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Abstract

Energy storage has exhibited great potential in providing flexibility in power
system to meet critical peak demand and thus reduce the overall genera-
tion cost, which in turn stabilizes the electricity prices. In this work, we
exploit the opportunities for the independent system operator (ISO) to in-
vest and manage storage as public asset, which could systematically provide
benefits to the public. Assuming a quadratic generation cost structure, we
apply parametric analysis to investigate the ISO’s problem of economic dis-
patch, given variant quantities of storage investment. This investment is
beneficial to users on expectation. However, it may not necessarily benefit
everyone. We adopt the notion of marginal system cost impact (MCI) to
measure each user’s welfare and show its relationship with the conventional
locational marginal price. We find interesting convergent characteristics for
MCI. Furthermore, we perform k-means clustering to classify users for ef-
fective user profiling and conduct numerical studies on both prototype and
IEEE test systems to verify our theoretical conclusions.

Keywords: Energy Storage, Optimization, Parametric Analysis, Locational
Marginal Price, Power Networks, Electricity Market

1. Introduction

One of the key bottlenecks in improving the effectiveness of electricity
sectors is the limited flexibility in the power system, which leads to the limited
fluidity in the market. Fortunately, over the past few decades, technological
improvements together with the scale of economy have significantly reduced
the cost of various types of storage systems, and this trend is projected
to continue in next years (as shown in Figure 1). The storage system, if
widely deployed, can provide the urgently needed flexibility to the power
system, which will dramatically relieve the pressure in electricity market
design. For example, it can relieve the critical peak in the system [1], and
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Figure 1: Projected Diminishing Marginal Costs for Variant Storage Technologies [3].

mitigate too much uncertainties brought by the renewables [2]. These and
other services that storage system provides to the grid can benefit both the
system operator (the system as a whole) as well as individual consumers.
While most researches focus on incentivizing individual storage owners to
provide services to the grid, we consider an alternative to view the storage
as public asset. In essence, widely deployed storage system, just as most
publicly-owned infrastructures in the grid, requires huge investment, yet it
can generate comparable economic value with potential long-term returns.
However, the large-scale deployment of storage could pose new challenges to
the electricity market design. The major difficulty is exactly due to the large-
scale deployment. In this case, storage systems can no longer be viewed as
price-takers and will have a major impact on the current locational marginal
price (LMP) scheme. At first glance, one may believe the storage system
could help reduce the electricity bills for all users. This intuition is wrong.
The truth is that the storage system could only help reduce the ”average”
electricity price over time and across all the locations. This smoothing effect
will of course benefit some market participants but make other participants
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worse-off. In this paper, we exploit how the integration of storage system
will change the definition of conventional LMP, which serves as the basis for
us to understand users in terms of their potential benefits. This also allows
us to conduct k-means clustering to better distinguish heterogeneous users
in the new market conditions.

Moreover, we characterize the smoothing effect rigorously by examining
the global convergence of the LMP scheme as storage capacity increases. We
could in turn reason the dynamics of individual electricity bills as the total
storage capacity in the grid increases. We respectively highlight the impacts
of publicly owned storage in two models: electricity pool model and network
constrained model. The results of the former case can be applied in the micro-
grid scenario and the latter emphasizes the effects of grid interchanges.

1.1. Related Works

Our work roots in two research lines: the electricity storage control frame-
work design and the pricing mechanism investigation in electricity market.

While storage control framework design has been well investigated, most
researches either focus on individually owned storage control policy design
(e.g., to conduct arbitrage against Time-of-Use (ToU) prices, or real time
prices) or consider a central control framework in various electricity operation
processes. For example, Tang et al. discuss the dispatch game between
independent system operator (ISO) and generator-owned storage in [4]. Bose
et al. show the variability and the locational marginal value of generator-
owned energy storage in [5]. Mohsenian-Rad et al. propose a framework
to coordinate the investor-owned storage facilities in power system in [6].
Cui et al. further the research by considering wind power integration in
[7]. In [8], Lakshminarayana et al. devise an operation schedule to centrally
coordinate multiple storage devices. Qin et al. design an algorithm to use
storage to mitigate the uncertainties brought by renewables in [9]. Grillo
et al. employ a Markov decision process to determine the optimal storage
scheduling policy with time-varying renewable generation in [10]. Wang et
al. propose a dynamic programming algorithm for storage users’ arbitrage
scheme against multi-peaked ToU pricing in [11]. Xu et al. present an
optimal look-ahead storage control policy for arbitrage based on Lagrangian
multipliers in [12]. Different from this line of research, we consider the storage
system as public asset and examine both its value to the system operator
and its benefit to individual market participants (through LMP analysis).
Specifically, we use parametric analysis to exploit the value of storage. This
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technique has been utilized to understand the relationship between ramping
capacities and overall generation cost in [13]. Parametric convex quadratic
optimization is discussed in detail in [14], [15].

The pricing mechanism for the electricity sector has also caught much
attention. Xu et al. adopt VCG mechanism to design incentive compati-
ble pricing scheme in [16]. Kim et al. in [17] propose a market scenario
where both utility companies and customers employ reinforcement learning
strategies to determine real-time price and schedule energy consumptions.
Specifically, in the field of LMP, Oren et al. clarify the definition of LMP
and analyze the role of transmission rights on LMP in [18]. Li et al. ad-
dress the step change issue of LMP when load variation occurs and raise a
new continuous solution to this issue in [19]. Bai et al. redefine LMP in
a market with various forms of distributed energy resources and decompose
it into several components according to the physical attributes in [20]. In
contrast to the previous works, we identify that LMP, as its name suggests,
is designed to exploit spatial features. However, storage system introduces
temporal coupling into the pricing scheme, which warrants a re-consideration
on the definition of LMP. Cui et al. analyze the smoothing effect for LMP by
storage in [7], which is closely related to our topic. In contrast, we apply a
data-driven approach to enable customized pricing schemes. This approach
has been discussed in [21], where Yu et al. classify user types to identify
their economic information. This inspires our thought on measuring users’
marginal impact when storage is deployed as a public asset. Another distinct
difference is that we focus on the operation of storage, so the investment cost
of storage is not considered.

1.2. Our Contributions

In seek of exploiting the value of storage system as public asset to the
grid, the principal contributions of our work can be summarized as follows:

• LMP Scheme with Storage: We exploit the definition of LMP with
storage system as public asset, and decompose it in terms of spatial
components (conventional definition) and temporal components (new
components induced by storage).

• Storage’s Impact on System: We prove storage helps to increase so-
cial welfare. Besides, we characterize the smoothing effect induced by
LMP, both in the electricity pool model and in the general network
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constrained model. This highlights the value of storage as public asset
to the system as a whole.

• Data-driven User Profiling : The new definition of LMP can help us
characterize the users with big data. Such user profiling enables us to
examine the value of storage as public asset for individuals. Specifically,
the marginal system cost impact (MCI) for different kinds of users at
the same bus tend to converge when storage capacity increases.

The rest of the paper is organized as follows. Section 2 introduces the
economic dispatch problem with storage as public asset. Based on this for-
mulation, in Section 3, we reexamine the definition of LMP, and propose
to decouple the LMP into constant and variant components. Section 4 in-
vestigates the value of storage to the system as a whole as well as to the
individuals. To better understand the consumers facing new market con-
ditions, we employ the k-means clustering for user profiling in Section 5.
Numerical studies verify our theoretical analysis on the value of storage in
Section 6. Finally, we deliver the concluding remarks and point out possible
future directions in Section 7.

2. Problem Formulation

In this section, we introduce the general economic dispatch problem with
storage as public asset. The ISO conducts the economic dispatch over a
period of interest. The key difference, compared with the conventional eco-
nomic dispatch model, lies in the storage constraints. To better characterize
the value of storage as public asset, we assume the ISO owns storage of to-
tal capacity E, and could distribute the storage in the grid at its will. To
rigorously formulate this problem, we first introduce the storage constraints,
then the DC approximation for the transmission line constraints, and finally
the economic dispatch formulation.

2.1. Storage Constraints

Being public asset, the key benefit is that the ISO could distribute the
storage system geographically. Specifically, denote the set of buses by N ,
which contains N :− |N | buses in the grid. Given a budget to purchase
storage of total capacity E, the ISO could decide to install capacity en at
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each bus n ∈ N . This implies that∑
n∈N

en ≤ E. (1)

For the storage system at bus n, when conducting economic dispatch, the
ISO decides its control action un,t at time t. The action un,t could be ei-
ther positive (indicating charging) or negative (indicating discharging). This
constructs the storage evolution constraints at each bus n:

xn,t = xn,t−1 + un,t, (2)

0 ≤ xn,t ≤ en, (3)

where xn,t denotes the state of charge (SoC) of storage at bus n at time t.
To ensure the maximal flexibility during the economic dispatch from time 0
to time T , we set the terminal values of SoC both to be half of its capacity,
i.e.,

xn,0 = xn,T =
en
2
, ∀n. (4)

Note that, these boundary conditions also imply that within each economic
dispatch cycle, there is no pure arbitrage. This also highlights the nature of
public asset.

Remark 1. Thoughout this paper, the cost of storage is not taken into con-
sideration, since we want to highlight the impacts of large-scale deployments
of publicly owned storage during the storage operation process.

2.2. Transmission Line Constraints

The storage control actions allow us to characterize the transmission line
capacity constraints. At each bus n, at each time t, we denote its generation
by gn,t and its demand by dn,t. Together with the storage control action un,t,
we can calculate the net outflow Fn,t at bus n:

Fn,t = gu,t − un,t − dn,t. (5)

The DC approximation [22] for lossless transmission system states the
Kirchhoff’s laws in the transmission lines as follows:

fnm,t = Ynm(θn,t − θm,t),

Fn,t =
∑
nm∈V

fnm,t,
(6)
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where Ynm is the susceptance of line n-m, θn,t denotes the phase angle at bus
n at time t, and fnm,t stands for the directed power flow of line n-m at time
t.

Hence, the transmission line capacity constraints simply require:

fnm,t ≤ fmax
nm , ∀nm ∈ V , ∀t, (7)

where V denotes the set of all transmission lines in the system.

2.3. Economic Dispatch with Storage

With the aforementioned constraints, we can now formulate the economic
dispatch problem with storage as public asset. Specifically, the ISO seeks to
solve the following optimization problem (P1):

(P1) min
∑
n∈N

T∑
t=1

Cn(gn,t) (8a)

s.t. gn,t − un,t − dn,t =
∑
m∈N

Ynm(θn,t − θm,t), ∀n, ∀t, (8b)

Ynm(θn,t − θm,t) ≤ fmax
nm , ∀nm ∈ V , ∀t, (8c)

xn,t = xn,t−1 + un,t, ∀n, ∀t, (8d)

0 ≤ xn,t ≤ en, ∀n, ∀t, (8e)

xn,0 =
en
2
, xn,T =

en
2
, (8f)∑

n∈N

en ≤ E. (8g)

Note that Cn(gn,t) denotes the generation cost function at bus n.

Remark 2. It is possible that not all buses are connected to generators. For
these degenerated buses, we can simply impose a sufficiently large cost to
the corresponding generation cost function. We choose not to include the
ramping constraints in the model to highlight the role of storage. In essence,
ramping constraints can be modeled as a virtual battery to provide additional
flexibility. To better understand the temporal and spatial characteristics of
this problem, we further assume the generation capacity for each generator is
sufficiently large. Another simplification is that the loads are assumed to be
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predicted perfectly, which helps us better understand how the energy storage
differentially affects the prices in the system.1

In the subsequent analysis, we adopt the quadratic cost function for an-
alytical tractability:

Assumption 1. The cost function Cn(·) for each bus n is quadratic, i.e.,

Cn(gn,t) =
1

2
· ang2n,t + bngn,t + cn, ∀t, ∀n. (9)

This assumption helps us examine the marginal impact of storage system at
each bus neatly, which in turn enables us to better characterize the dynamics
of how storage would influence different components in the system.

3. LMP Scheme with Storage

The conventional LMP scheme is mostly a spatial concept. We can
straightforwardly generalize the conventional definition to be the Lagrangian
multipliers associated with problem (P1). However, it is important to dis-
tinguish the spatial components and the temporal components, which could
enable us to better understand the value of storage systems.

3.1. Locational Marginal Price with Storage

The conventional definition of LMP is defined as the shadow price for each
bus n for each time t. While the conventional ramping constraints already
introduce certain level of temporal coupling in the short run, the integration
of storage system strengthens such coupling effects across all the periods. We
denote the locational price at bus n at time t by pn,t.

The closed form expression for pn,t can be derived from primal-dual anal-
ysis. Assigning the corresponding Lagrangian multipliers to the constraints
(8b)-(8g) in (P1), we can obtain the Lagrangian function L as follows:

1In fact, without loss of generality, we can also manipulate the coefficients in the cost
functions to impose the soft generation capacity constraints.
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L =
∑
n∈N

T∑
t=1

Cn(gn,t) + ρ

(∑
n∈N

en − E

)

+
∑
n∈N

T∑
t=1

νn,t

[
gn,t − un,t − dn,t−

∑
nm∈V

Ynm(θn,t − θm,t)

]

+
∑
nm∈V

T∑
t=1

πnm,t (Ynm(θn,t − θm,t)− fmax
nm )

+
∑
n∈N

T∑
t=2

ξn,t(xn,t − xn,t−1 − un,t)

+
∑
n∈N

T∑
t=1

[λn,t(xn,t − en)− µn,txn,t]

+
∑
n∈N

[
φn,0(xn,0 −

en
2

) + φn,T (xn,T −
en
2

)
]
.

(10)

Standard mathematical manipulations and the first order optimality condi-
tions yield:

ang
∗
n,t + bn + ν∗n,t = 0, ∀n, ∀t, (11a)∑

nm∈V

Ynm(ν∗m,t − ν∗n,t) +
∑
nm∈V

π∗nm,tYnm = 0, ∀n, ∀t, (11b)

−ν∗n,t − ξ∗n,t = 0, ∀n, ∀t, (11c)

ξ∗n,t − ξ∗n,t+1 + λ∗n,t − µ∗n,t = 0, ∀n, ∀t, (11d)

−
T∑
t=1

λ∗n,t + ρ∗ − 1

2
φ∗n,0 −

1

2
φ∗n,T = 0. ∀n. (11e)

By rearranging (11a), we have

−ν∗n,t = ang
∗
n,t + bn

= an(dn,t + u∗n,t + F ∗n,t) + bn

= (andn,t + bn) + an(u∗n,t + F ∗n,t)

:= pn,t,

(12)

where the superscript ∗ indicates the optimal solution to the first order opti-
mality conditions. The second equation holds due to (5). The third equation
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indicates that LMP consists two parts. One is invariant in E, i.e., andn,t+bn.
No matter how much storage is invested, all users should face such price. We
call this term constant locational marginal price (CLMP). The other one,
an(un,t +Fn,t) is varying with E, since different storage capacity may change
the optimal control actions. We call it variant locational marginal price
(VLMP). VLMP is affected by storage system both temporally and spa-
tially. As the total storage capacity E increases, the storage control actions
will change accordingly. On the other hand, these control actions will also
dramatically affect the power flow across the network (F ∗n,t’s). These two
effects are coupled together and hard to distinguish.

Note that the power flow F ∗n,t is a function of storage capacity E (We will
formally define such functions in Section 4). Using F ∗n,t(E), we can define
the conventional LMP, p0n,t:

p0n,t = an(dn,t + F ∗n,t(0)) + bn. (13)

Hence, compared with p0n,t, the storage system introduce a temporal compo-
nent anu

∗
n,t, and a spatial component an(F ∗n,t(E)− F ∗n,t(0)).

In fact, there is a simper way to understand the value of storage, by
encoding all the temporal and spatial impact into a singe index: marginal
system cost impact (MCI).

3.2. MCI with Storage

The MCI provides an integral treatment to examine the value of storage
for individual user. Specifically, for each user i at bus n, denote its load
profile over the period of T by a vector Li = {l1i,n, ..., lTi,n}. We can define
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user i’s MCI over period of T as follows:

MCIi,n = lim
δ→0

∑T
t=1

(
Cn

(
gn,t +

δlti,n
‖Li,n‖1

)
− Cn(gn,t)

)
δ

= lim
δ→0

∑T
t=1

(
(angn,t + bn) · δlti,n

‖Li,n‖1 + an
2

(
δlti,n
‖Li,n‖1

)2)
δ

=
T∑
t=1

(angn,t + bn) ·
lti,n
‖Li,n‖1

=
T∑
t=1

(andn,t + bn)
lti,n
‖Li,n‖1

+
T∑
t=1

anun,t
lti,n
‖Li,n‖1

+
T∑
t=1

anFn,t
lti,n
‖Li,n‖1

.

(14)

It’s clearly that MCI can also be divided into two parts just as LMP: we

call
∑T

t=1(andn,t+bn)
lti,n
‖Li,n‖1 the constant marginal system cost impact (CMCI)

and
∑T

t=1 anun,t
lti,n
‖Li,n‖1 +

∑T
t=1 anFn,t

lti,n
‖Li,n‖1 the variant marginal system cost

impact (VMCI). The relationship between LMP and MCI is dictated by the
following proposition.

Proposition 1. For user i at bus n, its MCIi,n is the weighted average elec-
tricity rate over T , i.e.,

MCIi,n =
1

‖Li,n‖1

T∑
t=1

pn,t · lti,n. (15)

This proposition makes it clear that MCI achieves the same performance as
the LMP does. Hence, it enables us to understand the value of storage to
the individual users via a singe index. Based on MCI, we seek to answer the
following key questions: does storage benefit all users as public asset? If not,
what are the key features of different types of users, in terms of their realized
benefits (if any)?

4. Value of Storage

In this section, we examine the value of storage in terms of social cost as
well as individual electricity bills. Both aspects are important for the storage
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to be valuable public asset. Specifically, we first use parametric analysis to
highlight the social benefit of integrating storage, and then use a prototype
example to demonstrate the potential issues that the storage integration may
impose on individual users. This motivates us severally examine the value of
storage to individuals in the electricity pool model and the general network
constrained model.

4.1. Value of Storage for Social Cost

We define the social cost as the total generation cost in the system over
period of T . Hence, given the storage capacity investment of E, the ISO can
solve the optimization problem (P1) and obtain the optimal solution and the
corresponding optimal objective value. Due to the quadratic cost structure
assumption, the optimal objective value is unique to each capacity E. Hence,
to evaluate the social cost, we can represent it as a function of E. Formally,
we define a parametric function C∗(E) as follows:

C∗(E) = min
∑
n∈N

T∑
t=1

Cn(gn,t)

s.t.
∑
n∈N

en ≤ E,

Constraints (8b)-(8f).

(16)

This parametric function establishes the relationship between total storage
capacity E and the corresponding minimal generation cost. The following
lemma is a direct result of Corollary 4.4.9 in [15], which states the continuity
property of C∗(E):

Lemma 1. The parametric function C∗(E) is continuous over [0,+∞).

Remark 3. In fact, the parametric function and its continuity can be ex-
tended to every parametric function defined on (P1). For example, the op-
timal generation g∗n,t(E), storage control u∗n,t(E) and outflow F ∗n,t(E) are all
continuous over [0,+∞]. In the subsequent analysis, we directly use such
notations and their continuity properties.

In fact, this minimal cost function enjoys additional properties:

Proposition 2. C∗(E) is monotonically non-increasing and convex in E.
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The detailed proof is deferred to Appendix A. This proposition helps to
identify the value of storage for social cost: it is not surprising to observe
that a larger capacity will help improve the social welfare by reducing the
total generation cost. The convexity property further eases the ISO’s decision
making on the optimal investment. This involves examining the amortized
marginal cost for purchasing the storage systems as well as the expected
marginal value of storage to the system. A detailed discussion is beyond the
scope of our work.

4.2. Motivating Example: Users Can Get Hurt

While more storage is always beneficial to the system as a whole, it may
not benefit every end user. We use a simple motivating example to highlight
this fact, which will also provide us the necessary idea to investigate how the
MCI’s in the system evolve as capacity E increases.

Consider a two-period electricity pool model (thus, the subscript for loca-
tion can be omitted). The total demands at the two periods are d1 = 10MWh
and d2 = 20MWh, respectively. We assume a simple cost structure in the
system, i.e.,

C(gt) =
1

2
g2t , t = 1, 2. (17)

When there is no storage (i.e., E = 0), it is straightforward to verify that:

p1(0) = 10$/MWh,

p2(0) = 20$/MWh.
(18)

Assume there are only 2 users in the system: Alice and Bob. The load
profile for Alice is LA = (4, 16)MWh, and that for Bob is LB = (6, 4)MWh.
These profiles allow us to determine their MCI’s and the total generation
cost without storage (i.e., E = 0):

MCIA(0) = 0.2 · 10 + 0.8 · 20 = 18$/MWh,

MCIB(0) = 0.6 · 10 + 0.4 · 20 = 14$/MWh,

C∗(0) =
1

2
· (102 + 202) = 250$.

(19)

Suppose a storage of capacity 10MWh is installed to improve the social wel-
fare as a public asset, then g∗1(10) = g∗2(10) = 15MWh. The prices over
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2 periods are now p1(10) = p2(10) = 15$/MWh. Hence, with this storage
system, we have

MCIA(10) = 0.2 · 15 + 0.8 · 15 = 15$/MWh,

MCIB(10) = 0.6 · 15 + 0.4 · 15 = 15$/MWh,

C∗(10) =
1

2
· (152 + 152) = 225$.

(20)

The social cost and MCIA are indeed reduced. However, storage does
not do favor to Bob! MCIB increases, which means Bob will face a higher
electricity bill. While it certainly illustrates the fact that the integration of
storage may not benefit everyone, it also sheds light on how to examine the
value of storage to different users: look at their load profiles!

4.3. Electricity Pool Model

To understand the value of storage for individual users, we first consider
the electricity pool model to highlight the temporal impacts, as all the net-
work constraints are ignored in this model. This model can be well applied
in micro-grid analysis. The optimization problem (P1) can be simplified as
follows:

(P2) min
T∑
t=1

C(gt) (21a)

s.t. gt − ut = dt, ∀t, (21b)

xt = xt−1 + ut, ∀t, (21c)

0 ≤ xt ≤ E, ∀t, (21d)

x0 =
E

2
, xT =

E

2
. (21e)

Clearly, Proposition 2 still holds in (P2) since (P2) is a special case of
(P1). Moreover, we can estimate a global lower bound for the total generation
cost by Jensen’s inequality:

C∗(E) =
T∑
t=1

C(g∗t (E))

≥ T · C(ḡ) = T · C(d̄),

(22)
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where ḡ = 1
T

∑T
t=1 gt and d̄ = 1

T

∑T
t=1 dt. The last equality is due to no pure

arbitrage (i.e.,
∑T

t=1 ut = 0). This lower bound is tight when the storage
capacity is sufficiently large, which forces the dispatched generations over all
time slots become ḡ. At this point, the MCI for each user of any load profile
becomes the same. We rigorously characterize the convergence of MCI in the
following lemma.

Lemma 2. In the electricity pool model, as E grows, the MCI for each user
will ultimately converge to ad̄+ b.

Proof 1. The Lagrangian function L can be formulated as follows:

L =
T∑
t=1

Cn(gt) +
T∑
t=1

νt(gt − ut − dt)

+
T∑
t=2

ξt(xt − xt−1 − ut) +
T∑
t=1

[λt(xt − E)− µtxt]

+ φ0

(
x0 −

E

2

)
+ φT

(
xT −

E

2

)
.

(23)

The first-order optimality conditions require:

ag∗t + b+ ν∗t = 0, ∀t, (24a)

−ν∗t − ξ∗t = 0, ∀t, (24b)

ξ∗t − ξ∗t+1 + λ∗t − µ∗t = 0, ∀t, (24c)

−
T∑
t=1

λ∗t −
1

2
φ∗0 −

1

2
φ∗T = 0. (24d)

When E is sufficiently large, both LHS and RHS of (21d) won’t be binding
at any time t. According to complementary slackness condition [23], we have
λ∗t = µ∗t = 0. From (24c), we know that ξt will be the same for each t.
Combining (24b) with (24a), we obtain ξ∗t = ag∗t + b. This implies that all
g∗t ’s will be the same. Constraint (21e) further requires

∑T
t ut = 0. Hence

g∗t = d̄ if E is sufficiently large, which proves the proposition.

While Lemma 2 characterizes the MCI after convergence, it does not provide
intuition on the convergent dynamics. It remains unknown whether the MCI
for each user will monotonically converge to ad̄+ b, or it will oscillate around
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the convergent point. Through numerical observations, we find it hard to
characterize the individual MCI dynamics. However, we are able to use the
upper bound and lower bound of MCI to characterize the group dynamics.
Specially, we can define the upper bound and the lower bound of MCI for
given storage capacity E as follows.

Definition 1. The upper bound of MCI, UBMCI and the lower bound of
MCI, LBMCI can be defined as parametric functions:

UBMCI(E) = max
i

MCIi(E),

LBMCI(E) = min
i

MCIi(E).
(25)

It’s straightforward to observe that UBMCI(E) and LBMCI(E) can be
equivalently represented as follows:

UBMCI(E) = ag∗M(E) + b,

LBMCI(E) = ag∗m(E) + b,
(26)

where M and m are defined as follows:

M :− arg max
1≤t≤T

{g∗t (E)} = arg max
1≤t≤T

{dt + u∗t (E)}, (27)

m :− arg min
1≤t≤T

{g∗t (E)} = arg min
1≤t≤T

{dt + u∗t (E)}. (28)

Remark 4. UBMCI and LBMCI are obviously unique in E, so they can also
be represented in the parametric functional forms: UBMCI(E) and LBMCI(E).
Since g∗t (E) is continuous in E, UBMCI(E) and LBMCI(E) are also contin-
uous in E.

With these definitions, the following proposition characterizes the group
dynamics of MCI.

Proposition 3. In the electricity pool model, UBMCI(E) is monotonically
decreasing in E; LBMCI(E) is monotonically increasing in E; and both of
them converge to ad̄+ b, as E approaches infinity.

The two bounds are tight. Their monotonicities imply that a larger storage
capacity can help reduce the variance of MCI, which partially indicates that
more storage stabilizes the real time prices by providing more fluidity in the
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market. However, the monotonically increasing lower bound also indicates
that more storage is not beneficial to every end user. For those who con-
centrate their power consumption at low-price periods, their MCI’s are more
likely to increase. On the contrary, for those who consume more at high-price
periods, it’s more possible that their MCI’s will decrease with more storage
in the system.

4.4. Network Constrained Model

After investigating storage integration’s temporal impact on individual
end users, we can now turn to the network constrained model to examine the
combined temporal and spatial impacts. This model can show the power of
grid interchanges.

While it is challenging to directly analyze the value of storage for indi-
vidual users in this case, we start by examining the value of storage for each
node.

Proposition 4. For the optimal dispatch profile given E, the marginal val-
ues of storage at all buses are the same. They are all non-increasing and
non-negative. Mathematically,

∂C∗(E)

∂e1

∣∣∣∣
e1=e∗1

= ... =
∂C∗(E)

∂eN

∣∣∣∣
eN=e∗N

≥ 0. (29)

Proof 2. Rearranging the first-order condition for en, i.e., equation (11e),
yields that

T∑
t=1

λ∗n,t +
1

2
φ∗n,0 +

1

2
φ∗n,T = ρ∗ ≥ 0. ∀n. (30)

Note that the Lagrangian multiplier ρ∗ is associated with an inequality. Hence,
by definition, it is non-negative. Also, the LHS of (30) is exactly the marginal

value of storage for each bus i, i.e., ∂C∗(E)
∂ei

∣∣∣∣
ei=e∗i

. This observation immedi-

ately leads to the main conclusion in Proposition 4.
The non-increasing property is due to the convexity and non-increasing

property of C∗(E), as illustrated in Proposition 2.

Next, we want to figure out the evolving dynamics of MCI in the network
constrained model. Although we cannot establish the monotonicity for the
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MCI upper bound/lower bound across the system, we observe interesting
phenomenon at each bus. Namely, as storage capacity E grows, for each bus,
its hourly generations across all the time slots converge to the same level.
This indicates that the locational MCI also converges.

Proposition 5. In the general network constrained model, as E grows, the
MCI for bus n will converge to ang̃n + bn, where g̃n is the solution to (P3):

(P3) min
∑
n∈N

Cn(gn) (31a)

s.t. gn −
1

T

T∑
t=1

dn,t =
∑
m∈N

Ynm(θn − θm), ∀n, (31b)

Ynm(θn − θm) ≤ fmax
nm , ∀nm ∈ V . (31c)

The detailed proof can be found in Appendix C. One immediate result
is that locational upper and lower bounds for MCI at each bus will both
converge to ang̃n + bn. Note the convergent values can be heterogeneous
among different buses. This implies that the global upper bound will converge
to maxn{ang̃n+bn} while the global lower bound will converge to minn{ang̃n+
bn}.

5. User Profiling

To better understand the MCI dynamics for heterogeneous end users,
we first conduct k-means clustering to identify representative end user load
profiles, and then examine how their MCI’s (also, CMCI’s and VMCI’s) vary
with the total storage capacity in the system. Then, we adopt a simple yet
efficient k-means clustering approach to direct observing the group dynamics
of MCI.

5.1. Prototype System Setup

We use the residential load data from Pecan Street [24], collected from
May 1 to August 9, 2015, with resolution of 1 hour.

We consider the MCI dynamics in the three tier prototype system (also,
this is a pool model). This prototype corresponds to the ToU pricing scheme
in practice, with the off peak period (hour 0-8), peak period (hour 9-12),
and partial peak (hour 12-23). We want to emphasize that there are key
differences between our prototype three tier system and ToU price: the prices
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in our system are determined by the market conditions and will be affected
by the total load in real time, whereas the ToU scheme often offers fixed rates
for the three periods.

The total loads in the three periods are respectively 4MWh, 12MWh, and
6MWh. We assume the cost function is simply C(gt) = g2t . This allows us to
characterize the price dynamics as E grows. Figure 2 plots the sample prices
for four values of E: 0MWh, 15MWh, 30MWh and 45MWh. The prices at
peak, off peak and partial peak hours are respectively tagged as pL, pH and
pM . As expected, when E is sufficiently large (in our case, 45MWh), the
prices over all the periods become the same.

0   MWh 
     →
15 MWh

30  MWh 
     ←
45 MWh

15  MWh  ↓  30 MWh

Figure 2: Evolution of ToU Prices when Storage Capacity Goes from 0MWh to 45MWh.

5.2. MCI Dynamics for Representative Users

We adopt the classical k-means clustering method to select representative
users, and set k to be 25. The clustering is based on user’s normalized load

19



Figure 3: Clustered User Load Types: (CX : q) represents the proportion q for cluster X.
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Figure 4: MCI Dynamics of Clusters (Representative Users).
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profile:

li =

{
l1i
‖Li‖

, ...,
lTi
‖Li‖

}
. (32)

The clustering result is shown in Figure 3. Based on this result we show
the trend of MCI (decomposed as CMCI, yellow dash lines and CMCI+VMCI,
red solid line) of each representative user in Figure 4. Since the CMCI is
constant, it can be seen as a baseline, reflecting the variance of VMCI . One
direct conclusion is that CMCI is just the MCI when E = 0, and VMCI can
be regarded as the deviation from CMCI when E grows. It can be seen that
the users electricity consumption behaviors are quite heterogeneous. For ex-
ample, type C7 users tend to consume electricity at midnight, which result
in low MCI, because the low electricity price at midnight. On the contrary,
C2 users concentrate their consumption in the forenoon, when the price is
high. Clearly, the heterogeneity of their MCI comes from the volatility of
prices. While the storage system smoothes the prices across time, its impact
on individuals diverges. For instance, C6’s VMCI is monotonically decreas-
ing whist C7’s VMCI is monotonically increasing. However, for some types
of users, such as C17, their VMCI’s increase at first and then decrease to a
lower level compared with their CMCI.

5.3. MCI Group Dynamics

To capture the MCI group dynamics, we can sure start from the load
profile based clustering result. However, it turns out that there exists a much
easier algorithm. The key is to identify that it suffices to conduct the k-means
clustering for a single metric MCI to understand its group dynamics. The
k-means clustering based on single metric can be implemented by a greedy
yet effective algorithm (the greedy k-means clustering, proposed in [25]). The
idea is simply to first sort the MCI’s and then greedily cluster users within
some prefixed radius. We repeat the algorithm in Algorithm 1.

This algorithm is effective as it achieves the optimal k-means clustering,
yet with the time complexity of O(n log n). Figure 5 visualizes the group
dynamics of MCI: the radius of each circle indicates the number of users in
the corresponding cluster and the ties characterize cluster flow dynamics. It
is clear that as E grows, the number of clusters decreases dramatically, and
the upper and lower bounds of MCI in the system also converge very fast.
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Algorithm 1 Greedy k-means Clustering [25]

Input: Tuple of users’ MCI (i,MCIi), i = 1, 2, ..., O; Radius r
Output: Clusters C1,...,Cκ

1: Sort (i,MCIi) by ascending order of MCIi
2: i← 1, k ← 1
3: repeat
4: j ← arg maxj{MCIj ≤ MCIi + r}
5: Ck ← {i, ..., j}
6: k ← k + 1
7: i← j + 1
8: until i > n
9: κ← k

10: return Clusters C1,...,Cκ

6. Numerical Studies

In this section, to support our theoretical results for the network con-
strained model, we conduct numerical studies in two systems. We first con-
sider a 3-bus prototype system to highlight the convergence feature of MCI.
Then we turn to the more realistic case: IEEE 39-bus system [26]. We find
our theoretic result is valid in both cases.

6.1. 3-bus Prototype System

We illustrate our results using a prototype 3-bus system. The network
and the system load profiles are shown in Figure 6. Both bus 1 and 2 have one
generator and bus 3 is a pure load bus. The susceptance for each transmission
line is shown in Figure 6(a). We assume the generation cost functions are

C1(g1,t) = 0.05g21,t + 5g1,t + 100, ∀t,
C2(g2,t) = 0.03g22,t + 10g2,t + 120, ∀t.

(33)

The transmission line capacities are fmax
12 = fmax

21 = 80MW, fmax
13 = fmax

31 =
130MW and fmax

23 = fmax
32 = 150MW.

We verify both our results on electricity pool model and those on the
network constrained model. Figure 7 plots the convergent dynamics in the
3-bus system ignoring all the network constraints. Clearly, the total cost
function is decreasing and convex in E, while the hourly generations of the
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Figure 5: MCI Group Dynamics.

two generators and MCI (as well as the upper bound and lower bound)
converges as E grows. It is interesting to observe in Figure 7(b) that the
initial smoothing effect of storage system is rather strong. This indicates
that the smoothing effect is mostly significant when the system most urgently
needs flexibility.

With the network constraints, the convergent characteristics for MCI at
each bus are visualized in Figure 8. Apparently, the MCI and corresponding
upper and lower bounds at each bus finally converge, but not monotonically.
The result has such implication: with total storage capacity growing, the
peak/off-peak generation at one bus may become larger/lower. This counter-
intuitive change may help other buses to lower their costs, and ultimately
leads to a lower total generation cost. Although the total cost drops, the
LMP mostly relies on the cost of the local generation, which yields a even
larger/lower bound for MCI.

Figure 9 depicts the cost and locational storage capacity’s trends in E.
The result shows again that storage has diverse impacts to different buses.
The total generation cost is still convex and decreasing in total storage capac-
ity. However, from a separate view, generation for some bus even increases.
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It’s not surprising that not all the locational storage capacities are mono-
tonically increasing in E. Though a larger storage capacity only has direct
influence on ISO’s storage control, the change in control actions will force
flows between buses to change, which in turn retroacts storage control. Hence
the optimal locational storage sizing may not exhibit convexity.

We also highlight that a user’s load profile can exhibit different MCI
among buses. Figure 10 shows the MCI’s trends for cluster C4, C8, C15 and
C22. From this figure, we can see that different user profiles exhibit different
patterns among the buses. Nevertheless, they all converge, as Proposition 5
indicates. It’s notable that for C22, the MCI at each bus is homogeneous

G2

Bus 2

Bus 3

-j

-2j

-j
Bus 1

G1

(a) 3-bus System. (b) Load Pattern.

Figure 6: Network and Load for 3-bus Prototype System.

(a) Cost and Generation. (b) MCI and Upper/Lower Bounds.

Figure 7: Results for 3-bus Pool Model.
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(a) Bus 1. (b) Bus 2. (c) Bus 3.

Figure 8: MCI and Upper/Lower Bounds v.s. Total Storage Capacity (3-bus Network
Constrained Model).

(a) Cost. (b) Locational Storage Capacity.

Figure 9: Cost and Locational Storage Capacity v.s. Total Storage Capacity (3-bus Net-
work Constrained Model).
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(a) Cluster 4. (b) Cluster 8.

(c) Cluster 15. (d) Cluster 22.

Figure 10: MCI for Different User Profiles (3-bus Network Constrained Model).
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Figure 11: Total Cost and Generation v.s. Total Storage Capacity (39-bus System).

when storage capacity is low. This is because such kind of users focus their
power consumption when congestion doesn’t occur. With storage capacity
increasing, the temporal generation changes. As a result, congestion happens.
The result shows that storage sometimes may not help to mitigate congestion,
on the contrary, congestion conditions may be exacerbated.

6.2. IEEE 39-bus System

In order to obtain more convincing results, we conduct the analysis on
the IEEE 39-bus test system [26]. This system contains 10 generation buses.
Since only single-period load is provided, we generate multi-stage load profiles
by properly scaling the load. The load patterns are from the European
Network of Transmission System Operators for Electricity (ENTSO-E) data
[27]. To highlight the influences of complicated network, we only show the
general case with transmission congestion in the 39-bus system.

We first show how total cost and total hourly generation change with
respect to total storage capacity in Figure 11. It is not surprising that the
total cost is convex and decreasing in E. The hourly generations also converge
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Figure 12: MCI and Upper/Lower Bounds (39-bus System).

when storage capacity increases. Note the decline of cost and convergence
of generation are synchronized, i.e., when the cost curve becomes flat, the
generation finally converges.

The convergent characteristics of selected buses are shown in Figure 12.
We select nine typical buses with distinguished features. The former six cases
are load buses and the latter three are generation buses. This figure exhibits
variant convergent characteristics of the MCI. There is no evident difference
between generation buses and load buses. We find an interesting phenomena
when examining the upper and lower bounds: for some buses such as bus 19
and bus 34, the speed of convergence is faster then others. This phenomenon
may come from the low variance of the demands at such buses. Also, some
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buses exhibit similar convergent dynamics, such as bus 2 and bus 37. This
observation is due to low congestion between them. Such buses can be seen
as a micro-grid as a whole.

7. Conclusion Remarks

In this paper, we investigate the impacts of storage as public asset to the
electricity sector from two perspectives: social and individual. We prove that
the storage system improves the social welfare. However, it does not benefit
every end user. To examine individuals’ welfare, we extend the notion of
MCI as an index. We study the dynamics of MCI through k-means clustering
and bound characterization, which exhibits valuable information of storage’s
value as public asset.

This paper can be extended in many interesting directions. For instance,
as we observed in the numerical studies, when considering transmission con-
gestion, the bounds at each bus and installed capacity are not monotone.
Such observation needs to be explained by further theoretic analysis. Since
we assume that the generation cost is quadratic, it will be interesting to ex-
tend our results to more forms of cost functions. In addition, while storage
may not necessarily benefit every user as public asset, the traditional pricing
scheme may fail to reflect the marginal utility and individual rationality of
all users. It is hence promising to design better pricing scheme from the
cooperative game perspective to address the issue. Furthermore, it is valu-
able to combine the storage investment and the storage operator process as
a whole. The major obstacle is to design an effective and fair cost allocation
rule across the system.
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Appendix A. Proof of Proposition 4.2

The monotonically decreasing feature is due to the the fact that increase
of E expands the feasible region, which induces no worse total cost. To prove
the convexity, we consider two arbitrary value of E:

0 ≤ E1 < E2.

Then we have g∗n,t(E1), u
∗
n,t(E1), f

∗
nm(E1), e

∗
n(E1) and g∗n,t(E2), u

∗
n,t(E2),

f ∗nm(E2), e
∗
n(E2) are the corresponding optimal solutions to problem (P1)

when E = E1 and E = E2. For any E ′ = βE1 + (1−β)E2, where 0 ≤ β ≤ 1,
we can show that

g′n,t = βg∗n,t(E1) + (1− β)g∗n,t(E2), (A.1)

u′n,t = βu∗n,t(E1) + (1− β)u∗n,t(E2), (A.2)

f ′nm = βf ∗nm(E1) + (1− β)f ∗nm(E2), (A.3)

e′n = βe∗n(E1) + (1− β)e∗n(E2) (A.4)
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construct a feasible solution to (P1). Note this is not necessarily the optimal
solution for (P1) when E = E ′. Thus we can show that

C∗(E ′) ≤
∑
n∈N

T∑
t=1

C(g′n,t)

=
∑
n∈N

T∑
t=1

[
1

2
a(βg∗n,t(E1) + (1− β)g∗n,t(E2))

2

+ b(βg∗n,t(E1) + (1− β)g∗n,t(E2)) + c

]
≤
∑
n∈N

T∑
t=1

[
1

2
aβ(g∗n,t(E1)

2) +
1

2
a(1− β)(g∗n,t(E2)

2)

+ b(βg∗n,t(E1) + (1− β)g∗n,t(E2)) + c

]
= βC∗(E1) + (1− β)C∗(E2).

(A.5)

The second inequality holds because of the convexity of quadratic cost func-
tion. This concludes our proof.

Appendix B. Proof of Proposition 4.5

In Lemma 2, we have proven that

g∗t (E) =
1

T

T∑
t=1

dt = d̄t, ∀t, ∀E ≥ Ẽ, (B.1)

where Ẽ is a large number. In this case, the maximal and minimal generation
are also d̄. Hence,

lim
E→∞

UBMCI(E) = lim
E→∞

LBMCI(E) = ad̄+ b. (B.2)

Now we prove the monotonicity. We only prove the monotonically de-
creasing character of UBMCI since the proof for LBMCI follows the same
routine. We prove this by contradiction.

Let δ > 0 represent an infinitesimal perturbance. We need to verify
g∗M(E + δ) ≤ g∗M(E), where g∗M is the largest temporal generation. Suppose
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g∗M(E + δ) > g∗M(E). Denote εt as the change of optimal generation at time
t, given storage capacity changing from E to E + δ, i.e.,

εt :− g∗t (E + δ)− g∗t (E) = u∗t (E + δ)− u∗t (E). (B.3)

Thus εM > 0 and
∑

t6=M εt = −εM < 0. Now the total cost is

C∗(E + δ) =
1

2
a(dM + u∗M(E + δ))2 + b(dM + u∗M(E + δ))

+
∑
t6=M

1

2
a(dt + u∗t (E + δ))2 + b(dt + u∗t (E + δ))

=
1

2
a(dM + u∗M(E) + εM)2

+
∑
t6=M

1

2
a(dM + u∗t (E) + εt)

2 + bdM +
∑
t6=M

bdt

=
T∑
t=1

[
1

2
a(dt + u∗t (E))2 + b(dt + u∗t (E))]

+
1

2
a

T∑
t=1

ε2t + a
T∑
t=1

[(dt + u∗t (E))εt]

> C∗(E) + a
T∑
t=1

[(dt + u∗t (E))εt]

≥ C∗(E) + a(dM + u∗M(E))εM

+ a
∑

t6=M,εt<0

[(dt + u∗t (E))εt]

≥ C∗(E) + a(dM + u∗M(E))

(
εM +

∑
t6=M,εt<0

εt

)
≥ C∗(E).

(B.4)

This result violates the decreasing character of C∗(E), which estabilishes the
contradiction. Hence, g∗M(E + δ) ≤ g∗M(E). With the continuity property
(Lemma 1), the proof is completed.

Appendix C. Proof of Proposition 5

First, we prove the convergence. Suppose E is sufficiently large, storage
capacity en for each bus will become large enough so that (8e) is not binding.
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As a result, λ∗n,t = µ∗n,t = 0. According to (11d), we know ξ∗n,t+1 = ξ∗n,t for
each n and t. Namely, ξ∗n,t will be the same for all t. Adding (11c) to (11a),
we obtain ang

∗
n,t + bn = ξ∗n,t. Hence, ang

∗
n,t + bn are the same for all time t.

This proves the convergence.
Since gn,t will converge for each n when E grows sufficiently large (denote

the threshold as Econ), (P1) is equivalent to the following problem (P4) when
E ≥ Econ:

(P4) min
∑
n∈N

T∑
t=1

Cn(gn,t) (C.1a)

s.t. gn,1 = gn,2 = ... = gn,T , ∀n, (C.1b)

Constraints (8b)-(8g).

Relatively summing up (8b) and (8c) over all t and dividing them by T , we
have

1

T

T∑
t=1

(gn,t − dn,t) =
1

T

T∑
t=1

∑
m∈N

Ynm(θn,t − θm,t),∀n, (C.2)

1

T

T∑
t=1

Ynm(θn,t − θm,t) ≤ fmax
nm , ∀nm ∈ V . (C.3)

Note un,t’s are eliminated because
∑T

t=1 un,t = 0, ∀n. Denote

gn :− 1

T

T∑
t=1

gn,t, ∀n, (C.4)

θn :− 1

T

T∑
t=1

θn,t, ∀n. (C.5)

Then we have

gn −
1

T

T∑
t=1

dn,t =
∑
m∈N

Ynm(θn − θm), ∀n, (C.6)

Ynm(θn − θm) ≤ fmax
nm , ∀nm ∈ V . (C.7)

These are exactly the constraints for (P3). Hence the feasible solutions to
(P4) are all feasible to (P3).
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Then we prove the other side. Denote

ûn,t :− 1

T

T∑
t=1

dn,t − dn,t, ∀n. (C.8)

When E is sufficient large, each en can be arbitrarily large, so (C.8) is feasible
for constraints (8d)-(8g). Suppose ĝn, θ̂n construct a feasible solution to (P3),
it’s easy to show that

gn,t = ĝn, θn,t = θ̂n, un,t = ûn,t (C.9)

construct a feasible solution to (P4). That means, all feasible solutions to
(P3) are also feasible to (P4).

Now we have shown that (P3) and (P4) have the same feasible domain.
Since the objective functions of (P3) and (P4) are equivalent under the con-
straint (C.1b) (they are proportional with a scalar 1

T
), the optimal solution

to (P3) is also optimal for (P4). Further, when E ≥ Econ, (P4) is equivalent
to (P1). Hence, the optimal solution to (P3) is optimal for (P1), when E
grows sufficiently large. Q.E.D.
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