS

provider, we need the ACS to detect the attack and raise an alarm. To do so, we extend the basic 2lSE
as follows: First, in the initialization phase, in addition to the steps of the basic 2lSE, Section 4.1.1,

the key-authority generates a pair of keys (pkACS ′, skACS ′), and sends skACS ′ to the ACS . The
key-authority keeps for itself the key pkACS ′ . Second, in the registration phase, the key-authority

sends to each registering userv , in addition to the information sent with the basic 2lSE, Section 4.1.2,

a ciphertext containing his identifier encrypted using two layers of encryption. The key for the

inner layer is pkLBS and the one for the outer layer is pkACS ′ . That is, each user v receives,

additionally, the ciphertext Enc(pkACS ′, Enc(pkLBS , id
LBS
v)). Third, in the access request phase, the

tuple t that the grantor v sends to the ACS changes from t =
〈
rACSuv , Enc(pkLBS , id

LBS
v ∥rLBSuv)

〉
to

t =
〈
rACSuv , Enc(pkACS ′, Enc(pkLBS , id

LBS
v)), Enc(pkLBS , r

LBS
uv)

〉
. Next, the ACS uses the key skACS ′

to decrypt the element t2, replaces t2 with the decrypted information and adds t to the setGrantoru .
Since v is the only user who knows the ciphertext Enc(pkACS ′, Enc(pkLBS , id

LBS
v)), the ACS knows

On Preserving Secrecy in Mobile Social Networks 15

that the access request has been registered by the actual grantor and not by a revoked user who

has colluded with the LBS provider. In other words, even if a user u learns the identifier of one of

his grantors v , in case of revocation, u cannot regain access because only v knows his ciphertext

c = Enc(pkACS ′, Enc(pkLBS , id
LBS
v)) and only the key-authority knows the key pkACS ′ to generate c .

We assume that the ACS uses a decryption algorithm Dec that indicates successful decryption. That
is, the decryption Dec(skACS ′, Enc(k′, c)), where c is a ciphertext, is called successful if skACS ′ = k′.
One can implement a successful decryption algorithm by concatenating the hash value H(c) to
the encryption Enc(k′, c ∥H(c)) and checking this relation in the decryption algorithm [18]. Fourth,

in the query phase, the set of ciphertexts C that the ACS sends to the LBS provider is different

from that of the basic 2lSE, Section 4.1.4. Here, C is a set of tuples, where each tuple contains two

ciphertexts. Specifically, for each tuple t in the set Grantoru , the ACS adds to C a tuple consisting

of the elements t2 and t3, i.e., the encrypted identifier and the encrypted random number. The LBS

provider decrypts both ciphertexts and processes the query as with the basic 2lSE. Figures 6, 7, and
8 illustrate the steps of the user registration, access request and query phases, respectively. The

changes compared to the basic scheme are highlighted in red.

Key

Authority

User

u
LBS

provider
ACS

idACSu ,idLBSu ku , pkLBS ,
pkACS , pkH ,p,д,
Enc(pkACS ′, Enc(pkLBS , id

LBS
v)) Select integer ηu

Zu ← дηu (mod p)

idLBSu , Enc(pkH ,pu), Enc(pkACS ,Zu)

idACSu ,Grantoru = {},Granteeu = {}

Fig. 6. User Registration Phase - basic 2lSE

4.3.2 Extended two-layer attribute-based encryption (2lABE). To solve the existing problems when

a revoked user colludes with the LBS provider, we use the same technique as that of the 2lSE,
Section 4.3.1. That is, the ACS, during the access request phase, receives the following ciphertext:

Enc(pkACS ′, Enc(pkLBS , id
LBS
v)), and verifies that the actual grantor has sent the received ciphertext.

The query processing phase is similar to that of the basic 2lABE, Section 4.2.4.

5 SECRECY PROOFS
This section provides the secrecy analysis of our proposed approaches. The proofs are organized as

follows: For each approach, we first prove that, under our adversary model defined in Section 2.2,

the approach provides the secrecy guarantee Gposition, then Gdistance, and finally Gauthorization.

5.1 Secrecy Proofs of the 2lSE approach
For each of the proofs in this section, we first consider the case that a user colludes with the LBS

provider and then the case that a user colludes with the ACS, during the first execution of the

16 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

User

u
User

v
LBS

provider
ACS

idACSu ,Zu
accessReq(u,v)

if accessReq(u,v) =true
kuv ← Zu

ηv (mod p)
Select random numbers:
rACSuv , r

LBS
uv ∈ Z

rLBSuv , Enc(pkACS , Enc(kuv ,v))

idACSu , t = ⟨ rACSuv , Enc
(
pkACS ′,

Enc(pkLBS , id
LBS
v)

)
, Enc(pkLBS , r

LBS
uv) ⟩

t ′ = ⟨ rACSuv ,

Enc(pkLBS , id
LBS
v),

Enc(pkLBS , r
LBS
uv) ⟩

Add t ′ to
Grantoru

idACSv , c = Enc(kv ,u∥idACSu ∥rACSuv ∥r
LBS
uv) Add c to

Granteev

Fig. 7. Access Request Phase - basic 2lSE

protocol. During the second execution of the protocol, the user is not allowed to collude anymore

(twofold-composition strategy). The case where each party individually acts as an adversary is

straightforward and therefore omitted. Given two entities A and B, we study the case where entity

A colludes with B, and omit the case where B colludes withA. In the case of collusion of two entities

A and B, we assume that either A or B has access to all information and functionality of A and B
together.

Before starting with the proofs, let us recall the information that the users, LBS provider, and ACS

have. We use this information in the proofs. First, each user s knows: his identifiers idLBSs , idACSs ,

the keys ks , pkH and pkACS , his encrypted identifier Enc(pkACS ′, Enc(pkLBS , id
LBS
s)), and the pa-

rameters p, д, ηs . Second, the LBS provider stores: the user identifiers, the encrypted positions, the

encrypted public numbers, the encrypted names together with the random numbers, and the secret

key skLBS . Additionally, the LBS provider knows the relations existing between the information

that it stores, e.g., the encrypted position that corresponds to a given identifier. Third, the ACS

stores: the encrypted sets of grantors and grantees of all the users, and the keys skH , skACS and

skACS ′ . Additionally, the ACS knows the relations existing between the stored information

Lemma 5.1. Given a user u, the 2lSE approach guarantees that, in the presence of adversaries with
the characteristics defined in our adversary model, Section 2.2, only authorized entities can learn the
physical position of u.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol execution, s has
access to the information that he owns and the one stored at the LBS provider. However, none

of the information that s has can be used to decrypt the encrypted positions. The decryption key

skH is known only by the ACS, but according to our adversary model, s cannot collude with both

entities at the same time. Furthermore, SHE, which is used to encrypt the physical positions of

On Preserving Secrecy in Mobile Social Networks 17

User

u ACS

LBS

provider

idACSu ,d, Enc(pkLBS ,
(Enc(pkH ,pu))

Ranдe(u,d)

C = {};

foreach t in
Grantoru
Add ⟨t2, t3⟩
to C

C, Enc
(
pkLBS ,

Enc(pkH ,pu)
)

Res = {}
foreach t in C
id ← Dec(skLBS , t2);
rand ← Dec(skLBS , t3);
e = ⟨ namerand ,Zid ;

Enc(pkH ,

dist(pid ,pu)
2) ⟩ ;

Add e to Res;

Res

Ans = {};
foreach e in Res

if Dec(skH , e3) ≤ d2

Add l = ⟨ Dec(skACS , e1),
Dec(skACS , e2) ⟩ to Ans;

Ansforeach l in Ans
kshared ← (l2)

ηu (mod p);

name ← Dec(kshared , l1);

Fig. 8. Query Phase - basic 2lSE

the users, is secure against indistinguishability chosen-plaintext attacks (IND-CPA) [31], i.e., an

adversary cannot learn any useful information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the physical positions of users

who have not authorized him to do so. During query processing, the LBS provider receives from

the ACS a set containing the encrypted identifiers of the grantors of s . So, s knows that the set of
identifiers used by the LBS provider to process his query corresponds to his grantors. The identifiers

are random numbers, so s cannot link the identifiers with their owners, except if |Grantors | = 1.

In this last case, s can learn the identifier of his unique grantor, namely u, idLBSu , see Example 4.5.

However, idLBSu does not leak any information about the position of u or cannot be used to decrypt

his encrypted position. Next, during query processing, s receives a set of encrypted names and public

numbers corresponding to the grantors of s that fulfill the query condition. Since the information

received belongs to the grantors of s , s is allowed to learn such information. Next, assume that

the LBS provider deviates from the query processing protocol, as part of the collusion. That is,

the LBS provider processes the query with different identifiers from the ones sent by the ACS. So,

instead of using the information that belongs to the grantors of s , the LBS provider selects different
identifiers and random numbers to give s information that he is not authorized to access. However,

the identifiers are random numbers, and neither s nor the LBS provider knows the relationship
between identifier and users. Next, if the LBS provider processes the query with identifiers selected

at random, s receives as query result a set of encrypted names and public numbers. However, the

18 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

names are encrypted using probabilistic symmetric encryption, which is secure against IND-CPA

[21], and s does not know the key to decrypt them. Next, by using the received public numbers,

and the parameters p and д, s cannot compute the decryption key because of the security offered

by the DH problem, which has been proven to be computationally infeasible in [8]. Then, s cannot
learn, in the first protocol execution, the physical position of users that he is not authorized.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, information that he has learned during the first

protocol execution, and the one that he will obtain during the second protocol execution. However,

during the second protocol execution, s does not learn any new information. Then, as in the first

execution, this information is not enough to decrypt and learn the physical positions of other

users. Case 2: A user s colludes with the ACS. During the first protocol execution, s has access to the

information that he owns and the one stored at the ACS. Although s knows the key skH to decrypt

the encrypted positions, s does not have the ciphertext to decrypt them because they are stored at

the LBS provider. Since, according to our adversary model, s cannot collude with both entities at

the same time, s cannot use the key skH to decrypt the physical positions of other users.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the physical positions of other

users.

By following the query processing protocol, s receives a set of encrypted names and public

numbers corresponding to the grantors of s that fulfill the query condition. Since the information

received belongs to the grantors of s , s is allowed to learn that information. Next, assume that

the ACS deviates from the query processing protocol, as part of the collusion. That is, the ACS

includes in the set Grantors , information from the other sets of grantors to give access to s to
information that he is not authorized to access. So, s receives as query answer, a set of encrypted

names and public numbers. Based on the same arguments as the ones presented in the Case 1, s
cannot compute the decryption key and cannot learn any information from the encrypted names.

Then, during the first protocol execution, s cannot learn the physical position of users who have

not authorized him.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, information that he has learned during the first

execution, and the one that he will obtain during the second protocol execution. Different from the

case 1, after query processing, s cannot learn any extra information, i.e., s has access to the same

information as in the first protocol execution. Using the same arguments as in the first execution,

scannot learn the physical positions of users that he is not authorized..

Consequently, given a user u, the 2lSE approach guarantees that, in the presence of adversaries

with the power defined in our adversary model, only authorized entities can learn the physical

position of u. □

Lemma 5.2. Given a user u, the 2lSE approach guarantees that, in the presence of adversaries with
the characteristics defined in our adversary model, Section 2.2, only entities they themselves have
authorized can learn the distance between their physical position and the one of u.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol execution, s has
access to the information that he owns and the one stored at the LBS provider. Using this data, as

proved in Lemma 5.1, s cannot learn any useful information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn the distance between his

position and the one of the users who have not authorized him to do so. As explained in the

proof of Lemma 5.1, during query processing, if |Grantors | = 1, s can learn the identifier of his

On Preserving Secrecy in Mobile Social Networks 19

unique grantor, namely u, idLBSu . However, idLBSu does not leak any information about the physical

positions or the distance between users. Additionally, as proved in Lemma 5.1, by following the

query processing protocol, s receives as query answer only information that he is authorized to

access. Next, assume that the LBS provider deviates from the query processing protocol, as part

of the collusion. That is, the LBS provider processes the query with different identifiers from the

ones sent by the ACS. So, instead of using the information that belongs to the grantors of s , the
LBS provider selects different identifiers and random numbers to give s information that he is not

authorized to access. As proved in Lemma 5.1, since s cannot compute the encryption key and

probabilistic encryption is secure against IND-CPA [21], s cannot learn any useful information from

the encrypted data received during query processing. Then, s cannot learn, in the first protocol

execution, the distance between his position and the one of users that he is not authorized.

Next, during the second protocol execution, since s is not allowed to collude anymore with any

entity, s only has access to information that he owns, information that he has learned during the

first protocol execution, and the one that he will obtain during the second protocol execution.

Assume that in the second protocol execution, u revokes access to s . Then s can try himself to add

idLBSu to his set Grantors following the steps of the access request phase. However, s needs to send

the ciphertext c = Enc(pkACS ′, Enc(pkLBS , id
LBS
u)) to the ACS. Since s does not know c or the key

pkACS ′ to generate c , s cannot add idLBSu in his set Grantors . Therefore, in the case of revocation, s
cannot regain access.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has access to the

information that he owns and the one stored at the ACS. Knowing all this information, as proved

in Lemma 5.1, s cannot obtain the ciphertexts corresponding to the encrypted positions of other

users. So s cannot learn any useful information in this step.

In addition to the information that s has learned, s can execute queries and get their respective

answers. As proved in Lemma 5.1, by following the query processing protocol, s receives as query
answer only information that he is authorized to access. Next, assume that the ACS deviates

from the query processing protocol, as part of the collusion. That is, the ACS includes in the set

Grantors , information from the other sets of grantors to give access to s to information that he is

not authorized to access. As proved in Lemma 5.1, and similar to Case 1, since s cannot compute

the encryption key and probabilistic encryption is secure against IND-CPA [21], s cannot learn
any useful information from the encrypted data received during query processing. Then, s cannot
learn, in the first protocol execution, the distance between his position and the one of users that he

is not authorized.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, information that he has learned during the first

execution, and the one that he will obtain during the second protocol execution. Different from

Case 1, after query processing, s cannot learn any extra information, i.e., s has access to the same

information as in the first protocol execution. Using the same arguments as in the first execution, s
cannot learn the distance between his position and the one of the users who have not authorized

him. So, in the case of revocation, by using the information that s knows, s cannot regain access.

Consequently, given a user u, the 2lSE approach guarantees that, in the presence of adversaries

with the power defined in our adversary model, only entities they themselves have authorized can

learn the distance between their physical position and the one of u. □

We note that although users do not receive as part of the query answers the physical position of

authorized users, they could submit fake positions and check the results of the query to infer the real

position of a target. However, as proved in Lemma 5.2, if a user u submits a query, the query result

contains only users who have authorized u to learn the distance between their physical position

20 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

and the one of u. That is, only authorized users could infer the real position of a target. However,

these users are authorized to access such information with respect to our secrecy guarantees.

Lemma 5.3. Given two usersu andv , the 2lSE approach guarantees that, in the presence of adversaries
with the characteristics defined in our adversary model, Section 2.2, an adversary will not be able to
learn whether u or v are allowed to learn the distance between them.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol execution, s
has access to the information that he owns and the one stored at the LBS provider. First, the user

identifiers are random numbers, and by using all the known information, neither the LBS provider

nor s can determine the link between users and identifiers. Second, the information that s knows
does not contain any link between grantees and grantors. Then, s cannot determine whether two

given users u and v are allowed to learn the distance between them.

In addition to the information that s has learned, s can execute queries and get their respective

answers. We now show that s cannot use this information to learn whether two given users u and

v are allowed to learn the distance between them. As explained in the proof of Lemma 5.1, during

query processing, if |Grantors | = 1, s can learn the identifier of his unique grantor, namely u, idLBSu .

However, given a set of queries, neither s nor the LBS provider knows who are the querying users.

Therefore, if the identifier idLBSu is used during query processing, s cannot determine who are the

grantees of u. Additionally, during query processing, s receives a set of encrypted names and public

numbers corresponding to the grantors of s that fulfill the query condition. However, the received

information does not reveal any data about the grantees and grantors of other users. Then, given

two users u and v , during the first protocol execution, s is not able to learn whether u or v are

allowed to learn the distance between them.

During the second protocol execution, since s is not allowed to collude anymore with any entity,

s only has access to information that he owns, the one that he has learned during the first execution,

and the one that he will obtain during the second protocol execution. Since the information that s
gets in the second protocol execution is similar to the one of the first execution, this information is

not enough to learn whether u or v are allowed to learn the distance between them.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has access to the

information that he owns and the one stored at the ACS. First, the set of grantors is encrypted using

asymmetric encryption and the key pkLBS . Since s does not know pkLBS and asymmetric encryption

is secure against IND-CPA [21], s cannot learn any useful information from the encrypted data.

Second, the set of grantees are encrypted using probabilistic encryption and the key of its owner.

Since s knows only the key to decrypt his set of grantees, and probabilistic encryption is secure

against IND-CPA [21], s cannot learn any useful information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get their respective

answers. Similar to the case 1, the information that s received during query processing does not

reveal any data about the grantees and grantors of other users. Next, during the second protocol

execution, since s is not allowed to collude anymore with any entity, s only has access to information

that he owns, the one that he has learned during the first protocol execution, and the one that he

will obtain during the second execution. Similar to the case 1, s has access to the same information

as in the first protocol execution. Therefore, using the same arguments as in the first protocol

execution, s cannot learn whether u or v are allowed to learn the distance between them.

Consequently, given two users u and v , the 2lSE approach guarantees that, in the presence of

adversaries with the power defined in our adversary model, an adversary will not be able to learn

whether u or v are allowed to learn the distance between them. □

On Preserving Secrecy in Mobile Social Networks 21

5.2 Secrecy Proofs of the 2lABE approach
Lemma 5.4. Given a user u, the 2lABE approach guarantees that, in the presence of adversaries with

the characteristics defined in our adversary model, Section 2.2, only authorized entities can learn the
physical position of u.

Lemma 5.5. Given a user u, the 2lABE approach guarantees that, in the presence of adversaries
with the characteristics defined in our adversary model, Section 2.2, only entities they themselves have
authorized can learn the distance between their physical position and the one of u.

Lemma 5.6. Given two users u and v , the 2lABE approach guarantees that, in the presence of
adversaries with the characteristics defined in our adversary model, Section 2.2, an adversary will not
be able to learn whether u or v are allowed to learn the distance between them.

The proofs of Lemmas 5.4 - 5.6 are analogous to the proofs of Lemmas 5.1 - 5.3, respectively.

Although the 2lSE and the 2lABE approaches have some differences, the properties of the 2lSE used

for the proofs also hold for 2lABE. First, both approaches differ in the encryption scheme used to

encrypt the usernames. The 2lABE uses CP-ABE. Since CP-ABE is IND-CPA secure [7], adversaries

cannot learn any useful information from the encrypted names. Second, different from the 2lSE,
the 2lABE does not use the DH protocol to share keys between users. Instead, each user receives,

as part of the CP-ABE, a secret key for decryption. A user can decrypt a ciphertext c only if the

attributes used to generate his secret key satisfies the access policy used to generate c . That is, a
user can decrypt only usernames that belong to his grantors.

6 TIME COMPLEXITY ANALYSIS
A complexity analysis is helpful to predict the behavior of the 2lSE and 2lABE approaches and

to facilitate meaningful comparisons. An average complexity analysis depends on the internal

behavior of the database, which is specific to the product and is not openly available. Furthermore,

if there are changes in the system settings, the average analysis is void. So our complexity analysis

is a worst case analysis. Here, we focus on the complexity of the query phase because this is the

most frequently used phase in our scenario.

6.1 Time Complexity Analysis of the 2lSE and 2lABE approaches
The number of operations at the user-side depends on the number of grantors of the querying useru
that are inside the query range. Then, our worst-case complexity analysis considers that all the users

in the set of grantors of u are located within the query range. To perform the complexity analysis of

our approaches, one needs to specify the complexity of the encryption/decryption process, which

depends on the type of encryption/decryption algorithm used. We select the following well-known

algorithms from the literature: For symmetric and asymmetric encryption schemes, we use AES

and RSA, respectively. For SHE, we use algorithms based on the learning with errors problem over

rings, such as the ones presented in [32]. For CP-ABE, we select the algorithm presented in [27].

Let A be the total number of authorized access requests, i.e., A =
∑
u ∈U |Grantoru |, B(pu) be

the bit string representation of the physical position pu , and |B(pu)| its length. Further, let TCuser ,

TCACS , and TCLBS denote the time complexity at the user-side, the ACS and the LBS provider,

respectively. A ciphertext generated using SHE is represented as a matrixM . We use |M | to denote

the size of the matrix. Next, the initialization of the RSA algorithm requires to select at random two

large primes. We use N to denote the product of the selected primes. Next, note that p and ηu are

the integer and the secret number of a given user u, respectively, that are part of the DH protocol.

22 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

Lemma 6.1. Given a range query Ranдe = (u,d), the time complexities of the 2lSE approach at the
user-side, the ACS, and the LBS provider are:

TCuser = O
(
|Grantoru | · log(p)

2 · log(ηu)
)

TCACS = O
(
|Grantoru | · (|B(pu)| · log(|B(pu)|) + log(N)

3)
)

TCLBS = O
(
|Grantoru | · |M |

3
) (1)

Proof. We start by analyzing the complexity of the encryption/decryption process of each of the

encryption schemes used in the 2lSE approach, i.e., symmetric, asymmetric encryption, and SHE.

First, the complexity of symmetric encryption schemes, specifically AES, depends on the length of

the messagem to be encrypted, |m |, [36]. Then, the complexity of the encryption/decryption process

is O(|m |). In our scenario, we use symmetric encryption to encrypt the usernames. We consider

that the length of the string that represents a username has a constant size of 12 bytes. Therefore,

the complexity of the encryption/decryption process using symmetric encryption reduces to O(1).

Second, the complexity of asymmetric encryption schemes, specifically RSA, is based on the

complexity of modular exponentiation. Using RSA, given a messagem, the resulting ciphertext

is c =me (mod N), and the decryption of c ism = cd (mod N), where e is the public key and d is

the secret key. Given the integer numbers B,C,N , the complexity of the modular exponentiation

BC (mod N) is O(log(N)2 · log(C)). We consider that the exponent e in the RSA algorithm, i.e., the

public key, is fixed, as specified in FIPS-186-3 [30]. So the encryption complexity using RSA is

O(log(N)2). Using standard RSA assumptions, the exponent d in the RSA algorithm, i.e., the secret

key, has size in bits close to that of N . Then, the decryption complexity using RSA is O(log(N)3).
Third, in SHE schemes [32], the encryption/decryption process depends on modular multiplica-

tion and addition of vectors. Given amessagem, using SHE, the complexity of encrypting/decrypting

m is log(|B(m)|) per bit [11], assuming the use of the Montgomery multiplication, which is one of the

fastest methods available for performing modular multiplication. Then, the encryption/decryption

complexity of SHE schemes is O(|B(m)| · log(|B(m)|)). The following steps are required to compute

a given range query with the 2lSE approach.

(1) Encrypt using SHE the position of the querying user u. The user executes this step. The
complexity of this step is O(|B(pu)| · log(|B(pu)|)).

(2) Use the identifier of the querying user u, idACSu to retrieve the set of grantors Grantoru . The
ACS executes this step. We assume the ACS uses B-tree indexing. Then, the complexity of

this step is O(log(|U |)).
(3) Decrypt the set of encrypted identifiers and the set of encrypted random numbers sent by

the ACS. Since both sets have a size of |Grantoru | and each element of these sets is encrypted

using the asymmetric encryption, the LBS provider has to execute 2 · |Grantoru | asymmetric

decryptions. The complexity of this step is O(|Grantoru | · log(N)
3).

(4) For each decrypted identifier in step 3, retrieve the corresponding encrypted position and

encrypted public value. The LBS provider does this step. We assume the LBS provider uses

B-tree indexing. Then, the complexity of this step is O(|Grantoru | · log(|U |)).
(5) Compute the encrypted square distances between the querying user and the ones retrieved

in step 4. The LBS provider executes this step. This operation requires three homomorphic

additions and two multiplications. A ciphertext generated using SHE is represented as a

matrix. So adding and multiplying two ciphertexts imply addition and multiplication of two

matrices [45]. The addition and multiplication operations have a complexity of O(|M |2) and
O(|M |3), respectively. Since O(|M |3) dominates O(|M |2), the complexity of computing one

encrypted square distance is O(|M |3). The complexity of this step is O(|Grantoru | · |M |
3).

On Preserving Secrecy in Mobile Social Networks 23

(6) Retrieve from the set of encrypted names stored at the LBS provider the encrypted names

corresponding to each of the random numbers decrypted in step 3. The LBS provider executes

this step. The complexity of this step is O(|Grantoru | · loд(A)).
(7) Decrypt the information sent by the LBS provider: the encrypted square distances, the second

layer of encryption of the encrypted names, and the encrypted public numbers. The ACS

executes this step. It decrypt in total 3 · |Grantoru | ciphertexts. The square distances are
encrypted using SHE, and the names and public numbers are encrypted using asymmetric en-

cryption. Then, the ACS performs |Grantoru | SHE decryptions and 2 · |Grantoru | asymmetric

decryptions. The complexity of this step is O(|Grantoru | · (|B(pu)| · log(|B(pu)|) + log(N)
3)).

(8) Compute the shared keys and decrypt the encrypted names corresponding to users that fulfill

the query condition. The user does this step. u computes in total |Grantoru | shared keys. The
shared keys are generated using the DH protocol, which requires modular exponentiation.

Given a public number of a user v , Zv , and the secret number of u, ηu , the complexity of the

modular exponentiation Zv
ηu (mod p) isO(log(p)2 · log(ηu)), where p is the parameter of the

DH protocol. The number of decryptions performed are |Grantoru |, where each decryption

has a complexity of O(1). The complexity of this step is O(|Grantoru | · log(p)
2 · log(ηu)).

By considering the step with the highest complexity that is performed by each entity of the

system, one can easily construct the terms of Equation 1. □

We introduce further notation: Let G and GT be two cyclic groups of the same order, where G
and GT are the groups selected during the initialization of the CP-ABE scheme. Further, let e be a
bilinear map of the form e : G × G → GT . The encryption/decryption process using CP-ABE is

based on bilenear mappings and operations in the groups G and GT . We use Ce and CGT to denote

the complexity of computing e , and the complexity of performing an operation in the group GT ,
respectively.

Lemma 6.2. Given a range query Ranдe = (u,d), the time complexities of the 2lABE approach at
the user-side, the ACS, and the LBS provider are:

TCuser = O
(
|Grantoru | · (Ce +CGT)

)
TCACS = O

(
|Grantoru | · (|B(pu)| · log(|B(pu)|) + log(N)

3)
)

TCLBS = O
(
|Grantoru | · |M |

3
) (2)

Proof. We start by analyzing the complexity of the encryption/decryption process of each

of the encryption schemes used in the 2lABE approach, i.e., asymmetric encryption, SHE, and

CP-ABE. First, as shown in the proof of Lemma 6.1, the encryption and decryption complexity of

asymmetric encryption schemes areO(log(N)2) andO(log(N)3), respectively, and given a message

m, the encryption/decryption complexity of SHE is O(|B(m)| · log(|B(m)|)). Third, the encryption
complexity of CP-ABE schemes [27] depends on the size of the access policy and the cyclic groups

G and GT . The encryption costs using CP-ABE is (n + 3) · CG + 2 · CGT , where n is the size of

the access policy and CG is the complexity of performing an operation in the group G [50]. In

our scenario, the size of the access policy depend on the size of the set of grantees of each user.

Then, the encryption complexity of CP-ABE isO(|Granteeu | ·CG +CGT). The decryption cost using

CP-ABE is 2 ·Ce + 2 ·CGT [50]. Then, the decryption complexiy of CP-ABE is O(Ce +CGT).
The following steps are required to compute a given range query with the 2lABE approach.

(1)-(3) Similar to the step 1-3 of the 2lSE.
(4) Retrieve the encrypted position and encrypted name corresponding to each decrypted

identifier in step 3. The LBS provider executes this step. The complexity of this step is

O(|Grantoru | · log(|U |).

24 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

(5) Similar to the step 5 of the 2lSE.
(6) Decrypt the encrypted square distances and the second layer of encryption of the encrypted

names sent by the LBS provider. The total number of ciphertexts that the ACS has to decrypt

is 2 · |Grantoru |, where the square distances are encrypted using SHE and the names are

encrypted using asymmetric encryption. This step is done by the ACS. The complexity of

this step is O(|Grantoru | · (|B(pu)| · log(|B(pu)|) + log(N)
3)).

(7) Decrypt the encrypted names corresponding to users that fulfill the query condition. The user

executes this step. The number of decryptions performed are |Grantoru |. Then the complexity

of this step is O(|Grantoru | · (Ce +CGT)).

By considering the step with the highest complexity that is performed by each entity of the

system, one can easily construct the terms of Equation 2. □

6.2 Discussion
From our worst-case analysis, Lemmas 6.1 and 6.2, we observe that both approaches differ only at

one entity: the user-side. The main difference relies on the decryption process, which is related to

the encryption scheme used. With the 2lSE, the encryption/decryption complexity of symmetric

schemes is O(1). However, the querying user has to perform a total of |Grantoru | exponentiations
module p to calculate the shared key. In contrast, with the 2lABE, each user uses a single key

to decrypt the received ciphertexts. However, the encryption/decryption complexity of CP-ABE

schemes depends on the size of the access policy used to generate a given ciphertext and bilinear

pairing operations, which are computationally expensive [50]. In fact, both schemes have a trade-off

between secrecy and efficiency, as we explain in the following. Our 2lSE approach uses the DH

protocol to build a shared secret key between two users. The secrecy of this protocol relies on the

Computational DH problem (CDH) [13]. Our 2lABE approach uses CP-ABE to encrypt the name of

the users. CP-ABE schemes are built based on bilinear pairing functions, which themselves rely

on the CDH problem. The secrecy and efficiency of both approaches rely, among others, on the

hardness of the CDH problem, and the algebraic operations in the cyclic group that is being used.

The CDH problem has a trade-off between secrecy and performance. A large order of a cyclic group

implies higher secrecy [16], i.e., less success probability of an adversary solving the CDH problem.

However, the efficiency of computing algebraic operations is affected. Then one has to make a

trade-off between the secrecy level needed and the efficiency of the approach.

Since a complexity analysis considers only the dominating operations, a worst-case analysis

is insufficient to determine the performance of an algorithm in practice. For instance, for the

complexity at the LBS provider, one can observe that both approaches have the same time complexity.

However, one can find significant differences between both approaches in the less dominant steps.

With the 2lSE approach, the LBS provider has to perform |Grantoru | extra searches with complexity

log(A), which will affect its performance. Therefore, we additionally perform experiments to validate

our complexity analysis, evaluate how the differences between both approaches impact on their

performance and determine at the end which approach performs better in practice.

7 EXPERIMENTS
This section presents an experimental analysis of the performance of the 2lSE and 2lABE approaches.

7.1 Experiment Setup
7.1.1 Dataset andQuery Sample. We use the Tokyo dataset [52] in our experiments. This dataset

contains 573703 real check-ins, i.e., positions. We choose a sample of 1000 users at random. Next,

we divide the users into ten equally classes. We generate authorized access requests such that all

On Preserving Secrecy in Mobile Social Networks 25

the users in each class have the same number of grantors. Specifically, we selected at random from

the dataset the following grantors sizes: 10, 25, 50, 100, 250, 500, 750, 1000, 2500, and 5000.

7.1.2 Encryption Algorithms. Weuse the following libraries for the implementation:Microsoft SEAL

[42] for the SHE and the Java Pairing-Based Cryptography Library together with the Cryptographic

Packages javax.crypto and java.security for symmetric, asymmetric encryption and CP-ABE.

7.1.3 Evaluation Measures. For our evaluation, we considered the access request and query phases.

All other phases are executed only once, at least with respect to one of the entities of the systems. In

this sense, we consider six measures: the storage size, the access request time, the query processing

time at the user-side, the query processing at the LBS provider, the query processing time at the

ACS, and the total query processing time. The total query processing time is the sum of the query

processing time at each of the entities.

Note that positioning and query processing are two separate activities. So, in our experiments,

we do not study the time that a positioning technology needs to provide the physical position

of the users and its accuracy. The level of position accuracy and its computational time depend

on the underlying technology and on factors such as receiver noise and satellite geometry. For

instance, under open sky conditions, GPS-based solutions have an accuracy of 3 − 5 meters and a

computational time of 3.6 seconds [54]. In the case of GSM-based solutions, they have an accuracy

of 65 - 134 meters [10] and a computation time of 7.04 milliseconds [20]. Improving the accuracy

and computational time of the positioning technology technologies is not a topic of this paper.

7.2 Results
We now present our experiment results, which evaluate the performance of our schemes using the

metrics defined in Section 7.1.3. Note that we do not consider the network-communication time.

Storage-Size: Figure 9(a) shows the total storage size occupied by each of the approaches. The

blue and red colors represent the storage size at the ACS and LBS provider, respectively. The 2lABE
approach requires more storage capacity. However, the difference between the storage capacity of

both approaches is minimal (2 percent in our scenario).

Fig. 9. Storage size(a), Access request time (b) and Encryption time (c)

Access request time: Given an authorized access request accessReq(u,v)=true, we measure the

time required by the grantor v to generate and add the information needed at the ACS and the

LBS provider, with each approach. Figure 9(b) shows the average access request time with both

26 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

approaches for our sample. Both approaches require the same amount of time to generate and store

the corresponding information at the ACS (blue color). With the 2lABE approach, the grantors

require more time to generate and store the information at the LBS provider. That is because of

the different encryption scheme used to encrypt the usernames stored at the LBS provider. One

could think that our results are specific to the number of grantees of the users in our sample. Next,

we show that our results apply to any number of grantees. Lemma 6.2 shows that the encryption

complexity using CP-ABE, which is used by the 2lABE approach, depends, among others, on the

number of grantees that a user has. To analyze in-depth, the effect of each encryption scheme, we

select a user and increase his number of grantees, starting from 1 up to 500. Next, we measure

the time required by the user to encrypt his username against the size of his set of grantees.

Figure 9(c) shows the encryption time with both approaches. One can observe that even for a set

of grantees with cardinality one, the 2lSE approach performs better than the 2lABE. Moreover, as

expected from our complexity analysis, the encryption time with the 2lABE grows linearly with the

number of grantees. With the 2lSE the encryption time is constant because each grantor generates

a different ciphertext for each of his grantees. Consequently, with the 2lSE, the encryption time of

each ciphertext is independent of the number of grantees of a user. With the 2lABE, although each

grantor generates only one ciphertext, which can be accessed by all of his grantees, the number of

operations required to encrypt a ciphertext depends, among others, on the number of grantees.

Query time: Figures 10(a), 10(b), and 10(c) show the average query processing time for each of

the ten classes at the ACS, the LBS provider, and the user, respectively. The query processing times

of the LBS provider and ACS with the 2lSE approach are greater than that of the ones with the

2lABE. In contrast, the query processing time of the user with the 2lSE approach is less than the

one with the 2lABE. We explain this as follows: First, with the 2lSE, the LBS provider performs an

additional search to recover the encrypted version of the name, which can be decrypted by the

querying user. The LBS provider does not perform this search with the 2lABE because it stores one

encrypted version of the name for each user. Second, with the 2lSE approach, the ACS decrypts

three ciphertexts for each user v in the query answer: the second layer of the encrypted name of v ,
the encrypted square distance, and the encrypted public number Zηv . With the 2lABE approach, it

decrypts only the encrypted square distances and the second layer of the encrypted names. Third,

with the 2lSE approach, the user has to compute the shared key and decrypt the names encrypted

with symmetric encryption. With the 2lABE the user decrypts the names encrypted with CP-ABE.

The encryption/decryption process using CP-ABE is computationally more expensive than the

one using symmetric encryption and even more expensive than computing the shared keys and

decrypting. In the end, the query processing time of the 2lABE at the LBS provider and the ACS is

less than the one with the 2lSE. However, the user-side performance of the 2lSE is that much high

that it compensates the advantages of the 2lABE. Figure 10(d) shows that the total average query
processing time, i.e., the sum of the times required by the LBS provider, the ACS, and the user, with

the 2lSE approach is much less (approximately by a factor of 2) than the one with the 2lABE.
Discussion: One important difference between both approaches that affect query performance

is the encryption scheme used to encrypt the usernames. In general, in our scenario, as our

experimental results show, having multiple encrypted copies of a message (2lSE) is more efficient

in terms of query performance. The additional search process needed with the 2lSE approximately

doubles the query processing time at the LBS provider side compare to the one with the 2lABE
approach. The opposite happens at the user-side, where the decryption time, with the 2lABE,
increases by more than twice compared to the one with the 2lSE. However, the time contribution to

the total query processing time of the LBS provider is less in comparison to that of the user. These

differences are reflected in the total query processing time, where the 2lSE approach is twice more

efficient than the 2lABE, which is impressive. Therefore, one can say that the 2 percent extra storage

On Preserving Secrecy in Mobile Social Networks 27

Fig. 10. Average query processing time at the ACS (a), the LBS provider (b) and the user-side (c). Total average
query processing time (d)

required by the 2lSE pays off with better query performance. Our results not only apply to real

online social networks like Facebook and LiveJournal, where the average number of connections of

a person, i.e., the size of the set of grantors, is 322 [41] and 520.04 [24], respectively, but also to

unrealistic scenarios where the size of the set of grantors is 5000. These results are in line with our

complexity analysis, and one may interpret them as an indication that our analysis also holds for

the average case. Consequently, the 2lSE approach is the most feasible option in our scenario.

8 RELATEDWORK
We categorize exiting works aiming to preserve location secrecy in two groups: location secrecy in

LBS and location secrecy in mSNs. The difference between these groups is that approaches in the

first one do not consider access policies, i.e., users can access the location of any user in the system.

Location secrecy in LBS: Existing techniques that achieve location secrecy in LBS are:

Mix zones: The key idea of these approaches is to prevent adversaries from tracking long-term

user movements [5]. A mix zone is a spatial region with a predetermined size, inside which users

do not report their position to the LBS provider. These approaches focus on data anonymization

and replace the user identity with a pseudonym. They offer anonymity guarantees by changing

the pseudonyms of users inside a mix zone such that an adversary is unable to link users that go

inside a zone with those leaving it. The position of users outside the mix zones is disclosed. Then

queries are executed on plaintext data. Users inside the mix zones do not communicate with the

LBS provider; so they cannot get any service. This lack of communication affects functionality.

Coordinates transformation: Approaches in this area aim to guarantee that an adversary does

not learn the position of the users. These approaches map the location of users to another space

coordinate and address the query on the transformed space. In the approach presented in [17], users

use a transformation function over their physical position before sending it to the LBS provider.

The transformation function consists of shifts and rotations. Each user sets the parameters of the

transformation function and distributes these parameters among the rest of users to allow them to

recover the original position. This approach is subject to data reconstruction attacks [22]. To avoid

this kind of attacks, the authors in [28] use agents to transform the physical positions of users.

Agents are trusted third parties servers that act as middleware between the users and the LBS

provider. Agents periodically change their transformation functions, which prevents the adversaries

28 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

from analyzing the data. These approaches allow users to query for one specific user at each time,

i.e., point queries. The secrecy of this approach relies on trusted third servers.

Cryptography: Approaches like [35, 55]keep the position of users secret from adversaries including

the service provider. They use encryption techniques and hash functions to compute proximity

between two users privately. The authors in [55] use, besides hash functions, location tags to

prevent users from announcing unreal locations. Location tags are pieces of information obtained

from the network protocol like 802.11 frames in WiFi networks. These approaches allow users to

query for the proximity of one specific user at each time, i.e., point queries.

Location secrecy inmSNs:Approaches in this area restrict access to the position of users based
on access control policies. Each user defines a set of users who are authorized to read his position.

The scheme proposed in [39] guarantees location secrecy by using encryption and coordinate

transformation techniques. The LBS provider stores the transformed data. Querying requires

that users distribute among their friends the transformation parameters and the corresponding

decryption keys. This scheme focuses on dealing with point and nearest neighbor queries. Wei

et al. [48] proposed an approach called Mobishare. The architecture of Mobishare consists of a

trusted central tower, an untrusted LBS provider, and an untrusted Access Control Server (ACS).

Mobishare uses dummy techniques to prevent the LBS provider and the ACS from learning the

users identities and their positions. Before outsourcing the data to the LBS provider, Mobishare

replaces users identities with pseudonyms and adds dummy pseudonyms together with dummy

locations. The position of users is stored in plaintext; so the LBS provider can compute any query.

Before sending the final query answer to the user, the ACS filters the data based on the access

policies, and the central tower replaces pseudonyms with user identities. However, an adversary

who can observe query executions will be able to identify real pseudonyms from dummy ones. An

adversary could use such information to link a pseudonym with a user identity and therefore learn

the position of the user. The adversary could also learn the access policies, i.e., the set of users

that have allowed a given user to access their position. To avoid these issues, the authors in [25]

extended Mobishare by adding dummy queries and using a private set intersection protocol. The

authors in [26] extended the latter approach by introducing a new architecture with multiple LBS

providers. Their approach aims to prevent an adversary from identifying queries coming from the

same user, which could be used to learn the users identities. To conclude, approaches in this area

focus on point or nearest neighbor queries, or they rely on trusted central towers. Furthermore,

their adversary model is weaker than ours, as explained in Section 2.2.

Besides the works discussed in this section, there are works that propose solutions to interesting

problems related to mobile devices and location services, such as user authentication [2], location

tracking techniques [1], and congestion problems in mobile device clouds [4]. However, they are

examples of work that does not solve our specific problem—secrecy guarantees in LBS.

9 CONCLUSION
Location-based services are an important feature provided by mSNs. However, users usually are

reluctant to share their position with others due to privacy reasons. In this paper, we have shown

how to offer LBS, in the example of range queries, in mSNs with a revocation feature while

providing to the users the secrecy guarantees Gposition, Gdistance, and Gauthorization under collusion

assumption. We introduced two approaches namely two-layer symmetric encryption, 2lSE, and
two-layer attribute-based encryption, 2lABE. The main differences between them is that they

use, among other encryption schemes, symmetric and attribute-based encryption, respectively. A

complexity analysis of the query phase tells us that both approaches differ only at one entity—the

user-side. Their differences rely on the decryption process, which is related to the encryption

scheme used. We have further compared our approaches experimentally. Although with the 2lABE,

On Preserving Secrecy in Mobile Social Networks 29

the key management is more straightforward than with the 2lSE, and the LBS provider stores a

single encrypted copy for each message, we found that our former solution is on average twice

more efficient in our scenario.

In the future, it will be interesting to study how to offer location-based services in mSNs with

different kind access policies while providing secrecy guarantees. For instance, one can consider

integrating mutual authorizations [46], where users grant access to their resources, i.e., physical

positions, to users that allow them the same, or location constraints [6], where users restrict access

to their resources based on the location of the accessing user.

ACKNOWLEDGMENTS
The first author thanks “Escuela Politécnica Nacional, Ecuador - Departamento de Informática

y Ciencias de la Computación" for its support. This work was partially funded by the German

Research Foundation (DFG) as part of the research Datenschutzkonforme Verwaltung relationaler

Datenbestände.

REFERENCES
[1] I Al Ridhawi, M Aloqaily, A Karmouch, and N Agoulmine. 2009. A location-aware user tracking and prediction system.

In 2009 Global Information Infrastructure Symposium. IEEE, 1–8.

[2] Fazel Anjomshoa, Moayad Aloqaily, Burak Kantarci, Melike Erol-Kantarci, and Stephanie Schuckers. 2017. Social

behaviometrics for personalized devices in the internet of things era. IEEE Access 5 (2017), 12199–12213.
[3] Vijayalakshmi Atluri, Heechang Shin, and Jaideep Vaidya. 2008. Efficient security policy enforcement for the mobile

environment. Journal of Computer Security 16, 4 (2008), 439–475.

[4] Venkatraman Balasubramanian, Moayad Aloqaily, Faisal Zaman, and Yaser Jararweh. 2018. Exploring computing at

the edge: a multi-interface system Architecture enabled mobile device cloud. In 2018 IEEE 7th International Conference
on Cloud Networking (CloudNet). IEEE, 1–4.

[5] Alastair R Beresford and Frank Stajano. 2004. Mix zones: User privacy in location-aware services. In Pervasive
Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference on. IEEE, 127–131.

[6] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. 2005. GEO-RBAC: A Spatially Aware RBAC.

In Proceedings of the 10th ACM Symposium on Access Control Models and Technologies. New York, NY, USA, 9.

[7] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-policy attribute-based encryption. In IEEE Security
and Privacy, 2007.

[8] Dan Boneh. 1998. The decision diffie-hellman problem. In International Algorithmic Number Theory Symposium.

Springer, 48–63.

[9] Ran Canetti. 2001. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings 2001
IEEE International Conference on Cluster Computing. IEEE, 136–145.

[10] Mike Y Chen, Timothy Sohn, Dmitri Chmelev, Dirk Haehnel, Jeffrey Hightower, Jeff Hughes, Anthony LaMarca, Fred

Potter, Ian Smith, and Alex Varshavsky. 2006. Practical metropolitan-scale positioning for gsm phones. In International
Conference on Ubiquitous Computing. Springer, 225–242.

[11] Qi Cheng, Jun Zhang, and Jincheng Zhuang. 2016. LWE from Non-commutative Group Rings. arXiv preprint
arXiv:1612.06670 (2016).

[12] MacKenzie F Common. 2018. Facebook and Cambridge Analytica: let this be the high-water mark for impunity. LSE
Business Review (2018).

[13] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE transactions on Information Theory
22, 6 (1976), 644–654.

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-generation onion router. Technical
Report. Naval Research Lab Washington DC.

[15] Howard Falk. 2011. Applications, architectures, and protocol design issues for mobile social networks: A survey. Proc.
IEEE 99, 12 (2011), 2125–2129.

[16] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. 2004. Secure hashed Diffie-Hellman over non-DDH groups. In

International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 361–381.
[17] Andreas Gutscher. 2006. Coordinate transformation-a solution for the privacy problem of location based services?. In

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE, 7–pp.
[18] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. 2019. Joins Over Encrypted Data with Fine Granular Security. In

Data Engineering, 2019. ICDE 2019. IEEE 35th International Conference on. IEEE, 674–685.

30 Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm

[19] Carmit Hazay and Yehuda Lindell. 2010. Efficient secure two-party protocols: Techniques and constructions. Springer.
[20] Mohamed Ibrahim and Moustafa Youssef. 2011. CellSense: An accurate energy-efficient GSM positioning system. IEEE

Transactions on Vehicular Technology 61, 1 (2011), 286–296.

[21] Jonathan Katz and Yehuda Lindell. 2007. Introduction to modern cryptography. (2007).

[22] Hyeong-Il Kim, Seungtae Hong, and Jae-Woo Chang. 2016. Hilbert curve-based cryptographic transformation scheme

for spatial query processing on outsourced private data. Data & Knowledge Engineering 104 (2016), 32–44.

[23] Marc Lasserre, Vach Kompella, et al. 2007. Virtual private LAN service (VPLS) using label distribution protocol (LDP)
signaling. Technical Report. RFC 4762, January.

[24] Silvio Lattanzi and Yaron Singer. 2015. The power of random neighbors in social networks. In Proceedings of the 8th
ACM WSDM Conference.

[25] Jingwei Li, Jin Li, Xiaofeng Chen, Zheli Liu, and Chunfu Jia. 2014. {MobiShare}+: Security Improved System for

Location Sharing in Mobile Online Social Networks. J. Internet Serv. Inf. Secur. 4, 1 (2014), 25–36.
[26] Jin Li, Hongyang Yan, Zheli Liu, Xiaofeng Chen, Xinyi Huang, and Duncan S Wong. 2017. Location-sharing systems

with enhanced privacy in mobile online social networks. IEEE Systems Journal 11, 2 (2017), 439–448.
[27] Xiaohui Li, Dawu Gu, Yanli Ren, Ning Ding, and Kan Yuan. 2012. Efficient ciphertext-policy attribute based encryption

with hidden policy. In International Conference on Internet and Distributed Computing Systems. Springer, 146–159.
[28] Dan Lin, Elisa Bertino, Reynold Cheng, and Sunil Prabhakar. 2008. Position transformation: a location privacy

protection method for moving objects. In Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop. 62–71.
[29] Hong Liu and Yanbing Liu. 2014. Security assessment on block-Cat-map based permutation applied to image encryption

scheme. Optics & Laser Technology 56 (2014), 313–316.

[30] G Locke and P Gallagher. 2009. Fips pub 186-3: Digital signature standard (dss). Federal Information Processing Standards
Publication 3 (2009), 186–3.

[31] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. 2011. On CCA-secure somewhat homomorphic

encryption. In International Workshop on Selected Areas in Cryptography. Springer, 55–72.
[32] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and learning with errors over rings. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 1–23.
[33] Clara Mancini, Keerthi Thomas, Yvonne Rogers, Blaine A Price, Lukazs Jedrzejczyk, Arosha K Bandara, Adam N

Joinson, and Bashar Nuseibeh. 2009. From spaces to places: emerging contexts in mobile privacy. In Proceedings of the
11th international conference on Ubiquitous computing. ACM, 1–10.

[34] Steve Moffat, Mohammad Hammoudeh, and Robert Hegarty. 2017. A survey on CP-ABE approaches to data security

on mobile devices and its application to iot. In Proceedings of the ICFNDS. ACM, 34.

[35] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, Dan Boneh, et al. 2011. Location

Privacy via Private Proximity Testing.. In NDSS, Vol. 11.
[36] Ghizlane Orhanou, Saïd El Hajji, and Youssef Bentaleb. 2011. EPS AES-based confidentiality and integrity algorithms:

Complexity study. In Multimedia Computing and Systems (ICMCS), 2011 International Conference on. IEEE, 1–4.
[37] Safa Otoum, Burak Kantarci, and Hussein T Mouftah. 2019. On the feasibility of deep learning in sensor network

intrusion detection. IEEE Networking Letters 1, 2 (2019), 68–71.
[38] Raluca Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: protecting confidentiality

with encrypted query processing. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles. 85–100.
[39] Krishna PN Puttaswamy, Shiyuan Wang, Troy Steinbauer, Divyakant Agrawal, Amr El Abbadi, Christopher Kruegel,

and Ben Y Zhao. 2014. Preserving location privacy in geosocial applications. IEEE TMC 13, 1 (2014), 159–173.

[40] Stefan Saroiu and Alec Wolman. 2010. I am a sensor, and I approve this message. In Proceedings of the Eleventh Workshop
on Mobile Computing Systems & Applications. ACM, 37–42.

[41] Seydi Ahmet Satici and Recep Uysal. 2015. Well-being and problematic Facebook use. Computers in Human Behavior
49 (2015), 185–190.

[42] SEAL 2018. Microsoft SEAL (release 3.1). https://github.com/Microsoft/SEAL. (Dec. 2018). Microsoft Research.

[43] Nan Shen, Jun Yang, Ke Yuan, Chuan Fu, and Chunfu Jia. 2016. An efficient and privacy-preserving location sharing

mechanism. Computer Standards & Interfaces 44 (2016), 102–109.
[44] Irina Shklovski, Scott D Mainwaring, Halla Hrund Skúladóttir, and Höskuldur Borgthorsson. 2014. Leakiness and

creepiness in app space: Perceptions of privacy and mobile app use. In Proceedings of the 32nd annual ACM conference
on Human factors in computing systems. ACM, 2347–2356.

[45] Thomas Shortell and Ali Shokoufandeh. 2015. Secure signal processing using fully homomorphic encryption. In

International Conference on Advanced Concepts for Intelligent Vision Systems. Springer, 93–104.
[46] Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm. 2019. Mutual Authorizations: Semantics and

Integration Issues. In Proceedings of the 24th ACM Symposium on Access Control Models and Technologies. 213–218.
[47] Goce Trajcevski, Peter Scheuermann, Hervé Brönnimann, and Agnès Voisard. 2005. Dynamic topological predicates and

notifications in moving objects databases. In Proceedings of the 6th international conference on Mobile data management.

https://github.com/Microsoft/SEAL

On Preserving Secrecy in Mobile Social Networks 31

ACM, 77–85.

[48] Wei Wei, Fengyuan Xu, and Qun Li. 2012. Mobishare: Flexible privacy-preserving location sharing in mobile online

social networks. In INFOCOM, 2012 Proceedings IEEE. IEEE, 2616–2620.
[49] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven Cheung, Frank Wang, and Dan

Boneh. 2012. StegoTorus: a camouflage proxy for the Tor anonymity system. In Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 109–120.

[50] Runhua Xu, Yang Wang, and Bo Lang. 2013. A tree-based cp-abe scheme with hidden policy supporting secure data

sharing in cloud computing. In 2013 International Conference on Advanced Cloud and Big Data. IEEE, 51–57.
[51] Kefeng Xuan, Geng Zhao, David Taniar, and Bala Srinivasan. 2008. Continuous range search query processing in

mobile navigation. In Parallel and Distributed Systems ICPADS’08. IEEE, 361–368.
[52] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. 2015. Modeling user activity preference by leveraging

user spatial temporal characteristics in LBSNs. IEEE SMCS 45, 1 (2015).
[53] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan. 2014. Practical k nearest neighbor queries with location

privacy. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on. IEEE, 640–651.
[54] Paul A Zandbergen and Sean J Barbeau. 2011. Positional accuracy of assisted GPS data from high-sensitivity GPS-

enabled mobile phones. The Journal of Navigation 64, 3 (2011), 381–399.

[55] Yao Zheng, Ming Li, Wenjing Lou, and Y Thomas Hou. 2012. Sharp: Private proximity test and secure handshake with

cheat-proof location tags. In European Symposium on Research in Computer Security. Springer, 361–378.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions

	2 Problem Formulation
	2.1 System Architecture
	2.2 Adversary Model and Secrecy Guarantees

	3 Cryptographic Techniques Used
	4 Our Approach
	4.1 Basic two-layer symmetric encryption (basic 2lSE)
	4.2 Basic two-layer attribute-based encryption (basic 2lABE)
	4.3 Extending the basic schemes

	5 Secrecy Proofs
	5.1 Secrecy Proofs of the 2lSE approach
	5.2 Secrecy Proofs of the 2lABE approach

	6 Time Complexity Analysis
	6.1 Time Complexity Analysis of the 2lSE and 2lABE approaches
	6.2 Discussion

	7 Experiments
	7.1 Experiment Setup
	7.2 Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

