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ABSTRACT
Agriculture is one of the areas whose activities depend heavily on
weather forecasts. Indeed, in order to optimize their production,
farmers must be able to anticipate climate conditions favorable or
not to their activities by deploying the appropriate action plans.
For this purpose, they consult the data daily from various suppli-
ers of weather forecasts. However, the reliability of the forecasts
of each supplier is variable according to the period, the climate
or the geographical area. Farmers, therefore, have to arbitrate be-
tween suppliers daily. This paper proposes a new set of learning
architecture that significantly improves the accuracy of weather
short-term forecasts for the next 1-12h in order to assist farmers in
decision-making.

CCS CONCEPTS
• Computing methodologies → Ensemble methods.
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1 INTRODUCTION
The reliability of weather forecasts is necessary for many areas for
which activities depend on weather conditions. Agriculture is one
of this areas that can be particularly impacted by weather events
such as extreme temperatures, wind, storm, rain, etc. These events
can cause significant damage to harvests and the result can be the
total or partial loss of production. In addition to the damage, certain
climatic conditions can also affect cultural operations such as the
limited possibility of treatment in windy conditions, but also the
difficulty of access to the soil with agricultural machinery in case
of rain.

The challenge for farmers is to learn early enough about future
climate risks in order to put in place action plans to minimize po-
tential damage. For this, they usually consult the weather forecasts

.

several times a day. The forecasting providers have limited reliabil-
ity, thus farmers consult 3, 4, sometimes more, sources of weather
forecasts and arbitrate between these sources in a subjective way.
Indeed, these sources do not necessarily always perform in the
same way. Some providers of weather forecasts will sometimes
over-perform by providing forecasts close to the values really ob-
served, and others under-perform with forecasts further away from
the values actually observed. The accuracy of the weather forecasts
of each supplier may vary according to the period, the type of cli-
mate or the geographical area. Given the variability in the reliability
of weather forecasts and the multiple prediction providers available
to farmers, their decision-making is not facilitated and therefore of-
ten remains unclear. One of the possibilities for improving farmer’s
decision-making would be to provide them with a single source of
forecasts that outperforms those they have. The latter should allow
farmers to consult only one source of forecasts and thus no longer
have to arbitrate between the various providers of usual forecasts.
The ideal range of forecasts allowing farmers to prepare for certain
climate events is 1 to 12 hours.

In this paper, the goal is to provide more reliable temperature
and humidity forecasts than weather forecast providers for the next
1 to 12 hours for 2 agricultural sites a few kilometers apart. First,
we establish in the 2 section a state of the art short-term forecasting
methods. Secondly, we will present in the section 3 a new set of
methods consisting of 4 distinct layers to make predictions. Third,
we will detail the context and characteristics of the dataset. And
finally, we will present in section 5 the results and we will show
that the method is effective for realizing reliable forecasts in the
short term.

2 STATE-OF-THE-ART
Meteorology is an interdisciplinary science which relies mainly on
the fields of physics, chemistry, and mathematics. The evolution
over time of climatic variables such as temperature, wind, pres-
sure, etc. is mainly predicted via the numerical resolution of the
Navier-Stokes equations (which describe the movement of gases
and liquids) and of mass continuity, but also with the laws of ther-
modynamics, especially that of perfect gases.

The Numerical Weather Prediction (NWP) [8] is a method that
can predict the probabilities of meteorological variables by taking
into account the equations and laws previously stated. These are
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integrated into various models representing as closely as possible
the atmospheric dynamics, each one is based on different initial con-
ditions or uses different model configurations and/or parameters.
These models are then powered by current weather observations
and provide forecasts. This forecast set allows to establish forecast
probabilities for the coming hours and months. The NWP provides
reliable forecasts while estimating their error. However, this method
requires a great computational power and this continues to grow
with the improvements made to NWP systems.

Nevertheless, other prediction methods that are less demanding
in terms of power computation can give relatively reliable forecasts.
The Deep Hybrid Model for Weather Prediction [4] uses both a
network of deep beliefs (consisting of several layers of Stacked
Restricted Boltzmann Machine) for weather forecasting from 6 to
24hours and also taking into account thermodynamic functions
and the dynamic influence of atmospheric laws on meteorological
phenomena. There is also some works in the literature that use
machine learning techniques for weather forecasting. The study
[5] compares the results of various machine learning methods to
predict the temperature from 1 to 24 hours in Nashville, Tennessee
in USA. The historical weather data of many areas surrounding
the city of Nashville and the current meteorological conditions of
the considered city are used as inputs for many models such as Re-
gression models, Support Vector, Multilayer Perceptron, Extra-Tree
Regression, Random Forest, and finally Ridge Regression. These
models prove a certain predictive efficiency by presenting between
1°C and 4°C difference between the predicted temperatures and the
observed temperatures.

Other machine learning techniques such as recurrent neural
networks [11] and Bayesian networks [2] are used for short-term
forecasting of climatic variables. It is also possible to use clustering
techniques such as an Enhanced K-nearest neighbor[10]. However,
1 degree difference between the predicted temperatures and the
observed temperatures can be decisive for decision making. As
a result, our method, via an innovative architecture, proposes to
minimize the difference between the predicted temperatures and
the observed temperatures.

3 MODEL PRESENTATION
3.1 Global approach
The approach presented in this paper is based on machine learning
methods for the short-term forecasting of climate variables. Thus,
we avoid the complex and power consuming models that are based
on the laws of thermodynamics. In this section, we present the
architecture and the overall operations of the Multilayer Ensemble
method, then each component of the architecture and their parame-
ters will be detailed. In this section, the architecture and the global
operation of the Multilayer Ensemble method will be presented
then each component of the architecture and their parameters will
be detailed. These techniques are useful for regression and classifi-
cation problems. However, in this paper we will focus mainly on
the regression problem which allows the computation of forecasts.

3.1.1 Introduction to Ensemble Learning. Ensemble Learning con-
sists of training a set of models and then combining them in order
to obtain more reliable forecasts than those obtained with a single

model [3]. As a result, each model of the set is called a basic learner
or a weak learner. The ensemble of the weak learners improve the
results coming fron each one in a so-called strong learning model.
The Ensemble Learning is broken down into two main sub-parts
[12]:

Homogeneous weak learners. consist in using the same learning
algorithm for each weak learner of the set.However, each algo-
rithm of the homogeneous learning method takes as input different
dataset. Several techniques exist that allow to determine with ex-
tract of the dataset to give as input for each learner:

The Bagging technique [1] consists of using several samples of
the training data using the bootstrap, i.e a sample with replacement.
Each of these samples is used by only one weak learner. The results
of the models (independent of each other and executed in parallel)
are then combined using a weighted average to create a single
result. This technique is used to reduce the instability of models
against changes in the learning set and thus reduce the variance of
the estimator.

On the other hand, the boosting [9] also offers predictions by
performing the weighted average of the results of several models.
Unlike Bagging, each model of the set is executed in a sequential
way. Each model is an adaptive version of the precedent giving
more weight, during the following prediction, to the badly predicted
observations. Boosting, aims at reducing the error of prediction,
and focuses on the most difficult observations to predict by trying
to better model them over the iterations. The Boosting technique
helps to reduce bias.

Heterogeneous weak learners. In this approach, we use various
learning algorithms based on the same training data. The Stacking
technique involving heterogeneous models is as follows (repre-
sented in the Figure 1):

Figure 1: Representation of Stacking.

The stacking aims at combining several regressors by using a set
of N different learning algorithms noted Lk where k = 1, . . . ,N , on
the same set of training data S composed of subsets, Si = {Xi ,Yi }
, with the pairs of exogeneous variables X = (x1, . . . , xW ) where
W represents the number of values, and endogenous variables
Y = (xW +1, . . . , xW +h ) where h is the number of values to predict.
As we can see in the figure 1, the stacking consists of two main
levels. At level 0, a set Rk of N regressors with k = 1, . . . ,N , is
generated, where Ri = Li (S). At level 1, a learning algorithm called
meta-regressor, is responsible for taking a new set of data formed
by the results of N regressors of level 0 and then combining them.
In other words, the N regressors in the set Rk generate the forecasts
for Si :
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Figure 2: Architecture of the Multilayered Ensemble Learning model.

Rik (xi ) = ŷki (1)
All the predictions are then combined by the fj function induced

by a learning algorithm called meta-regressor. The regressor Rk , j
where j = 1, . . . ,h takes as input X to predict ŷW +h which is
obtained by the function:

ŷW +h = fj (R1, j , . . . ,RN , j ) (2)
In practice, the fj function of the meta-regressor is a model

induced by a learning algorithm. Regarding the dataset, a subset
of Si data where Si ∈ S is kept as test data for the Level 1, so the
input training data of N regressors of level 0, ∀i = 1, . . . ,n and
k = 1, . . . ,N , correspond to:

Rk ,i = Lk (S − Si ) (3)

3.1.2 Multilayered Ensemble Learning. Our model, represented by
the figure 2, is mainly inspired by the stacking technique. Indeed,
each layer of the model is composed of a set of heterogeneous weak
learners Rk , where k = 1, . . . , 3. We find in each layer a Lk set of
different supervised learning algorithms such as Multilayer Percep-
tron (MLP), Random Forest (RF) and Gradient Boosting Regressor
(GBR). These different algorithms allow the use of regressions and
the purpose is to compute predictions as indicated by the equa-
tion (1).

Definition of the input data format. For a dataset S , a sub-sample
Si is kept as a test data, so each algorithm of each layer takes
as input the complementary1 Sci representing the training data.
The data set S is organized as a matrix A = (ai , j )1≤i≤m,1≤j≤n of
size (n ×m) where the sets I and J are finite and are respectively
sets of integers {1, . . . ,m} and {1, . . . ,n}. Matrix A is composed of
exogenous variables X1≤i≤m,1≤j≤n−1 and an endogenous variable
Y1≤i≤m, j=n .

Layer 1. The three 2 supervised learning algorithms of the Layer
1 take as input the same training data Sci , and each one learns
in parallel a regression function based on the exogenous vari-
ablesX1≤i≤m,1≤j≤n−1 to correctly predict the endogenous variable
Y1≤i≤m, j=n . In order to test the prediction efficiency of the learned

1Given a reference set S , the complement of the subset Si of S (implied in relation to
S ) is the set of elements of S that do not belong to Si . It’s noted ∁Si : Sci = {x ∈ S |

x < Si }.
2The number of algorithms for each layer and the number of layers itself are relative
to our application data (see section 3.2) and can vary for a different application

regression functions, the algorithms will take as input the exoge-
nous variables of the test data Si and apply the learned regression
functions. Each of these three regressors will produce ŷi forecasts
and these will be compared to the endogenous variables of the Si
test data, thus allowing the performance of each algorithm to be
reported. As shown in the equation (1), the predictions from the
set of Rk regressors are denoted ŷki where in our case k = 1, . . . , 3
and form the matrix ŷ1i , j where j = k .

Layers 2 to 4. Unlike the layer 1, the algorithms of the following
layers are no longer trained on the Sci training data from the initial
Si dataset. For example, the algorithms of layer 2 are trained on
the matrix ŷ1i , j which represents the exogenous variables and
are given as input to each algorithm of the layer 2. However, the
endogenous variables from the test data Si of the layer 1 are kept
for the training phase of the algorithms of the layer 2 , but also for
the test phase. Thus, from the layer 2 , each algorithm of each layer
takes as input the ŷki , j forecast matrix from the previous layer.
These algorithms also retain the endogenous variable Y1≤i≤m, j=n
of the test data, used in the previous layer, for their training and
testing phases.

The output data format. Knowing that the fourth layer has a
single k = 1 algorithm and that j = k then the final ŷ4i , j forecast
from the fourth layer is a column vector. Our method was designed
to obtain the most reliable forecasts possible in the short term,
which is why it is inspired by the operation of stacking, which is
known to improve forecasts. The main interest of Multilayer set
Learning is the gradual improvement of forecast accuracy as layers
progress. Indeed, at the end of each layer, the difference between
the forecasts and the values actually observed tends to decrease. For
this, we selected 3 methods with different benefits for improving
forecasts.

3.2 Learning methods
The weak learners that we can use used in the set approach for
predictions are varied [7], we can cite, for example, Support Vec-
tors regression models, Random Forests, and Neural Networks. Our
multi-layer set method uses three different weak learners: the Mul-
tilayer Perceptron (MLP), the Random Forests (RF) and the Gradient
Boosting Regressor (GBR). These three algorithms have as main
advantage to not being sensitive to scale changes (there is no need
to normalize data and therefore the risk of loosing information)
and they do not require any particular statistical hypotheses. We
chose these three algorithms because they present good accuracy
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for predictions. We also compared them against other algorithms
such as Support Vector Regression (SVR) and Long Short-Term
Memory (LSTM) and we did not retain SVR and LSTM because of
their poor prediction performance in our context.

Multilayer Perceptron (MLP). is part of the family of neural net-
works, this algorithm is able to provide accurate predictions if its
hyperparameters are correctly adjusted according to the data. Dif-
ferent values for the hyperparameters were tested, those allowing
the neural networks to provide optimal predictions were retained:
3 layers of respectively 40,15,1 neurons, Regularization of weights
and bias (0.03), Iterations (7000), Mini-Batch (10), Linear activation
functions, Algorithm optimization (Adagrad);

Random Forest (RF). this algorithm is a special case of bagging,
indeed, it trains each model independently and then averages the
forecasts of all models. It has the advantage of reducing the vari-
ance and thus reducing the sensitivity to small fluctuations in the
learning sample. In our case, we use the default hyperparameter
(but which is also optimal) where the number of trees is 10.

Gradient Boosting Regressor (GBR). is similar to Boosting. It builds
models one by one, each new model helps to correct errors made by
previous models. This principle has the advantage of reducing the
bias and therefore the forecast error. We use the GridSearchCV3

automatic search algorithm from the Scikit-Learn library to se-
lect hyperparameters such as the pseudo-regularization of the loss
function and the maximum depth of the trees.

4 EXPERIMENTAL STUDY
4.1 Presentation of the dataset
Our dataset represent the period from March 1st 2019 until August
2019 and focuses on a small area located in France, where we have
2 weather stations distant several kilometers one from the other.
These 2 stations collect 1 to 4 per hour of really observed data
about humidity, precipitation, and temperature. We also have data
from several weather forecast providers that have forecasts for each
station ranging from 1 to 3 hours depending on the supplier. Fore-
casts include cloud cover, humidity, pressure, temperature, wind
intensity direction. The whole of this dataset presents some con-
straints, firstly, the meteorological stations can present failures, also
the dataset which they provide is more or less complete according
to the considered station. Secondly, it is also possible that some
providers do not have one or more predictor variables. Third, the
period covered by the data represents only 3 seasons of the current
year, so the volume of the dataset is relatively small. After cleaning
the dataset, the experimental framework was defined as follows. X
is a matrix composed of the following exogenous variables : cloud
cover (%), wind direction (degrees), humidity (%), pressure (hPa),
temperature (°C) and wind (m/s) Concerning the vector column Y ,
it is composed of the endogenous variable humidity(%) or temper-
ature (°C). For each of the 2 stations (Station_1 and Station_2) 3
meteorological providers are selected (Api-Agro4, Weatherbit5, and

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
4https://api-agro.eu/
5https://www.weatherbit.io/api

Dark Sky6) all having a forecast step equal to 1 hour are retained.
The X matrix is only composed of supplier predictor variables and
the Y column vector consists of observations of temperature or
humidity depending on what we are trying to predict. Regarding
the volume of the data, if we take the example of the Station_1, the
X matrix at the input of the first layer is of size (2131 × 15) and
(2131 × 1) for Y . Each line of X and Y is associated with a date as
an index with a granularity hour by hour. The input training data
selection percentage of the layers 1 to 3 of the model is 75% and
the remaining 25% represents the test data. As for the last layer, the
training data selection percentage is 80%and 20% for the test data.

4.2 Objectives and Metrics Evaluation
In this study, we focus primarily on improving the temperature
and humidity forecasts for each of the 2 stations. The purpose of
the study will be to provide more accurate forecasts than those of
public weather providers. To determine the predictive accuracy of
the providers for each station, it is sufficient to compare the value
of their forecasts with the values of the observations of the studied
station. Since our dataset has about 4 months of observations in
the past, we can use these observations to evaluate a provider’s
performance across the last 3 seasons. To calculate the difference
between forecasts and observations, we use the Root Mean Square
Error measure:

RMSE =

√
Σni=1

( ŷi − yi
n

)2
(4)

The equation (4) allows to obtain the differences between the n
forecasts ŷi and the n observations yi taht have the same unit as
the prediction and observation values. The 3 providers selected in
our experimental framework are those with the smallest quadratic
difference and therefore those with forecasts closer to the observed
values. Each of these providers uses a numerical model that simu-
lates the evolution of the atmosphere. The model divides the area
of interest into a set of grids of three dimensions, using meshes of a
few kilometers of side. It is therefore for each of these meshes that
the forecasts are established. However, it is possible that between
two points distant from a hundred meters only climatic data such
as temperature and humidity are significantly different. These local
variations are phenomena called sub-mesh, for which providers
aim, through the use of complex algorithms, to predict local phe-
nomena. The observed data for each station that we have in our
dataset makes it possible to take local phenomena into account.
Our model will learn to predict the temperature and humidity at
the exact location of each station in order to eliminate the problem
of generalizing forecasts over several kilometers and thus provide
more reliable forecasts in the short term.

6https://darksky.net/dev

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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5 RESULTS AND DISCUSSION

Table 1: RMSEComparison between the 4 layer’s algorithms
for temperature forecast on Station_1.

Layer 1 Layer 2 Layer 3 Layer 4
MLP 1.16 1.19 1.84 1.45
RF 1.13 1.08 1.45 0.29
GBR 1.11 1.13 2.07 0.42

We base our experimental study on the one from [6] about the im-
pact of an Extra Layer on the Stacking Algorithm for classification
which affirms that an extra layer improves classification task. The
table 1 present the RMSE (Root mean Square Error) obtained for
each algorithm of each layer of our prediction method. We can see
in our case that a real improvement takes place in the final layer.
In the third layer, we decide to delete GBR forecasts because they
present a too high RMSE value. In the final layer, we decide to only
conserve RF forecasts because it presents the lowest RMSE value.

Table 2: RMSE Comparison between forecasters and Multi-
layered Ensemblist Learning Model.

Api-Agro Dark Sky Weatherbit Forecast
Temperature Station_1 0.80 0.73 1.32 0.29
Temperature Station_2 1.19 1.80 2.13 0.79
Humidity Station_1 9.63 4.39 5.28 4.02
Humidity Station_2 4.98 4.74 7.12 4.12

The table 2 shows the RMSE of the forecasts (temperature and
humidity) from 28 August 12 hours up to 28 August 18 hours from
the 3 suppliers (Api-Agro, Dark Sky and Weatherbit) and predic-
tions made with our model for Station_1 and Station_2. The RMSE
values for temperatures are interpreted in degrees and in percent-
age for humidity. For better representativeness of the results, we
run 10 times all the algorithms of our method and averaged the
forecasts for each hour. The RMSE is used here to compute the
average difference between predicted values and observed values
over the 12 to 18 hours time range. For example, for the Station_1,
the temperatures predicted by our algorithm (Forecast), the 28 Au-
gust between 12 and 18 hours differ by an average of 0.50 degrees
from the actual temperatures observed. Regarding the humidity, for
Station_2, according to the table 2, the forecasts from our model
differ on average from 4, 02 of the humidity actually observed.

Table 3: Comparison between our model’s forecast and sin-
gles algorithms.

MLP RF GBR MLEL
Temperature Station_1 0.80 1.04 0.93 0.29
Temperature Station_2 1.51 0.97 1.09 0.79
Humidity Station_1 4.79 6.88 6.03 4.02
Humidity Station_2 8.43 7.53 8.51 4.12

We have also compared our method’s RMSE with RMSE obtained
with the use of single algorithms in table 3. This comparison per-
mits to validate the hypothesis that a stacking model gives better
forecasts than a single algorithm in our application case. We can see
that our model is able to produce better forecast for temperature
and humidity independently of the site.

6 CONCLUSION AND FUTUREWORK
The Multilayer Ensemble Learning method presented in this paper
is capable of providing hour-by-hour temperature and humidity
forecasts, which are more accurate than those of our best meteo-
rological providers. And on average, over a total range of 7 hours,
our method has a better forecast accuracy than the 3 providers for
both studied stations. Improved forecasting can thus help farmer’s
decision-making. Predictions from our model will be used to pre-
dict the occurrence of various crop diseases, but also to predict the
occurrence of extreme events such as freezing or heavy rains. One
possible improvement of our approach is to make it generic and
applicable to a broad range of applications. Indeed, the choice of
our model and more precisely the number of layers, algorithms and
finally their hyperparameters depend on our data. The number of
layers depends, for example, on the number of rows in our dataset,
but also on the percentage of training and test data chosen within
each layer. The objective would be to implement a method to opti-
mize forecasts by automatically selecting optimal parameters such
as training and test percentages, number of layers, algorithms and
their hyperparameters.
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