
A FAULT-TOLERANT SYSTEM INCORPORATING AN ADA* EXECUTIVE
AND 1750A PROCESSORS

David But ler

Sanders Associates
Nashua, New Hampshire

INTRODUCTION

Cur ren t embedded m i l i t a r y systems, and to a
greater ex tent , systems of the fu tu re , must meet
very s t r ingen t t iming and r e l i a b i l i t y
requirements. Uniprocessor systems wi th general
purpose operating systems are unable to meet
these requirements. In order to sa t i s f y
throughput requirements, systems cons is t ing of
mu l t ip le processors wi th specia l ized funct ions
must be developed fo r use in embedded systems.
In order fo r a mult iprocessor system to be
r e l i a b l e , i t must be able to maintain i t s
required throughput even when processors f a i l . A
reconf igurable system must be able to assign
resources (inc lud ing processors) so that the
resources are used in the most e f fec t i ve way to
accomplish the mission.

The DoD has mandated that the programming
language Ada be used in future embedded systems.
In addition, many Air Force systems are required
to use MIL-STD-1750A processors.

The Sanders Executive testbed was created in
order to perform research in the areas of
multiprocessing and fau l t tolerance and to
analyze Ada's f eas ib i l i t y in embedded systems.
The testbed was required to incorporate
MIL-STD-1750A processors.

HARDWARE OVERVIEW

The hardware layout of the system is shown in
Figure I. The system is bu i l t on an Intell imac
Ada workstation consisting of two 68000
processors and global memory on a Multibus. Four
Sanders 1750A processors have been added to the
system, making a total of six processors. Each
68000 has 2MB of local memory and runs at
.8 MIPS. Global memory is 4MB.

COPYRIGHT 1986 BY THE ASSOCIATION FOR COMPUTING
MACHINERY, INC. Permission to copy without fee all
or part of this material is granted provided that
the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and
the title of the publication and its date appear,
and notice is given that copying is by permission
of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee
and/or specific permission.

,~;~..~T~,.~. ~.

SYSTEM ARCHITECTURE

FIGURE 1

The 1750A processors have 64K program/data
space. The 1750A processors, b u i l t by Sanders,
run at 4 MIPS (non f l oa t i ng po in t) . Each 1750A
has a one-word mailbox associated wi th i t which
is located in Mult ibus I /0 space. When i t s
mailbox is w r i t t en to , the 1750A is in te r rup ted.

The 1750A's are housed in a cabinet wi th
control panel switches so that ind iv idua l
machines can be turned on and o f f (" k i l l e d ") .
These switches al low the operator to k i l l
processors eas i l y in order to tes t system
reconf igura t ion capab i l i t y .

SOFTWARE OVERVIEW

The software funct ions in the system are shown
in Figure 2.

SO.ARE ~XECU'rlV~pROG~

, ".~.~.?.~.~.~. /
ASSEMBLY pRC~:~

COOE EL~

. I

SW D]STRIBUTION
FIGURE 2

Ada®is a registered trademark of the U.S.
Government, Ada Jo in t Program Of f ice .

239

http://crossmark.crossref.org/dialog/?doi=10.1145%2F339665.339692&domain=pdf&date_stamp=1986-03-24

The Ada programs in the 68000's run on the
Telesoft ROS operating system. The compiler used
was Telesoft version 1.3.

The Executive program is written in Ada. Its
functions are to make an in i t i a l hardware
configuration check, monitor the health of the
Processing Elements and in i t iate reconfiguration
when a Processing Element dies. A "heartbeat"
mechanism has been implemented to monitor the
health of the Processing Elements. Each
Processing Element is assigned a "heartbeat word"
in global memory which i t must increment
periodically. The Executive examines each
heartbeat word periodically. I f any heartbeat
word has not been incremented since the last
check, the Executive concludes that the
corresponding Processing Element has died, and
alerts the Application Program to the updated
status of the Processing Elements.

Using Ada's data hiding techniques, the
Executive was implemented so that i t is
completely generic. The Executive does not care
how many Processing Elements are to be monitored,
as the Executive deals with PROGRAM ID' f i rs t . . .
PROGRAM ID'last. In the future, two more 1750A's
wi l l ~ added to the system, but only the
DATABASE package (which contains the changed
definition of type PROGRAM_ID) wi l l have to be
changed, not the Executive program i tse l f .

The Application Program, written in Ada, is
responsible for reading data from disk and
scheduling the Processing Elements for work. In
addition, the Application Program maintains a
status display which shows the status of each
Processing Element.

Presently, the Processing Element software
consists of bubble sort routines coded in 1750A
assembly code.

The default state of a Processing Element is
the idle state, in which i t sends heartbeats to
global memory when interrupted by the internal
clock. A Processing Element is interrupted when
a PROCESS COMMAND is written to i ts mailbox by
the Ada -Application Program. The Processing
Element then fetches the address of a packet of
unsorted arrays from a table in global memory,
sorts the arrays, and writes the results back to
global memory. The Processing Element then
returns to the idle mode until the next
PROCESS COMMAND is received.

The next phase of the program is to design and
code electronic countermeasure (ECM) algorithms
in Ada, translate them to 1750A assembler code
(using an Ada to 1750A code generator), and
download the code to the 1750A's, replacing the
current sort routines.

IMPLEMENTATION OF GLOBAL DATABASE

In order to implement the system with a global
data base, i t was necessary for programs written
in different languages (Ada and 1750A assembler)
and running on different processors to be able to
access the data stored in global memory.

Once i t was determined that al l programs could
map to the same area in global memory, i t was a
matter of placing data structures into global
memory in such a way that al l programs could
access them.

Each Ada program must "with" package DATABASE.
This package contains al l of the data structures
which must be shared. Each data structure is
declared and is then placed at an expl ic i t
address by using the Ada address specification.
For example, once we've declared the object
SYSTEM CONFIGURATION TABLE, i t is placed at
location 7A7OOO(h~) with the following
statement:

for SYSTEM CONFIGURATION TABLE use at
16#7A7000#~

Now, when an Ada Program accesses an element
of SYSTEM CONFIGURATION TABLE, the program is
reading or-writing a location in global memory.

Since the software running in the 1750A
processors is written in assembly language, the
addresses of the tables in global memory must be
hard-coded into the 1750A programs.

INTER-PROCESS COMMUNICATION

A standard interface concept was developed for
Ada programs. Using this standard interface, an
Ada program can communicate with any other
program in the system.

An Ada program communicates with other
programs in the system by using the
IO SEND/IO RECEIVE mechanism. IO SEND and
IO-RECEIVE-are procedures which are-defined in
t ~ IO UTILITIES package. This package contains
all of-the system-specific knowledge needed to
route messages between processes. An Ada program
wishing to send a message to another program in
the system calls IO SEND, passing message type,
associated data, ~nd process name of the
destination. In order for an Ada program to
receive a message from another process, i t must
define a task which attempts a rendezvous with
task IO CHECK, which is also defined in package
IO UTILTTIES. When IO CHECK detects that a
me~sage has been queued ~or the calling program,
IO CHECK completes the rendezvous, returning the
code of the incoming message to the calling
program (the application code). The application
code can then call IO RECEIVE to get the data
associated with the m~sage. When the message
has been processed, the application code then
attempts another rendezvous with IO CHECK,
waiting for the next message. Note that t~e task
which is attempting the rendezvous is suspended
while the rendezvous is not completed.
Therefore, this task is not using CPU time while
i t is waiting. In the meantime, other concurrent
tasks in the Ada program are performing
their assigned actions.

The advantage of this interface implementation
is that i f the interface mechanism changes, only
package IO UTILITIES has to be modified; the
application- code knows nothing about the

240

underlying communication mechanism, and so does
not have to change i f the interface mechanism
changes. So, for example, i f the inter-process
communication mechanism was changed from pol l ing
to interrupt-dr iven, the application code would
not have to be changed in any way.

The inter-process communication mechanism was
implemented using the concept of mailboxes and
concurrent Ada tasks. Each 1750A program has a
mailbox defined in Multibus I/0 space. Each Ada
program has a mailbox defined in global memory.
Using mailboxes, any program in the system can
communicate with any other program in the system.

Figure 3 describes the mechanism for sending a
message. The Ada program cal ls procedure I0 SEND
with the message type and associated ~ata.
I0 SEND creates a queue item containing the
information and appends i t to the output queue
for that Ada program. Task OUTPUT MESSAGE polls
the output queue; when the queueTs not empty,
the next item in the queue is dequeued and the
message and data are sent to the specified
destination's mailbox.

APPLICATION CODE I

MESSAGE

~ (PROCEDURE) QUEUE ITEM

NEXT ~.~ NEXT ~ NEXT
DESTINATION DESTINATION ~ DESTINATION OUTPUT
MESSAGE MESSAGE MESSAGE MESSAGE
DATA DATA DATA QUEUE

DATA DATA DATA

MESSAGE DATA

{TASKI MESSAGE DATA ~ / / / / / / / / / / / / / MULTIBUS

MAILBOXES

MESSAGE OUTPUT
FIGURE 3

Figure 4 describes the mechanism for receiving
a message. Task INPUT MESSAGE polls the mailbox
of the Ada program and appends an item to the
input message queue when a message is received in
the mailbox. Each Ada program defines a task
which is responsible for checking for incoming
messages. This check is accomplished by
attempting a rendezvous with task I0 CHECK.
I0 CHECK has a guarded select statement ~o that
i t - -w i l l complete the rendezvous only i f there is
an item in the input message queue. As long as
the input message queue is empty, the task which
is attempting to rendezvous with I0 CHECK w i l l be

suspended. When an item is appended to the input
message queue by task INPUT MESSAGE, I0 CHECK
w i l l complete the rendezvous and the ca l l ing task
w i l l be provided with the message code of the
incoming message. I f the message has data
associated with i t , procedure I0 RECEIVE is
called to get the data. The message is then
processed by the application code.

MULTIBUS / / / / / / / // / / / / / / //~// MESSAGE DATA

k MAILBOX ~
QUE

QUEUE
STATUS,
MESSAGE
CODE

MESSAGE INPUT
FZGURE 4

INPUT
~ESSAGE MESSAGE

QUEUE DATA

FAULT DETECTION/RECONFIGURATION

When the Processing Elements are started up,
they immediately begin sending heartbeats to
global memory. The Executive is started and uses
the heartbeats to determine which Processing
Elements are i n i t i a l l y up and running.

The operator is told how many Processing
Elements are available and is requested to
specify which are to be online and which are to
be spares. By specifying how many Processing
Elements are to be online, the operator has told
the Executive the required system throughput; the
Executive now is responsible for ensuring that
that number of Processing Elements is online
at a l l times.

I f an online Processing Element f a i l s , the
Executive is responsible for detecting i t and
bringing up a spare to take over.

The Executive maintains the System
Configuration Table in global memory, which
contains the status of each Processing Element.
There are three statuses: online, spare, and
dead.

Once the i n i t i a l configuration is determined,
the Application Program is commanded by the
Executive to s tar t . After reading raw data from
the disk, the Application Program schedules each
online Processing Element for work (sorting

241

arrays) by using I0 SEND to send a
PROCESS COMMAND to each. When the
PROCESS-COMMAND is received by the Processing
Element-f i t accesses a table in global memory
which points to a packet of raw data. A packet
consists of a number of unsorted arrays. The
Processing Element reads each array, sorts i t ,
wr i tes i t back to a designated area in global
memory, and increments an array count in global
memory. When the end of the packet is reached,
the Processing Element sends a PROCESS COMPLETE
message back to the App l ica t ion Progr~ , which
zeroes the array count fo r that Processing
Element and then schedules the Processing Element
for another packet.

The Executive and the App l ica t ion Program run
in separate 68000's. So whi le the App l ica t ion
Program and the Processing Elements are doing
t h e i r app l i ca t i on -spec i f i c work, the Executive
can concurrent ly monitor the health of the
Processing Elements wi thout slowing down system
throughput.

The Executive is responsible fo r checking the
Heartbeat Counters in Global Memory in order to
monitor the health of each Processing Element.
The Executive health monitor consists of three
"concurrent" Ada tasks: one task to monitor
Processing Elements which are on l ine , one task
fo r spares, and one task fo r "dead" Processing
Elements. (A Processing Element whose state is
"dead" is checked on a regular basis to see i f i t
has begun sending heartbeats again, in which case
i t s status becomes "spare." This s i t ua t i on
occurs i f the operator switches a 1750A from
"o f f " to "on" from the control panel .)

By using Ada tasks and the Ada DELAY
statement, we can set the frequency of heartbeat
checks in the three tasks so that the health of
Processing Elements in the more c r i t i c a l states
is checked most of ten. Another feature of the
DELAY statement is that between checks, a task is
"asleep" and thus is not using any CPU time.

I f the Executive detects that an onl ine
Processing Element has stopped sending
heartbeats, i t t r i e s to f ind an ava i lab le spare
to take over p r o c e s s i n g . I f a spare is found,
the Executive uses I0 SEND to send a RECONFIGURE
message to the App l ica t ion Program. This message
includes the names of the Processing Element
which died and the one that is to take over. I f
a Spare is not ava i lab le , the Executive puts an
item on a queue, and when a spare comes ava i lab le
(that i s , a Processing Element changes from dead
to spare) a RECONFIGURE message is sent to the
App l ica t ion Program.

The Appl ica t ion Program uses the array count
in global memory to determine the number of
arrays which were completed by the dead
Processing Element. The Processing Element which
has j us t been brought onl ine is given the address
of the next array in the packet and completes the
packet. Using th i s simple checkpoint scheme, as
l i t t l e work as possible is re-done as a resu l t of
reconf igura t ion .

LESSONS LEARNED

I . "Data-hiding" was implemented by using
packages DATABASE and I0 UTILITIES to insu la te
the Ada app l i ca t ion ~ode (Executive and
Appl icat ion Program) from changes to the system
conf igura t ion and changes in the method of
passing messages. When the number of Processing
Elements is increased, the enumeration type
PROGRAM ID in package DATABASE w i l l be modif ied
to r e f l e c t the added Processing Elements, but the
app l i ca t ion code w i l l not have to be changed.
The fac t that the Executive is monitor ing s ix
Processing Elements instead of four w i l l
require no change to the Executive.

We found t h a t when the App l ica t ion Program
uses I0 SEND to send PROCESS COMMAND to a
Processing Element, the queue -management and
tasking mechanism of I0 UTILITIES incurs
undesirable overhead. I0 UTITITIES was changed

I

so that when the message to be sent is
PROCESS COMMAND, the message is w r i t t en
immediately to the Processing Element's mailbox,
avoiding the usual queueing/tasking mechanism.
The Appl ica t ion Program's ca l l to I0 SEND to send
PROCESS COMMAND was not changed; b ~ unknown to
the App l ica t ion Program, the message-passing
mechanism was changed in package I0 UTILITIES.

Therefore, using u t i l i t y packages to hide
implementation de ta i l s from the app l i ca t ion code
means that changes can be made to enhance the
system and perform t radeof f studies whi le not
requ i r ing changes to the app l i ca t ion code.

2. Ada tasks can be used to great advantage
when a number of separate processes are required
w i t h i n a program. The use of tasks fo r heal th
monitor ing and message sending has been
described. There are also independent tasks
which update the status d isp lay and check fo r
system shutdown. In the fu tu re , when Ada
programs are executing in the 1750As, tasks w i l l
be used to send heartbeats as wel l as monitor
heartbeats. Task p r i o r i t i e s and the DELAY
statement w i l l be used to f i ne - tune the
i n te rac t i on of the tasks so that f a u l t detect ion
time is minimized.

3. Along wi th the advantages of tasking come
some problems. Once a software system begins
using tasks, the behavior of the system is
dependent on the implementation of the task
scheduler. For instance, in our system, tasks
run u n t i l blocked (that i s , u n t i l a rendezvous or
I /0 statement occurs). We have no contro l over
how the runtime system schedules tasks. We have
no way to t r y a round-robin scheme, for instance.
I f a task which contains an i n f i n i t e loop (such
as a po l l i ng loop) begins executing and does not
rendezvous or perform I / 0 , no other task w i l l be
able to s ta r t running, due to the non-preemptive
task scheduler. This problem was deal t w i th by
inse r t i ng a rendezvous wi th a dummy task in the
loop, so that the task is suspended each time
through the loop.

In order to understand and pred ic t the

242

behavior of a system which incorporates tasks, i t
is imperative that the task scheduling mechanism
be understood by the user. That i s , i t should be
well documented by the provider of the
compiler/runtime system (RTS).

The task scheduler portion of the RTS should
also be eas i l y t a i l o rab le so that i t can be
f ine-tuned for a given appl icat ion. The user
should be able to define a task scheduling
strategy and f ine-tune i t for his appl icat ion.
The RTS source as well as a user's guide should
be provided.

4. Ada is not portable. But th is problem can
be minimized in some cases by using packages to
insulate implementation-dependent information.
An example is the DATABASE package. The current
compiler has address speci f icat ions implemented
so that data structures can be placed at e x p l i c i t
addresses eas i ly . The current compiler w i l l be
replaced by a new compiler which does not have
address speci f icat ions implemented. This means
that package DATABASE w i l l not compile on the new
compiler. However, since DATABASE is the only
package which contains address spec i f i ca t ions, i t
is the only package which w i l l have to have
address speci f icat ions removed. (Address
speci f icat ions w i l l be replaced by access
var iables so that data structures w i l l s t i l l be
placed in global memory at e x p l i c i t locat ions;
again, the appl icat ion code which references the
data structures w i l l not have to be changed).

Another example of lack of p o r t a b i l i t y is task
p r i o r i t i e s . Our current compiler does not have
task p r i o r i t i e s , but i f task p r i o r i t i e s were
ava i lab le , pragma PRIORITY would be sprinkled
throughout the Ada programs. A compiler change
could mean changing from a p r i o r i t y range of 0 . .
15 to a range of 0 7. In th is case, the
implementation dependency would be a problem
because a l l of the pragma PRIORITY statements
would have to be found and checked, and i f the
system had become dependent on the larger range
of p r i o r i t i e s , i t may not run as well with the
smaller range.

Again, making the range of p r i o r i t i e s
ta i l o rab le by the user would make the
compiler/RTS more f l e x i b l e and prac t i ca l .

5. System throughput in the testbed is
l im i ted by an obvious bottleneck: there are up
to four high-speed Processing Elements
in ter fac ing to one Ada Appl icat ion Program
through the single Appl icat ion Program mailbox.
When the jobs to be performed by the Processing
Elements are small and more than one Processing
Element is onl ine, the Processing Elements spend
a lo t of time wait ing for the Applicat ion Program
mailbox to be free in order to send the
PROCESS COMPLETE message and receive more work.
(Bus t ~ f f i c is neg l i g ib le .)

A proposed solut ion to th is problem is to
define four tasks in the Appl icat ion Program, one
for each Processing Element, and each having a
mailbox. I f th is approach were taken and a l l
four tasks resided in the single 68000, there
would s t i l l be a bott leneck, only i t would be the

68000 CPU instead of the single mailbox. The
reason for th is is that the four tasks would not
be running in pa ra l l e l : they a l l would be
t ime-s l i c ing on the same CPU. A real system
throughput improvement would be real ized only i f
the tasks were d is t r ibu ted so that two are in
each 68000. We hope to implement th is approach
in the near future and measure i t s performance.

The point is that Ada tasking does o f fe r a
means to attack a problem involv ing mul t ip le
processes, but i t can only be e f f i c i e n t (i . e .
appropriate for realt ime systems) i f the
capab i l i t y ex is ts to d is t r ibu te the tasks of an
Ada program across CPU's and thereby t r u l y
achieve para l le l processing.

FUTURE WORK

I . We are awaiting upgrades to the Ada
workstation which w i l l replace the Telesoft
subset compiler and ROS operating system with a
Verdix compiler and UNIX system V. The f u l l Ada
compiler w i l l al low us to improve the software
with elements such as task delays, task
p r i o r i t i e s , and task types. (Current ly, task
delays are simulated.)

2. The current sort ing appl icat ion w i l l be
replaced by ECM appl icat ions. We w i l l procure a
VAX-hosted Ada compiler with a 1750A back end and
use i t to t rans late ECM algorithms to 1750A code
which w i l l replace the current assembly language
sort rout ines. The Ada Appl icat ion Program w i l l
be replaced by a new program to dr ive the new
Processing Elements. The Executive program w i l l
require a change because i t is l i k e l y that the
new ECM appl icat ions w i l l incorporate "hot
backups" as well as autonomous spares.

3. Two more 1750A processors w i l l be added to
the system. This w i l l enable us to implement
mul t ip le processes in the Processing Elements
with hot backups and autonomous spares. We w i l l
also port the Executive and Appl icat ion Programs
to 1750As.

4. The Ada Appl icat ion Program which
schedules the Processing Elements w i l l be
enhanced to consider app l ica t ion-spec i f i c
scheduling requirements including degraded modes
and p r i o r i t i z e d scheduling based on missions.

SUMMARY

The Executive Testbed has been b u i l t to model
the embedded m i l i t a r y system of the present and
future. The testbed has shown that a
mult iprocessing, f a u l t - t o l e r a n t system can be
b u i l t using Ada to implement the system executive
and job scheduler.

Features of Ada which were used to implement
the system include address spec i f i ca t ion , data
hiding techniques, and mul t i task ing. Posi t ive
and negative aspects of the Ada tasking
capab i l i t y have been found.

243

