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ABSTRACT
Recent research has made great progress in realizing neural style
transfer of images, which denotes transforming an image to a de-
sired style. Many users start to use their mobile phones to record
their daily life, and then edit and share the captured images and
videos with other users. However, directly applying existing style
transfer approaches on videos, i.e., transferring the style of a video
frame by frame, requires an extremely large amount of computa-
tion resources. It is still technically unaffordable to perform style
transfer of videos on mobile phones. To address this challenge, we
propose MVStylizer, an efficient edge-assisted photorealistic video
style transfer system for mobile phones. Instead of performing styl-
ization frame by frame, only key frames in the original video are
processed by a pre-trained deep neural network (DNN) on edge
servers, while the rest of stylized intermediate frames are generated
by our designed optical-flow-based frame interpolation algorithm
on mobile phones. A meta-smoothing module is also proposed to
simultaneously upscale a stylized frame to arbitrary resolution and
remove style transfer related distortions in these upscaled frames.
In addition, for the sake of continuously enhancing the perfor-
mance of the DNN model on the edge server, we adopt a federated
learning scheme to keep retraining each DNN model on the edge
server with collected data from mobile clients and syncing with a
global DNN model on the cloud server. Such a scheme effectively
leverages the diversity of collected data from various mobile clients
and efficiently improves the system performance. Our experiments
demonstrate that MVStylizer can generate stylized videos with an
even better visual quality compared to the state-of-the-art method
while achieving 75.5× speedup for 1920×1080 videos.

CCS CONCEPTS
• Information systems→Mobile informationprocessing sys-
tems; Multimedia content creation.
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1 INTRODUCTION
In the past decade, deep neural networks (DNNs) have been widely
applied in image transformation tasks, including style transfer
[12, 23, 49], semantic segmentation [35], super resolution [9, 23],
etc. DNN-based style transfer is one of the most popular techniques
in image transformation, and has led to many successful industrial

applications with significant commercial impacts, such as Prisma
[25] and DeepArt [8]. The DNN-based style transfer aims at trans-
forming an input image into a desired output image according to a
user-specified style image. Specifically, the DNN model is trained
to search for a new image that has similar neural activations as the
input image’s and similar feature correlations as the style image’s.
Figure 1 shows one example of directly applying a pre-trained DNN
model to perform style transfer. Here the input image is one ex-
tracted frame from a video of road trip recorded in the daytime,
while the style image is a similar scene captured at dusk. After
performing stylization, the input frame is successfully transformed
to the dusky scene while keeping the content unchanged as the
input frame.

Figure 1: An example of video style transfer.

However, the naive extension of style transfer from images to
videos is very challenging: frame-by-frame transformations are
very slow [3, 18] even running on powerful GPUs. Although many
users start to use mobile phones to record their daily life, and then
edit and share images and videos on social networks or with friends,
performing style transfer of videos on mobile phones is still unaf-
fordable till very recently due to the limited computing sources on
the phones. In addition to efficiency issues, “photorealistic” style
transfer is another critical challenge. Figure 2 shows several exam-
ples of artistic style transfer and photorealistic style transfer. Even
though the contents of artistic stylized images are distorted, these
distortions can be tolerated and hard to be detected by human eyes
due to the artistic attribute. However, compared with artistic style
transfer, the target of photorealistic style transfer is to achieve pho-
torealism, which requires loyally preserving the content structure
in the stylized image. Humans are able to evaluate the visual quality
of the photorealistic stylized images. It is necessary to explore the
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Figure 2: Examples of artistic style transfer [19] and photorealistic style transfer [36].

approach that can achieve efficiently photorealistic style transfer of
videos on mobile phones while keeping high visual quality of the
stylized videos. Some works have been done for style transfer of im-
ages and videos, most of which focus on improving either the visual
quality of stylization [2, 26, 27, 43] or efficiency of style transfer
[4, 10, 18, 29, 49]. However, performing photorealistic style transfer
of videos on mobile phones under the constraints of computing
resources has not been fully investigated.

In this paper, we propose MVStylizer – an efficient edge-assisted
video style transfer system for mobile phones. Instead of perform-
ing transformation frame by frame, MVStylizer processes only
extracted key frames using pre-trained DNN models on the edge
server while the rest of intermediate frames are generated on-the-fly
using our proposed optical-flow-based frame interpolation algo-
rithm on mobile phones. The interpolation is done by exploiting
the optical flow information between the intermediate frames and
key frames. The reason why we choose edge servers but not cloud
servers is that edge servers are closer to users and hence, are able to
provide real-time response to mobile phones. Edge-cloud federated
learning is adopted in our architecture to continuously improve the
performance of the DNN models on edge server: Each DNN model
on the edge server keeps re-training while performing stylization
with collected data from mobile clients, and each edge server will
sync the model with cloud server where a global DNN model is
maintained when it is idle. Meanwhile, the global DNN is also a
backup of the edge DNN, from which an edge server can be quickly

restored if it suddenly crashes. We also conduct experiments to
quantitatively and qualitatively evaluate our proposed system. The
experimental results demonstrate that MVStylizer can successfully
stylize videos with even better visual quality compared to the state-
of-the-art method while achieving significant speedup with high
resolutions.

The main contributions of this paper are summarized as follows:

• To the best of our knowledge, MVStylizer is the first mobile
system for performing photorealistic style transfer of videos.

• An optical-flow-based frame interpolation algorithm is pro-
posed to accelerate style transfer of videos on mobile phones.

• A meta-smoothing module is designed to efficiently tackle
two problems in an end-to-end learning manner: dynami-
cally upscaling a stylized image to multiple/arbitrary resolu-
tion and removing style transfer related distortions in these
upscaled versions.

• An edge-cloud federated learning scheme is applied to con-
tinuously improve the performance of DNN-based stylizer
on edge servers.

• We implement a prototype system and conduct experiments
to quantitatively evaluate MVStylizer, which demonstrates
that it can perform video style transfer of videos on mobile
phones in an effective and efficient way.

The rest of this paper is organized as follows. Section 2 provides
background information and section 3 presents the system overview
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and details of core modules. Section 4 shows the evaluation results.
Section 5 reviews the related work. Section 6 concludes this paper.

2 BACKGROUND
2.1 Photorealistic style transfer
As Figure 1 shows, the photorealistic style transfer extracts human-
perceptual “style” features from a style image and applies these style
features to “decorate” the content image without changing objects’
semantic structures in the original photo. Similar to artistic style
transfer [22], photorealistic style transfer requires high style faith-
fulness for the stylized image. Unlike artistic style transfer, however,
generating a stylized image with high photorealism is essential in
photorealistic style transfer, which remains as a key challenge.
Based on previous artistic style transfer methods [23, 31], theoret-
ical analysis on feature correlation [32] or photorealism loss [36]
are often adopted to quantitatively approximate or simulate human
evaluation on photorealism.

2.2 Device to edge offloading
Offloading computational intensive tasks to edge servers is feasible
and promising way to address the challenge of limited computation
resources on edge devices (e.g., smartphones) [51]. Such strategy
has been widely applied to many applications. Ran et al. [42] design
a framework to dynamically determine the offloading strategy for
the object detection task based on the network conditions. Yi et al.
[52] propose a system named Lavea, which offloads the computation
from the clients to nearby edge servers to provide video analytics
service with low latency. Jeong et al. [21] propose an approach to
offload DNN computations to nearby edge servers in the context
of web apps. Chen et al. [7] conduct an empirical study to evaluate
the performance of several edge computing applications in terms
of latency.

In this work, we also adopt the similar strategy to offload key
frames to the edge servers, where those key frames are processed
by the pre-trained DNN models. We leave the lightweight optical-
flow-based interpolation for intermediate frames on mobile phones.

3 OUR PROPOSED MVSTYLIZER SYSTEM
3.1 The System Overview
In this work, we propose MVStylizer for efficiently performing
photorealistic style transfer for videos on mobile phones. Due to
the constrained computation resources on mobiles, edge servers are
leveraged to speed up the style transfer. Moreover, specific technical
approaches are proposed to address two critical challenges in this
system.

First, performing frame-by-frame stylization is still technically
unaffordable, even with the assistance of edge servers. We propose
an optical-flow-based frame interpolation algorithm and a meta-
smoothing module to speed up the stylization process. Specifically,
only extracted key frames will be processed by a pre-trained DNN
on the edge server, while the rest of intermediate frames will be
generated on-the-fly using our proposed optical-flow-based frame
interpolation algorithm on mobile phones. The interpolation is
done based on the stylized key frames and pre-computed optical
flow information between key frames and intermediate frames. In

Figure 3: The system design of MVStylizer.

addition, the meta-smoothing module is integrated in the edge DNN
for handling upscaling and distortion issues of the stlyized frame
in a single operation, accelerating the style transfer of key frames
on the server.

Second, the edge DNN may be trained with limited data so that
the optimal performance is not achieved. Therefore, we propose
an edge-cloud federated learning scheme to continuously improve
the performance of the edge DNN. While the edge server offers
stylization service, the edge DNN keeps retraining based on the
collected data from mobile clients. The updated edge DNN will be
synced with a cloud DNN when the edge server is idle. Note that
the cloud DNN has the same DNN architecture as edge DNNs, and
the cloud DNN is also maintained as a backup of the edge DNN in
case some edge server crashes. The cloud server is updated with
averaging the aggregated parameters from each server, and the
updated parameters of the cloud DNN will be synced with each
edge DNN.

As illustrated in Figure 3, MVStylizer consists of three major
modules: optical-flow-based frame interpolation, edge DNN and cloud
DNN. The work flow is as follows: When a user performs the style
transfer of a video on the mobile phone, the extracted key frames
of this video will be sent to the edge server associated with a user-
specified style image. The key frames can be identified using either
standard H.264 video codec or the content-based method [40]. After-
wards, a pre-trained DNN will perform transformation on received
key frames according to the style image on the edge server. While
performing stylization, the edge DNN will continuously keep re-
training based on the specific evaluation metric. The updated edge
DNN will be synced with a cloud DNN when the edge server is idle.
The post-processed stylized key frames will then be returned to the
mobile client. Finally, the stylized intermediate frames will be in-
terpolated by the proposed optical-flow-based frame interpolation
algorithm.

Next, we will illustrate more details about each module.
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3.2 Optical-flow-based Frame Interpolation
Transferring the style of a video on a mobile phone is always chal-
lenging due to its limited available computing resource. In this work,
we attempt to process only a few key frames on the edge DNN,
while a lot of more stylized intermediate frames will be interpo-
lated based on the optical flow information. An optical-flow-based
frame interpolation algorithm is designed for interpolating stylized
intermediate frames based on the optical flow information between
intermediate frames and key frames in the original video.

Given a video consists of n frames, among which there are j
key frames (k0, . . . ,kj−1) andm intermediate frames (i0, . . . , im−1)
where j +m = n. The optical flow information can be computed as
fsp = F (is ,kp ) for any intermediate frame is between the key frame
kp and kp+1, where F is an optical flow estimator [38]. The fsp is a
two dimensional flow field, representing the displacement of each
pixel from kp to is . For example, given the location of a pixel p in kp
as kp (x ,y), and assume the location of p in is is kp (x +∆x ,y +∆y),
that is, is (x ,y) = kp (x + ∆x ,y + ∆y). The optical flow of p from kp
to is is (∆x ,∆y). Again, only key frames will be sent to the edge
server for performing style transfer using the edge DNN, and the
stylized key frames (k̂0, . . . , k̂j−1) will be returned to the mobile
phone. Based on the stylized key frames (k̂0, . . . , k̂j−1) and optical
flow information (f0, . . . , fm−1), we are able to generate stylized
intermediate frames (î0, . . . , îm−1) by spatial warping. We adopt
the bilinear interpolation for generating the stylized intermediate
frames, such as:

îp = I (fpq , k̂q ), (1)
where I is a bilinear interpolation kernel. The detailed workflow
of the optical-flow-based interpolation algorithm is described in
Algorithm 1.

Algorithm 1 Optical-flow-based frame interpolation
Input:

Stylized key frames (k̂0, . . . , k̂j−1);
Optical flow information between key frames and intermediate
frames (f0, . . . , fm−1);
Index of each frame in original video

Output:
Stylized intermediate frames (î0, . . . , îm−1);

1: p = 0, q = 0
2: for p = 0 : m:
3: if Index (k̂q ) < Index (fp ) < Index (k̂q+1)
4: îp = I (fp , k̂q );
5: else
6: q = q + 1
7: end if
8: end for

3.3 Edge DNN
In MVStylizer, the edge DNN is a stylizer. As depicted in Figure 4, it
consists of four modules: a pretrained VGG [48] encoder for feature
extraction, a colorization module for integrating style features into
content features, a decoderwithmirrored VGG layers for generating
stylized image, and our proposed meta-smoothing module.

The meta-smoothing module is designed to tackle two major
issues in an end-to-end learning manner: dynamically upscaling the
decoder’s output to multiple/arbitrary resolution and removing the
style transfer related distortions in these upscaled versions. First,
popular encoder-decoder for style transfer [20, 31] often adopt
fixed architectures (VGG, ResNet [15], MobileNet [16], etc.). Even
when replacing the encoder-decoder with a more flexible DNN
transformer [46] to support manually designed architecture, the
generated image still needs to be upscaled to the target resolution,
and the upscaling efficiency is an issue. Second, the stylized image
generated by the decoder has distortions incurred by the style
transfer. Those distortions become even worsened in the upscaling
process as observed in previous super resolution studies [17, 47].
In other words, adopting only super resolution methods cannot
synthesize a satisfactory stylized image with high resolution.

Figure 4: The design of DNN-based stylizer with meta-
smoothing.

In our method, as shown in Figure 4, a content image Ic and
a style image Is are rescaled to the same size and fed into our
stylizer’s pretrained VGG encoder. The encoder will extract the
content features Fc (blue) and style features Fs (red). After that,
the colorization module will “colorize” Fc with Fs . The feature
maps Fc and Fs have the same dimension, since the input Ic and
Is have been rescaled to the same size. The dimensions of Fc and
Fs are denoted as H ×W × C where H ×W is the feature map’s
height and width and C is the channel number. The colorization is
processed along channel dimensions of Fc and Fs . Specifically, the
feature maps Fc is denoted as {x ic |i = 1, 2, ...,H ×W } where the
vector length |x i | = C . Similarly, the feature maps Fs is denoted
as {y js |j = 1, 2, ...,H ×W } where the vector length |y j | = C . The
colorization module outputs the colorized content features Fcs ,
which is denoted as {zkcs |z = 1, 2, ...,H ×W } and the vector length
|zk | = C . The colorization is defined as:

zkcs =
H×W∑
m=1

(yms − xkc ). (2)

Finally, Fcs is fed into the decoder, which generates a stylized image
denoted as Ics . The meta-smoothing module upscales and smoothes
Ics such as

I rcs = P(ICS ,W r
u ) ∗Ws , (3)

where P(·) is a deconvolution operator, r (r > 0) is an upscaling
factor that is specified by an application user,W r

u is our improved
convolution kernel which is used in the deconvolution operator
P(·),Ws is convolution kernelWs for smoothing distortions in-
curred by the style transfer, and Ns is number of feature maps



MVStylizer: An Efficient Edge-Assisted Video Photorealistic Style Transfer System for Mobile Phones

output by convolution withWs . The convolution kernelW r
u for

deconvolution is defined in Equation 4:

W r
u =

{
W 1

u r = 1
Q(r ) ∗W 1

u r , 1
(4)

where the function Q(·) is to construct a matrix filled with r . If
the upscaling factor r = 1, the deconvolution operator P(·) only
executes convolution without upscaling. Therefore,W 1

u is denoted
as a meta convolution kernel of our meta-smoothing module. If the
upscaling factor r , 1,W r

u is calculated using the meta convolution
kernelW 1

u and the upscaling factor r . ForW r
u andW s , each filter’s

dimensions are respectively denoted as Hu ×Wu and Hs ×Ws .
The objective function is defined as Equation 5:

L = D(Rr (Ic ), I rcs )︸            ︷︷            ︸
content loss

+λ · D(Rr (Is ), I rcs )︸            ︷︷            ︸
style loss

, (5)

where the function D(·) is to measure the perceptual distance [23],
the function Rr (·) is to rescale input data with respect to the up-
scaling factor r , and λ is a scale factor. Rr (Ic ), Rr (Is ), and I rcs have
the same size. In Equation (5), the first part evaluates the content
loss defined as the perceptual distance between the input content
image and the stylized image, and the second part evaluates the
style loss, which is the perceptual distance between the input style
image and the stylized image.

3.4 Cloud DNN
The cloud DNN has an identical architecture as the edge DNN. It
is designed for aggregating the updated parameters of edge DNNs
in the edge-cloud federated learning process. Algorithm 2 presents
the details of the edge-cloud federated learning procedure. Suppose
that there exist N participated edge servers, the parameters of each
corresponding edge DNN are denoted as (θ1, · · · ,θN ). θ̄ represents
the parameters of the cloud DNN. When a mobile client sends a
style transfer request to an edge server associated with the video
data, the edge DNN will perform the style transfer on received data
while retraining the model based on those data. Then, the updated
parameters θi will be uploaded to the cloud server when the edge
server is idle. The parameters of the cloud DNN can be updated
by averaging the parameters of each edge DNN as θ̄ t =

∑N
i=1 θ

t
i .

Finally, the updated θ̄ will be distributed to each edge server, where
the edge DNN can be updated with the latest θ̄ . The entire process
will be continuously repeated for improving the performance of the
edge DNN in an efficient way. The effectiveness of the edge-cloud
federated learning is evaluated in Section 4.8.

Not only works for the federated learning, the cloud DNN is
also maintained as a backup of the edge DNN, from which an edge
server can be quickly restored after it suddenly crashes.

4 EVALUATIONS
4.1 Experiment Setup
We implement a prototype system ofMVStylizer which is composed
of Google Pixel 2 and servers running on Ubuntu 16.04. The mobile
device is equipped with Qualcomm Snapdragon-835@2.35GHz. In
this experiment, both the edge server and cloud server are equipped
with an Intel Xeon E5-2630@2.6GHz, 128G RAM and a NVIDIA

Algorithm 2 Edge-Cloud Federated Learning
Input:

N collected video data D1,D2,D3, . . . ,DN on each edge
server;

Output:
federated learned neural network parameters θ̄ ;

1: Deploy the pre-trained DNN model on the cloud server;
2: Distribute the cloud DNN to each server as edge DNN for

initialization;
3: Initialize time stamp t = 0;
4: Client executes:
5: for i = 1 : N :
6: Participated edge server receives latest model parame-

ters θ̄ t from the cloud server;
7: Update corresponding edge DNN θ t+1

i = θ̄ t ;
8: t = t + 1;
9: Retrain the edge DNN based on Di and send the up-

dated parameters θ ti ;
10: Server executes:
11: Compute average parameters θ̄ t =

∑N
i=1 θ

t
i ;

12: Send aggregated parameters θ̄ t to each participated edge
server;

13: Continuously repeat from steps 4 to 12 for improving the per-
formance of edge DNN;

TITAN X Pascal GPU. But the cloud server should be more powerful
than the edge server in the real life. The mobile device communi-
cates with the server through IEEE 802.11 wireless network. The
system is implemented with PyTorch and OpenCV.

4.2 Model Training
To train our proposed stylizer shown in Figure 4, the pretrained
VGG encoder is frozen, while the other three modules are learned
together. The stylizer is optimized usingAdam [24]with parameters:
β1 = 0.5, β2 = 0.999, and an initial learning rate of 0.0001. Batch
size is set to 2. The scale factors λ in Equation 5 is set to 1.0, i.e.,
we do not tune λ. For the meta-smoothing module, each filter of
W r

u andWs is set to have the same dimension. Specifically, we set
Hu = Hs =Wu =Ws = 5.

4.3 Dataset
In this work, we adopt two datasets for training and testing the
proposed DNN-based stylizer, respectively. We train the stylization
model on MS-COCO [34], which contains 328k images covering
91 different object types. Both content images and style images
are sampled from MS-COCO for training. We also download 100
videos of different scenes from Videvo.net [1] for evaluation, which
contains about 41,500 frames. One style image is assigned to each
video for performing style transformation.

4.4 Stylization Speed
The efficiency issue is one major concern about photorealistic style
transfer. Therefore, we evaluate the efficiency of our proposed style
transfer method by comparing with the methods proposed by Luan
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et al. [37] and Li et al. [33]. Table 1 shows the average time to per-
form style transfer on one frame with different resolutions. The
numbers reported in Table 1 are obtained by averaging the styl-
ization time of 1000 frames which are randomly sampled from the
testing data. Overall, our proposed method outperforms the meth-
ods proposed by Luan et al. and Li et al. with any resolution setting,
and we can obtain greater speedup with increasing resolution. For
example, the time of processing a 512 × 256 frame by our method
is 356.7 times and 5.6 times faster than the approaches of Luan et
al. and Li et al., respectively. Besides, for performing style transfer
on a 1920 × 1080 frame, the two compared methods need over 1000
seconds and 38.72 seconds separately, but our method only costs
1.51 seconds, which is greatly faster. In summary, benefiting from
our proposed meta-smoothing module of the stylizer, our proposed
model can perform stylization in a much more efficient way than
existing work.

Table 1: Average run time (in seconds) comparison between
existing photorealistic style transfer methods and ours (on
an NVIDIA TITAN X Pascal).

Method 512x256 768x384 1024x512 1920x1080

Luan et al. [37] 186.52 380.82 650.45 >1000.00
Li et al. [33] 2.95 7.05 13.16 38.72

Ours 0.52 0.73 0.99 1.51

4.5 Speedup by Optical-flow-based Frame
Interpolation

As described in Section 3, we design an optical-flow-based inter-
polation algorithm to interpolate stylized intermediate frames for
improving efficiency. Therefore, we evaluate the speedup by com-
paring the run time of performing stylization by our pre-trained
DNN model on an edge server with that of interpolating stylized in-
termediate frames on the mobile phone. Table 2 shows average run
time of processing 1000 key frames and 1000 intermediate frames by
those two methods separately. It demonstrates that the optical-flow-
based interpolation method significantly outperforms performing
DNN-based stylization in terms of efficiency, even though the run
time of both methods will be increased with higher resolution frame.
In particular, performing DNN-based stylization on a 512 × 256
frame needs 0.52 seconds, but it only takes 0.00006 seconds for
interpolating a stylized intermediate frame with the same resolu-
tion, which achieves about 866.7 times speedup. More important,
since mobile phones usually record a video in high quality today,
we also make the evaluation for high-resolution videos. Specifi-
cally, for processing a 1920 × 1080 frame, the optical-flow-based
interpolation method only costs 0.02 seconds but the DNN-based
stylization requires 1.51 seconds, indicating 75.5 times speedup. It
can be imagined how slow it will be to perform the DNN-based
stylization frame by frame. For instance, given a 10-minute video
with resolution of 1920 × 1080 and frame rate at 30 fps, it will cost
7.55 hours to perform DNN-based stylization frame by frame even
on the edge server.

In addition to evaluate the speedup for a single frame, we also
quantitatively evaluate the speedup for performing stylization on

Table 2: Average run time (in seconds) comparison between
DNN-based stylization and optical-flow-based interpolation

Resolution
Stylization
per frame

(edge server)

Interpolation
per frame
(mobile)

Speedup

512x256 0.52 0.0006 866.7
768x384 0.73 0.002 365
1024x512 0.99 0.006 165
1920x1080 1.51 0.02 75.5

videos. Benefiting from the optical-flow-based interpolation, we
can define the speedup as Equation 6:

speedup =
#all frames × td

#key frames × td + #intermediate frames × ti

≈ #all frames × td
#key frames × td

=
#all frames
#key frames

∝ key frame interval

(6)

where td represents the time of performing stylization on a frame
by the DNN-based stylizer, and ti expresses the time of stylizing a
frame with optical-flow-based interpolation algorithm, which are
shown in Table 2. Since td ≫ ti , speedup is approximately propor-
tional to the key frame interval as shown Equation 6. The key frame
interval is defined as how often a key frame appears in a particular
video as Equation 2. In this experiment, we consider a video clip
with 300 frames with different resolutions as an example, and the
speedup with various key frame interval are displayed in Figure
5. Generally, the higher key frame interval, the greater speedup
due to less key frames in the video. Regarding with different resolu-
tions, given the same key frame interval, since the higher resolution
cost more time to perform style transfer for both key frames and
intermediate frames, the speedup has a slight decrease but is still
directly proportional to corresponding key frame interval.

512x256 

768x384 

1024x512 

1920x1080 

S
p

e
e

d
u

p
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10
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20

25

30

Key Frame Interval
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Figure 5: The speedup with different key frame intervals

4.6 Quantitative Evaluation of Stylization
Results

In addition to the efficiency evaluation, we also experimentally
evaluate the visual result of style transfer, including measuring the
quality of stylization by the DNN-based stylizer and comparing the
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similarity between frames that are stylized by DNN-based stylizer
with those interpolated by the optical-flow-based interpolation
algorithm.

Firstly, we randomly sample 1000 frames with the resolution
512 × 256 from the testing data, and we compare the visual quality
of stylized results based on those 1000 frames which are trans-
formed by our DNN-based stylizer with those processed by the
state-of-the-art photorealistic style transfer method [33]. In this
experiment, we adopt two widely applied quantitative evaluation
metrics Inception score [45] and Fréchet Inception Distance (FID) [45]
for our evaluation, which are designed to measure two aspects of
synthesized image quality: photorealism and diversity. Note that
the bigger Inception score indicates higher visual quality while the
smaller FID representing better image quality. The averaged result
are reported in Table 3, demonstrating our method can generate
visually better stylized results than the state-of-the-art.

Table 3: Visual quality comparison of stylized frames be-
tween the state-of-the-art [33] and ours

Method Inception score FID

Li et al. [33] 129.54 168.71
Ours 135.20 164.23

Besides, we also evaluate the visual quality of interpolated styl-
ized intermediate frames. Ideally, we expect the visual quality of
interpolated frames can be as close as frames which are directly pro-
cessed by the DNN-based stylizer. Figure 6 shows several examples
of stylized key frames by DNN-based stylizer and interpolated inter-
mediate frames. In this example, we choose the intermediate frame
that is next to the corresponding key frame for demonstration. As
Figure 6 illustrates, both the stylized key frames and interpolated
intermediate frames are successfully rendered into the target style
while maintaining original content structure, but it is difficult to per-
ceptually tell the difference between them in terms of visual quality.
Furthermore, we also quantitatively evaluate image similarity be-
tween the stylized key frames and interpolated intermediate frames
by attempting to predict human perceptual similarity judgments.
In this experiment, we adopt the widely applied metric multi-scale
structural similarity (MS-SSIM) [39, 50] for measuring the frame sim-
ilarity. MS-SSIM is a multi-scale perceptual similarity metric that
attempts to pay less attention to aspects of an image that are not
important for human perception. MS-SSIM values range between 0
and 1. The higher MS-SSIM values, the more perceptually similar
between compared images. Specifically, we randomly choose 1000
frames from the testing data, and a pair of stylized frames for each
of those 1000 frames are generated by the DNN-based stylizer and
optical-flow-based interpolation algorithm, respectively. In addi-
tion, we evaluate the MS-SSIM for those 1000 pairs with different
resolutions settings which are the same as used in above exper-
iments. Table 4 shows the averaged results for those 1000 pairs,
MS-SSIM is greater than 0.98 for all resolution settings, indicating
that the stylized frames generated by the optical-flow-based inter-
polation algorithm have the perceptually comparable visual quality
with frames that are directly processed by the DNN-based stylizer.

In summary, above experiments demonstrate MVStylizer can
efficiently perform style transfer of videos while achieving even
better visual quality compared to the state-of-the-art method.

Table 4:MS-SSIMof stylized frames processed byDNN-based
stylization and optical-flow-based interpolation

Resolution MS-SSIM

512x256 0.9845
768x384 0.9841
1024x512 0.9847
1920x1080 0.9849

4.7 Latency Comparison
We quantitatively compare the latency of sending a key frame to
an edge server with that of sending a key frame to a conventional
cloud server. In this experiment, we test 1000 frames that are sent by
a user from Boston. The edge server is located in New York, but the
other two conventional cloud servers are located in Los Angles and
Hong Kong, respectively. The average results are shown in Table 5.
Generally, the latency of send a key frame the edge server is about
10 times and 30 times lower than that of sending the key frame to
the cloud server in Los Angles and in Hong Kong, respectively. For
example, it takes 0.031 seconds to upload a 1920×1080 key frame
to the edge server from the mobile user, but requires 0.318 seconds
and 0.925 seconds to send the key frame to the cloud server in Los
Angles and Hong Kong, respectively. The above results demonstrate
that the edge server is able to provide the style transfer service to
the mobile user with a significantly lower latency compared to the
conventional cloud server.

Table 5: Average latency (in seconds) comparison between
sending one frame to the edge server and to the cloud server.

Resolution
Edge Server
(New York)

Cloud Server
(Los Angles)

Cloud Server
(Hong Kong)

512x256 0.003 0.028 0.088
768x384 0.006 0.058 0.176
1024x512 0.011 0.105 0.312
1920x1080 0.031 0.318 0.925

4.8 Performance Improvement by Edge-Cloud
Federated Learning

As described in Section 3, we apply an edge-cloud federated learning
scheme to continuously improve the DNN-based stylizer on each
edge server. In this experiment, we quantitatively evaluate how
edge-cloud federated learning scheme can improve the performance
of DNN-based stylizer on each edge server through simulations. To
make simulations, we enforce each participated edge server to sync
the edge DNN with the cloud DNN after training on 4000 images
that are randomly sampled from the training data, and the cloud
DNN will make an update once receive all the synchronized param-
eters from all participated edge server. Then, the latest cloud DNN
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(a) input key frame (b) style image (c) stylized key frame (d) interpolated intermediate frame

Figure 6: Examples of stylized key frames and interpolated intermediate frames

will be distributed to each edge server as the new edge DNN. In
addition, we also change the number of participated edge servers to
explore how it will affect the performance improvement. We evalu-
ate the performance of the model based on the loss function defined
as Equation 5, including the content loss and style loss. Figure 7
shows the federated learning curves during the continuously train-
ing with different number of participated edge servers. In general,
the more participated edge servers, the faster and greater the per-
formance can be improved. For example, if there are 4 participated
edge servers, the total loss can be reduced to 0.0748 after 12000
images are trained on each edge server. However, it requires to
train 40000 images when there is only one participated edge server
for achieving the same performance, and 32000 images on each of
the two participated edge servers. The results show the edge-cloud
federated learning can more efficiently improve the performance
with an increasing number of participated edge servers.

5 RELATEDWORK
Neural Style Transfer. Current neural style transfer techniques
fit one of two mainstreams [22], image-optimization-based online
neural methods and model-optimization-based offline neural meth-
ods. Generally, the first category transfers the style by optimizing
an image in an iterative way, while the second category aims to
optimize a generative model offline which can generate the stylized
image with a single forward pass. Gatys et al. [12, 13] proposed a

seminal work demonstrating the power in style transfer by sepa-
rating and recombining image content and style. It is inspired by
observing that a CNN can separately extract content information
from an original image and style information from a style image.
Based on such observations, a CNN model can be trained to re-
combine the extracted content and style information to generate
the target stylized image. However, this method only compares the
content and stylized image in the feature space, which inevitably
lose some low-level information contained in the image that can
lead to distortion and abnormal artistic effects of stylized outputs.
To preserve the structure coherence, Li et al. [28] introduced an
additional Laplacian loss to constrain low-level features in pixel
space. Although image-optimization-based can achieve impressive
stylized results, they have a common limitation in efficiency. To
address the efficiency issue, various model-optimization-based of-
fline neural methods have been proposed. Johnson et al. [23] and
Ulyanov et al. [49] proposed the first two model-optimization-based
algorithms for style transfer, which generate stylized result with a
single forward pass through a pre-trained style-specific CNN. Even
though those algorithms can achieve real-time style transfer, they
require separate generative networks to be trained for each specific
style, which is quite inflexible. Therefore, multiple-style-per-model
neural methods are proposed to improve the flexibility by integrat-
ing multiple styles into one single model by tuning a small number
of parameters for each style [5, 11] or combining both style and
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Figure 7: Edge-cloud federated learning curves of total loss, content loss and style loss (# participated edge server =1,2,4 )

content as inputs to the generative model [30, 53]. Furthermore, sev-
eral works have been done for designing one single mode transfer
arbitrary artistic styles by exploiting texture modeling techniques
[6, 14].

Video Style Transfer. Compared with above image style trans-
fer techniques, video style transfer algorithms need to consider the
smooth transition between consecutive frames. Ruder et al. [43, 44]
introduced a temporal consistency loss based on optical flow for
video style transfer. Huang et al. [18] designed an augmented tem-
poral consistency loss by computing the outputs of style transfer
network for two consecutive frames. A flow subnetwork was pro-
posed by Chen et al. [3] to produce feature flow, which can be used
to wraps feature activations from a pre-trained stylization encoder.

Photorealistic Style Transfer. Most existing works focus on
artistic style transfer which can tolerate some distortion, but pho-
torealistic style transfer requires more strict structure preservation
of the content image. Luan et al. [36] firstly proposed a two-stage
optimization for photorealistic style transfer, which firstly renders a
given photo with non-photorealistic style and then penalizes image
distortions by adding a photorealistic regularization. However, this
algorithm is very computational expensive. Mechrez et al. [41] also
adopts above two-stage optimization scheme, but they refine the
photorealistic rendering effect by matching the gradients in the styl-
ized image to those in the content image. To improve the efficiency
issue, Li et al. [33] designed a two-step photorealistic style transfer
algorithm, including the stylization step and smoothing step. The
stylization step aims to generate stylized output based on existing
neural style transfer algorithms but replaces upsampling layers
with unpooling layer for less distortion, and then the smoothing
step is applied to remove structural artifacts.

Even though there exist some works on video style transfer and
photorealistic style transfer, none of them is specifically designed
for performing photorealistic style transfer of videos on resource-
constrained devices, such as mobile phones.

6 CONCLUSION
In this paper, we designedMVStylizer to efficiently perform photore-
alistic style transfer of videos on mobile phones with the assistance
of an edge server. Considering the stylization is very computational
expensive, we proposed an optical-flow-based interpolation algo-
rithm, so that only key frames in the video need to be uploaded

to the edge server where they can be processed by the pre-trained
DNN-based stylizer and the rest of stylized intermediate frames can
be interpolated based on the pre-computed optical flow information
from the original video and stylized key frames. A meta-smoothing
module is also designed in the DNN-based stylizer for improving
the efficiency of performing style transfer on the edge server. In
addition, we adopt an edge-cloud federated learning scheme to
continuously enhancing the performance of DNN-based stylizer.
Experiments demonstrate 75.5 times speedup compared with per-
forming style transfer frame by frame using the DNN-based stylizer
even with the high resolution, while generating the stylized videos
with even better visual quality compared to the state-of-the-art
method. Furthermore, it also demonstrates the edge-cloud feder-
ated learning scheme can facilitate in continuously improving the
performance of the DNN-based stylizer in an efficiency way.
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