
TUTORIAL ON

EXCEPTION HANDLING IN ADA (R)

Tuesday, March 25, 1986

Washington Ada Symposium

Benjamin M. Brosgol

Alsys, Inc.

1432 Main Street

Waltham, Mass. 02154

(617) 890-0030

(R) Ada is a registered trademark of the U.S. Government (AJPO)

COPYRIGHT 1986 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all or
part of this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and
notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific
permission.

179

http://crossmark.crossref.org/dialog/?doi=10.1145%2F339665.339688&domain=pdf&date_stamp=1986-03-24

OVERVIEW OF PRESENTATION

o Motivation and Basic Principles

o Exception Handlers and How to Find Them

o Programming with Exceptions

o Tasking and Exceptions

o Exceptions and Optimizations

o Conclusions

180

O

O

O

WHAT IS AN EXCEPTION HANDLINGFACILITY

Control structure to deal with run-time situations that are:

o Rare

o Inconvenient to test for at the point of occurrence

o Not going to require that control return to the point

of occurrence

Typically error conditions O

An ~ is a name for such a situation

o Predefined: CONSTRAINT_ERROR

Situation: Array subscript out of bounds

o User-declared: TABLE_FULL

Situation: Inserting an"element when no more room

Activities comprise:

o E A ~ the exception --

Indicating that the gituation has occurred

o ~ the exception --

Executing some actions in response

181

WHY EXCEPTION HANDLING

O

O

O

O

Appropriate to application domain of real-time programming

o Typical program is infinite loop, interacting with

external environment

o Even rare events will eventually occur

Promotes program readability and efficiency

o Program text shows the main processing clearly, not

cluttered with checking of status flags

Helps avoid language complexity

o No need for "wild goto" or passing of error-handling

procedures

Steelman required it

182

RAISING AN EXCEPTION IMPLICITLY

An exception may be raised with no explicit indication in the

source program

Examples:

X := Y+Z; -- NUMERIC_ERROR if Y+Z overflows

x := Y/Z; -- NUMERIC_ERROR if Z=0

I: POSITIVE := J; -- CONSTRAINT_ERROR if J <=

X: array (i..10) of INTEGER;

X(J) := ~; -- CONSTRAINT_ERROR if J not in i..10

type PTR is access INTEGER;

P: PTR;

P.all := 0; -- CONSTRAINT_ERROR if P = null

'183

RAISING AN EXCEPTION IMPLICITLY (Cont'd.)

There may or may not be run-time code to check for the condition

that will raise the exception

O NUMERIC_ERROR

O Trap on overflow

o Check a status flag

O CONSTRAINT_ERROR for access value dereference

o Trap on address fault

o Check vs. specific null value

Often the compiler can guarantee that there is no possibility for

the condition to occur that will raise the exception:

I: INTEGER range 0..10 := 5;

and thus no checking code need be generated

'184

RAISING AN EXCEPTION EXPLICITLY

This is done by a raise statement:

raise exception_name;

The exception name may be predefined:

raise TASKING_ERROR;

Or, more commonly, it may be a name declared by the programmer:

raise TABLE_FULL;

Regardless of whether the exception is raised ~ (by a

raise statement) or ~ , the effect is the same:

o Abandon~j£~j~9/l of the construct that caused the

exception to be raised

o Try to find a handler for the exception, where

execution will resume

185

PREDEFINED EXCEPTIONS

CONSTRAINT_ERROR

o Violation of range, index, discriminant constraint

o Dereferencing a null access value

NUMERIC_ERROR

o Predefined numeric operation that cannot deliver

correct value

PROGRAM_ERROR

o "Access before elaboration"

o Reaching the end of a function

STORAGE_ERROR

o Exhausting storage during a declaration, allocation,

subprogram call, task activation

TASKING_ERROR

o Failure of task activation or communication

'186

EXCEPTION HANDLERS

An exception handler specifies the actions to be taken in

response to the raising of an exception

It occurs as part of a frame -- a block statement or the body of

a subprogram, package, task, or generic unit; e.g.,

begin

Sequence of Statements

exception

-- Exception Part:

when E1 i E2 =>

Sequence of Statements

when E3 =>

Sequence of Statements

when others =>

Sequence of Statements

end;

-- Statement Part

-- Handler 1

-- Handler 2

-- Handler 3

'187

O

O

O

O

O

EXCEPTION HANDLERS (Cont'd.)
!

An exception name is not allowed to appear twice in the when

clauses of the same exception part

An others choice, if present, must appear alone in the last

when clause

A goto statement cannot transfer control into a handler from

outside (e.g., from the statement part)

A goto statement cannot transfer control from a handler to a

statement in the statement part

Nesting is permitted: a handler may itself contain inner

frames that have handlers

'188

FINDING AN EXCEPTION HANDLER WHEN AN EXCEPTION IS RAISED

Consider the context in which the exception was raised:

0

0

0

In a statement in the statement part of a frame

In a statement in an exception handler

In a declaration

Consider also the kind of unit in which the exception was raised:

o Block

o Package body

o Subprogram body

o Task body (Ignore this case for now)

o Library package specification

189

FINDING A HANDLER IN THE CURRENT FRAME

Simple case:

Exception ALPHA is raised in the statement part, and a

handler for ALPHA or for others appears in the frame's

exception part

Effect:

O

O

Abandon execution of the statement part

Go to the sequence of statements in the appropriate

handler

Note:

If no exception is raised in the statement part, then none

of the handlers in the exception part is executed

190

EXAMPLE OF SIMPLE CASE

Compute the "Dot Product" of a vector with itself.

If overflow occurs, write the error to an error file and return

the maximum value for the element type.

type ELEMENT_TYPE is range -MAX_VAL .. MAX_VAL;

type VECTOR is array (NATURAL range <>) of ELEMENT_TYPE;

function DOT_SELF(V: VECTOR) return ELEMENT_TYPE is

SUM: ELEMENT_TYPE := 0;

begin

for I in V'RANGE loop

SUM := SUM + V(I)**2;

end loop;

return SUM;

exception

when NUMERIC_ERROR ~ CONSTRAINT_ERROR =>

TEXT_IO.PUT_LINE(ERROR_FILE, "ERROR IN DOT_SELF");

return ELEMENT_TYPE'LAST;

end DOT_SELF;

191

FINDING AN EXCEPTION HANDLER

A less simple case:

Exception BETA is raised in the statement part of a frame,

but there is a handler neither for BETA nor for others in

the frame's exception part

Effect:

o

o

Abandon execution of the statement part of the frame

the ~ in these cases, based on the

kind of frame:

o Block or package body --

Raise BETA after the block or package body

o Subprogram body --

Raise BETA after the point of call

192

EXAMPLE: PROPAGATING AN EXCEPTION OUT OF A BLOCK

-- Find the largest integer <= N whose factorial can be computed

function FIND_MAX_FACTORIALIZABLE(N: NATURAL) return NATURAL is

I: NATURAL := i;

begin

declare

FACT: NATURAL := i;

begin

while I <= N loop

FACT := FACT * I;

I := I + i;

end loop;

end;

return N;

exception

-- Here if loop completed normally

when NUMERIC_ERROR =>

return I; -- Here if exception raised in loop

end FIND_MAX_FACTORIALIZABLE;

193

PROPAGATING AN EXCEPTION OUT OF A SUBPROGRAM

procedure PUSH(MY_ELEMENT: ELEMENT; MY_STACK: in out STACK)

begin

if STACK_FULL(MY_STACK) then

raise OVERFLOW;

end if;

STACK_INDEX := STACK_INDEX + i;

MY_STACK(STACK_INDEX) := MY_ELEMENT;

end PUSH;

is

If MY_STACK is full, then OVERFLOW is raised but not handled:

o Execution of PUSH is abandoned

o OVERFLOW is raised immediately after the call of PUSH,

with the caller determined dynamically

194

O

O

EXCEPTIONS AND SUBPROGRAM CALLS/RETURNS

Exception raised in subprogram call:

Handle in caller, not callee

declare

procedure HAMLET(I: NATURAL) is ... end HAMLET;

begin

e e e

HAMLET(-1); -- Raise CONSTRAINT_ERROR here

end;

Exception raised in function return:

Handle in the function, if possible

function OPHELIA return NATURAL is

begin

e e e

return -I;

e • •

-- Raise CONSTRAINT_ERROR here

end OPHELIA;

195

O

EXCEPTIONS AND SUBPROGRAM CALLS/RETURNS (Cont'd.)

Exception raised on procedure return (assignment to copy-out

parameter):

Handle in caller, not callee

declare

I: INTEGER range 0..10 := 6;

procedure POLONIUS(PARM: in out INTEGER) is

begin

PARM := 2*PARM;

return; *

exception

when CONSTRAINT_ERROR => PARM := 0;

end POLONIUS;

begin

POLONIUS (I) :

exception

when CONSTRAINT_ERROR => <

I := I;

end;

196

EXCEPTIONS AND UPDATING OF PARAMETERS

If an exception is propagated out of a procedure, then out and

in out parameters passed by copy are not updated

Scalar and Access Types:

procedure CLAUDIUS(I: in out INTEGER) is

begin

I := 0;

raise CURTAIN;

end CLAUDIUS;

-- Actual parameter not updated

procedure GERTRUDE(I: in out INTEGER)

begin

I := 0;

raise CURTAIN;

exception

when others => null;

end GERTRUDE;

is

-- Actual parameter updated

197

EXCEPTIONS AND UPDATING OF PARAMETERS (Cont'd.)

Array and Record Types

o Compiler may choose either reference or copy

o Program erroneous if it matters

declare

SWORD: EXCEPTION;

subtype STRINGLET is STRING(I..4);

S: STRINGLET := "ABCD";

procedure LAERTES(STR: out STRINGLET) is

begin

STR := "SOFT";

raise SWORD;

end LAERTES;

begin

LAERTES(S);

exception

when SWORD =>

if S = "SOFT" then

PUT_LINE("By Reference");

else

PUT_LINE("By Copy");

end if;

end;

'198

PROPAGATING AN EXCEPTION OUT OF A HANDLER

procedure PUSH(MY_ELEMENT: ELEMENT; MY_STACK: in out STACK) is

begin

STACK_INDEX := STACK_INDEX + i;

MY_STACK(STACK_INDEX) := MY_ELEMENT;

exception

when CONSTRAINT_ERROR =>

raise OVERFLOW;

end PUSH;

When the stack is full, CONSTRAINT_ERROR is raised by one of the

statements in PUSH's statement part

The statement part is abandoned, and the handler for

CONSTRAINT_ERROR in PUSH's exception part is executed

This in turn raises OVERFLOW, which is not handled by any inner

handler

Thus OVERFLOW is propagated (to the point of subprogram call)

199

PROPAGATING AN EXCEPTION ANONYMOUSLY

A special form of raise statement, omitting the exception name,

can be used only within a handler

Its effect is to propagate the "current exception", based on the

kind of frame

It is useful in a handler for others; e.g.,

procedure GO_FOR_IT is

begin

e l o

exception

when CONSTRAINT_ERROR =>

... -- Take appropriate action and return

when others =>

PUT_LINE("Unexpected exception in GO_FOR_IT");

raise;

end GO_FOR_IT;

200

HANDLING AN EXCEPTION RAISED IN A DECLARATION

o Look for the innermost frame containing the declaration.

If one exists, then:

Abandon execution of the frame -- do not look for a

handler in this frame's exception part

o Propagate the exception based on the kind of frame

o If there is no such innermost frame, then the declaration

occurs within a library package specification; thus:

o Abandon elaboration of the package specification

o Propagate the exception to the environment task

(the main subprogram does not get called)

201

EXAMPLE: HANDLING AN EXCEPTION RAISED IN A DECLARATION

declare

procedure WHY_NOT is

N: INTEGER range 0..10 := 20;

ALPHA: array (I..N) of FLOAT;

begin

o o o

exception

when CONSTRAINT_ERROR => ALPHA := (I..N => 0.0);

end WHY_NOT;

begin

WHY_NOT;

return;

exception

when CONSTRAINT_ERROR =>

end;

PUT_LINE("No problem");

-- CONSTRAINT_ERROR---

This example shows why Ada rules do not allow an exception raised

in a declaration to be handled in the same frame

202

EXCEPTION DECLARATIONS

An exception declaration looks somewhat like an object

declaration, and has similar namescope properties, but there are

important differences:

o There are only a static number of exceptions --

If an exception is declared in a recursive subprogram,

one exception is created

Rationale: run-time efficiency

o Exceptions are not permitted as components of arrays or

records; they cannot be passed as parameters

Rationale: no need for added generality

203

PROPAGATING AN EXCEPTION BEYOND ITS SCOPE

It can happen! E.g.,

procedure YOU_ASKED_FOR_IT is

GLORP: EXCEPTION;

begin

raise GLORP;

end YOU_ASKED_FOR_IT;

Why allow this?

o Disallowing it would add complexity, run-time cost

o Exceptions are not error situations -- they are names

for error situations

o Leaving the scope of an exception does not make

the error condition disappear

o The propagated exception may still be handled by

an others handler

204

PROGRAMMING WITH EXCEPTIONS - OVERVIEW

o Handle a Terminating Condition

o Try Alternative Technique

o Retry an Operation

o Clean-Up ("Last Wishes")

o Use with Data Abstraction

205

HANDLING A TERMINATING CONDITION

Example: Looking up an item in a sequential file and returning

its frequency count

package MUMBLE_SEQ_IO is new SEQUENTIAL_IO(MUMBLE);

use MUMBLE_SEQ_IO;

function COUNT_MUMBLES(MUMBLE_FILE: FILE_TYPE; PATTERN: MUMBLE)

return NATURAL is

COUNT: NATURAL := 0;

CURRENT_MUMBLE: MUMBLE;

begin

-- Assume that MUMBLE_FILE has already been opened

loop

READ(MUMBLE_FILE, CURRENT_MUMBLE);

-- Raises END_ERROR when attempting to read EOF

if CURRENT_MUMBLE = PATTERN then

COUNT := COUNT + i;

end if;

end loop;

exception

when END_ERROR => return COUNT;

-- Uses an exception as a normal condition for termination,

-- not as an error

end COUNT_MUMBLES ;

206

TRYING AN ALTERNATIVE TECHNIQUE

Find average of an array of INTEGER values; result is a FLOAT.

Use integer arithmetic, for efficiency, to sum the values.

Use floating point arithmetic if get integer overflow.

type VECTOR is array (NATURAL range <>) of INTEGER;

function AVERAGE(SAMPLES: VECTOR) return FLOAT is

SUM: INTEGER := 0;

begin

if SAMPLES'LENGTH = 0 then return ~.0; end if;

for INDEX in SAMPLES'RANGE loop

SUM := SUM + SAMPLES(INDEX);

end loop;

return FLOAT(SUM)/FLOAT(SAMPLES'LENGTH);

exception

when NUMERIC_ERROR =>

declare

REAL_SUM: FLOAT := @.0;

begin

for INDEX in SAMPLES'RANGE loop

REAL_SUM := REAL_SUM + FLOAT(SAMPLES(INDEX));

end loop;

return REAL_SUM/FLOAT(SAMPLES'LENGTH);

end;

end AVERAGE;

207

RETRYING AN OPERATION

Example: Try to read a block of data from a tape.

If unsuccessful after ten tries, raise MALFUNCTION.

for I in 1..10 loop

begin

READ_TAPE(DATA);

exit;

exception

when TAPE_ERROR =>

if I = 10 then

raise MALFUNCTION;

end;

end loop;

else

BACKSPACE;

end if;

_ _

2 0 8

CLEANING UP

Example: Allow a procedure to perform "last wishes" before

propagating an exception:

Leave world in a consistent state for the caller

First approximation:

procedure OPERATE(NAME: STRING) is

FILE: FILE_TYPE;

begin

-- (i) Initial actions

OPEN(FILE, INOUT_FILE, NAME);

-- (2) Perform work on the file

CLOSE(FILE);

-- (3) Final actions

end OPERATE;

Problem:

If an exception is raised during (2), FILE is left open

209

CLEANING UP (Cont'd.)

A Better Approach:

procedure SAFE_OPERATE(NAME: STRING) is

FILE: FILE_TYPE;

begin

--(i) Initial actions

OPEN(FILE, INOUT_FILE, NAME);

begin

-- (2) Perform work on the file

exception

when others =>

CLOSE(FILE);

raise;

end;

CLOSE(FILE);

-- (3) Final actions

end SAFE_OPERATE;

210

EXCEPTIONS AND ABSTRACT DATA TYPES

An ~ data type is a (private) type declared in a package

specification together with the subprograms that operate on data

of that type

o

o

o

Declare exceptions that will be raised when the

subprograms cannot complete normally

Comment each subprogram specification by documenting

both its normal and abnormal behavior

Declare functions that the package user can call to see

if an exception would be raised

Program the visible subprograms so that they do not

propagate anonymous or predefined exceptions;

instead, propagate an explicitly declared exception

211

EXCEPTIONS AND ABSTRACT DATA TYPES: EXAMPLE

with STACK_INIT_PCKG;

package STACK_PCKG is

type STACK is private;

OVERFLOW, UNDERFLOW: EXCEPTION;

procedure PUSH(MY_ELEMENT: ELEMENT; MY_STACK: in out STACK);

-- Normal return: pushes MY_ELEMENT onto MY_STACK

-- Abnormal return: raises OVERFLOW if stack is full

function IS_FULL(MY_STACK: STACK) return BOOLEAN;

-- Normal return: TRUE iff MY_STACK is full

-- Abnormal return: none

... -- Analogous declarations for POP, IS_EMPTY, TOP

private

MAX_STACK_SIZE: constant INTEGER := STACK_INIT_PCKG.MAX;

type STACK is array (1..MAX_STACK_SIZE) of ELEMENT;

end STACK_PCKG;

212

TASKING AND EXCEPTIONS: OVERVIEW

o Exceptions raised during task activation

o Exceptions raised during execution of task statements

o Exceptions raised during task communication

o Calling an entry of a completed task

o Exception raised during execution of an accept

statement

o Communication with an "abnormal" task

213

O

EXCEPTIONS DURING TASK ACTIVATION

Review of activation semantics

O

O

O

Parent unit suspended just after the

Activation: elaborate declarative parts of child tasks

Parent unit awakened, may execute in parallel with

statements of children

What if an exception is raised during activation of one (or

more) of the children?

O

O

O

The child task becomes completed

When parent unit is awakened, TASKING_ERROR is raised

(just after the b_~)

If several children raise exceptions during their

activation, TASKING_ERROR is raised only once

2'1zl.

EXAMPLE: EXCEPTIONS DURING TASK ACTIVATION

declare

task ALPHA;

task body ALPHA is

S: STRING(I..10) := "HI"; -- CONSTRAINT_ERROR

-- CONSTRAINT_ERROR --> TASKING_ERROR

begin

e e e

exception

when CONSTRAINT ERROR => ...;

end ALPHA;

begin

-- Activate ALPHA here

-- When CONSTRAINT_ERROR is raised during activation,

-- propagate TASKING_ERROR to this point

e e o

exception

end;

* - - - - --

when TASKING_ERROR => ... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2 1 5

EXCEPTIONS AND TASK ACTIVATION: RATIONALE

0 An exception raised in a declarative part of a (task) unit

is never handled in that unit

=> Divide task execution into two phases

O If an exception is raised in the declarative part of a task

body, the parent unit should be notified that activation did

not complete successfully

=> Activate just after the

o But do not raise an exception asynchronously

=> Suspend parent at the activation of children tasks

O And don't forget that children tasks may raise different

exceptions during their activation

=> Raise TASKING_ERROR in parent

216

o

o

o

EXCEPTIONS DURING TASK EXECUTION

If an exception is raised during execution of the statements

in a task body, look for a handler in the exception part of

that task body

If a handler is not found, the task becomes a completed task

Do not propagate either that exception or TASKING_ERROR back

to the parent unit

Why not?

Because we do not want to raise exceptions asynchronously

It is good style to put a when others choice in the

exception part of a task body, perhaps to rendezvous with an

error reporting task

217

EXCEPTIONS DURING TASK COMMUNICATION

After a server task completes its execution, TASKING_ERROR is

raised in any task attempting to call the server's entries

task SERVER is

entry UPDATE(THIS_ITEM: in out ITEM);

end SERVER;

task body SERVER is

o o o

begin

o o o

accept UPDATE(THIS_ITEM: in out ITEM) do

... -- actions to update the item

end UPDATE;

o e o

end SERVER;

task USER;

task body USER is

MY_ITEM: ITEM;

begin

o o o

SERVER.UPDATE(MY_ITEM);

-- TASKING_ERROR raised if SERVER completes without

-- accepting this call

o o o

end USER;

2'18

EXCEPTIONS DURING RENDEZVOUS

task SERVER is

entry SYNCH;

end SERVER;

task body SERVER is

begin

accept SYNCH do

... raise GERBILS; * >
I

end SYNCH; l
I

<

end SERVER;

task USER;

task body USER is

e e e

begin

e e e

SERVER.SYNCH;

e e e

end USER;

o Propagate the raised exception both to caller and callee, at

the points following the call and accept

o Important that both be notified of the failure

o The propagation is not asynchronous (caller was

suspended)

o In each task, look for handler via normal search rules

219

THE ABORT STATEMENT

"An abort statement causes one or more tasks to become ~J~[19d~,

thus preventing any further rendezvous with such tasks"

-- Ada Reference Manual, Section 9.10, Paragraph 1

Semantics of rendezvous with abnormal tasks has interaction with

exception facility

Syntax of abort statement:

abort task_name {, task_name};

Effect:

O

O

Each named task (and dependents) not yet terminated

becomes abnormal

An abnormal task becomes completed when it is suspended

at any of several tasking operations

Note-.

O

O

Aborting a task does not necessarily cause immediate

(or even eventual) termination

Use the abort statement sparingly; e.g., for "rogue"

tasks or to prevent deadlock

220

o

o

RENDEZVOUS WITH ABNORMAL TASKS

If a task calls an entry of an abnormal task, TASKING_ERROR

is raised in the caller

What if a task becomes abnormal during the rendezvous?

o Finish execution of the accept statement

o Then, effect depends on whether it is the user

(calling) task or the server (called) task that is

abnormal

o If user task becomes abnormal:

o No effect on server

o User task becomes completed

o If server task becomes abnormal:

o TASKING_ERROR raised in user

o Server task becomes completed

221

EXCEPTIONS AND OPTIMIZATION

o Elimination of unnecessary checks

o Pragma SUPPRESS

o Compiler optimization techniques

o "Termination" rather than "Resumption" model

o Allowed code motions by compiler

o Allowed machine instruction effects

o When to test overflow

o Widening intermediate ranges

222

SUPPRESSING CHECKS

o Time-critical applications may require absence of generated

code that checks for error conditions

type VECTOR is array (1..100) of INTEGER;

pragma SUPPRESS(INDEX_CHECK, ON => VECTOR);

-- Now no explicit index check when subscripting or

-- slicing objects of type VECTOR

o Checks for CONSTRAINT_ERROR:

ACCESS_CHECK DISCRIMINANT_CHECK

LENGTH_CHECK RANGE_CHECK

INDEX_CHECK

o Checks for NUMERIC_ERROR:

DIVISION_CHECK OVERFLOW_CHECK

o Check for PROGRAM_ERROR: ELABORATION_CHECK

o Check for STORAGE_ERROR: STORAGE_CHECK

o Program is ~ if error situation occurs and run-time

check is absent

o Inclusion of pragma SUPPRESS does not guarantee that the

exception will not be raised

o It may be raised by hardware

o Pragma SUPPRESS simply advises compiler not to generate

code to check for the error situation

223

0

0

ALLOWED CODE MOTIONS

Reference: Ada Reference Manual, Section 11.6

Code motion must not introduce an exception that would not

otherwise have been raised:

ALPHA: array (I..N) of FLOAT;

o e o

for I in ALPHA'RANGE loop

ALPHA(I) := ALPHA(I) / FLOAT(ALPHA'LENGTH)

end loop;

cannot be transformed into

ALPHA: array (I..N) of FLOAT;

e g o

<TEMP> := 1.0 / FLOAT(ALPHA'LENGTH);

for I in ALPHA'RANGE loop

ALPHA(I) := ALPHA(I) * <TEMP>;

end loop;

unless compiler can ensure that range not null

224

o

o

ALLOWED CODE MOTIONS (Cont'd.)

Code that may raise an exception must not be moved to a

place that would cause a different handler to be invoked

(unless the program effect remains the same)

Programmer should be careful about assuming where in the

statements a particular exception was raised

begin

I := I;

J := Expr;

exception

when others =>

end;

-- may raise NUMERIC_ERROR

PUT(I) ; -- I = 1

may be transformed into:

begin

<TEMP> := Expr;

I := I;

J := <TEMP>;

exception

when others => PUT(I);

end;

-- may raise NUMERIC_ERROR

-- I/=i

225

O

O

O

OPERATOR/OPERAND ASSOCIATIONS

An expression may be rearranged to yield a correct

mathematical result, even though this may cause an exception

to be raised

Programmer may prevent such rearrangements by parenthesizing

Example: I + J + K

Assume I = I, J = -i, K = INTEGER'LAST

Then the compiler may choose to evaluate this as

(I + K) + J

though this raises NUMERIC_ERROR

226

ALLOWED MACHINE INSTRUCTION EFFECTS

o If an exception is raised in an assignment statement,

the target variable must not be modified

Thus, compiling the statement

J := J + I;

is an issue, if the machine INCREMENT instruction modifies

the variable before giving an overflow indication

(can't use such an instruction)

Programmer can help here by declaring J in a subrange

o Widening the range of an intermediate result

I, J, K: INTEGER;

e e e

I := (I * J) / K;

-- May compute I * J as LONG_INTEGER, to take

-- advantage of MULTIPLY and DIVIDE instructions

227

CONCLUSIONS

0 Exception handling is a useful control facility for dealing

with rare run-time events (usually error conditions)

0 When an exception is raised, the current action is abandoned

and a handler is sought

0 Search rules take into account where the exception is raised

and the kind of enclosing unit

0 User-declared exceptions are valuable part of data

abstraction

0 Interactions between exceptions and tasking have been

carefully considered; exceptions always synchronous

0 Optimizers are permitted reasonable flexibility in

transforming programs that may raise exceptions

228

