
Small-Scale Communities Are Sufficient for Cost- and Data-Efficient
Peer-to-Peer Energy Sharing

Downloaded from: https://research.chalmers.se, 2024-04-18 15:49 UTC

Citation for the original published paper (version of record):
Duvignau, R., Heinisch, V., Göransson, L. et al (2020). Small-Scale Communities Are Sufficient for
Cost- and Data-Efficient Peer-to-Peer Energy Sharing. e-Energy 2020 - Proceedings of the 11th ACM
International Conference on Future Energy Systems: 35-46.
http://dx.doi.org/10.1145/3396851.3397741

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Small-Scale Communities Are Sufficient for Cost- and
Data-Efficient Peer-to-Peer Energy Sharing

Romaric Duvignau, Verena Heinisch, Lisa Göransson, Vincenzo Gulisano, Marina Papatriantafilou
{duvignau,verena.heinisch,lisa.goransson,vinmas,ptrianta}@chalmers.se

Chalmers University of Technology, Gothenburg, Sweden

ABSTRACT
Due to ever lower cost, investments in renewable electricity gener-
ation and storage have become more attractive to electricity con-
sumers in recent years. At the same time, electricity generation
and storage have become something to share or trade locally in
energy communities or microgrid systems. In this context, peer-
to-peer (P2P) sharing has gained attention, since it offers a way to
optimize the cost-benefits from distributed resources, making them
financially more attractive. However, it is not yet clear in which
situations consumers do have interests to team up and how much
cost is saved through cooperation in practical instances. While
introducing realistic continuous decisions, through detailed anal-
ysis based on large-scale measured household data, we show that
the financial benefit of cooperation does not require an accurate
forecasting. Furthermore, we provide strong evidence, based on
analysis of the same data, that even P2P networks with only 2-5
participants can reach a high fraction (96% in our study) of the po-
tential gain, i.e., of the ideal offline (i.e., non-continuous) achievable
gain. Maintaining such small communities results in much lower
associated costs and better privacy, as each participant only needs
to share its data with 1-4 other peers. These findings shed new
light and motivate requirements for distributed, continuous and
dynamic P2P matching algorithms for energy trading and sharing.

CCS CONCEPTS
• Networks → Peer-to-peer networks; • Hardware → Energy
generation and storage; Renewable energy; Energy distribution; Power
networks; Smart grid; Batteries; • Applied computing; • Comput-
ing methodologies → Distributed algorithms;
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1 INTRODUCTION
As politics drive large initiatives to mitigate global warming, high
penetration of local renewable electricity generation is expected,
thanks to its affordable prices and modularity. Residential house-
holds are shifting from pure consumers into prosumers [39], both
producing and consuming energy on their own property. The de-
velopment towards decentralized electricity systems and the estab-
lishment of an increasing number of sharing economies (such as
sharing one’s home, car, ride, etc) has resulted in peer-to-peer (P2P)
energy sharing, or alternatively named “trading/exchanges” (see
e.g. [2, 21, 24, 38, 43, 51]). P2P energy sharing allows end-users to
cooperate distributively, potentially bypassing the centralized grid
system, and share their energy resources (distributed small-scale
generation and energy storage) to achieve greater self-sufficiency
and less overall financial cost. This allows consumers to make the
most of their local energy resources. The financial advantage for
prosumers of sharing electricity locally is a consequence of the
difference in price paid when buying from the grid (at wholesale
market prices topped off by electricity taxes and grid fees) and sell-
ing it to the grid (often just slightly higher than wholesale market
levels). Hence, cooperative households have interest to use their
local electricity instead of the one from the grid whenever it is
available [16]. Local balancing between electricity generation and
consumption can also reduce the need for grid investments and the
amount of information to share across the electricity system.

P2P energy sharing has been in the focus of studies within mi-
crogrids [34, 40], in the form of real-time trading processes among
peers [41, 51], which induced high maintenance cost (due to the
very fine-grained time aspect) and was very disruptive to the cur-
rent power grid. Later instances of P2P energy trading assume
longer time scale, with households forming sharing communi-
ties, with a predefined and pre-agreed cost-sharing mechanism
[2, 15] among the participating households. Virtual currency and
blockchain-based approaches have been proposed as concrete pay-
ment schemes in such P2P trading markets [4, 24, 28].
Motivations and Challenges: The current state-of-the-art does
not tell, however, if households always have interest to team up (we
show here that there is rather low expected benefit to cooperate
within a community made only of prosumer households) and how
to form P2P energy sharing communities. There is a strong need to
understand how to form such decentralized communities in a con-
text where energy sharing is accessible to both traditional consumer
and prosumer households: which households should be included, in
which way and what are the associated costs (e.g. P2P connections
to maintain over time) and benefits obtained versus quantity of data
to share and transfer over the network. The difficulty of forming
such communities comes from the need for the peers to cooperate
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in a challenging environment where distributed decisions must be
taken with limited amount of knowledge of the future.

This work is about adaptive digital power systems in which re-
newable energy plays a dominant role. Key aspects are (i) the new
predominant role of information technology (IT) and (ii) the possi-
ble shift from traditional centralized decision systems to distributed
ones. Due to the distributed nature of having an increased number
of active market players and forthcoming energy technology, there
is need for improved understanding of:
• the granularity in terms of time-intervals and amount of data the
different actors can benefit from sharing and

• the continuous, evolving nature of the decisionsmade by different
groups of prosumers controlled by internal factors (e.g. the effects
of previously made decisions).

Research Questions: In particular, this work, through detailed
real-world data analysis, aims to understand when cooperation is
beneficial: for which community sizes, for which production levels
characterized by the sizes of photovoltaic (PV)-battery systems,
and for which distribution of generation power among participants,
against non-cooperative con/pro-sumers. The work also studies
the energy cost optimization problem as a distributed continuous
decision-making one, and paves the way to design and use online al-
gorithms for building dynamically P2P energy trading communities,
ready to be implemented in practical instances and for appropriate
time-granularity. The objective is threefold:
(1) to understand which configurations of cooperative consumer

and prosumer communities lead to noticeable cost savings;
(2) to identify ranges of sizes for energy production, where cooper-

ation within energy sharing communities becomes interesting;
(3) to identify from which community sizes the gain starts to be-

come important (community size determines the quantity of
information to share on the network).

Contributions: We present a detailed study to check practical
feasibility, efficiency and network costs of P2P energy sharing in
concrete scenarios, based on large-scale real measured data. The
starting point of the study is to extend previous energy trading com-
munity analysis [2, 15, 38, 43] towards realistic P2P instances with
the following distinctions from previous state-of-the-art models:
• Forecast Range: we explore different prediction power while
replacing perfect foresight by limited prediction: at each given
time, only an estimated fraction of the future produced data is
available. This turns the original optimization problem, where a
single optimal decision is computed in a batch-fashion, into an
online decision-making problem where continuous actions are
taken, which influence the future outcomes.

• Community Compositions: we vary the sizes for PV and bat-
tery systems (from Very Small to Very Large local generation and
storage capacities) and form communities constituted of both
prosumers and non-prosumers (cf. Section 5).

• Gain-sharing Mechanisms: investment costs in renewable en-
ergy generation can be partially offset by sharing energy with
peered households. Different strategies to split the cooperative
gain (average financial advantage of cooperating, see Section 3.1)
are investigated (cf. Section 5.5).

We clearly show the potential financial advantage of cooperation,
when there are (i) enough local production and (ii) a non-empty
set of non-producers in the community. Moreover, we show that

•

• •

•

•

•

+ -

+ - + -

Figure 1: From fixed grid communication topology (dashed
lines) towards P2P energy sharing (plain thick lines).

most of the economical gain is reachable by organizing the P2P
energy sharing network into a set of independent small communi-
ties, which can reduce to a large extent the amount of data to share
compared to large communities (e.g. 100 or more households); our
results emphasize that by grouping households into small commu-
nities of 2-5 peers, based on their consumption/production affinity
(in terms of financial savings), we can reach a high gain, while
keeping a low degree of data sharing over the network.
Paper’s organization: In the following section, we provide a gen-
eral view of P2P energy sharing and the specific problem we are
addressing. In Section 3 we provide necessary definitions and we
model the optimization of the billing cost in a P2P energy com-
munity. In Section 4, we describe how the different parameters
are instantiated and how the optimization problem is addressed.
Section 5 provides an extensive analysis of benefits and cost-saving
impacts of having small-scale P2P energy sharing communities.
Finally, related work is presented in Section 6, followed by conclu-
sions and interesting directions of future research in Section 7.

2 PROBLEM DESCRIPTION
2.1 P2P Energy Sharing
Let us illustrate the paradigm change from non-cooperating con-
sumers to cooperating energy sharing communities by Figure 1.
In the traditional grid infrastructure (shown by dashed lines), pro-
sumers (illustrated as equipped with PV panels, wind turbines and
battery storage) communicate only with the grid to take local deci-
sions about when to store energy, when to consume stored energy,
when to buy and sell energy at the grid, depending on local pa-
rameters (e.g. amount of stored energy, current energy price and
possibly some level of forecasting). In the cooperation infrastruc-
ture alternative, households communicate with peered households
(via e.g. short-range wireless connection, Internet or Power Line
Communication (PLC) network of the grid) to jointly take decisions
on their energy trading. More precisely, they have the ability to
“exchange” electricity in the sense that it is possible for a household
to buy some amount of energy at zero cost, in exchange of the same
amount of energy being sold to the grid by another participating
household, also at zero cost. Such exchange, at the end of a prede-
fined billing period (e.g. one year), can be satisfied by distributing
among participating parties an amount of money corresponding to
the “saving” obtained through cooperation. Here, the saving comes
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from the difference in price between the energy that should have
been bought at retail price and the one that should have been sold
at net price. Formally, once one billing period elapses, saving is the
difference between the bill payed by all parties together working in-
dividually and the one payed by all parties working in a cooperative
fashion (taking profit of the “free” energy exchange mechanism).
The individual billing process, once cooperation is activated, has
to decide which part of the total bill each household should pay
and is equivalent to deciding how to share the cooperative gain
among participants. For instance, two households have an annual
bill of respectively 1000€ (prosumer household A) and 2000€ (non-
prosumer household B); if they cooperate, their combined annual
bill becomes 2700€, i.e. 300€ has been saved through cooperating;
one possibility is to share it by charging 850€ to A and 1850€ to B
(i.e. split evenly the gain between the two).

2.2 Parameters of the Problem
In the problem we are considering, we want for each household
to optimize its yearly electricity bill based on the following in-
puts and parameters that influence the cost-benefits of cooperation
within P2P communities (with example values that stem from the
data that the particular study analysed, shown in the tables below):
Input Range
Electricity demand as hourly consumption 0-17.39 kWh
Electricity generation per installed PV capacity 0-0.86 kWh/kWp
Electricity hourly wholesale price 0-0.28 €/kWh
Parameter Range
Number of participants in the full network 2 − 100
Individual capacities for solar generation 0-20.16 kWp
Individual capacities for battery systems 0-50.41 kWh
Quality and quantity of predicting inputs 0-48h
Number of communities formed by consumers 1-50
We consider different degrees of cooperation, from fully non-

cooperative (no communication except with the centralized grid) to
fully cooperative (all households form a single trading community).
In between those extreme cases, several smaller communities can
be managed (from 2 to 50 households) independently of each other
and of the remaining households (that will work individually). The
inputs must be forecast for online decision making of each house-
hold’s interaction with the grid; forecasted local data needs to be
shared in each community to be able to take coordinated decisions.

3 MODEL
3.1 Definitions
We consider a set of householdsH amongwhich a subset is equipped
with PV-panels and battery systems 1, so that for each household
h ∈ H , we have PVh denoting its PV-capacity and Bh its battery
capacity (potentially PVh = Bh = 0). We consider discrete in-
terval steps (hourly) during a 365-days year; hence we denote by
T = {0, 1, . . . , 8760} the set of possible time steps and by t ∈ T

the number of elapsed hours from the start of the year. We use
cons(h, t) to denote the energy consumption in kWh for household
h during the t-th hour. We further provide some definitions needed
to describe our model:
1how those quantities have been set in our study is further described in Section 5.

Average load: for a household h ∈ H , it is its average hourly
consumption, i.e., avg_load(h) =

∑
t ∈T cons(h, t)/|T |.

Array-To-Load Ratio(ALR) 2: for an h ∈ H , ALR is the relative
size of h’s PV capacity PVh (expressed in kWp) divided by its aver-
age load avg_load(h) (in kWh), i.e., ALRh = PVh/avg_load(h).
AnALR of x forhmeans thath produces on average x times the elec-
tricity that it consumes and is likely to often store or sell generated
electricity (when x > 1) or buy electricity (when x < 1).
Battery-To-Demand Ratio (BDR): it works in a similar fashion
as ALR, but for the battery capacity, BDRh = Bh/avg_load(h)
where Bh is expressed in kWh. BDR can be understood as how
many hours of average load can be stored by a given household.
Production level: a pair (ALR,BDR) for a given household h. In
the following, we will usually deduce the values of PVh and Bh
from a given production level, i.e., a production level of (3,5) for
a household h with an average load of 1.5 kWh entails PVh =

3 × 1.5 = 4.5 kWp and Bh = 5 × 1.5 = 7.5 kWh.
Pure-consumer: a household with production level (0,0). When it
is clear from the context, we use “consumer” for pure-consumer.
Prosumer: a household that is not a pure-consumer, i.e., it has at
least some degree of energy production and/or storage.
Energy bill: the yearly cost for electricity for a given household.
For prosumers, it depends on consumption policy (e.g. to use stored
energy or buy from the grid) but for pure-consumers, it depends
only on how much they consume along the year.
Community: we use “community” as a generic term to designate
a set of households with a common will of optimizing their com-
mon energy bill. An n-community: a cooperative set of n house-
holds, i.e., a community of size n, and anm/n-community is an
n-community containing exactlym prosumers.
Households pool: a set of available households that can partici-
pate in forming communities, and an n-pool is a pool of size n. The
households in question may be prosumers or pure-consumers.
Configuration: it describes the production level for each house-
hold of a given pool.
Cooperative gain: (also called saving) for a households pool is the
difference between the sum of individual bills in a given config-
uration (i.e., with no communication), and the single bill for the
same configuration, working all together as a single community
(i.e., full sharing of local data). If the pool is divided into several
independent communities, the difference applies between the sum
of individual bills and the sum of the bills of each community.
Perfect foresight: describes the situation where households have
full knowledge of the future and can therefore always compute the
optimal choice in order to minimize their energy bill. It is used here
as an optimal baseline (as in the literature), but we also restrain
here the knowledge available at each time step.
Limited foresight: reduces the availability of future data, in terms
of duration (data for only a limited amount of future hours is avail-
able) and precision (data that is predicted may differ from the truth).

Note, with perfect foresight, the cooperative gain is always posi-
tive as each household can turn to deal with the grid if this turns
out to be the best choice. However, with limited foresight, the co-
operative gain can become negative as there is no guarantee that
decisions taken online are the best among all possible choices.

2ALR/BDR were introduced in [47] and our formulation is similar to the one in [37].
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Let us further forh ∈ H and t ∈ T define the following variables
(all non-negative, except from the cost, that can become negative
for net sellers):
• bat(h, t): the battery level in kWh of household h after t hours
(or equivalently at time step t );

• sun(t): the solar profile in kWh/kWp during the t-th hour;
• sun(h, t) = sun(t) · PVh , the electricity generated from solar
panels for household h and time t ;

• elin (h, t): the electricity bought in kWh from the system for
household h during the t-th hour;

• elout (h, t): the electricity sold in kWh to the system for house-
hold h during the t-th hour;

• price(t): the electricity price per kWh for hour t , and it is as-
sumed to be the same for all involved households;

• cost(h, t): the energy cost (or bill) for household h ∈ H for
time step t , and cost(h, i, j) =

∑
i≤t ≤j cost(h, t) the cost during

time span [i, j] with i, j ∈ T and i ≤ j, and finally bill(h) =
cost(h, 0, |T |) the yearly bill of h.
The battery level at time t ≥ 1 is assumed to behave as:

bat(h, t) = bat(h, t−1)+sun(h, t)−cons(h, t)+elin (h, t)−elout (h, t),

with the additional assumption that bat(h, 0) = 0.
The energy bill cost(h, t) for hour t ∈ T is then:

cost(h, t) = elin (h, t) · (price(t) · tax + el_tax)
− elout (h, t) · (price(t) + el_net) .

3.2 Optimization Model
For household h, the optimization problem is then formulated as:
Objective function: minimize bill(h) =

∑
0≤t ≤ |T | cost(h, t).

Constraints: ∀t ∈ {0, 1, . . . , 8760}, 0 ≤ bat(h, t) ≤ Bh .
Optimization variables: {elin (h, t),elout (h, t) | 0 ≤ t ≤ T }.
We assume no further constraints on the system. Hence the

full battery can be charged/discharged within one hour with no
battery degradation, i.e., the battery of any household h ∈ H can be
fully recharged (up to its maximum level Bh ) and elin (h, t) can still
coverh’s hourly consumption cons(h, t), and conversely,h’s battery
system can be fully discharged at a rate that permits elout (h, t)
to reach Bh + sun(t) · PVh . Furthermore, we assume no energy
transmission losses, and no constraints on connection capacity to
the households. Since communication faults are not considered
here, each community is equivalent to a single prosumer with
aggregated PV and battery capacities. This simplification allowed
us to study in depth the many parameters of the P2P network
(size of the communities, energy production levels, matching of
the participants and prediction models) while keeping natural and
reasonable assumptions about the underlying cost model [15, 16].

The target for household h is to minimize its bill cost(h, i, j)
for some time-span [i, j] and in particular its yearly bill. It can be
shown that in an optimal solution any scenario where a household
is both importing and exporting energy during the same hour leads
to an unprofitable situation for h (either leading to a higher cost
for the same battery level at time t + 1, or a higher battery level
for identical cost), i.e., whenever elin (h, t) > 0 then elout (h, t) = 0
and vice-versa elout (h, t) > 0 entails elin (h, t) = 0. Hence, we can
summarize h’s decision for time step t , to be taken after t − 1 hours
have elapsed, to setting the value for its hourly electricity balance

for the next hour or equivalently its battery level after hour t has
elapsed. In an online setting, h’s decision for time t , i.e., the values
of elin (h, t) and elout (h, t), determines bat(h, t) which in turn can
be used to compute h’s next decision and so on, provided that
the input values (solar profile, energy consumption and electricity
prices) ranging over the optimized interval are provided.

4 STUDY METHODOLOGY AND TOOLS
4.1 Dataset
We have based our study on residential households, some of which
equipped with solar panels and battery systems. As shown in previ-
ous studies [15, 16], the most determinant parameter to incentivize
prosumers to more collaboration and more self-consumption of
electricity is the difference in price between electricity bought from
and sold to the grid (itself determined by electricity spot market
prices, transfer fees, tax rates, etc).
Households Demand: Consumption profiles for the 100Northern
European households of the study originate from [37] and were
pre-processed as in [15]. Each trace is an hourly-measured year
of electricity consumption for a different household in 2012-2013.
Out of the original profiles, 100 were selected for belonging to
neighboring geographical areas. The profiles have a relatively wide
range of consumption behaviors due to different types of heating
equipment and appliances, as well as different occupant capacities
(see Figure 2 for range of electricity bills).
Electricity Prices: The basis for the hourly variable electricity
price (wholesale electricity price) used in this study corresponds
a projection for year 2030 of a scenario representing a European
system pathway with a high share of renewable power generation,
shorter lifetimes for nuclear power plants, and no carbon capture
and storage. Energy tax, grid fees, VAT, small reimbursement for
selling to the grid and investment costs have been set as described
in Section 3.2 based on current assumptions for residential PV
battery systems for the year 2030 (for more details see [15, 16] and
references therein).
Solar Production: The solar profile is based on the geographical
location of the households as described in [36]. We assume here
that they all have similar roof panel orientations such that their re-
spective PV production can be computed directly from the common
profile and the capacity of their respective installation.

4.2 Taxes and Investment Costs
We have the following tax levels 3 tax = 1.25, el_tax = 0.0690
e/kWh and el_net = 0.0058 e/kWh. The annual costs for the PV
installation (per kWp) and battery system (per kWh) are obtained
by assuming the following raw costs for the different equipments
with corresponding lifetime and an interest rate of 4%:
Equipment Nominal Cost Lifetime Annual Cost
PV panels 1200 e per kWp 30 69.4 e per kWp
Inverter 120 e per kWp 15 10.79 e per kWp
Battery 150 e per kWh 12.5 15.48 e per kWh
The annual investment cost is obtained by multiplying 80.1891

(sum of the annual costs of PV panels and Inverter) by each house-
hold’s PV capacity and 15.48 by its battery capacities, which in turns
3the value of el_tax is in line of a taxable transfer fee of 2.3 e cents/kWh in addition
to a non-taxable rate of 4.03 e cents/kWh.
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are obtained by multiplying a given production level (ALR,BDR)
by the average household load. Saving including investment costs
reduces the reduction in the yearly electricity bill by the annual
investment cost, and can easily become negative when the original
saving does not cover up for the investments.

4.3 Forecasting
Limited foresight: In order to minimize cost(h, i, j), values for
the different inputs over the timespan [i, j] are required. In an
online setting, such values are not known ahead of time and need
therefore to be forecasted. In this work, instead of using a specific
recent technique for performing this form of Model Predictive
Control (MPC) (many can be found in the literature), we have
kept our modeling generic and have accounted different predictive
accuracies to test the influence of different forecasting power.

The main parameters in our abstracted forecast are the window
size n and the accuracy level:
• n denotes how many hours are forecasted at a time. With a win-
dow size ofn hours and time step t < |T |−n, we want to optimize
cost(h, t, t + n) by forecasting the solar profile, electricity prices
and consumption for household h, over the interval [t, t + n].

• accuracy level represents how precise the forecasted values are,
compared with the ground truth.
We set three different levels of accuracy namely:

(1) Truth: all values used are exactly the measured ones (note
this is different from perfect foresight as the forecasted window
limits the size of available data at each optimization step), hence

truth(h, t) = value(h, t),

with value(h, t) being either sun(h, t), price(t) or cons(h, t)
for the different inputs of the optimization problem.

(2) Average: each value is forecasted to be the average of the last
seven previous days at the same hour, i.e.,

avg(h, t) =
1
7

7∑
i=1

value(h, t − i · 24).

(3) Linear: each value is a linear mix of the truth and the previously
defined average such that while forecasting interval [t, t + n],
the value used for hour t + i for 1 ≤ i ≤ n is assumed to be

linear(h, t + i) =
n − i

n
· truth(h, t + i) +

i

n
· avg(h, t + i).

Our model allows to abstract the forecasting power into simple
categories: best possible (but with limited depth), a basic one (a sim-
ple average over the orevious week, also referred as “persistance”
prediction) and intermediate (between the two aforementioned).
The linear accuracy level offers a natural way to simulate degrading
accuracy performance, with first hours close to the truth thanks to
potentially elaborate prediction mechanism, while later hours being
poorly predicted (not much better than taking the average). In our
dataset, the truth level produces no error, the average entails an
average absolute error of 0.59 kWh for electricity consumption (31%
of average load), 0.054 kWp (42% of average profile) for solar gener-
ation and 0.0096 €/kWh for electricity prices (23% of average prices),
and finally the linear presents an error of i/n times the average
error for forecasting the i-th next hour within an n-hour window .

4.4 Myopic Decisions
Those are common heuristic online approaches presented here for
comparison purposes with limited forecast. Instead of forecasting
a fixed-length window of future inputs with different degrees of
accuracy, the approach takes the decision solely based on the cur-
rent state of the system. We present two online strategies here,
depending if the households work individually or within a group;
the latter is introduced and presented in detail in [2].
Greedy Individual: demand is satisfied first by own PV genera-
tion; any surplus is stored in the local battery (electricity is sold
to the grid whenever the battery is full); any remaining demand is
satisfied by the locally stored electricity and in last resort the grid
is used to buy electricity when the battery is empty.
Greedy Coalition: it is composed of 4 phases:
(1) Satisfy local demand: First households satisfy their local demand

from their own production, then either (i) for the remaining
demand, they use the stored electricity from their local battery
system, and any remaining demand is added to a common de-
mand pool, or (ii) the surplus generated electricity is stored first
in the local battery, and when the battery is full, it is added to a
common generation pool.

(2) Satisfy remote demand: the common generation pool is used to
satisfy any remaining demand in the group (common demand).

(3) Charge remote batteries: if the common generation pool is not
empty, it is used to charge remote batteries in the group.

(4) Grid: The grid is then used in last resort to buy what is left in
the common demand, or to sell electricity that could not have
been stored (what is left in the common generation).

4.5 Distributed Approach and Data Sharing
Perfect Foresight: For a single household, the optimal solution
(minimal yearly bill) has been computed using a single run of a
linear programming solver (gplx through pyomo interface [12]). For
a given community, the optimal solution is obtained by considering
the full community as a single large household (summing their
respective consumptions, PV and battery capacities) and taking
decisions for all coordinated households. This model, used as a
baseline in our work, presents the best possible obtainable cooper-
ative gain as it uses perfect knowledge of the future.
Limited Foresight: Here the decisions at each given step are com-
puted in an iterative fashion based on current forecasted data and
the previous online decisions taken. For a single household, this rep-
resents |T − n | optimization problems to solve in order to compute
its yearly bill for a forecasting window size of n hours. Community
solving works similarly to the perfect foresight case and considers a
set of households as forming a single virtual household. This implies
that between each given time step, all necessary information (each
household forecasted consumption values for the next window size)
must be shared among all peers. This directly influences the commu-
nication overhead. In particular, amount of communication among
a community grows quadratic to its size when data is flooded every
hour and decisions are computed in a distributed fashion, and at
least linearly when data is gathered at one peer, that needs, after
computing the solution on shared data, to propagate the common
decisions to all the other peers. One may note, however, that the
average accuracy level of prediction does not need all the forecasted
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window but only a single value to be shared among participating
peers, as each peer can recompute the average prediction locally,
based on previously shared data (keeping track in this case of the
last 7 days of data for each cooperating household).

Myopic Decisions: Those approaches do not require any future
data and rely only on the current state. Hence, only the current
production/consumption values need to be shared among the peers
in the greedy coalition.

4.6 Prosumers-Consumers Matchings
In our study, we explore in more detail the smallest of the “small-
scale communitities” corresponding to dividing the P2P network
into independent pairs. This organization provides the best solution
in terms of data sharing costs and privacy preserving considerations
as local data need only to be shared with a single other household.
Wewill consider in this work several ways of achieving this division.

First, let us recall that a matching or independent edge set in a
graph is a set of edges that do not share any endpoints. In our set-
ting, our underlying graph is the complete graph whose vertex set
is the households pool. Moreover, we will focus on the case where
the pool is split into two sets, prosumers on one side and pure-
consumers on the other and we will only form prosumer/consumer
pairs. The problem of finding a matching set in a bipartite graph
(also referred as “assignment problem”) consists in finding a part-
ner for each member of the first set (here, prosumers). Edges in
the prosumer/consumer graph also have a natural weight in our
context: the cooperative gain achieved by the given pair. Hereafter,
matchings of particular interest:
Maximum-weight matching: corresponds to the matching of
prosumers with consumers whose sum of weights is maximum
over all matchings (corresponds to best average cooperative gain).
Greedy matching: the greedy matching selects first the available
pair that entails the highest saving and continue until all prosumers
are matched.
“Greedy-largest”matching: pairs first prosumers with the largest
average load available consumers (starting with the prosumer with
highest load) until all prosumers are matched.

Finding the maximum-weight matching in weighted bipartite
graph is a classical problem that is solved by the “Hungarian al-
gorithm” [25]. Let us remark that the distributed version is much
more difficult [30, 46] and to be complete in our case, we need to
add the extra difficulty that the weights are not provided but can
only be estimated (potentially using past and forecasted data) and
require extra communication between peers.

4.7 Gain-Sharing Mechanism
The way the cooperative gain is split among the participating peers
may influence the target size of households wishing to invest in
producing their electricity locally, and in the same time desire for
pure-consumers to integrate P2P sharing communities. We explore
4 different splitting strategies for the cooperative gain:
• No-split: the cooperative gain is shared only among prosumers
in the community.

• 1/2-split: half of the gain is shared evenly among prosumers and
half evenly among all participants.

Name ALR BDR Bill Inc. PV Bat. # PV Surf.
None 0 0 2034 2034 0 0 0 0

Very Small 0.5 1 1872 1975 0.93 1.85 3 5
Small 1.5 2.5 1610 1904 2.78 4.63 9 15

Medium 3 5 1284 1872 5.55 9.25 18 30
Large 4.5 10 950 1905 8.33 18.51 27 45

Very Large 6 15 658 1978 11.1 27.76 36 60
Table 1: Selected production levels with corresponding
ALR/BDR, average yearly bill with and without investment
costs (€/year), PV capacity (kWp), Battery capacity (kWh),
and as indication the equivalent number of common 300W
panels and covered roof surface (inm2 for 1.63m2 panels).

• 3/4-split: similar to 1/2-split but 3/4 of the gain is redirected
towards prosumers.

• Even-split: the cooperative gain is shared evenly among all
participants in the community (irrespective of their consumption
and generation).

5 SMALL-SCALE COMMUNITIES: A CASE
STUDY OF 100 HOUSEHOLDS

We start our case study by setting different production levels and
then investigate, in each of the following subsections, the impact
of one or more of the parameter(s) on the cooperative gain.
Production Levels: The study aims to explore how the size of the
community and the predictive power (among other parameters) in-
fluence the potential financial interest for residential households to
share their energy resources (here, PV panels and battery systems).
To investigate different configurations, we define in the first place 6
production levels considered reasonable for residential households
that are further detailed in Table 1. The selected production levels
range from “Very Small” to “Very Large” PV/Battery systems and
have been chosen to cover a wide range of common households’
installation sizes where one would invest in larger capacities on
both electricity generation and storage in a similar manner (fur-
ther details are provided in Appendix A). The selected values allow
to simply reason in terms of average load, electricity generation
and storage, to relate one level to another, and the selected levels
correspond to similar options in recent literature [1, 17, 19, 37].
Yearly Bills: Figure 2 describes a grouping of the distributions of
the yearly bills (excluding investment) over the full dataset, with
each house individually optimizing its bill with perfect foresight, for

None Very Small Small Medium Large Very Large

500

1500

2500

3500

Ye
ar

ly
 E

le
ct

ric
ity

 B
ill 

(€
/y

ea
r)

Figure 2: Distribution of the yearly electricity bills over the
dataset for the different selected production levels.
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different production levels (each with a distinct color, preserved in
the rest of the study). In quantitative terms, the yearly bill varies by
tenfold (ranging from 355 to 3685e for pure-consumers, down to 91-
1182e when households have "Very Large" productions) and most
household bills are around the average values (given in Table 1).

5.1 Which Types of Configurations Induce
High Cooperative Gain?

Figure 3 shows the exploration of the relation between the average
cooperative gain and the fraction of prosumers in the community.
The figure has been generated using 300 experiments and averaging
the results for each displayed configuration. Each curve corresponds
to a different fraction of prosumers in the community whereas the x-
axis ranges over the average ALR in the full community (including
both prosumers and pure-consumers). The figure has two take-
home messages. First, the fewer prosumers the higher the average
gain; even though this might sound slightly counter-intuitive at
first, it follows from the fact that cooperation is most useful to help,
especially during high electricity price periods, households with
(close to) no resources. Second, all configurations take advantage of
a higher amount of resources in the community while cooperating,
except from the 100% prosumers case, where the gain caps around
an ALR of 3 and decreases afterwards (the latter is in line with
previous studies for yearly optimization [15, 37]).

5.2 How Dependent on the Size of the
Community Is the Cooperative Gain?

Let us follow by showing that small-scale communities provide
already a high share of the cooperative gain in Figure 4. The figure
presents the average saving per household for different production
levels, Very Small (thinnest error bar) to Very Large (largest ones),
and for different configurations 4 (form/n-communities with n ≥

10,m has been selected to produce the best cooperative gain with a
Very Large production level). As a comparison point, the lowest gain
for 100 households is displayed: it corresponds to a 100% prosumers
community of households with homogeneous production levels.

For each configuration of the form “x equipped households over
y total households”, we run 50 experiments selecting first y house-
holds randomly over 100; then x over y households are randomly
selected and equipped with electricity production and storage. Each

4Results for all configurations are provided in Appendix B.
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Figure 3: Average cooperative gain versus average ALR for
different fraction of prosumers (dashed lines for average
prosumers ALR outside [0.5,6], cf. Production Levels § 5).
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Figure 4: Small-Scale Effect: Avg. cooperative gain (€/year) in
small-scale communities (2-5 peers) against best configura-
tions in 10-100 communities for different production levels.

error bar in the figure, centered at the average saving for the cor-
responding configuration, spans the standard deviation of the 50
experiments. For Very Large production levels, a 1/2-community
reaches 88% of the best configuration, a 1/3-community 94%, a
2/4-community 90% and a 2/5-community 97%. Moreover, small
communities with low-share of prosumers such as 1 prosumer for
3 or 4 pure-consumers, can achieve 75-77% of the best average
achievable cooperative gain. We note this also holds for smaller
production levels.

The gain is explained by the ability of small-scale communities
to produce similar levels of self-consumption as the one of large
communities such as 100 households as depicted on Figure 5 for
a Medium production level. In fact, they reproduce very similar
increases in self-consumption as a large community with the same
ratio of prosumers; let us note, such an increase is also highest
when about 50% of the household pool are prosumers.

5.3 What Influences Cooperative Gain in a
Households Pool Divided in
2-Communities?

The precedent analysis suggests that one can obtain the cooperative
gain of large communities of up to 100-households (in the best 50%-
prosumers configuration) with only pairs of households at a much
lower cost. We further explore in this section the relation between
forming pairs of cooperative households and the consequence in co-
operative gain. For this purpose, we pick the Very Large production
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Figure 6: Avg. cooperative gain for different pairs of
households: 10 pure-consumers illustrated by a different
color/symbol each are matched with 20 prosumers.

level as it offers the biggest gain in absolute value and as similar
outcomes can be presented for smaller production levels.

As shown on Figure 4, a pair of households with a prosumer
matched with a pure-consumer offers on average 120e of cooper-
ative gain, which is about 89% of the best possible gain when the
100 households are working together. However, the gain is directly
impacted by the chosen pair and the 2-households cooperation is
the one displaying the largest variation with a standard deviation
about 17 times larger than the 100-community. Hence, the way
households are paired together plays a great role on how much
gain the full community is able to reach from cooperating.

Figure 6 presents the cooperative gain for 10 different pure-
consumers with varying average consumption (from average load
of 0.4kWh up to 2.9kWh), paired with 20 different prosumers at
Very Large production level and also progressive average load (from
1.99kWp to 16.9kWp). The figure illustrates several phenomena:
(1) the main factor for the amount of cooperation is the respec-

tive consumption and production level in the paired couple; in
general, large consumers and large producers will entail more
gain than small consumers/producers (up to more than 4-folds);
however, after a certain threshold, matching a consumer with
larger producers does not imply much more cooperative gain;

(2) some households are particularly poor cooperative prosumers
(two down-peaks on the curves at 10.64 and 13.5kWp): regard-
less of the paired consumer, they will provide less gain than
similar producers;

(3) some households are particularly good (e.g. the ones with aver-
age loads 1.4kWh and 2.5kWh) or bad (e.g. 1.9kWh and 2.2kWh)
consumers, in the sense that, independently of which prosumer
they are paired with, they will always entail better/worst coop-
erative gain than households with similar average load.

Finding “poor/good” prosumers and consumers in the pool is ex-
plained by differences in the individual load patterns of each house-
hold, and such differences have a larger impact on a cooperative
pair if compared with a larger group. For instance, a typical affinity
is to have daily peaks at different time, potentially allowing both
peaks to be covered by local electricity production and storage.

This observation motivated us to further explore how to match a
set of prosumers and consumers into pairs (that can be generalized
to other small scale such as 3/4/5-matchings) in order to achieve a
better overall average gain for the full set.

Individually, any household will have a tendency to prefer to be
matched 5 with the available household that has the largest average
load, once neglecting preferences as shown in Figure 6.

We have explored the consequence of pairing a fixed set of house-
holds in different manners and present the results in Figure 7. The
household pool is constituted here of either 20 or 100 households,
among which the same subset of 10 households are equipped with
a Large production level, the remaining ones are pure-consumers,
and we consider only pairing prosumers with non-prosumers. The
20-pool corresponds to selecting for each prosumer the consumer
with closest load among the 90 of them in the 100-pool, hence it
features a very similar distribution of loads between prosumers and
consumers. Figure 7 presents the average cooperative gain achieved
when the households are paired with each other randomly 6, the
worst and best matchings 7, the greedy-largest and the greedy
matching (cf. Section 4.6). We added and took as baseline the sav-
ing obtained when the 20-pool forms a single community (optimal
solution in that case), and when the 100-pool forms a single com-
munity. Note that even though the 100-community provides less
per household saving, the total absolute saving is about twice what
is achievable when only 20 of them cooperate.

All matchings in the 20-pool produce cooperative gain within
80-96% of the optimal solution and a random matching already
achieves 88% of it. Moreover, the greedy choice lies within 0.05%
behind the best possible matching of the households hence provides
a natural choice for forming rapidly 2-communities. If there exist
more consumers than prosumers (100-pool case), then the choice
of matching (which implies a selection on whose households do
participate in energy sharing at the end) has a much greater impact.
In that situation, the greedy matching is again a very good candi-
date lying less than 1% behind the best matching; on the contrary,
choosing a matching poorly provide a 58% decrease in gain and on
average a 29% reduction is observed.

At last, we note that pairs may not entail the greater total benefits
that can be achieved by involving more pure-consumers in the
sharing process (instead of using only 40 over the 100 available
households). This advocates in this particular 20/100-community
example to use larger peer neighborhoods, such as matching 3 to 4
consumers to a single prosumer to form 1/4- or 1/5-communities.

5This is true if e.g., the gain offered by the pair would be shared between the pair and
not with the rest of the pool, see Section 5.5.
6averaged by enumerating all possible matchings for the 20-pool and after generating
107 random matchings in the 100-pool.
7computed exactly by the Hungarian algorithm.
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5.4 How Much Prediction Power Is Needed for
Achieving High Cooperative Gain?

All results presented so far have been focusing onwhat is achievable
in the best possible scenario, i.e., with perfect foresight of the future.
As appropriate with online, continuous decision making, we have
also investigated if and how this changes with lower degree of fore-
casting power, by solving the iterative online optimization problem
(c.f. Section 4.5) for each household equipped with Medium produc-
tion level. Results are presented in Figure 8: under the three levels
of predictor’s accuracy, and with a variable number of forecasted
hours (or prediction window size), the fraction of the optimal saving
is displayed (average over all 100 households). Already about 57%
of the gain is achieved using a very basic prediction (average over
past 7 days using a window size of about 8 hours) or with greedy
decisions, whereas more accurate predictions reach about 90% with
the same window size and over 96% with 16 hours of predictions.
The linear accuracy, whose prediction is almost as good as the truth
for the first hours but then degrades to the same level as the average
prediction, performs almost as good as the truth predictor. Hence,
the experiment shows that we only need to accurately predict the
first 4 (or resp. 8) hours to achieve about 90% (resp. 96%) of the
optimal reachable saving of a medium-range production.

We have further explored if this also applies to cooperating com-
munities. Figure 9 presents the average cooperative gain for 10 pairs
(prosumer,pure-consumer) under the three prediction accuracies
with 16 hours of forecast and the greedy coalition, and when each
pair results from the greedy-largest matching of the 40-community.
Truth and linear predictions achieve very close to perfect foresight
results (on average 97.8% for truth, and 92.4% for linear) whereas
the average predictor performs poorly with average 16% of the
achievable gain with some pairs showing negative cooperative
gain; the greedy coalition lies in between with 38% of the achiev-
able gain on average. The cooperative gain has been computed
here by comparing the bill of the pair to the sum of the individual
perfect foresight bills, hence comparing cooperation with realistic
predictions against the optimal individual solutions. Overall, the
predicting power influences communities in similar manner as it
would influence individual optimizing their own bill, and a high
cooperative gain can be achieved in both cases (compared to the
individual case with perfect foresight).
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Figure 8: Average fraction of optimal saving achieved with
different level of prediction versus number of forecasted
hours (over 100 households).
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5.5 How Does the Gain-Sharing Impact
Motivations for Joining P2P Communities?

Figure 10 (up) presents the maximum average obtainable cooper-
ative gain for equipped households (i.e., with the best equipped
households distribution, around 40-60% depending on the configu-
ration of the pool) whereas Figure 10 (down) presents the same but
for unequipped households; both figures show the impact of the dif-
ferent splitting strategies. With “no split” strategy, there is a strong
incentive to build the largest possible residential installation thanks
to the additional financial benefit and there is no incentive to join
the community for unequipped households. All other strategies
offer a good trade-off between both incentives with the “even split”
showing the greatest incentive for unequipped households while
pushing prosumers to build larger installations than if P2P energy
sharing is not present (the working individually curve) but not Very
Large ones (ALR 6 and beyond). In practice, once the share among
prosumers and pure-consumers has been decided, one may design
strategies to distribute the gain, via e.g. allocating portions of the
cooperative gain proportionally to each household’s own share of
the consumption of the group (or share of the sum of the individ-
ual bills) and allocating part of the gain to the utility company or
service provider.
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5.6 Summary of the Results
(1) Small-scale communities can surprisingly obtain up to 88-97%

of the same benefits (in terms of both cooperative gain or self-
consumption) of any larger community with a similar fraction
of prosumers versus consumers, leading to large reduction in
the amount of data to share over the network.

(2) The cooperative gain in small communities is dependent on
the choice of trading partners and there exist prosumers and
consumers that are better or worse than other similar peers
for saving financial cost through cooperation. In particular,
matching prosumers with pure-consumers in the right way,
such as greedy-matching them by their potential to save money,
can lead to up to 59% improvement on the cooperative benefit.

(3) Using only 8h (resp. 16h) of predictions with moderate forecast-
ing accuracy, we can obtain up to 90% (resp. 96%) of the optimal
saving on electricity bill, both when considering individual pro-
sumers and for cooperating communities, advocating that the
problem can be solved in a continuous fashion.

(4) Splitting the cooperative gain among the peers is a trade-off.
Distributing too large a fraction towards prosumers creates in-
centives to over-invest in the future and reduces the advantage
of consumers to join the sharing process.

6 RELATEDWORK
The concept of P2P energy sharing (alternatively named P2P en-
ergy trading) has emerged in the last couple of years [43] extending
previous works on real-time trading of distributed energy resources
[27]. It belongs to a wider research trend towards efficient manage-
ment of distributed energy resources, smart homes and smart cities
(see among others [14, 18, 20, 31]) such as virtual power plants [35],
transactive energy [41], collective PV farms [26], as well as newly
introduced notion of cloud energy sharing [29, 51] where a central
component overviews the local P2P communities.

The initial moves towards energy sharing has focused on energy
storage sharing [21, 42, 48] using game-theoretic approaches. Then
integration of distributed electricity generation has shifted the focus
towards how to implement the local energy market: trough e.g.
bidding systems [49, 50], some sort of cost-sharing mechanisms [2]
or financial incentives [23]. Recent developments in this area have
seen secured blockchain-based trading [4, 33] and tests of P2P
energy trading in microgrids [3, 38, 40]. Also motivations to join
a P2P energy community has been explored in [11] where price is
shown to be the main motivation and where the desire of greater
energetic independence appears in second place.

Our work departs from those aforementioned works and similar
previous prosumers community analysis [15, 16] by being more
specific. We take into account here the online aspect of the decision
problem as in [2, 10] but also the uncertainty due to forecasts (no
prior knowledge), the impact of the P2P community size and the
induced amount of data sharing. Indeed, no previous works to our
knowledge have shown how beneficial small-scale P2P communities
can be for energy sharing and on its direct impact on quantity of
data to share and the proportion of the cooperative gain reached.
Also, previous works often assume that only prosumers may take
part in the P2P community (whereas we show here that cooperation

is not very interesting in that situation) and provide non-sufficient
evidence based on real-world data.

Our results advocate the benefits of having many small com-
munities of a few households, optimizing their energy bill in an
autonomous fashion. We have also shown that households do show
preferences to be matched with some others and depending how
the total money gained from cooperating is distributed among
the peers, prosumers might also be inclined to have preferences
in choosing their sharing partner. Also, as both preferences may
change over time, communication is needed outside of the “au-
tonomous” communities for the full network to converge on a P2P
topology to use for decreasing the cost of sharing the data. This
links the current work to distributed algorithms able to match nodes
using preferences [8, 22]. The adaptation of such algorithms, and
in particular greedy matchings [32], to the use-case presented here
(i.e., with weights that require prediction and communication to
estimate) while considering the stability of the network under ar-
rival/departure of peers [5, 9], would provide mechanisms to build
those sharing communities in a distributed and efficient manner.

7 CONCLUSION
We explored how useful small-scale P2P communities are for opti-
mizing sharing energy resources among prosumers and consumers.
We show, based on analysis of real-world data and considering
communities of up to 100 households, the financial gains and in-
crease in local self-consumption of electricity can be obtained with
small-scale communities of 2 to 5 peers. This entails great benefits
in terms of number of peers with which data needs to be shared,
thus improving households’ privacy while reducing the network’s
bandwidth consumption. We also show that the cooperative gain
does not need high forecasting power (predictions of 8 to 16 hours
in the future suffice for good results) and is high as long as a suf-
ficient amount of peers are non-prosumers. By using distributed
energy resources at a greater efficiency locally, our results can make
renewable electricity generation more attractive, while providing
financial motivation for non-prosumers to join P2P energy sharing
communities and reduce their electricity bill.

This work can be extended in several directions. While focusing
on if, when and at which scale, P2P energy sharing is beneficial for
residential households, it leaves algorithms to form small-scale com-
munities open for development. In particular, the relation among
the quantity of data to share, its privacy aspects and the financial
gain ought to be further studied. A key dimension in future research
is how to transition from batch-based to online analysis, since the
latter is required for the analysis itself to scale according to the
size of modern cyber-physical systems [6, 7, 13, 44, 45]. We have
shown that, even with limited forecasting power, households can
practically achieve an almost optimal financial cost saving using
greedy matching, however, it is important to notice that finding,
in a distributed and continuous fashion, the ideal partner for each
household is a challenging task and requires dedicated algorithms.

ACKNOWLEDGMENT
The work was supported by the Chalmers Area of Advance Energy
project ADAPT and by the EUHorizon 2020 Framework Programme
under grant agreement 773717.

44



Small-Scale Communities Are Sufficient for Cost- and Data-Efficient Peer-to-Peer Energy Sharing e-Energy’20, June 22–26, 2020, Virtual Event, Australia

REFERENCES
[1] Valentin Bertsch, Jutta Geldermann, and Tobias Lühn. 2017. What drives the

profitability of household PV investments, self-consumption and self-sufficiency?
Applied Energy 204 (2017), 1–15.

[2] Sid Chi-Kin Chau, Jiajia Xu, Wilson Bow, and Khaled Elbassioni. 2019. Peer-to-
Peer Energy Sharing: Effective Cost-Sharing Mechanisms and Social Efficiency. In
Proceedings of the Tenth ACM International Conference on Future Energy Systems.
ACM, 215–225.

[3] Tianyi Chen and Shengrong Bu. 2019. Realistic Peer-to-Peer Energy Trading
Model for Microgrids using Deep Reinforcement Learning. In 2019 IEEE PES
Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE, 1–5.

[4] Can Dang, Jiangfeng Zhang, Chung-Ping Kwong, and Li Li. 2019. Demand
Side Load Management for Big Industrial Energy Users under Blockchain-Based
Peer-to-Peer Electricity Market. IEEE Transactions on Smart Grid (2019).

[5] Philippe Duchon and Romaric Duvignau. 2014. Local update algorithms for
random graphs. In Latin American Symposium on Theoretical Informatics. Springer,
367–378.

[6] Romaric Duvignau, Vincenzo Gulisano, Marina Papatriantafilou, and Vladimir
Savic. 2019. Streaming piecewise linear approximation for efficient data manage-
ment in edge computing. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing. 593–596.

[7] Zhang Fu, Magnus Almgren, Olaf Landsiedel, and Marina Papatriantafilou. 2014.
Online temporal-spatial analysis for detection of critical events in cyber-physical
systems. In 2014 IEEE International Conference on Big Data (Big Data). IEEE,
129–134.

[8] Giorgos Georgiadis and Marina Papatriantafilou. 2012. Adaptive distributed
b-matching in overlays with preferences. In International Symposium on Experi-
mental Algorithms. Springer, 208–223.

[9] Giorgos Georgiadis andMarina Papatriantafilou. 2013. Overlays with preferences:
Distributed, adaptive approximation algorithms for matching with preference
lists. Algorithms 6, 4 (2013), 824–856.

[10] Giorgos Georgiadis and Marina Papatriantafilou. 2014. Dealing with storage
without forecasts in smart grids: problem transformation and online schedul-
ing algorithm. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing. ACM, 518–524.

[11] Ulf JJ Hahnel, Mario Herberz, Alejandro Pena-Bello, David Parra, and Tobias
Brosch. 2019. Becoming prosumer: Revealing trading preferences and decision-
making strategies in peer-to-peer energy communities. Energy Policy (2019),
111098.

[12] William E Hart, Carl D Laird, Jean-Paul Watson, David L Woodruff, Gabriel A
Hackebeil, Bethany L Nicholson, and John D Siirola. 2017. Pyomo-optimization
modeling in python. Vol. 67. Springer.

[13] Bastian Havers, Romaric Duvignau, Hannaneh Najdataei, Vincenzo Gulisano,
Marina Papatriantafilou, and Ashok Chaitanya Koppisetty. 2020. DRIVEN: A
framework for efficient Data Retrieval and clustering in Vehicular Networks.
Future Generation Computer Systems 107 (2020), 1–17.

[14] Verena Heinisch, Lisa Göransson, Mikael Odenberger, and Filip Johansson. 2019.
Interconnection of the electricity and heating sectors to support the energy
transition in cities. International Journal of Sustainable Energy Planning and
Management 24 (2019).

[15] Verena Heinisch, Mikael Odenberger, Lisa Göransson, and Filip Johnsson. 2019.
Organizing prosumers into electricity trading communities: Costs to attain elec-
tricity transfer limitations and self-sufficiency goals. International Journal of
Energy Research (2019).

[16] Verena Heinisch, Mikael Odenberger, Lisa Göransson, and Filip Johnsson. 2019.
Prosumers in the Electricity System—Household vs. System Optimization of
the Operation of Residential Photovoltaic Battery Systems. Frontiers in Energy
Research 6 (2019), 145.

[17] Rodrigo Henriquez-Auba, Patricia Pauli, Dileep Kalathil, Duncan S Callaway, and
Kameshwar Poolla. 2018. The Sharing Economy for Residential Solar Generation.
In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 7322–7329.

[18] Jean-Laurent Hippolyte, Shaun Howell, Baris Yuce, Monjur Mourshed, Hassan A
Sleiman, Meritxell Vinyals, and Loïs Vanhée. 2016. Ontology-based demand-side
flexibility management in smart grids using a multi-agent system. In 2016 IEEE
International Smart Cities Conference (ISC2). IEEE, 1–7.

[19] Joern Hoppmann, Jonas Volland, Tobias S Schmidt, and Volker H Hoffmann.
2014. The economic viability of battery storage for residential solar photovoltaic
systems–A review and a simulation model. Renewable and Sustainable Energy
Reviews 39 (2014), 1101–1118.

[20] S Howell, Y Rezgui, JL Hippolyte, and MMourshed. 2016. Semantic Interoperabil-
ity for Holonic Energy Optimization of Connected Smart Homes and Distributed
Energy Resources. In eWork and eBusiness in Architecture, Engineering and Con-
struction: ECPPM 2016: Proceedings of the 11th European Conference on Product
and Process Modelling (ECPPM 2016), Limassol, Cyprus, 7-9 September 2016. CRC
Press, 259.

[21] Dileep Kalathil, Chenye Wu, Kameshwar Poolla, and Pravin Varaiya. 2017. The
sharing economy for the electricity storage. IEEE Transactions on Smart Grid 10,

1 (2017), 556–567.
[22] Arif Khan, Alex Pothen, Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish,

Narayanan Sundaram, Fredrik Manne, Mahantesh Halappanavar, and Pradeep
Dubey. 2016. Efficient approximation algorithms for weighted b-matching. SIAM
Journal on Scientific Computing 38, 5 (2016), S593–S619.

[23] Ali Khodabakhsh, Jimmy Horn, Evdokia Nikolova, and Emmanouil Pountourakis.
2019. Prosumer Pricing, Incentives and Fairness. In Proceedings of the Tenth ACM
International Conference on Future Energy Systems. ACM, 116–120.

[24] Mohsen Khorasany, Yateendra Mishra, and Gerard Ledwich. 2018. Market frame-
work for local energy trading: a review of potential designs and market clearing
approaches. IET Generation, Transmission & Distribution 12, 22 (2018), 5899–5908.

[25] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[26] Stephen Lee, Prashant Shenoy, Krithi Ramamritham, and David Irwin. 2018. VSo-
lar: Virtualizing community solar and storage for energy sharing. In Proceedings
of the Ninth International Conference on Future Energy Systems. 178–182.

[27] Woongsup Lee, Lin Xiang, Robert Schober, and Vincent WS Wong. 2014. Direct
electricity trading in smart grid: A coalitional game analysis. IEEE Journal on
Selected Areas in Communications 32, 7 (2014), 1398–1411.

[28] Fabio Lilliu, Meritxell Vinyals, Roman Denysiuk, and Diego Reforgiato Recupero.
2019. A novel payment scheme for trading renewable energy in smart grid. In
Proc. of the 10-th ACM Int’l Conference on Future Energy Systems. ACM, 111–115.

[29] Jingkun Liu, Ning Zhang, Chongqing Kang, Daniel S Kirschen, and Qing Xia.
2017. Decision-making models for the participants in cloud energy storage. IEEE
Transactions on Smart Grid 9, 6 (2017), 5512–5521.

[30] Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. 2015. Improved distributed approx-
imate matching. Journal of the ACM (JACM) 62, 5 (2015), 1–17.

[31] Xi Luo, Yanfeng Liu, Jiaping Liu, and Xiaojun Liu. 2020. Energy scheduling for a
three-level integrated energy system based on energy hub models: A hierarchical
Stackelberg game approach. Sustainable Cities and Society 52 (2020), 101814.

[32] Fredrik Manne, Md Naim, Håkon Lerring, and Mahantesh Halappanavar. 2016.
On stable marriages and greedy matchings. In 2016 Proceedings of the Seventh
SIAM Workshop on Combinatorial Scientific Computing. SIAM, 92–101.

[33] Chathurika Prasadini Mediwaththe, Marnie Shaw, Saman Halgamuge, David
Smith, and Paul Scott. 2019. An Incentive-compatible Energy Trading Framework
for Neighborhood Area Networks with Shared Energy Storage. IEEE Transactions
on Sustainable Energy (2019).

[34] Esther Mengelkamp, Johannes Gärttner, Kerstin Rock, Scott Kessler, Lawrence
Orsini, and Christof Weinhardt. 2018. Designing microgrid energy markets: A
case study: The Brooklyn Microgrid. Applied Energy 210 (2018), 870–880.

[35] Ashot Mnatsakanyan and Scott W Kennedy. 2014. A novel demand response
model with an application for a virtual power plant. IEEE Transactions on Smart
Grid 6, 1 (2014), 230–237.

[36] Zack Norwood, Emil Nyholm, Todd Otanicar, and Filip Johnsson. 2014. A geospa-
tial comparison of distributed solar heat and power in Europe and the US. PloS
one 9, 12 (2014), e112442.

[37] Emil Nyholm, Joel Goop, Mikael Odenberger, and Filip Johnsson. 2016. Solar
photovoltaic-battery systems in Swedish households–Self-consumption and self-
sufficiency. Applied energy 183 (2016), 148–159.

[38] Amrit Paudel, Kalpesh Chaudhari, Chao Long, and Hoay Beng Gooi. 2018. Peer-
to-Peer Energy Trading in a Prosumer-Based Community Microgrid: A Game-
Theoretic Model. IEEE Trans. on Industrial Electronics 66, 8 (2018), 6087–6097.

[39] Ruggero Schleicher-Tappeser. 2012. How renewables will change electricity
markets in the next five years. Energy policy 48 (2012), 64–75.

[40] Ashish Shrestha, Rajiv Bishwokarma, Anish Chapagain, Sandesh Banjara, Shanta
Aryal, Bijen Mali, Rajiv Thapa, Diwakar Bista, Barry P Hayes, Antonis Papadakis,
et al. 2019. Peer-to-Peer Energy Trading in Micro/Mini-Grids for Local Energy
Communities: A Review and Case Study of Nepal. IEEE Access 7 (2019), 131911–
131928.

[41] Chen Sijie and Liu Chen-Ching. 2017. From demand response to transactive
energy: state of the art. Journal of Modern Power Systems and Clean Energy 5, 1
(2017), 10–19.

[42] Wayes Tushar, Bo Chai, Chau Yuen, Shisheng Huang, David B Smith, H Vincent
Poor, and Zaiyue Yang. 2016. Energy storage sharing in smart grid: A modified
auction-based approach. IEEE Transactions on Smart Grid 7, 3 (2016), 1462–1475.

[43] Wayes Tushar, Chau Yuen, Hamed Mohsenian-Rad, Tapan Kumar Saha, H. Vin-
cent Poor, and Kristin L. Wood. 2018. Transforming Energy Networks via Peer-
to-Peer Energy Trading: The Potential of Game-Theoretic Approaches. IEEE
Signal Processing Magazine 35 (2018), 90–111.

[44] Joris van Rooij, Vincenzo Gulisano, and Marina Papatriantafilou. 2018. Locovolt:
Distributed detection of broken meters in smart grids through stream processing.
In Proceedings of the 12th ACM International Conference on Distributed and Event-
based Systems. 171–182.

[45] Joris van Rooij, Johan Swetzén, Vincenzo Gulisano, Magnus Almgren, and Marina
Papatriantafilou. 2018. echidna: Continuous data validation in advanced metering
infrastructures. In 2018 IEEE International Energy Conference (ENERGYCON). IEEE,
1–6.

45



e-Energy’20, June 22–26, 2020, Virtual Event, Australia Duvignau and Heinisch et al.

[46] Mirjam Wattenhofer and Roger Wattenhofer. 2004. Distributed weighted match-
ing. In International Symposium on Distributed Computing. Springer, 335–348.

[47] Joakim Widén, Ewa Wäckelgård, and Peter D Lund. 2009. Options for improving
the load matching capability of distributed photovoltaics: Methodology and
application to high-latitude data. Solar Energy 83, 11 (2009), 1953–1966.

[48] Chenye Wu, Dileep Kalathil, Kameshwar Poolla, and Pravin Varaiya. 2016. Shar-
ing electricity storage. In 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE, 813–820.

[49] Chenghua Zhang, Jianzhong Wu, Meng Cheng, Yue Zhou, and Chao Long. 2016.
A bidding system for peer-to-peer energy trading in a grid-connected microgrid.
Energy Procedia 103 (2016), 147–152.

[50] Zhenyuan Zhang, Haoyue Tang, Qi Huang, and Wei-Jen Lee. 2019. Two-Stages
Bidding Strategies for Residential Microgrids Based Peer-to-Peer Energy Trad-
ing. In 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical
Conference (I&CPS). IEEE, 1–9.

[51] Yanglin Zhou, Song Ci, Ni Lin, Hongjia Li, and Yang Yang. 2018. Distributed
Energy Management of P2P Energy Sharing in Energy Internet Based on Cloud
Energy Storage. In Proceedings of the Ninth International Conference on Future
Energy Systems. ACM, 173–177.

APPENDIX
A SETTING REASONABLE PRODUCTION

LEVELS
Figure 11 presents the saving on electricity bill, reduced by corre-
sponding investment, for the six selected production levels illus-
trated by a different symbol each, among production levels with
ALR ranging from 0 to 12 and BDR ranging from 0 to 17.5. The
saving is computed assuming perfect foresight of all necessary data,
hence represents the best achievable outcome when each house
works individually. One may note, the selected levels do not corre-
spond to the best choices for a given ALR or for a given BDR, as
this is not necessary how customers pick their production level,
but rather span the range of possibilities with both increase in gen-
eration and storage capacities. They all produce a yearly positive
return on investment falling in three categories: 56-59e for Very
Small and Very Large production levels, 129-130e for Small/Large
levels and 162e for Medium level. From ALR 12 and BDR 15 or
from ALR 15 (level not shown on the figure), households are on
average net sellers; from ALR 12 on, the investments are too high
and always result in an average negative yearly outcome.

0 5 10 15
Battery-To-Demand-Ratio

−50

0

50

100

150

200

Av
er

ag
e 

Sa
vi

ng
 in

clu
di

ng
 In

ve
st

m
en

t (
€/

ye
ar

)

None

Very Small

Small

Medium

Large

Very Large

ALR = 0
ALR = 0.5

ALR = 1.5
ALR = 3

ALR = 4.5
ALR = 6

ALR = 9
ALR = 12

Figure 11: Average saving on yearly bill (including invest-
ments) per household for different production levels.
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Figure 12: Average absolute cooperative gain (€/year).
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Figure 13: Relative avg. cooperative gain for 100 households.

B COOPERATIVE GAIN IN DIFFERENT
CONFIGURATIONS

Capability for small-scale communities to achieve similar gains as
larger ones for different configurations is shown in Figure 12. The
figure presents average cooperative gain per household for different
production levels, Very Small (thinnest error bar) to Very Large
(largest ones), and for different community sizes of 2, 5, 10, 25, 50
and 100 households (same methodology as for Figure 4). For each
pool size, we have experimented different proportions of prosumers
(the remaining ones are pure-consumers). The lowest gain is always
achieved by a full prosumers community for any community size
and any production level, whereas the largest is around 40-60% of
prosumers depending on the production level.

Figure 13 displays cooperative gain, in a similar fashion as Fig-
ure 12, for 100 households in relative terms (compared to average
yearly bill). In relative value, the average cooperative gain per
household can reach up to almost 10% of the average annual bill
in the best configurations (with a share of 40-70% of prosumers,
variable depending on the production level) but only up to 1% of
annual bill for communities with only prosumers. Similar curve
shapes are observed for other pool sizes.
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