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ABSTRACT
Mobile users in future wireless networks face limited wireless re-
sources such as data plan, computation capacity and energy stor-
age. Given that some of these users may not be utilizing fully their
wireless resources, device-to-device (D2D) resource sharing is a
promising approach to exploit users’ diversity in resource use and
for pooling their resources locally. In this paper, we propose a novel
two-sided D2D trading market model that enables a large number
of locally connected users to trade resources. Traditional resource
allocation solutions are mostly centralized without considering
users’ local D2D connectivity constraints, becoming unscalable for
large-scale trading. In addition, there may be market failure since
sel�sh users will not truthfully report their actual valuations and
quantities for buying or selling resources. To address these two key
challenges, we �rst investigate the distributed resource allocation
problem with D2D assignment constraints. Based on the greedy
idea of maximum weighted matching, we propose a fast algorithm
to achieve near-optimal average allocative e�ciency. Then, we com-
bine it with a new pricing mechanism that adjusts the �nal trading
prices for buying and selling resources in a way that buyers and
sellers are incentivized to truthfully report their valuations and
available resource quantities. Unlike traditional double auctions
with a central controller, this pricing mechanism is fully distributed
in the sense that the �nal trading prices between each matched
pair of users only depend on their own declarations and hence can
be calculated locally. Finally, we analyze the repeated execution
of the proposed D2D trading mechanism in multiple rounds and
determine the best trading frequency.

KEYWORDS
Distributed systems, double auctions, resource allocation, truthful
mechanism design

1 INTRODUCTION
1.1 Background and Motivation
The recent growth of mobile devices and applications has been
unprecedented as smartphones become extremely popular in our
daily life. Future wireless networks are challenged by the di�erent
quality of service requirements from a wide variety of new emerg-
ing mobile applications, such as video streaming, face recognition,
natural language processing, etc. These applications demand not
only ubiquitous high-speed wireless access and fast response time,
but also intensive computation and energy consumption. However,
mobile users only have limited wireless resources such as date
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plans, energy storage and computation capacity to serve these ap-
plications. Given that a number of these users may not be utilizing
fully their wireless resource, device-to-device (D2D) resource trad-
ing1 among neighboring mobile users is envisioned as a promising
approach that improves network utilization and reduces conges-
tion and latency by exploiting the diversity over time in resource
use of the mobile users. Moreover, with the technological advance-
ments in smartphones, today D2D resource trading can be easily
implemented. For examples, an iPhone or Android phone can eas-
ily open up personal hotspot and share data connects to another
device in the vicinity [17]; and many Huawei and Samsung phones
can wireless charge others. Other than sharing data plan, power
and edge computing capacity in wireless networks, a user can also
cache popular �les and transfer to her neighbors via local links
after installing some customized apps in smartphone [5].

Some recent works have been carried out on D2D resource shar-
ing aiming at improving e�ciency in using scarce resources such
as data plan, power, computation capacity and cache memory in
wireless networks. In [17, 19], the secondary markets for demand-
heterogeneous users to trade their monthly data plans via personal
hotspots (PHs) or other centralized platforms are proposed and
analyzed. [4] allows users to perform D2D power cooperation by
transmitting their spare power to other nearby users. A novel D2D
mobile task o�oading framework is developed in [15] to enable
users to share the computation resources among each other. [5]
investigates the cooperative local caching under heterogeneous
�le preferences, and [16] studies the incentives for nearby mobile
users to cooperatively downloading video segments. In [10, 11], the
sharing platforms are designed to collect the social information
from users when traveling and bene�t all users that participate.

However, most of the existing research on D2D resource sharing
focuses on centralized resource allocation and does not address sce-
narios involving a large number of mobile users. Communication
and computation overheads make it di�cult to determine resource
allocations and participant compensations on a global scale. A chal-
lenge remains on how to design scalable and e�cient allocation
algorithms based on users’ local information only. Furthermore,
users being sel�sh and non-cooperative in nature, are unwilling to
truthfully report their private information to the allocation algo-
rithm. This challenges us even further to design the appropriate
incentive structure that complements the distributed allocation
algorithms and makes users interact truthfully with the system [1].

1In our case D2D refers to interactions between wireless devices that are connected
in a one-hop way via a local wireless link. We use the term ‘trading’ instead of just
‘sharing’ to emphasize the monetary incentives underlying such resource sharing.



Figure 1: Our double auction mechanism. It includes a dis-
tributed allocation algorithm that balances e�ciency with
complexity and a distributed pricing mechanism for ensur-
ing incentive compatibility and participation.

1.2 Our Solution and Contributions
In this work, we design a novel two-sided market model for large-
scale D2D trading, where mobile users trade resources with each
other in proximity via local wireless links (e.g., short-range commu-
nications). We study a challenging scenario that during each trading
round, there exist a large number of users who want to trade with
each other as consumers or suppliers of resources. Their geographic
locations determine who to trade with whom potentially locally
and the D2D assignment constraints. To achieve e�cient resource
trading, we propose a double auction mechanism to optimally al-
locate resources using private information from both buyers and
sellers (i.e., the unit value and demanded quantity as a buyer, or the
unit cost and supplied quantity as a seller). Double auction is widely
used for two-sided market model with multiple buyers and multiple
sellers [12, 18]. Though some recent works study how to implement
double auction in a decentralized system (e.g., [7, 8]), they still need
a central controller to gather all users’ information and are not
suitable for a large-scale D2D trading scenario. Di�erently, our
proposed distributed double auction mechanism nicely has all the
following properties: (i) fully distributed operation without a cen-
tral controller, (ii) high e�ciency and low complexity to solve the
constrained resource allocation problem, and (iii) incentive compat-
ibility to elicit truthful private information from users. We believe
that our solution is useful enough to make it practically interesting
in a variety of contexts. The mechanism consists of a distributed
allocation algorithm and a distributed pricing mechanism as shown
in Fig. 1.

Firstly, we investigate the resource allocation problem between
buyers and sellers with practical D2D assignment constraints. Most
existing methods to optimally solve this problem require a central
controller to gather all participants’ information and perform the
computation centrally. The only known distributed algorithm is in
[3]. But to �nd the optimum it requires a prohibitively high average
computational complexity when the network is large. To reduce this
complexity, we propose a 2-approximation distributed allocation
algorithm based on the greedy idea of maximum weighted match-
ing in [6, 14]. The proposed algorithm has only linear complexity
and is further asynchronous for the purpose of easy implemen-
tation. Numerical results show that the proposed algorithm has
near-optimal average performance at a signi�cantly lesser running
time as compared to the optimal algorithm mentioned above, as
tested in our large-scale network simulations.

Secondly, we design a novel distributed pricing mechanism
to elicit truthful private information from users. There are some
known mechanisms that can be used in double auction design and
are incentive compatible, such as the Vickrey-Clarke-Groves (VCG)
and Arrow-d’Aspremont-Gerard-Varet (AGV). In VCG, reporting
the true information is a dominant strategy [13], but it requires
a central controller to decide the price for each transaction and
has high computational complexity. AGV [2], besides requiring
centralized computation like VCG, it also requires that once users
have accepted to join the trading platform, they cannot strategi-
cally choose which rounds to participate in the trade based on their
private information. This assumption of participating commitment
is hard to meet in practice, making AGV not a viable alternative.

Our novel trading price design uses two components: a basic
price component and a correction price component (see Fig. 1).
Using only the �rst component (which corresponds to the mid
value between the buyer’s reported value and the seller’s reported
cost), all users have positive gain by participating, the system is
budget balanced, but it is not incentive compatible. The second
component acts as a correction to the �rst and induces incentive
compatibility. By using this pricing mechanism, a positive utility
is still guaranteed in each round for any user no matter if she
participates as a buyer or a seller. Thus, our mechanism is also
individually rational. Furthermore, to recover the correction price
paid to all users and keep the budget balanced, the mechanism
requires the platform to charge users a subscription fee (say per
month). Our main contributions are:

• We propose a 2-approximation distributed allocation algo-
rithm for the resource allocation problem with unique D2D
assignment constraints. This algorithm has near-optimal av-
erage performance at a signi�cantly lesser running time as
compared to the optimal benchmark.

• We complement the allocation algorithmwith a novel pricing
mechanism. The resulting double auction mechanism can
be nicely implemented in fully distributed environments and
is incentive compatible, individually rational and becomes
ex-ante budget balanced by charging users a subscription fee.

• We further extend the proposed mechanism to multiple
rounds and study the best trading frequency over time by
balancing trading opportunity and waiting cost of users. We
also show that the proposed allocation algorithm has another
advantage. When many of the users remain active during
multiple rounds, it keeps existing trading pairs unchanged
during each round, while the optimal allocation algorithm
creates di�erent trading pairs with high switching cost.

The paper is organized as follows. In Section 2 we present our
model of the market place and the basic structure of the proposed
trading mechanism. In Section 3 we propose a new distributed
algorithm for matching supply and demand that is fast and e�cient.
In Sections 4 and 5 we propose the pricing algorithm with the price
correction that makes it incentive compatible. Finally, in Section 6
we analyze the performance of repeated trading and end with some
conclusions.



2 SYSTEM MODEL
2.1 Problem Description
We propose a D2D trading market model for a large number of
potential users to trade resources with each other in proximity
via local wireless links (e.g., short-range communications). In this
market trade takes place continuously in repeated trading rounds
and is supervised by the ‘system platform’ to which users must
enroll in order to obtain the right to trade. The challenge we address
in this research is how to implement the trading functionality of
this platform using distributed operation.

At the beginning of a trading round, an individual user chooses
to participate as a buyer if she is willing to pay for using more
resources for utility or as a seller if she has excess resources to
share for pro�t. Thus, the participating users of each round belong
to two groups: the buyer group M = {1, 2, · · · ,"} and the seller
group N = {1, 2, · · · ,# }. According to the users’ current locations
in this round, each buyer 8 2 M is only within the coverage of a
subset of nearby sellers, denoted as S(8), and each seller 9 2 N is
able to serve a subset of buyers within her coverage area, denoted
as B( 9) = {8 2 M : 9 2 S(8)}. Note that the D2D trading market
model (including groupsM and N ) changes over time according
to users’ random arrival, movement and departure which will be
detailed later in Section 6. There we will apply our distributed
double auction mechanism for each trading round, and show the
parameter design (e.g., trading frequency) for such dynamic trading
over time.

In any given round, we view the market model as an instance
of a random bipartite matching graph⌧ = (",# , {S(8)}, {B( 9)})
where buyers and sellers are nodes, the wireless links are edges,
and ⌧ have a certain distribution. A simple interpretation of the
model is that a typical user, when participating, corresponds to a
random node in ⌧ . She acts at di�erent times as a buyer or a seller
and her connectivity with the rest of the nodes is chosen at random
according to the distribution of ⌧ . Before she starts to trade, she
already knows all her neighbors via the local communication. A
small-scale illustrative instance of the D2D trading market is shown
spatially on the ground in Fig. 2, which can be translated to the
bipartite matching graph between " = 6 buyer nodes and # = 4
seller nodes.

Many wireless resources (e.g., data plan, power, computation
capacity and cache memory) are divisible and one can aggregate
resources from di�erent sources to use at the same time (e.g., [17],
[16]). In ourmodel, the traded resources are assumed to bemeasured
in certain commonly agreed units by the market participants. For
a market of data plan allowance, a unit might correspond to a
megabyte of data, or, for a market of cache memory, a unit might
correspond to a standard size �le. Moreover, we consider that the
demand of a single buyer can be served by aggregating resources
frommultiple sellers. Hence, we generally allow each buyer 8 to buy
resources from multiple sellers to meet her demand U8 and each seller
9 also to serve more than one buyer at one time to sell her supply V 9 .
We also consider that buyers and sellers have linear value and cost
functions2, respectively, for the amount of resources they trade.
The value of obtaining a unit resource is denoted by E8 for buyer 8
2If nonlinear, we can still apply linear approximation to obtain linear terms for users’
values and costs.

Figure 2: A illustrative instance of the D2D trading market
with " = 6 buyers and # = 4 sellers is captured spatially on
the left-hand-side sub�gure. Then we can abstract their lo-
cal connectivity as the bipartitematching graph on the right-
hand-side sub�gure.

and the cost incurred by o�ering a unit resource is denoted by 2 9
for seller 9 .

In each trading round, the aim of the system platform is to op-
erate e�ciently and maximize the di�erence between the total
value created to buyers by the allocated resources and the total cost
caused by depriving these resources from the users that sell them,
known as the social welfare. Speci�cally, the social welfare maxi-
mization problem in our market can be formulated as a network
�ow problem from the bipartite matching graph as follows:

P1 : max
’
82M

’
9 2S(8)

F8 9 58 9 , (1a)

s.t.
’
9 2S(8)

58 9  U8 , 88 2 M, (1b)

’
82B( 9)

58 9  V 9 , 89 2 N , (1c)

58 9 2 {0, 1, 2, · · · },88 2 M, 9 2 S(8), (1d)

where F8 9 = E8 � 2 9 in (1a) and Fig. 2 denotes the net bene�t of a
unit resource allocation between buyer 8 and seller 9 , and 58 9 is the
optimization variable denoting the amount of divisible resource
units allocated to pair (8, 9). The total amount of resources allocated
to buyer 8 is constrained by U8 according to the demand constraint
in (1b), and the constraint in (1c) tells that seller 9 cannot give out
more than she owns. Constraint in (1d) ensures that each buyer 8
can only be assigned to seller 9 in set S(8), which we refer to as a
D2D assignment constraint.

2.2 Distributed Double Auction Mechanism
First, note that, in our decentralized D2D trading market with many
buyers and sellers, problem P1 cannot be solved centrally due to
the high communication and computation overhead. Second, users
are sel�sh and unwilling to truthfully report private information,
which introduces an information challenge for solving problem P1
requiring full knowledge of demand U8 and value E8 (supply V 9 and
cost 2 9 ) from each buyer 8 (seller 9 ). However, these parameters are



known to individual users at the beginning of the trading round and
are private information unknown to others. If these users misreport
this information, even if problem P1 is solved optimally, the value
of the actual social welfare achieved might be far from the true
optimum resulting to a market failure.

To handle these two challenges, we need to develop a distributed
truthful double auction mechanism to determine how to match
buyers and sellers and how to allocate and pay/charge resources de-
pending on the users’ declarations. Let (Û8 , Ê8 ) and (V̂ 9 , 2̂ 9 ) denote
the declarations of buyer 8 and seller 9 , respectively, regarding their
private information. There are two key components in our mech-
anism design: the allocation algorithm to determine the resource
allocation 58 9 by solving problem P1 and the pricing mechanism to
determine the unit buying price ?⌫8 9 paid by buyer 8 and the unit
selling price ?(8 9 paid to seller 9 for each matched pair (8, 9) with
allocation 58 9 > 0. In each round, the double auction mechanism
runs by the following procedure:

• At the beginning, each buyer 8 submits her declaration (Û8 ,Ê8)
to all the neighboring sellers belonging to S(8) and each
seller 9 also submits her declaration (V̂ 9 , 2̂ 9 ) to all the neigh-
boring buyers belonging to B( 9).

• We run a distributed allocation algorithm to match buyers
and sellers and for each matched pair (8, 9), determine the
corresponding allocation 58 9 depending on local3 declara-
tions.

• For each matched pair (8, 9), we run a distributed pricing
mechanism to determine the �nal buying price ?⌫8 9 and the
�nal selling price ?(8 9 that are only based on the declarations
of buyer 8 and seller 9 .

The rest of the paper deals with developing the above mecha-
nisms. The desired properties of the pricing mechanism are:

• (E1) Incentive compatibility. The users are induced to truth-
fully report their private information (i.e., Û8 = U8 , Ê8 =
E8 , V̂ 9 = V 9 , 2̂ 9 = 2 9 ,88, 9 ).

• (E2) Individually rationality. A user should not obtain nega-
tive utility from participating in each round of the auction.

• (E3) Ex-ante budget balance. In the long run, the total amount
of money collect from users should be no less than the
amount paid to users. This ensures viability of the system
platform in the long run.

• (E4) Long-term participation. A user that pays the subscrip-
tion fee to the platform still expects a non-negative average
total pro�t.

3 DISTRIBUTED ALLOCATION ALGORITHM
In this section, we propose and analyze a distributed allocation
algorithm to solve problem P1 under complete information. We will
deal with incentive compatibility to ensure complete information
in the next sections.

There have been distributed greedy algorithm proposals (e.g.,
[6]) to solve the single-unit version of problem P1, which is known
as the maximum weighted matching problem. In this problem, each
buyer (seller) demands (supplies) a unit resource. Simple extension
3We use the term ‘local’ to refer to information or actions involving neighboring
nodes.

to multiple units by providing multiple copies of buyers and sell-
ers fails because of greatly increasing the dimensionality of the
problem (the network size increasing signi�cantly from" + # toÕ
82M U8 +

Õ
9 2N V 9 ) and also because they introduce competition

between copies of the same buyer (seller). We address these issues
by proposing Algorithm 1 in the following.
Algorithm 1:Multi-unit weighted matching for solving problem
P1

Initialization: 58 9 = 0,88 2 M, 9 2 S(8).
In each iteration, repeat the following two phases:
Requesting phase:
For each buyer 8 2 M with unsatis�ed demand U8 > 0:
• Find U8 neighboring sellers with the largest weights from the
neighbor set S(8) and sort them in a non-increasing weight
order, denoted as { 91, 92, · · · , 9min{U8 , |S (8) | }} with F8 91 �
F8 92 � · · · � F8 9min{U8 ,|S (8 ) |} .

• From : = 1 to : = min{U8 , |S(8) |}, compute the allocation
requested one by one as follows:

5 ⌫8 9: =
⇢

min{U8 , V 9: }, if : = 1,
min{U8 �

Õ:�1
C=1 V 9C , V 9: }, if : � 2. (2)

By doing so, buyer 8 allocates her demand U8 greedily to her
neighboring sellers according to the non-increasing weight
order until her demand is fully met.

• Send a request for 5 ⌫8 9: units of resources to each seller 9: if
5 ⌫8 9: > 0.

For each seller 9 2 N with leftover supply V 9 > 0:
• Seller 9 applies the ‘symmetric’ procedure presented above
to compute 5 (8 9 for all her neighboring buyers 8 2 B( 9) sorted
similarly.

Assignment Phase:
For each pair (8, 9) requested by both buyer 8 and seller
9 , i.e., 5 ⌫8 9 > 0 and 5 (8 9 > 0:
• Update allocation 58 9 = 58 9 + min{5 ⌫8 9 , 5 (8 9 }, demand U8 =

U8 �min{5 ⌫8 9 , 5 (8 9 } and supply V 9 = V 9 �min{5 ⌫8 9 , 5 (8 9 }.
• If unsatis�ed demand U8 = 0, remove buyer 8 from the
neighbor sets of all her neighboring sellers by updating
B( 9 0) = B( 9 0) \ {8},89 0 2 S(8).

• If leftover supply V 9 = 0, remove seller 9 from the neighbor
sets of all her neighboring buyers by updatingS(8 0) = S(8 0)\
{ 9},88 0 2 B( 9).

Algorithm 1 is clearly distributed. Each user repeats the steps of
the algorithm based on local information and will stop once her
demand is met (or supply is sold out) or sees no available neighbor.
She does not need to wait for the ‘global’ termination of the dis-
tributed algorithm, i.e., all users reaching a termination condition.
Global termination is ensured within min{Õ82M U8 ,

Õ
9 2N V 9 } it-

erations since at least one unit resource is added to the existing
allocation in each iteration. Note that once a unit resource is added
to the existing allocation, it cannot be removed later. Moreover,
in each iteration, an unsatis�ed buyer 8 (or a seller 9 with left-
over supply) needs to update her allocation requests only when
the allocation corresponding to her neighbors in S(8) (or B( 9))
changes in last iteration. The allocation corresponding to buyer
8 (or seller 9 ) can change at most demand U8 (or supply V 9 ) times.



Therefore, this algorithm runs in linear O(
Õ
82M |S(8) |) time. Note

that
Õ
82M |S(8) | = Õ

9 2N |B( 9) | and is actually the total number
of edges in the bipartite matching graph. The next proposition sum-
marizes the properties of our Algorithm 1. We will complement
the proposed allocation algorithm with a novel pricing mechanism
later in Section 5.1 and such monotonicity properties are needed
for the incentive compatibility proofs there.

P���������� 1. Algorithm 1 achieves an approximation ratio of
1
2 . Furthermore, for any buyer 8 and seller 9 , (i) the allocation 58 9 is
increasing in buyer 8’s demand U8 and seller 9 ’s supply V 9 , and (ii) the
total resource amount

Õ
9 2S(8) 58 9 assigned to buyer 8 is increasing in

her value E8 and
Õ
82B( 9) 58 9 assigned to seller 9 is decreasing in her

cost 2 9 .

We outline the proof idea for approximation ratio of 1
2 in the

single-unit version case of problem P1. We �rst show that our
distributed algorithm converges to the same allocation as a cen-
tralized greedy algorithm for solving problem P1. The centralized
algorithm (not optimal) adds every time an edge (8, 9) with the
maximum weight F8 9 to the current matching. Such a greedy as-
signment may a�ect at most two edges (incident to buyer 8 or seller
9 ) of smaller weights in the optimal allocation. Thus adding each
edge (8, 9) with weightF8 9 results in a gap of at most 2F8 9 in the
total weight objective as compared to the optimum, and the approx-
imation ratio is 1

2 . The proof for approximation ratio of 1
2 in the

multi-unit case follows by the same argument as in the single-unit
case. The detailed proof of Proposition 1 is given in Appendix A.

Besides the worst-case analysis, our extensive numerical anal-
ysis shows that the average performance achieved by Algorithm
1 is near-optimal. Consider a D2D market with users uniformly
distributed in a circular ground cell with radius of ' = 1 km. The
number of users"+# follows the Poisson point process with mean
d = 4000 and each user chooses to be a buyer or a seller with equal
probability. Only when the distance between a buyer and a seller
is less than the short communication range !, they can connect
with each other for resource trading. The buyers’ values per unit re-
source and sellers’ costs per unit resource are uniformly distributed
over a value set V = {5, 6, · · · , 10} and a cost set C = {0, 1, · · · , 5},
respectively. The demands and supplies respectively are chosen
from the set ⌦ = {1, 2, 3, 4} with equal probabilities.

In Fig. 3, we illustrate the average e�ciency of Algorithm 1
compared to the optimum as a function of the communication
range !. We observe that our Algorithm 1 always achieves average
e�ciency above 94% of the optimum though its running time is less
than 1% of that of the optimal algorithm. The average e�ciency
�rst decreases and then increases in the communication range !.
Intuitively, when L is small (e.g., less than 20 m in Fig. 3), users
are sparsely connected, and both Algorithm 1 and the optimum try
to match as many pairs as possible if any exists, resulting in little
di�erence in between (or high average e�ciency of Algorithm 1).
When L is large (e.g., larger than 100 m in Fig. 3), each user has
many neighbors and choosing the second best matching is also
good. Thus, our Algorithm 1 performs very well and improves as
L increases. Similar to Fig. 3, we can also show that the average
e�ciency of Algorithm 1 �rst decreases and then increases with the
user density, given by d/c'2, but we skip here due to the page limit.
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Figure 3: The average e�ciency of Algorithm 1 compared
to the optimum as a function of the short communication
range ! for considering nearby users to communicate.

Note that users’ mutual connectivity improves when we increase
the user density or the communication range.

4 DISTRIBUTED PRICING MECHANISM
In the last section, Algorithm 1 assumes knowledge of the param-
eters {U8 }, {E8 }, {V 9 } and {2 9 } to solve problem P1. But these are
private information and may not be reported truthfully unless buy-
ers and sellers are provided with the right pricing incentives. In this
section, we �rst model the utility functions of buyers and sellers
and then analyze the sel�sh user behavior under the traditionally
de�ned prices in double auctions (our ‘basic’ prices below). Further,
we propose a price correction that adjusts the basic prices to make
them incentive compatible.

4.1 Utility Functions
Remember that we use ?⌫8 9 (?

(
8 9 ) to denote the buying (selling) price

for buyer 8 (seller 9 ) between the matched pair (8, 9), and assume
linear value and cost functions for them. We note that if buyer 8 is
over demanding (Û8 > U8 ), she might be assigned with more than
what she needs, i.e.,

Õ
9 2S(8) 58 9 > U8 without extra bene�t but with

higher payment. Thus, her utility can be de�ned as:

* ⌫8 (U8 , E8 ) = E8 min{U8 ,
’
9 2S(8)

58 9 } �
’
9 2S(8)

58 9?
⌫
8 9 .

Similarly, assuming seller 9 does not over-report her supply (V̂ 9 >
V 9 ) due to high penalty in case of not ful�lling her commitment,
her utility can be expressed as:

* (9 (V 9 , 2 9 ) =
’

82B( 9)
58 9 (?(8 9 � 2 9 ) .

Observe that a user’s utility depends on not only her individual
information but also all users’ declarations as well as the bipartite
matching graph structure ⌧ = (",# , {S(8)}, {B( 9)}) through the
allocations {58 9 } and prices {?⌫8 9 }, {?(8 9 } decided by the mechanism.



4.2 Basic Prices
We de�ne the ‘basic’ price for a transaction between buyer 8 and
seller 9 as the mean of buyer 8’s reported value and seller 9 ’s re-
ported cost, i.e., ?⌫8 9 = ?(8 9 = (Ê8 + 2̂ 9 )/2. Using these prices in
our mechanism would be very convenient since (i) prices are de-
rived using only local information, (ii) it distributes surplus fairly
among buyers and sellers, and (iii) it is budget balanced. But un-
fortunately, basic prices are not incentive compatible since buyers
(sellers) would like to declare lower values (higher costs) in order
to increase their pro�t. Nevertheless, they play a signi�cant role in
our mechanism design.

Assuming that the system platform solves problem P1 (e.g., by
using Algorithm 1) depending on the users’ declarations and uses
basic prices to compensate buyers and sellers. We de�ne next some
key performance measures needed in our incentive compatible de-
sign. First note that each user only knows her own information,
the distribution of the private information of the other users and
the distribution of the random bipartite matching graph, resulting
in a Bayesian game with incomplete information. Users’ private
information is assumed to follow the same distribution in general as
we consider large-scale markets. By taking expectations over these
distributions, we obtain buyer 8’s expected utility *̄ ⌫ (U8 , E8 , Û8 , Ê8 )
assuming that all other users are truthful. This is a function of her
private information (U8 , E8 ) and declaration (Û8 , Ê8 ). Similarly, the
expected utility of seller 9 is *̄ ( (V 9 , 2 9 , V̂ 9 , 2̂ 9 ). A sel�sh user’s best
response is to submit a declaration that maximizes her expected
utility. A direct consequence of these utility functions is that buy-
ers are incentivized to report lower values in order to reduce the
resulting basic price (Ê8 + 2̂ 9 )/2 of the transaction. Similarly, sellers
will report higher costs. Hence the above expected utilities are well
de�ned but are not observed in the equilibrium of the game.

Let &̄⌫ (Û8 , Ê8 ) (&̄( (V̂ 9 , 2̂ 9 )) be the expected total resource amount
buyer 8 (seller 9 ) obtains in the above Bayesian game assuming all
other users being truthful. The above de�nitions of functions *̄ ⌫ ,
*̄ ( , &̄⌫ , &̄( will be used in our incentive system design that comes
next.

4.3 Price Correction Scheme
To achieve incentive compatibility, we correct the basic price by
adding an incentive price component that only depends on the
individual user’s declaration to be computed in a distributedmanner.
In particular, the platform subsidizes buyer 8 with 6(Û8 , Ê8 ) � 0 per
unit resource to buy, leading to a �nal buying price:

?⌫8 9 = (Ê8 + 2̂ 9 )/2 � 6(Û8 , Ê8 ). (3)

Similarly, the platform subsidizes seller 9 with ⌘(V̂ 9 , 2̂ 9 ) � 0 per
unit resource to sell, leading to a �nal selling price:

?(8 9 = (Ê8 + 2̂ 9 )/2 + ⌘(V̂ 9 , 2̂ 9 ). (4)

After applying the correction price components6(Û8 ,Ê8) and⌘(V̂ 9 ,2̂ 9),
the expected utilities of buyer 8 and seller 9 in the Bayesian game
become *̄ ⌫ (U8 , E8 , Û8 , Ê8 ) +6̄(Û8 , Ê8 ) and *̄ ( (V 9 , 2 9 , V̂ 9 , 2̂ 9 ) +⌘̄(V̂ 9 , 2̂ 9 ),
respectively, where 6̄(Û8 , Ê8 ) = 6(Û8 , Ê8 )&̄⌫ (Û8 , Ê8 ) and ⌘̄(V̂ 9 , 2̂ 9 ) =
⌘(V̂ 9 , 2̂ 9 )&̄( (V̂ 9 , 2̂ 9 ). Our challenge is to �nd correction payments

6̄(Û8 , Ê8 ) and ⌘̄(V̂ 9 , 2̂ 9 ) that ensure incentive compatibility in the
Bayesian game as de�ned below.

De�nition 1 (Incentive compatibility): Truthful reporting is a
Bayesian Nash equilibrium if no buyer 8 or seller 9 can improve her
expected utility by unilaterally deviating from the truthful report-
ing, i.e.,

*̄ ⌫ (U8 , E8 ,U8 , E8 ) + 6̄(U8 , E8 ) �
*̄ ⌫ (U8 , E8 , Û8 , Ê8 ) + 6̄(Û8 , Ê8 ),8U8 , Û8 , E8 , Ê8 , (5a)

*̄ ( (V 9 , 2 9 , V 9 , 2 9 ) + ⌘̄(V 9 , 2 9 ) �
*̄ ( (V 9 , 2 9 , V̂ 9 , 2̂ 9 ) + ⌘̄(V̂ 9 , 2̂ 9 ),8V 9 , V̂ 9 , 2 9 , 2̂ 9 . (5b)

5 DESIGN OF CORRECTION PAYMENT
In this section, we design the correction payments 6̄(Û8 , Ê8 ) and
⌘̄(V̂ 9 , 2̂ 9 ) to satisfy the incentive compatibility constraints in (5).
Then, we show that our pricing scheme also satis�es the other
three properties (E2)-(E4) as listed at the end of Section 2.2.

5.1 Incentive Compatibility Design
In this subsection, we �rst derive 6̄(Û8 , Ê8 ) and ⌘̄(V̂ 9 , 2̂ 9 ) assuming
that users reveal truthfully their demands or supplies, i.e., Û8 =
U8 ,88 2 M, V̂ 9 = V 9 ,89 2 N . Later we will prove that using these
correction payments users have no incentive to misreport on their
demands or supplies. For each possible value of demandU8 or supply
V 9 , (5) simpli�es to:

*̄ ⌫ (E8 , E8 ) + 6̄(E8 ) � *̄ ⌫ (E8 , Ê8 ) + 6̄(Ê8 ),8E8 , Ê8 , (6a)

*̄ ( (2 9 , 2 9 ) + ⌘̄(2 9 ) � *̄ ( (2 9 , 2̂ 9 ) + ⌘̄(2̂ 9 ),82 9 , 2̂ 9 . (6b)

The following lemma derives from the linearity of the utility func-
tions and is used to further simplify (6).

L���� 1. The expected utility functions *̄ ⌫ (E8 , Ê8 ) for buyer 8 and
*̄ ( (2 9 , 2̂ 9 ) for seller 9 follow arithmetic progression according to their
true value E8 and cost 2 9 , respectively. That is,

*̄ ⌫ (E8 , Ê8 ) � *̄ ⌫ (E8 � 1, Ê8 ) = &̄⌫ (Ê8 ), (7a)

*̄ ( (2 9 , 2̂ 9 ) � *̄ ( (2 9 � 1, 2̂ 9 ) = �&̄( (2̂ 9 ). (7b)

The proof is given in Appendix B. By using Proposition 1’s
monotonicity property of the total resource amount on &̄⌫ (Ê8 ) and
&̄( (2̂ 9 ) in (7), we successfully simplify (6) in the following.

P���������� 2. The incentive compatibility constraints in (6) are
equivalent to the following adjacent incentive compatibility (AIC)
constraints:

*̄ ⌫ (E8 , E8 ) + 6̄(E8 ) � *̄ ⌫ (E8 , Ê8 ) + 6̄(Ê8 ),
8E8 , Ê8 = E8 � 1, E8 + 1, (8a)

*̄ ( (2 9 , 2 9 ) + ⌘̄(2 9 ) � *̄ ( (2 9 , 2̂ 9 ) + ⌘̄(2̂ 9 ),
82 9 , 2̂ 9 = 2 9 � 1, 2 9 + 1. (8b)

The proof is given in Appendix C. This proposition states that
to induce incentive compatibility over all possible declarations it



is enough to guarantee incentive compatibility for declarations
adjacent to the true value or cost.4

We now propose an iterative algorithm to compute 6̄(Ê8 ) to sat-
isfy AIC constraint in (8a), which is described in details in Algorithm
2 below. If (8a) under the current correction payments (initially
zero) does not hold, there exists a minimum value g such that (8a) is
violated at E8 = g and it holds for all E8 < g (line 4). This means that
buyer 8 with true value E8 = g has a greater expected utility when
she submits an adjacent value g � 1 or g + 1. We can correct that
by properly increasing the correction payment 6̄(g) which is subsi-
dized to this buyer when she submits g truthfully (line 7). However,
after applying the new 6̄(g) (line 8-10), (8a) holds for E8=g but may
be violated for a buyer with E8 = g � 1 who may over-report the
adjacent value g to obtain the increased correction payment 6̄(g)
(line 11-12). If this is the case, we further correct it by increasing
6̄(g � 1) in a way that we don’t violate the previously corrected
AIC constraint at g (line 13). This is possible due to (7a) and the
monotonicity property of &̄⌫ (Ê8 ). Yet this new 6̄(g � 1) may a�ect
the AIC constraint at E8 = g � 2 and we proceed similarly to correct
any possible violations at g � 2, g � 3, etc., until (8a) holds for all
E8  g (line 11-18). After this, we can iteratively increase g one by
one whiling updating the correction payment for given g , and will
eventually ensure (8a) holds for any value inV .

Algorithm 2 Correction payment 6̄(Ê8 ) for any buyer 8
1: Initialization
2: Set 6̄(Ê8 ) = 0,8Ê8 2 V;
3: Set *̄ ⌫2 (E8 , Ê8 ) = *̄ ⌫ (E8 , Ê8 ) + 6̄(Ê8 ),8E8 , Ê8 2 V to denote the

expected utility after correction for buyer 8;
4: Set g 2 V to be the minimum value of E8 such that the AIC

constraint in (8a) is violated;
5: Repeat
6: if max{*̄ ⌫2 (g, g + 1), *̄ ⌫2 (g, g � 1)} > *̄ ⌫2 (g, g) then
7: 6̄(g) = 6̄(g) +max{*̄ ⌫2 (g, g + 1), *̄ ⌫2 (g, g � 1)}

�*̄ ⌫2 (g, g);
8: for each E8 2 V do
9: *̄ ⌫2 (E8 , g) = *̄ ⌫ (E8 , g) + 6̄(g);
10: end for
11: Set E = g � 1
12: while *̄ ⌫2 (E, E) < *̄ ⌫2 (E, E + 1) do
13: 6̄(E) = 6̄(E) + *̄ ⌫2 (E, E + 1) � *̄ ⌫2 (E, E);
14: for each E8 2 V do
15: *̄ ⌫2 (E8 , E) = *̄ ⌫ (E8 , E) + 6̄(E);
16: end for
17: E = E � 1;
18: end while
19: end if
20: g = g + 1;
21: Until g 8 V

By running Algorithm 2 for each possible value of demand U8 , we
obtain the correction payment 6̄(Û8 , Ê8 ) that induce all the buyers to
truthfully reveal their values. The case of sellers is similar, and we
4In our model, we assume value set V and cost set C contain consecutive integers
and 1 is the minimum gap size. Thus, the adjacent values for E8 are E8 � 1 and E8 + 1,
and the adjacent costs for 2 9 are 2 9 � 1 and 2 9 + 1.

skip the details here due to page limit. A possible implementation
is for the platform to run Algorithm 2 o�ine by simulating the
system to obtain the various inputs of the algorithm (e.g., simulate
the system based on the distributions of users’ private information
and the random bipartite matching graph to obtain the expected
utility values *̄ ⌫ (U8 , E8 , Û8 , Ê8 ), *̄ ( (V 9 , 2 9 , V̂ 9 2̂ 9 )). Then aware of the
correction price rule returned by Algorithm 2, users simply trade
with each other in a fully distributedmanner, where the �nal trading
prices in (3)-(4) between each matched pair of users only depend
on their own declarations.

An additional property of the correction payments returned by
Algorithm 2 is that they induce truthful reporting of users’ demands
or supplies, implying full incentive compatibility in (E1). The proof
can be found in Appendix D.

P���������� 3. With the correction payments 6̄(Û8 ,Ê8) and ⌘̄(V̂ 9 ,2̂ 9)
returned by Algorithm 2, all the buyers and sellers have no incentive
to misreport their demands and supplies.

5.2 Individually Rationality and Budget
Balance Design

As buyer 8 and seller 9 are truthful now, the �nal buying price in (3)
is always smaller than buyer 8’s value E8 and the �nal selling price
in (4) is always greater than seller 9 ’s cost 2 9 . Thus, our pricing
mechanism satis�es individually rationality in (E2).

Moreover, we observe that the platform needs to pay extra
?(8 9 � ?⌫8 9 = 6(U8 , E8 ) + ⌘(V 9 , 2 9 ) per unit resource trading for each
matched pair (8, 9) due to the correction price component. To keep
the budget balanced, we propose that the platform charges users a
subscription fee (say monthly), in order to recover the correction
payments paid to all users. In the case of symmetric users, this
subscription fee should be the same and could be determined by
the platform running o�ine simulations or recording the actual
correction payments. If the users belong to di�erent classes, the
platform can also determine a fair subscription fee. Moreover, al-
though users pay back in the form of the subscription fee the total
correction payments they receive over time, they are still left with
positive surplus since the basic price component is always less than
the actual value for the buyers and higher than the cost for the
sellers. Thus, properties (E3) and (E4) are both satis�ed.

6 EXTENSION TO MULTIPLE TRADING
ROUNDS

In practice, our mechanism runs repetitively over time with users’
random arrival, movement and departure. Some interesting ques-
tions are whether connections between the same pair of users may
persist over multiple rounds and how frequently to do trading.

6.1 Low Switching Cost for Allocation in
Algorithm 1

Consider two subsequent rounds of the trading algorithm, where in
round 1 buyer 8 is matched with seller 9 , and both users participate
in round 2. Because new users join the system or existing users
depart, the allocation algorithm might choose di�erent pairings
for buyer 8 and seller 9 in round 2, causing ‘switching cost’ (extra
coordination messages, establishment of new direct connections,
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Figure 4: The total switching costs under our proposed Algo-
rithm 1 and the optimal algorithm versus the mean of total
user number d . Here we set ' = 1 km and ! = 100 m.

etc.). Our simulations in Fig. 4 show that Algorithm 1 performs
signi�cantly better than the optimal algorithm in term of switching
cost de�ned similarly to [9] as the mean number of new matched
pairs between any two subsequent rounds.

In our simulations, we consider the same market model as in Sec-
tion 3 that all users are uniformly distributed in a circular ground
cell with radius of ' = 1 km. The total number of users follows the
Poisson point process with mean d and the short communication
range ! = 100 m between users. Moreover, we assume that users
participating in round 1 leave with probability 0.2 before the begin-
ning of round 2, and new users of types chosen uniformly at random
join at rate 0.2d so that the average number of users remains the
same. In Fig. 4, we illustrate the total switching costs against the
mean of total user number d under our Algorithm 1 and the optimal
algorithm. Observe that our algorithm has lower switching cost as
compared to the optimal algorithm especially when the network
size is large, leading to more than 40% cost savings when there are
more than 2000 users. This happens because Algorithm 1 keeps the
locally optimal neighbors for each user, and does not propagate eas-
ily small changes across the network especially when the network
size is large. This is another advantage of our Algorithm 1 besides
its near-optimality and low-complexity.

6.2 Optimal Trading Frequency
How should the platform choose the length ) (e.g. in minutes) of
the time interval between consecutive rounds? If ) is small, few
new participants will join the system and many of the existing
users may have no new resources to trade as trade takes place
so frequently. If ) is large, new users may join, but trading will
be infrequent and impatient users may leave. To understand this
tradeo�, we consider a simple scenario that a �xed number _ of
new users arrive per minutes, each user being a buyer or a seller
with equal probability and trading a single resource unit. A user
that participates will leave the system after an exponential time
with departure rate `. Further, for those who stayed since last
trading, they are still interested to trade again in the new round
with probability ? < 1 and thus an average user has resources to
trade for 1/(1 � ?) rounds even if her participation time is long
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Figure 5: The time-average total user utility versus the trad-
ing time interval ) for di�erent values of probability to
trade again ? and departure rate `. Here we set _ = 20 per
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enough. In this system, if  denotes the average number of partici-
pants in the steady-state, we have  =  ?4�`) +Õ)�1

C=0 _4
�` ()�C ) ,

where the �rst term on the right-hand-side of the equation tells
how many out of  participators in last trading are still inter-
ested in new trading (with probability ?) and haven’t left (with
probability 4�`) ), and the second term tells how many new users
joining after last trading will participate in the new trading. Thus,
 = _4�` (1�4�`) )

(1�?4�`) ) (1�4�` ) and we can approximate the time-average
total user utility as E",#⇠B( ,0.5)

Õ
82M

Õ
9 2S(8) F8 9 58 9/) .

In Fig. 5, we show the time-averaged total user utility versus) for
di�erent values of ? and `. It �rst increases and then decreases with
) for all the four parameter settings, telling the tradeo� between
trading opportunity (for a stably good number of users to encounter
and trade) and the waiting cost (for impatient user departures in
the meantime). Moreover, the optimal ) decreases with ? , since
a greater ? keeps more users from previous rounds in the system
and a smaller ) is enough to ensure enough users for trading in
the new round. It decreases with ` as users leave the market more
frequently and we need a smaller ) to keep them in trading.

7 CONCLUSIONS
In this paper, we develop a novel distributed double auction mecha-
nism to enable direct resource trading in a large-scale D2D trading
market. This mechanism consists of a resource allocation algorithm
to match demand and supply and a pricing mechanism to determine
the �nal trading prices. We �rst propose an e�cient distributed
allocation algorithm to solve the resource allocation problem with
D2D assignment constraints. Then, we design a distributed pricing
mechanism to motivate users to report their private information
truthfully which is also individually rational and ex-ante budget
balanced. Finally, we extend the proposed mechanism to multiple
rounds and examine the switching cost between two subsequent
rounds as well as the best trading frequency. Our proposed allo-
cation algorithm, besides being nearly optimal has advantages in
terminating in a small number of steps and of reducing switching
cost.



The goal of the paper was to address theoretical issues in the
design of the market, and thus many details on implementation are
left out. These include how to implement the central subscription
system, the fee payments, the case of asymmetric users, veri�abil-
ity of the actual delivery of the goods from sellers to buyers, etc.
Another direction for further research is using an adaptive learn-
ing algorithm to converge to the solution of (5) for computing the
incentive compatible payments instead of using simulations.
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A PROOF OF PROPOSITION 1
A.1 Approximation Ratio of 1

2
First, for our multi-unit allocation problem P1, we consider a cen-
tralized greedy algorithm that includes the edge with maximum
weight sequentially as in the single-unit greedy matching algo-
rithm. In the centralized algorithm, every time we add an edge
(8, 9) with the current maximum weight, we update allocation
58 9 = min{U8 , V 9 } units of resources, which is upper bounded by
both buyer 8’s demand and seller 9 ’s supply. Then, buyer 8 updates
her unsatis�ed demand as U8 = U8 �min{U8 , V 9 } and seller 9 updates
her available supply as V 9 = V 9 �min{U8 , V 9 }. If the buyer or the
seller is fully satis�ed (i.e. U8 = 0 or V 9 = 0), she and all her edges
will be removed from the graph.

Next, we prove that Algorithm 1 can converge to the same allo-
cation as the prior centralized greedy algorithm. In the �rst itera-
tion of Algorithm 1, buyer 8 �rst sorts her neighboring sellers in a
non-increasing weight order, denoted as { 91, 92, · · · , 9min{U8 , |S (8) | }}
with F8 91 � F8 92 � · · · � F8 9min{U8 ,|S (8 ) |} . Then she computes
the maximum allocation can be assigned to seller 91, given by
max{U8 , V 91 }, and sends the corresponding request to seller 91. If an
edge (8, 9) has the local maximum weight from both sides of buyer
8 and seller 9 (i.e., seller 9 is the best seller 91 of buyer 8 and buyer 8
is the best buyer 81 of seller 9 ), it must be added with max{U8 , V 9 }
units of resource in Algorithm 1. Moreover, this edge also must
be added with max{U8 , V 9 } units of resource in the centralized al-
gorithm. This is because the edges added before (8, 9) cannot be
incident to 8 or 9 as (8, 9) has the local maximum weight from both
sides and thus buyer 8’s unsatis�ed demand and seller 9 ’s available
supply do not change until adding (8, 9).

Except the edges with local maximum weights, Algorithm 1
may also add some second best edges in the �rst iteration. For
example, if buyer 8’s demand U8 is higher than her best seller 91’s
supply V 91 , she will ask seller 92 for 5 ⌫8 92 = min{V 92 ,U8 � V 91 } units
of resources to satisfy her remaining demand. Note that in the
centralized algorithm, the only edge incident to buyer 8 that can
be added before edge (8, 92) is edge (8, 91) and the allocation to
edge (8, 91) is bounded by max{U8 , V 91 } = V 91 . Thus, before adding
F8 92 in the centralized algorithm, buyer 8’s unsatis�ed demand
is not less than U8 � V 91 }. From the side of buyer 8 , her request
5 ⌫8 92 = min{V 92 ,U8 � V 91 } to seller 92 in Algorithm 1 is not larger
than her available demand when adding (8, 92) in the centralized
algorithm. Similarly, from the side of seller 92, her request 5 (8 92 to
buyer 8 in Algorithm 1 is also not larger than her available supply
when adding (8, 92) in the centralized algorithm. Thus, at least
min{5 ⌫8 92 , 5

(
8 92

} units of resource must be added for edge (8, 92) in
the centralized algorithm.

We can conclude that the allocation obtained in the �rst iteration
of Algorithm 1 is not larger than the �nal allocation returned by the
centralized algorithm. Then, by mathematical induction, we prove
this holds for each iteration of Algorithm 1. Moreover, Algorithm 1
and the centralized algorithm have the same convergence condition
that all users are fully satis�ed or see no available neighbor. Thus,
Algorithm 1 will not converge until it obtains the same allocation
as the centralized algorithm.



Finally, we prove that the centralized greedy algorithm can
achieve an approximation ratio of 1

2 using the same proof idea
in the single-unit case. The centralized algorithm adds every time
an edge (8, 9) with the maximum weight F8 9 for 58 9 units of re-
sources. As compared to the optimum, buyer 8 loses at most 58 9
units of allocation with other neighboring sellers due to her de-
mand is reduced by 58 9 , and seller 9 loses at most 58 9 allocation with
other neighboring buyers due to her supply is reduced by 58 9 . Thus,
such a greedy assignment may a�ect at most 258 9 units of allocation
(incident to buyer 8 or seller 9 ) with smaller weights thanF8 9 . Thus
adding each edge (8, 9) for 58 9 units of resources results in a gap of
at most 2F8 9 58 9 in the total weight objective as compared to the
optimum, and the approximation ratio is 1

2 .

A.2 58 9 Increasing in Demand U8 and Supply V 9
As we discussed in Appendix A.1, Algorithm 1 converges to the
same allocation as the centralized greedy algorithm given. There-
fore, we turn to prove that the allocation 58 9 is increasing in buyer
8’s demand U8 and seller 9 ’s supply V 9 in Algorithm 1.

Given that buyer 8 submits a higher demand U 08 than the original
U8 , we discuss the new allocation 5 08 9 returned by the centralized
greedy algorithm under the following two cases. These are de�ned
depending on whether the original allocation

Õ
9 2S(8) 58 9 partially

or fully satis�es the demandU8 . In the former case, all the allocations
corresponding to buyer 8 are constrained by the available supplies
of her matched sellers, not by her unsatis�ed demand. Submitting a
higher demand U 08 than U8 has no e�ect on the returned allocation.
In the latter case, let 9<8= denote the seller with the minimum
weight among the matched sellers of buyer 8 such that F8 9<8= =
min{F8 9 : 58 9 > 0}. For seller 9 < 9<8= with 58 9 > 0, the allocation
58 9 is also constrained by seller 9 ’s available supply and thus the
new 5 08 9 = 58 9 . For seller 9 = 9<8= , 58 9 is constrained either by seller
9 ’s available supply or buyer 8’s unsatis�ed demand. Since seller 9 ’s
available supply stays the same and buyer 8’s unsatis�ed demand
is increased, we have 5 08 9<8=

� 58 9<8= . For seller 9 with 58 9 = 0, it is
obvious that 5 08 9 � 58 9 = 0.

Thus, we can conclude that the returned allocation satis�es 5 08 9 �
58 9 ,89 2 S(8) when U 08 > U8 . The proof for sellers follows by similar
arguments.

A.3
Õ
9 2S(8) 58 9 Increasing in Value E8 andÕ
82B( 9) 58 9 Decreasing in Cost 2 9 .

If buyer 8 submits a higher value E 08 than the original E8 , the weights
of the edges incident to buyer node 8 are all increased by E 08 � E8 .
Thus, it is su�cient for us to prove that the total resource amountÕ
9 2S(8) 58 9 increases as weightF8 9 increases for any seller 9 2 S(8).

Moreover, we consider the centralized greedy algorithm instead of
Algorithm 1 as in Appendix A.2.

In the centralized greedy algorithm, when weight F8 9 of edge
(8, 9) increases, the order of this edge to be added is moved up or
at least stays the same. Thus, we have the new allocation 5 08 9 � 58 9 .
If 5 08 9 = 58 9 , adding edge (8, 9) in advance has no in�uence on the
following adding of the remaining edges since adding it according to
the original order leads to the same amount of reduction for buyer

8’s demand seller 9 ’s supply. If 5 08 9 > 58 9 , the additional 5 08 9 � 58 9
allocation may in�uence the �nal returned allocation.

First, we consider the case that 5 08 9 = 58 9 + 1. In this case, both
buyer 8’s unsatis�ed demand and seller 9 ’s available supply are
decreased by 1. The one unit reduction of seller 9 ’s supply causes a
chain e�ect represented by {( 9, 81), (81, 91), ( 91, 82) · · · } along which
a single unit �ow denotes the di�erent allocation between {5 08 9 }
and {58 9 }. Note that in this chain, allocation to an edge from buyer
to seller (e.g. (81, 91)) is increased by 1 and the allocation to an
edge from seller to buyer (e.g. ( 9, 81)) is decreased by 1. For each
user node in this chain, only the start node’s and the end node’s
total allocation amounts may change by 1. Even if the chain ends
at the node 8 , the decreased one unit allocation to buyer 8 can be
cancelled by the additional one unit allocation to edge (8, 9). The
total resource amount assigned to buyer 8 does not decrease.

Similarly, the one unit reduction of buyer 8’s unsatis�ed demand
causes a chain e�ect represented as {(8, 9 01), ( 9 01, 8 01), (8 01, 9 02) · · · }. But,
in this chain, the allocation to an edge from buyer to seller (e.g.
(8, 9 01)) is decreased by 1 and the allocation to an edge from seller to
buyer (e.g. ( 9 01, 8 01)) is increased by 1. Similarly, for each user node in
this chain, only the start node’s and the end node’s total allocation
amounts may change by 1. If the chain is empty or ends at the start
node 8 , buyer 8’s total allocation amount does not change. Otherwise,
its allocation amount is decreased by 1 due to the allocation to
edge (8, 9 01) decreased by 1. This happens only when the amount of
units assigned to edge (8, 9 01) is constrained by buyer 8’s unsatis�ed
demand or seller 9 01’s available supply is decreased by 1. In the
former case, buyer 8 is fully satis�ed after adding (8, 9 01) and we
have

Õ
9 2S(8) 5 08 9 = U8 �

Õ
9 2S(8) 58 9 for sure. In the latter case, the

only reason for seller 91’s available supply decreased by 1 is that
another chain starting from seller 9 ends at node 91, not at 8 . Thus,
the chain starting from seller 9 does not change the allocation to
buyer 8 . The decreased one unit allocation to buyer 8 caused by the
chain starting from buyer 8 can be cancelled by the additional one
unit allocation to edge (8, 9) and hence

Õ
9 2S(8) 5 08 9 �

Õ
9 2S(8) 58 9

still holds.
In sum, we prove

Õ
9 2S(8) 5 08 9 �

Õ
9 2S(8) 58 9 given 5 08 9 = 58 9 + 1.

For the more general case 5 08 9 > 58 9 , we can further prove the
total amount of resources allocated to buyer 8 keep non-decreasing
when we increase allocation to edge (8, 9) from 58 9 one by one until
reaching 5 08 9 similarly. The proof of the monotonicity property ofÕ
9 2S(8) 58 9 in Ê8 is completed.
The proof for sellers follows by similar arguments.

B PROOF OF LEMMA 1
Since the mechanism runs depending on the local declarations, we
have that if a buyer does not change her declared value Ê8 and
demand Û8 , the allocation {58 9} and the �nal buying price {?⌫8 9 }
for her will not change, either. Moreover, given buyers reveal their
demand truthfully, buyer 8 can only be assigned with no more
than what she reports (i.e.,

Õ
9 2S(8) 58 9  Û8 < U8 ). Therefore,

from the utility functions given in Section 4.1, we have that the
di�erence of the average utilities is equal to the di�erence of the
true values times the average total amount of allocated resources



&̄⌫ (Ê8 ) = E[
Õ
9 2S(8) 58 9 ]:

*̄ ⌫ (E8 , Ê8 ) � *̄ ⌫ (E 08 , Ê8 ) = (E8 � E 08 )&̄⌫ (Ê8 )
The proof for sellers follows by similar arguments.

C PROOF OF PROPOSITION 2
Let *̄ ⌫2 (E8 , Ê8 ) = *̄ ⌫ (E8 , Ê8 ) + 6̄(Ê8 ) denote the expected utility after
correction for any buyer 8 . Then, (6a) and (8a) can be rewritten as
follows, respectively:

*̄ ⌫2 (E8 , E8 ) � *̄ ⌫2 (E8 , Ê8 ), 8E8 , Ê8 , (9a)

*̄ ⌫2 (E8 , E8 ) � *̄ ⌫2 (E8 , Ê8 ), 8E8 , Ê8 = E8 � 1, E8 + 1. (9b)

To prove (6a) and (8a) are equivalent, we only need to show that
the above two inequalities are equivalent. First observe that the
function *̄ ⌫2 satisfying (9a) must satisfy (9b), which can be easily
proved by substituting Ê8 = E8 � 1, E8 + 1 into (9a). As for the other
direction of equivalence, it requires some more work as shown
below.

Suppose that the function *̄ ⌫2 satis�es (9b). The ‘upward’ part
of the AIC constraint (9b) tells that buyer 8 with true value E8 will
not obtain a higher expected utility when she submits an ‘upward’
adjacent value E8 + 1, i.e.,

*̄ ⌫2 (E8 , E8 ) � *̄ ⌫2 (E8 , E8 + 1) . (10)

Further, by increasing E8 by 1, we also obtain:

*̄ ⌫2 (E8 + 1, E8 + 1) � *̄ ⌫2 (E8 + 1, E8 + 2) . (11)

Combining this inequality with (7a), we can further derive that
*̄ ⌫2 (E8 , E8 + 1) � *̄ ⌫2 (E8 , E8 + 2) as follows:

*̄ ⌫2 (E8 , E8 + 1) = *̄ ⌫2 (E8 + 1, E8 + 1) � &̄⌫ (E8 + 1)
� *̄ ⌫2 (E8 + 1, E8 + 2) � &̄⌫ (E8 + 2) = *̄ ⌫2 (E8 , E8 + 2), (12)

where the inequality uses (11) and the monotonicity property of
&̄⌫ (Ê8 ) in Ê8 .

Similarly to (10) and (12), we can prove that *̄ ⌫2 (E8 ,E)�*̄ ⌫2 (E8 ,E +
1) for any value E � E8 . Thus, if Ê8 > E8 , we have:

*̄ ⌫2 (E8 , E8 ) � *̄ ⌫2 (E8 , E8 + 1),
*̄ ⌫2 (E8 , E8 + 1) � *̄ ⌫2 (E8 , E8 + 2),
· · ·
*̄ ⌫2 (E8 , Ê8 � 1) � *̄ ⌫2 (E8 , Ê8 ) .

By summing these above inequalities, we �nally obtain *̄ ⌫2 (E8 , E8 ) �
*̄ ⌫2 (E8 , Ê8 ) for Ê8 > E8 . Then, we can also prove it for Ê8 < E8 by using
the ‘downward’ adjacent part of (9b) that implies buyer 8 with true
value E8 will not obtain a higher expected utility when she submits
an ‘downward’ adjacent value E8 � 1. (9a) now holds and the proof
of the other direction of equivalence is completed. Therefore, we
can conclude that (9a) is equivalent to (9b) for buyers.

The proof for sellers follows by similar arguments.

D PROOF OF PROPOSITION 3
As we mention in Section 4.2, buyers would like to declare lower
values to reduce their buying prices. If buyer 8 with value E8 has a
greater expected utility when under-reporting the adjacent value
E8 � 1, Algorithm 2 (line 7) will increase the correction payment

6̄(U8 , E8 ) to make buyer 8 obtain the same expected utility when she
report E8 truthfully. Thus, any non-zero (being increased) 6̄(U8 , E8 )
returned by Algorithm 2 satis�es:

*̄ ⌫2 (U8 , E8 ,U8 , E8 ) = *̄ ⌫2 (U8 , E8 ,U8 , E8 � 1), (13)

where *̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) = *̄ ⌫ (U8 , E8 , Û8 , Ê8 ) + 6̄(Û8 , Ê8 ) denotes the
expected utility after correction for any buyer 8 . Using this result,
we will prove any buyer 8 has no incentive to under-report or over-
report her demand, respectively.

D.1 Under-reporting Demand (Û8 < U8 )
In this case, buyer 8 reports a lower demand than the true one and
she can only be assigned with no more than what she reports (i.e.,Õ
9 2S(8) 58 9  Û8 < U8 ) even if she has a high true demand. Thus,

she obtains exactly the same utility as if her true demand is what
she reports, i.e.,

*̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) = *̄ ⌫2 (Û8 , E8 , Û8 , Ê8 ),8E8 , Ê8 , Û8 < U8 . (14)

Since the correction payment returned by Algorithm 2 satis�es
the incentive compatibility constraints for values when buyers
truthfully reveal their demands, we have that *̄ ⌫2 (U8 , E8 , Û8 , E8 ) �
*̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) for all Ê8 when Û8 = U8 . Combining this inequality
with (14), we further derive that:

*̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) = *̄ ⌫2 (Û8 , E8 , Û8 , Ê8 )
 *̄ ⌫2 (Û8 , E8 , Û8 , E8 ) = *̄ ⌫2 (U8 , E8 , Û8 , E8 ),8E8 , Ê8 , Û8 < U8 .

Thus, it is best for buyers to truthfully reveal their values in the
under-reporting case. Without concern for misreporting of values,
we can prove that buyers have no incentive to under-report their
demands by simply proving:

*̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (Û8 , E8 , Û8 , E8 ),8E8 , Û8 < U8 . (15)

To prove that, we �rst �nd g , the minimum value such that the
correction 6̄(Û8 , g) returned by Algorithm 2 is not zero. For E8 < g ,
the correction 6̄(Û8 , E8 ) is zero and hence,

*̄ ⌫2 (U8 , E8 ,U8 , E8 )
(a)
� *̄ ⌫ (U8 , E8 ,U8 , E8 )

(b)
� *̄ ⌫ (Û8 , E8 , Û8 , E8 )

(c)
= *̄ ⌫2 (Û8 , E8 , Û8 , E8 ),8Û8 < U8 ,

where (a) is due to non-negative correction and (c) is because
6̄(Û8 , E8 ) = 0. (b) uses monotonicity property of *̄ ⌫ (Û8 , E8 , Û8 , E8 )
in Û8 , which can be derived by the monotonicity property of 58 9 in
Proposition 1.

Now, given *̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (Û8 , E8 , Û8 , E8 ) for all E8 < g , we
further prove *̄ ⌫2 (U8 , g,U8 , g) � *̄ ⌫2 (Û8 , g, Û8 , g) as follows:

*̄ ⌫2 (U8 , g,U8 , g)
(d)
� *̄ ⌫2 (U8 , g,U8 , g � 1)

= *̄ ⌫2 (U8 , g � 1,U8 , g � 1) + &̄⌫ (U8 , g � 1)
(e)
� *̄ ⌫2 (Û8 , g � 1, Û8 , g � 1) + &̄⌫ (Û8 , g � 1)

= *̄ ⌫2 (Û8 , g, Û8 , g � 1) (f)
= *̄ ⌫2 (Û8 , g, Û8 , g),8Û8 < U8 ,

where (d) uses the AIC of function *̄ ⌫2 when truthfully reporting
demand, (e) uses the given condition and the monotonicity property
of &̄⌫ (Û8 , Ê8 ) in Û8 , (f) is derived by (13) and the other two equalities
are based on (7a).



Then, by using mathematical induction, we can �nally prove
*̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (Û8 , E8 , Û8 , E8 ) for all E8 and Û8 < U8 as in (15).
Therefore, we conclude that buyers have no incentive to under-
report their demands. The proof of the under-reporting case for
buyers is completed.

D.2 Over-reporting Demand (Û8 > U8 )
First note that, in our system model, if buyer 8 gets more allocation
than her actual demand U8 , she will only use U8 resources and
the rest is useless. Then, we prove that by submitting a higher
demand Û8 > U8 , the expected amount of useful resources that
the buyer gets/uses is still &̄⌫ (U8 , Ê8 ), by considering the following
two cases. These are de�ned depending on whether the allocation
partially or fully satis�es buyer 8’s demand if she submits her true
demand U8 . In the former case, we prove that her allocation does
not change even if a higher demand is submitted given our use
of Algorithm 1 in the proof of Proposition 1. In the latter case,
Proposition 1’s monotonicity property also shows that her new
allocation by submitting a higher demand can only be equal to or
greater than U8 and the buyer will still only use U8 resources. Thus,
her expected utility function satis�es:

*̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) � *̄ ⌫2 (U8 , E8 � 1, Û8 , Ê8 ) = &̄⌫ (U8 , Ê8 ),
which is mainly due to the linearity of the utility functions. Com-
bining this equation with (7a), we obtain:

*̄ ⌫2 (U8 , E8 ,U8 , Ê8 ) = *̄ ⌫2 (U8 , Ê8 ,U8 , Ê8 ) + (E8 � Ê8 )&̄⌫ (U8 , Ê8 ),
*̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) = *̄ ⌫2 (U8 , Ê8 , Û8 , Ê8 ) + (E8 � Ê8 )&̄⌫ (U8 , Ê8 ) .

Observe that the second terms on the right-hand-side are the same
in the above two equations. Thus, *̄ ⌫2 (U8 ,E8 ,U8 ,Ê8 )�*̄ ⌫2 (U8 ,E8 ,Û8 ,Ê8 )
is equivalent to *̄ ⌫2 (U8 , Ê8 ,U8 , Ê8 ) � *̄ ⌫2 (U8 , Ê8 , Û8 , Ê8 ).

To show that the buyers have no incentive to over-report their
demands, we need to prove *̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (U8 , E8 , Û8 , Ê8 ) for
all E8 , Ê8 and Û8 > U8 . Note that the correction payment returned
by Algorithm 2 satis�es the incentive compatibility constraints
for values that *̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (U8 , E8 ,U8 , Ê8 ) when buyers
truthfully reveal their demands. Therefore, it is enough for us to
prove that *̄ ⌫2 (U8 , E8 ,U8 , Ê8 ) � *̄ ⌫2 (U8 , E8 , Û8 , Ê8 ), which, based on the
discussion in the above paragraph, is equivalent to:

*̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (U8 , E8 , Û8 , E8 ),8E8 , Û8 > U8 . (17)

First note that we only prove (17) for Û8 = U8 + 1 and the extension
to all Û8 > U8 follows the similar arguments. When Û8 = U8 + 1,
buyer 8 might be assigned with one unit more than what she needs
without extra bene�t. Thus,

*̄ ⌫2 (U8 , E8 ,U8 + 1, Ê8 ) = *̄ ⌫2 (U8 + 1, E8 ,U8 + 1, Ê8 )
�E8 Pr(- = U8 + 1|U8 + 1, Ê8 ),8E8 , Ê8 ,U8 , (18)

where Pr(- = U8 + 1|U8 + 1, Ê8 ) denotes the probability of being
assigned with U8 + 1 units when a buyer reports Û8 = U8 + 1 and
Ê8 . Moreover, we note that submitting a higher demand than the
true one increase 58 9 only when the true demand is fully satis�ed.
Without correction, payment for any extra resource allocation only
leads to negative utility, and hence we have:

*̄ ⌫ (U8 , E8 ,U8 + 1, E8 )  *̄ ⌫ (U8 , E8 ,U8 , E8 ),8E8 ,U8 . (19)

Next, we start to prove (17) for Û8 = U8 + 1 formally using (18)
and (19). Similarly, let g denote the minimum value with nonzero
correction 6̄(U8+1, g). For E8 < g , we can prove *̄ ⌫2 (U8 , E8 ,U8+1, E8 ) 
*̄ ⌫2 (U8 , E8 ,U8 , E8 ) as follows:

*̄ ⌫2 (U8 , E8 ,U8 + 1, E8 )
(g)
= *̄ ⌫ (U8 , E8 ,U8 + 1, E8 )

(h)
 *̄ ⌫ (U8 , E8 ,U8 , E8 )

(i)
 *̄ ⌫2 (U8 , E8 ,U8 , E8 ),

where (g) is because 6̄(U8 + 1, E8 ) = 0, (h) is derived by (19) and (i)
is due to non-negative correction.

Now, given *̄ ⌫2 (U8 , E8 ,U8 +1, E8 )  *̄ ⌫2 (U8 , E8 ,U8 , E8 ) for E8 < g , we
can further prove *̄ ⌫2 (U8 , g,U8 + 1, g)  *̄ ⌫2 (U8 , g,U8 , g) as follows:

*̄ ⌫2 (U8 , g,U8+1, g)
(j)
= *̄ ⌫2 (U8+1, g,U8+1, g) �gPr(- =U8+1|U8+1, g)
(k)
= *̄ ⌫2 (U8+1, g,U8+1, g�1)�g Pr(- =U8+1|U8+1, g)
(l)
 *̄ ⌫2 (U8+1, g,U8+1, g�1)�g Pr(- =U8+1|U8+1, g�1)
(m)
= *̄ ⌫2 (U8 , g,U8+1, g�1)
= *̄ ⌫2 (U8 , g�1,U8+1, g�1) + &̄⌫ (U8 , g�1)
 *̄ ⌫2 (U8 , g�1,U8 , g�1) + &̄⌫ (U8 , g�1)

= *̄ ⌫2 (U8 , g,U8 , g�1)
(n)
 *̄ ⌫2 (U8 , g,U8 , g),

where (j) and (m) are derive by (18), (k) is derived by (13) and (n)
uses the AIC of function *̄ ⌫2 when truthfully reporting demand. (l)
is due to the monotonicity property of Pr(- = U8 + 1|U8 + 1, Ê8 ) in Ê8 ,
which can be derived by the monotonicity property of

Õ
9 2S(8) 58 9

in Proposition 1.
Then, by using mathematical induction, we can �nally prove

*̄ ⌫2 (U8 , E8 ,U8 , E8 ) � *̄ ⌫2 (U8 , E8 , Û8 , E8 ) for all E8 and Û8 = U8 + 1 as in
(17). Therefore, we can conclude that buyers have no incentive to
over-report their demands. The proof of the over-reporting case
for buyers is completed.

The proof for sellers follows by similar arguments.


