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Abstract—Renewable energy brings huge uncertainties to the
power system, which challenges the traditional power system
operation with limited flexible resources. One promising solution
is to introduce dynamic pricing to more consumers, which, if
designed properly, could enable an active demand side. To further
exploit flexibility, in this work, we seek to advice the consumers
an optimal online control policy to utilize their storage devices
facing dynamic pricing. Towards designing a more adaptive
control policy, we devise a data-driven approach to estimating
the price distribution. Simulation studies verify the optimality of
our proposed schemes

Index Terms—Dynamic Pricing, Stochastic Control, Online
Algorithm

I. INTRODUCTION

A high penetration of renewables in power system is ex-
pected to reduce greenhouse gas emissions over the next few
years. Meanwhile, the highly stochastic nature of renewables
calls for a new paradigm of power system control. In contrast
to the traditional paradigm, the most important feature in the
new one is more flexibility. One way to recruit additional
flexibility is to design proper dynamic pricing schemes to
enable active demand side management [1]].

A. Challenges and Opportunities

The classical impediment for dynamic pricing comes from
the technological difficulty to ensure real time communication.
Such impediment is diminishing with improved telecommu-
nication system as well as the widely deployed smart meter
devices [2]]. The other hurdle that prevents dynamic pricing
from wide implementation is the public concern over price
volatility. In fact, it offers both risks and potential benefits to
the consumers. With the decreasing cost of storage system,
the consumers can utilize storage system with proper control
policy, which can help the consumers by hedging against
the risk in dynamic pricing and help the power system by
providing more flexibility. In this paper, we seek to design
such a policy and achieve the two goals simultaneously.

B. Literature Review

The investigation on storage control policy for dynamic
pricing only emerges recently. Jin et al. propose a heuristic
algorithm using Mixed Integer Linear Programming to opti-
mize the electric vehicle chagring schedules in [3]. Oudalov
et al. focus on conducting peak load shaving and introduce
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Fig. 1. Our paradigm for optimal storage control.

a sizing methods as well as an optimal operational scheme
in [4]. Wang et al. design an optimal control policy and
solve the optimal investment problem for general ToU scheme
using dynamic programming in [S]. Chau ef al. assume the
knowledge of future demand and the bounds of prices, and
illustrate a threshold cost minimizing online algorithm with
worst-case performance guarantee in [[6]. To deal with limited
information and uncertainty, Qin et al. introduce an online
modified greedy algorithm for storage control in [[7]. Vojvodic
et al. design a forward threshold algorithm to manage storage
operation in real-time market, where stages are decomposed
using integer programming and heuristic search [8].

In contrast to the literature, we propose an optimal online
threshold policy for storage control. Specifically, to highlight
the impact of uncertainties in dynamic price on the control
policy design, we assume the consumer’s own demand predic-
tion is accurate in the near future. This is reasonable as on the
grid level, the impact of uncertainties in renewables is reflected
through the volatility in dynamic pricing. As shown in Fig.
we design two control policies: one with the accurate price
distribution information, the other with the data-driven price
distribution estimator. Comparing these two policies reveals
the risk of unknown in storage control facing dynamic pricing.

C. Our Contribution

To better contrast our work from the literature, we highlight
our contributions as follows:

e Optimal Online Threshold Policy: Based on the one-
shot load decomposition technique, we seek to solve
the optimal online storage control problem. We show
that assuming perfect knowledge of consumer’s demand
and exact price distribution, a simple threshold policy
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Fig. 2. Demonstration of system model.

(Expected Threshold Algorithm, ETA) can minimize the
consumer’s expected electricity bill.

o Data-driven Distribution Estimator: We relax the as-
sumption of knowledge on exact price distribution. In-
stead, when only knowing the type of price distribution,
we design a data-driven distribution estimator, yielding
Data-driven Expected Threshold Algorithm (DETA).

e Risk of Unknown: By comparing the performance of two
proposed algorithms (ETA and DETA) with the offline
optimal, as well as observing the algorithms’ performance
with accumulating data, we evaluate the cost for risk of
unknown through numerical studies.

The rest of our paper is organized as follows. Section
introduces the system model, and revisits the one-shot
load decomposition technique. We propose the optimal online
threshold storage control policy in Section Section
derives the data-driven distribution estimator for a more adap-
tive control policy. We evaluate the performance of proposed
control policies through simulation studies in Section
Concluding remarks are given in Section

II. SYSTEM MODEL

Consider the interaction between consumers and the grid as
shown in Fig. 2| The grid operator sets dynamic price p(t)
at each time ¢. Facing such a pricing scheme, the consumer
wants to satisfy its demand d(¢) in different ways: directly
purchase energy g(t) from the grid, save energy b(t) in the
storage system, or use the energy in the storage system (c(t)
out of s(¢) in the storage) to meet its demand.

As discussed in the previous section, we assume the demand
prediction for each consumer is rather accurate while all un-
certainties in the system are reflected in the dynamic pricing’s
volatility. Even with this assumption, the decision making for
each consumer is still quite challenging due to the uncertainty
in the future prices and the physical constraints (capacity
constraints) coupling all the storage control decisions.

Inspired by [6], in this section, we first revisit the one-shot
load decomposition technique, which allows us to decouple the
storage control actions across time. Then, we formally define
our one-shot load serving problem.

A. Revisit the One-shot Load Decomposition

The one-shot load decomposition technique was first pro-
posed by Chau et al. in [6] to decouple the storage capacity
constrained optimization problem into a sequence of one-shot
load serving problems.
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Fig. 3. Example for one-shot load decomposition.

The idea is simple. Suppose we need serve an accumulated
demand as shown by the red dashed curve in Fig. 3} serving a
load of D(t;) at time ¢1, and serving a load of D(t2) — D(t1)
at time to. If there were no storage devices, then we have
to purchase the load at the time of serving, tolerating all the
price volatility. However, with a storage of capacity B, we
have the choice of purchasing the demand over the whole time
span. The one-shot load decomposition technique is designed
to highlight such flexibility in serving load. The difficulty is
again due to the storage capacity constraint.

Back to our example in Fig. 3| assume

B > D(t1) := dy(to, t1), (D

then it is straightforward to see that with storage, we can
serve D(t1) at any time between [tg, t1]. Therefore, we define
d1(to,t1) = D(t1), which highlights its flexibility in the time
span [to, t1]. Next, we assume

B < D(ty) — D(t1), 2)

then the demand to be met at 2 need be decomposed into three
different kinds of demand: da (o, t2), ds(t1, t2), and d4(ta, t2).
Since B > D(t1), the storage has certain spare capacity to
store energy and serve the load at ¢, even between [0, ¢1] (We
assume the perfect knowledge of load). This observation leads
to the first kind of demand ds(to,t2), which is reserved for
load at ¢2 between [0, 2] (the union of [0, 1] and [t1, ¢2]). The
second kind of demand is due to the released capacity after
serving load at ¢;, which is only flexible after ¢;, which is
denoted by d3(t1,t2) in our example. Note that B < D(t2) —
D(t1), certain amount of load at time t5, d4(t2,t2) has to be
met in real time. This leads to the last type of decomposed
demand in the one-shot load decomposition technique.

Remark: Note that the last type of decomposed demand
naturally decouples the original optimization problem over
a long time span into a set of smaller scale optimization
problems. This implies that when we conduct the one-shot
load decomposition, we only need to look ahead for a couple
of hours, the load prediction of which can be rather accurate.
This also illustrates our assumption of perfect knowledge on
the near future demand is realistic.



Next, we formally introduce the construction process for the
one-shot load decomposition technique as follows [6]:

1) Define the accumulative demand curve D(t).

2) Define the upward shift accumulative demand curve
D™ift(¢), which is obtained by shift D(¢) by B.

3) Obtain one-shot demand d;(t%,t!) through sandwiched

S

rectangle (t& — t1)d;(t%,t}) between D(t) and D*hifl(y).

s e
B. One-shot Load Serving Problem

We can now focus on the one-shot load serving problem.
For each decomposed load d;(t!,t), which need be served
between ti and t!, we seek to find the time slot ¢ with
the minimum price p(¢t) for serving. In fact, it suffices to
understand the stylized one-shot load serving problem, where
consumer need satisfy its one-unit demand between 0 and 7.

Mathematically, the consumer makes a sequence of deci-
sions w(0),...,u(T"), where u(t) denotes its purchasing de-
cision at time ¢: if u(¢) = 0, the consumer won’t purchase
anything; if u(¢) = 1, the consumer meets the unit demand:

. T
u(O)I,IP,IIlL(T) Zt:o uB)p(t) @
s.t. u(t) €{0,1}, 0<t<T “4)

ZtT:O u(t) =1. (5)

If we were able to solve the problem in an offline manner, this
optimization problem is simply to select:

t* = arg min p(t). (6)
te[0,T]

However, we cannot foresee the future prices, which war-
rants designing an online algorithm to solve the one-shot load
serving problem. To simplify our subsequent analysis with
more insights, we make the following assumption:

Assumption: Dynamic price p(t)’s are i.i.d random variables.
With this assumption, we analyze three scenarios:

e Perfect Prediction: We use the offline optimal to serve as
the benchmark for comparison.

o Exact Distribution: Knowing the exact distribution (exact
parameters) of the random price p(t), we seek to design
the optimal online control policy.

o Type of Distribution: In this scenario, we only know
the type of distribution that random price p(t) follows.
We devise the data-driven distribution estimator, and
incorporate this estimator into the online policy.

ITII. OPTIMAL CONTROL WITH EXACT DISTRIBUTION

Based on the one-shot load decomposition, we derive the
optimal online storage control policy in this section. We
assume that we know the exact price distribution for p(t)’s.

For the one-shot load serving problem between [0,77], at
each time slot ¢, we can only make two decisions: to purchase
the unit demand or not. The two decisions correspond to
different expected costs: p(t) for purchasing and E[w;] for
not purchasing, where E[w;1] denotes the expected cost for
the one-shot unit load serving between [t + 1, 7.

A. Control Policy ETA

To characterize this binary choice, we employ a threshold
6(t) to balance the expected costs between two actions. Hence,
the optimal threshold would require

0(t) = Elwia], (7

if p(t) < 0(t), we choose to purchase the unit load at time ¢.
Otherwise, we defer this action to later time slots.

Note that the expected cost E[w;]’s can be obtained in an
recursive manner:

Efw,] = /0 " 2oy (2)dz + /0

where f,;) is the probability density function of the dy-
namic price p(t). Hence, our desirable decision making
u(0),u(1),...,u(t) can be determined in a backward fashion
by deciding all the 6;’s, from 67_1 = E[wr] = E[p(t)] to
6o = E[w], all using Eq. (8). This simple threshold control
policy is our expected threshold algorithm (ETA) to treat
online storage control.

B. Optimality of ETA
The optimality of ETA comes from the fact that the decision

making at each time slot is a binary choice. With this fact, we
can prove the following theorem:

oo

Elwit1] foe (v)dz,  (8)

t

Theorem: ETA is the optimized storage control policy for the
one-shot load serving problem.

Proof: We can prove this theorem by backward induction.
Note that at 7 =T — 1, 67_1 = E[wy] = E[p(T)] is optimal
choice. This constructs the induction basis. For the induction
part, it suffices to identify that our proposed optimal threshold
6, is the solution to the first order optimality condition of (8).

Remark: We have only proved that ETA is the optimal
control policy for the one-shot load serving problem. To
show it is the optimal control policy, we need show the
one-shot load decomposition maintains the structure of the
solution space between the original optimization problem and
the decomposed optimization problem. This is our next step
towards better understanding the problem structure.

IV. DATA-DRIVEN DISTRIBUTION ESTIMATOR

In design the optimal online control policy, we assume the
knowledge of exact distribution of p(¢)’s. In this section, we
relax this assumption and only assume the knowledge of type
of distribution f(p|A\) without the knowledge of parameters \.
This motivates us to design a data-driven distribution estimator
to better project the distribution parameters.

A. General Data-driven Estimator

One straightforward way to conduct parameter estimation is
to utilize the maximum likelihood method (MLE) [9]. We use
MLE E] as an example to illustrate the incorporation process
as new price data is available.

2We want to emphasize that MLE may not be the optimal distribution
estimator (e.g., minimizing KL divergence may be a better choice for some
cases, see [10] for a detailed discussion).
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Fig. 4. Regret ratio of one-shot serving problem.

Suppose we have collected realized price data p =
(p1,.-,p+) and know these prices obey distribution f(p|\)
with unknown parameters \. To estimate the distribution pa-
rameters \, we define the likelihood function L()) as follows:

L(A) = f(pr[A) f(p2lA) - - f(peA)- ©)
The MLE estimator maximizes the log-likelihood function,

In L()\). The optimal parameter A* given by MLE estimator
need satisfy the following two conditions:

dln L(\)

= ] 10
an 0, Vi, (10)
and
0%1n L(\)
—_ . 11
8/\3 <0, Vi (11D

B. Data-driven Expected Threshold Algorithm

For our optimal control policy design, at each time slot ¢,
witnessing another new instance of dynamic price, p(t), we
can update the likelihood function as follows:

LY < LV (p(®)|N). (12)
This will lead to a new estimation of distribution parameter,
which need be utilized when deriving the optimal threshold
as we do in ETA. We refer to such adaptive policy as the
Data-driven Expected Threshold Algorithm (DETA).

We want to emphasize that there is an initialization period
for DETA when we only observe the prices and serve the
demand without the help of storage system.

V. SIMULATION STUDIES

We have proved that ETA is the optimal online control
policy for one-shot load serving problem. However, comparing
with the offline optimal benchmark, there are still differences.
In this section, we start by evaluating ETA’s regret ratio for
one-shot load serving. Then, we observe that ETA’s compet-
itive ratio becomes stable in numerical studies. We further
our understanding towards the risk of unknown by numerical
studies.

A. Dataset Characterization

Dynamic pricing has not been widely adopted for residential
users. Hence, we choose to use hourly real-time pricing data to
characterize the stochastic nature in dynamic price. The data
is collected from PJM during August, 2019 [11]. We use three
distributions to approximate the price histogram: uniform dis-
tribution, half-normal distribution (light tail), and log-normal
distribution (heavy tail). While log-normal distribution seems
better fit the histogram, we select these distributions for better
illustration of the tail performance. We randomly sample a
period from the PJM users’ load data for numerical study.
The load data is collected in AEP area during August, 2019
[12]. We assume the users are equipped with storage devices
with capacity that is 10% of their peak demand.

We conduct the simulation using the fitted price distribu-
tions. This eliminates all the possible price correlation in the
real data. We intend to relax the i.i.d. assumption on the price
distribution in our future work.

B. Evaluate ETA for One-shot Load Serving

We first evaluate the performance of ETA for the one-shot
load serving problem. To compare our ETA performance and
offline optimal, we define regret ratio -y as follows:

_ cost(ETA) — OPT

B OPT '
where cost(ET A) denotes the cost of serving the one-shot
by ETA while OPT denotes the offline minimal cost. Figure.
M] plot the performance of ETA using the three fitted distribu-
tions. All cases display diminishing regret ratio, which implies
they converge to the offline optimal rather fast. This illustrates
the robustness of ETA to different price distributions.

C. Evaluate ETA for Load Serving

Next, we evaluate the performance of ETA for general load
serving purposes. We define the competitive ratio 5:

cost(ETA)

- oprPT ’

where cost(ET A) denotes the total cost of ETA in serving

load during certain period of time, while OPT denotes the

corresponding offline minimal fotal cost. Figure [5] plots the

competitive ratio for the three fitted distributions. We observe

that the competitive ratio becomes stable as time goes by. In
all the three cases, the mean of 3 is bounded by 1.04.

(13)

(14)
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D. Examine the Risk of Unknown

It’s commonly believed that more data implies better perfor-
mance. In this section, by comparing the performance between
ETA and DETA, we examine the conventional wisdom for
online storage control.

The implementation of DETA requires historical data, which
helps decide the distribution parameters. We study the perfor-
mance difference between ETA and DETA, denoted by ¢ , as
time goes by (and hence, as data accumulate!):

0 = cost(DET A) — cost(ETA). (15)

Figure [6] compares the evolution of § for three fitted
distributions. The 90% percentile shows that in most cases,
DETA converges to ETA extremely fast. In fact, for storage
online control purpose, it suffices to observe tens of data for
reasonably good performance.

VI. CONCLUSION

In this paper, we investigate the online storage control policy
design facing dynamic prices. Based on one-shot load decom-
position, we propose two control policies: ETA and DETA. We
compare the performance of these two online control policies
with the offline optimal, which demonstrates the robustness of
the two policies to different price distributions.

However, much remains unknown. From theoretical point
of view, we plan to investigate the theoretical bound for
ETA’s regret ratio for one-shot load serving problem. It is also
interesting to examine how the load decomposition technique
changes the structure of the optimization problem. More
practically, we intend to relax the two assumptions. We are

interested in relaxing the assumption of perfect load prediction
and studying the impact of coupled uncertainties (from both
dynamic price and the demand) on optimal storage control.
We also would like to relax the i.i.d. assumption of price
distributions. This may yield a more practical control policy.
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