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ABSTRACT
In this paper, we study the role that machine learning can play in

cooperative driving. Given the increasing rate of connectivity in

modern vehicles, and road infrastructure, cooperative driving is a

promising first step in automated driving. The example scenario we

explored in this paper, is coordinated lane merge, with data collec-

tion, test and evaluation all conducted in an automotive test track.

The assumption is that vehicles are a mix of those equipped with

communication units on board, i.e. connected vehicles, and those

that are not connected. However, roadside cameras are connected

and can capture all vehicles including those without connectivity.

We develop a Traffic Orchestrator that suggests trajectories based
on these two sources of information, i.e. connected vehicles, and

connected roadside cameras. Recommended trajectories are built,

which are then communicated back to the connected vehicles. We

explore the use of different machine learning techniques in accu-

rately and timely prediction of trajectories.

KEYWORDS
Cooperative driving, Lane merge, Intelligent transport system, V2X

communications, 5G, Mobile edge, MEC, Reinforcement Learning,

Machine Learning.

1 INTRODUCTION
With the advances of mobile communication in 5

𝑡ℎ
Generation

Mobile Network (5𝐺) to serve beyond broadband users, and address

the needs of more critical infrastructure from industrial networks

[1] to automotive [2], new connectivity era came to live. Additional

features of 5𝐺 radio in short range and high rate communication

with mmWave [3], and ability of direct communication between

vehicles (Vehicle-to-Vehicle, or V2V) as addressed under 5G Vehicle-

to-Everything (V2X) communications, enabled the long vision of

fully connected transportation. Connected vehicles, on the other

hand, provide a rich data platform in Intelligent Transport System

(ITS). Such data has resulted in enhancements to road safety, traf-

fic efficiency, improvement in environmental impacts and energy

costs [4]. A connected vehicle, or in other words, a vehicle capable

of transmitting and receiving data to and from the network can

potentially increase awareness of the driver (or the driving agent).

In this paper, we explore the role of different Machine Learning

(ML) techniques in order to predict trajectories in a cooperative

lane merge scenario. The edge cloud deployment is based on a

central entity that collects data from vehicles and roadside cameras,

and performs the prediction. We evaluate two different approaches,

the first one based on ML classifiers where four algorithms are

considered: Random Forest, K-Nearest Neighbours, Decision Tree

and Gradient Boosting. The second approach is based on using

Reinforcement Learning (RL). The main goal is to predict the most

appropriate manoeuvre for all the vehicles involved, so that the

merging vehicle can execute the manoeuvre safely.

The work from [5] was used as a starting point. In this paper, the

architecture for the Traffic Orchestrator was enhanced with three

main changes: 1) a new message format to communicate with the

latest versions of external components, 2) a mechanism for logging

and monitoring and 3) an alignment with a service-oriented archi-

tecture. On the other hand, a new Dueling Deep Q-Network (Du-

eling DQN) model was implemented and evaluated. Furthermore,

real-world tests were conducted in a test track
1
and a performance

evaluation of a cooperative lane merge scenario is presented. The

remainder of this paper is organised as follows. Section 2 provides

the state of the art for lane merge algorithms. Section 3 presents

the system model for cooperative lane merge. Section 4 presents

the data preparation methods, and the performance evaluation of

different ML models. Finally, the paper is concluded in Section 5.

2 STATE OF THE ART
In a collision free merge, a certain safety distance between the

merging vehicle and the other vehicles is required. A problem arises

when the gap between vehicles on the merging lane is not enough

for the merging vehicle to fit in between. Therefore, a lane merge

coordination algorithm is needed to perform actions on merging

vehicles providing successful and safe lane merges [6].

In the last few years, significant progress has been made in

solving this challenging problem. In [7], a representation of the

on-road environment (Dynamic Probabilistic Drivability Map) was

presented which delivers cost effective recommendations based on

dynamic programming. The theoretical formulation of this work

was tested with data from 40 real-world merges. In [8], a work-in-

progress using Long Short-Term Memory architecture with Deep

Q-Learning was presented. The scenario considers an on-ramp

merging involving three vehicles: the merging vehicle and two

vehicles on the mainline. The work considers as input variables:

speed, position, heading angle, and distances to the right and left

lane. The algorithm has not been verified or validated.

The work in [9] adopts a deep RL approach handling input val-

ues from camera and laser sensor the vehicle owns. A monolith

architecture embedded in the vehicle was proposed, so that every

vehicle that includes the equipment specified would have to gen-

erate the calculations. In [10], the authors used Bayes Classifiers

1
Tests and evaluations were conducted in UTAC CEARM (Paris) site:

https://www.utacceram.com/proving-grounds
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Figure 1: Lane merge coordination scenario.

and Decision Trees to predict if a vehicle can merge. Although the

results proved accurate in some cases, the approach did not detail

the lane merge trajectory that should be used.

A discussion of the assessment that needs to be carried out

before Deep Learning can be considered in autonomous vehicles is

presented in [11]. RL only guarantees a convergence for an optimal

value function if every state is visited infinite number of times. For

starters, a large amount of data would be needed in order to simulate

visiting the states an infinite number of times, obviously infeasible

due to time constrains. However, with some work done in function

approximation, the reward can be calculated with the state and

action only, thus minimising the storage needed to hold the infinite

sets of combinations, which is where the deep learning component

alleviates the problem by generalising the approximation function.

Reward function also provides a way for the agent to prioritise

tasks codifying necessary behaviour to an agent, which is vital for

an optimal function to be learned [12].

3 COOPERATIVE LANE MERGE MODEL
The cooperative lane merge scenario examined in this work is de-

picted in Fig. 1, where a connected vehicle will attempt to merge

onto a carriageway in which connected and unconnected vehicles

are also present. The general architecture aggregates data for the

cameras (regarding connected and unconnected vehicles) and from

the connected vehicles themselves, with such as data, the coordina-

tion model is able to react to road changes and to predict trajectory

recommendations. Through an edge cloud approach, bespoke trajec-

tory recommendations are sent by central coordination mechanism

to connected vehicles. The model consists of 5 different compo-

nents: a Vehicle-to-Everything (V2X Gateway), an Image recognition
system, a Global Dynamic Map (GDM), a Data Fusion and a Traffic
Orchestrator.

The V2X Gateway is a context-based messaging system who is

responsible for forwarding messages among components in the

architecture. The V2X Gateway also provides communication with

connected vehicles by means of the 5𝐺 Network. The 5𝐺 communi-

cation seeks to maintain the physical connection between the V2X
Gateway and the connected vehicles, but also allows edge comput-

ing, network slicing, and quality of service. Furthermore, the V2X
Gateway enforces a subscription based model for applications, such

as the Traffic Orchestrator, to receive messages regarding vehicular

description and trajectory information.

The main goal of the Image recognition system [13] is to deliver

data regarding unconnected vehicles, however, it collects informa-

tion about all the vehicles on the road (connected and unconnected

ones) in a specified area. In this sense, the data delivered by the

Image recognition system is partially duplicated, since connected

vehicles share their own data too. The data shared by connected

vehicles and the Image recognition system includes the localisa-

tion and trajectory-based parameters. The Image recognition sends

the obtained data to the V2X Gateway, which in turn forwards

the messages to the GDM. The GDM stores environmental infor-

mation about connected and unconnected vehicles in a database.

The GDM ensures that stored data is up to date. The Data Fusion
provides a synchronisation mechanism for data originating from

different sources (e.g., one from the Image recognition system and

another from a connected vehicle in a closely localised time frame,

respectively). The Data Fusion sends the information to applications

that are subscribed to a specific location boundary. Additionally, it

includes the monitoring and evaluation platform to assess commu-

nication Key Performance Indicators (KPIs).

The Traffic Orchestrator will process data regarding connected
and unconnected vehicles to give rise to trajectories for connected

vehicles. The Traffic Orchestrator considers time-critical variables

such as timestamp, vehicle location, speed and vehicle-specific di-

mensions. Once the Traffic Orchestrator provides a coordinated

trajectory recommendation for a single or set of road users, this

trajectory will then be sent to the V2X Gateway forwarding them

to the connected vehicles. The connected vehicles have the choice

to either accept, reject or abort the recommendation. This feedback

information can be used to recalculate trajectory recommendations.

To this end, a set of messages was defined for communicating all

the components within the lane merge coordination. Messages used

in the communication will employ a common message formatting

based on JavaScript Object Notation (JSON). This allows to com-

municate human-readable text, that can be received and processed

in any software component.

The proposed architecture for the Traffic Orchestrator system is

presented in Fig. 2. The main purpose of the Detection Interface is
to receive data coming from the V2X-Gateway, over a Transmission

Control Protocol (TCP) connection. The Detection Interface reads
JSON strings and commences the process of converting the JSON

readable messages into more compact and computer efficient enti-

ties to feed the models. Similarly, the Network Interface translates
information within the Traffic Orchestrator, to information that is

readable and accepted by the V2X-Gateway. A Knowledge Base has
been designed to store the information sent to the Traffic Orches-
trator. The Knowledge Base, although simpler than a database, will

have to mimic the access and modification functions of a typical
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Figure 2: Proposed Traffic Orchestrator architecture.

database. It is maintained to guarantee that a manoeuvre recom-

mendation is calculated based on all current road-environment

knowledge. The Knowledge Base will contain only the data that the

GDM has most recently transmitted. This will prevent maintaining

information within the Traffic Orchestrator that is out-of-date or
no longer relevant. The Exchange Interface has two responsibilities:

mediate the flow of information across all interfaces in the Traffic
Orchestrator and provide access for consistent methods to a set of

Traffic Orchestrator functionalities, allowing different algorithms

to run on top of it.

4 RESULTS
This section draws the experiences of using ML for predicting tra-

jectories in a cooperative driving environment. Initially, the data

preparation process is highlighted, then two different approaches

are presented. The first one is focused on the performance of differ-

ent ML classifiers including Random Forest, K-Nearest Neighbours,

Decision Tree and Gradient Boosting [5]. The second approach

uses Dueling DQN, and its implementation is further discussed

here. Moreover, evaluations are performed in the test track from

where we analyse the predicted trajectories based on the vehicles’

positioning information (longitude/latitude) and their acceleration.

Finally, we provide some lessons learnt regarding the design imple-

mentation and the overall demonstration.

Table 1: Scores of different machine learning algorithms.

Model Merge Acceleration Heading

Random Forest 90.87 75.74 61.20

K-Nearest Neighbours 87.05 − −
Decision Tree 86.84 − −
Gradient Boosting − 76.55 62.85

4.1 Data Preparation
Two distinct datasets collected by Federal Highway Administration

Research and Technology
2
are adopted in this work. Theses datasets

represent the data collected from two American motorways: 𝐼 − 80

and 𝑈𝑆 − 101. The dataset contains more than 10.8 million rows

with 25 values per sample (e.g., vehicle identifier, coordinates, speed,

acceleration, size and heading of the vehicle).

We defined a lane merge instance using 3 vehicles as shown in

Fig. 3, whereby, the merging vehicle (denoted M) has the goal of

joining a new lane in between a preceding (denoted P) and following
(denoted F ) vehicle. This allows a more compact implementation

which is conservative on terms of computing resources and model

convergence time. Moreover, this abstraction permits to extrapolate

to a more complex lane merge scenarios with different number of

lanes on the road. We extracted every lane merge instance within

the dataset along with their corresponding information. To obtain

as much data as possible about a potential lane merge, data from

4 seconds before and 3 seconds after the lane change is detected

and subsequently stored. Since the sample rate of the dataset is 10

sample per second, a total of 70 samples per lane merge instance

were extracted.

The extracted data was labelled as follow: if a lane merge is

possible, the recommendation is true (Fig. 3a), otherwise false (Fig.
3b). All the cases in which the merging vehicle (M) is behind the

following vehicle (F) on the new lane, are labelled as false (Fig. 3c),
since they are not relevant. A safe distance between the front of

the merging vehicle (M) and the back of the preceding vehicle (P)

was maintained between the vehicles. Furthermore, a safe distance

between the back of the merging vehicle (M) and the front of the

following vehicle (F) was maintained between the vehicles.

4.2 First approach: ML Classifiers
In order to evaluate the most suitable ML classifier for predicting

lane merges, acceleration and heading, 4 different ML classifiers

are analysed, i.e., Random Forest, K-Nearest Neighbours, Decision

Tree and Gradient Boosting.

To detect a lane merge, we use previously prepared data which

contain a list of measurements for each vehicle. The process stores

the information about the initial lane number and compares that

value with the current lane. A trajectory recommendation checker

was implemented to guarantee safety. For the checker to determine

whether a trajectory recommendation could be true, it checks if
the gap is wide enough to accommodate the merging vehicle. The

recommended acceleration is calculated with three rules: 1) false
lane marge recommendations use the average speed to the first

2
https://www.fhwa.dot.gov

https://www.fhwa.dot.gov
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(a) true recommendation. (b) false recommendation. (c) Merging vehicle is “behind" following vehicle.

Figure 3: Design premises for different road situations.

point at which a recommendation is true, 2) any position before

the merging point uses an average of the accelerations from the

considered position, to the merging point and 3) for any position

after the merging point, an average of the accelerations from the

merging point to the considered location, is calculated. The heading

for true trajectory recommendations should lead the vehicle to the

merging point. For false recommendations, the vehicle should be led

to the first location at which trajectory recommendations becomes

true.
To avoid over-fitting, two hyperparameters were adjusted: max-

imum_depth and number_of_estimators. The values considered for

the number_of_estimators were: 1, 2, 5, 10, 20, 35, 50, 75 and 100.

The best value for the number_of_estimators is 100 for the 4 al-

gorithms. On the other hand, maximum_depth is individually ad-

justed for every algorithm. To select the maximum_depth when

predicting lane merges, 30 consecutive depths (ranging from 1 to

30) were considered for Random Forest and Decision Tree, and 50

for K-Nearest Neighbours (ranging from 1 to 50). To select a proper

maximum_depth for the Random Forest, we estimated the error on

the validation and training sets for every maximum depth value.

The value was chosen by comparing the results obtained on the val-

idation set with the specified number for depth. The value of 16 was

the last for which the accuracy of the validation set was not worse

than 1.5% than the accuracy on the training set. The accuracy of

the test set was the same as the accuracy on the validation set. The

same technique was used to train the no over-fitting Decision Tree.

The best value for which the model was not over-fitting was equal

to 11 and showed less than 1% of difference with the validation set.

The K-Nearest Neighbours algorithm has a different property: the

lower the number of 𝐾 , the higher the probability of over-fitting.

To minimise the chance of over-fitting, 𝐾 was set to 50.

Table 1 shows a summary of the obtained scores for predicting

lane merges. Random Forest obtained the higher score among the

classifiers when predicting merges. On the other hand, acceleration

and heading did not achieve optimal values to be considered as op-

tions for testing with real vehicles on the test track. The scores were

calculated using two functions (sklearn.metrics): accuracy_score and
score. The accuracy_score function uses multi-label classification

and was used to estimate the scores on the validation dataset. The

score function returns the mean accuracy on the given test data

and labels. This function was used to calculate scores on the train-

ing dataset. Moreover, for Random Forest cross_val_score function
(sklearn.model_selection) was used. This function estimates a score

using cross-validation techniques.

4.3 Second approach: Dueling DQN
Accuracy in acceleration and heading is essential for a safe lane

merge manoeuvre, since an error on those predictions can lead

vehicles towards an unwanted location, provoke accidents, produce

unpleasant and risky manoeuvres by accelerating very quickly. Due

to the low accuracy when predicting acceleration and heading by

the ML classifiers, we decided to focus on a second approach using

RL. So, Dueling DQN was trained using the same dataset that was

split into 3 subsets: training, testing and validation where each

of them with 70%, 20% and 10% of the size of the original dataset

respectively. We used the validation subset to adjust the model and

the test subset to check its performance.

The reward function is calculated based on the vehicle position

relative to the optimal merging point. A desired final state, is when

the merging vehicle is successfully placed in between the following

and preceding vehicle, while keeping a safety distance. To select the

most appropriate reward function, two versions are evaluated: pos-

itive and negative reward. Fig. 4 shows a histogram of positive and

negative rewards assigned for each way-point in a trajectory rec-

ommendation during training time of the model. The positive and

negative reward follow the same general pattern, but the positive

reward has an increase in magnitude at a reward of 0.8. The agent

obtained a large density of rewards allocated at 0.8 that proves the

existence of a global minima in the positive reward function. The

model needs to surpass this value in order to obtain a successful

merge, which the negative reward function did not face. Based on

that, the Dueling DQN model with positive reward is more reliable.

4.4 Cooperative Driving Evaluation in the Test
Track

The test track for the cooperative driving scenario is shown in

Fig. 5a. For the tests, three connected vehicles are used (merging,

following and preceding) while the fourth is unconnected. The lane

merge coordination elements presented in Fig. 1 were implemented

using the Image Recognition system from [13], the GDM, the V2X
Gateway, the 5𝐺 Network and the edge cloud from [14]. The Traf-
fic Orchestrator (Fig. 2) was implemented using the Dueling DQN

model with positive reward, since it is more reliable in terms of pre-

dicting acceleration and heading, compared with the ML classifiers.

The evaluation consists of two main results: the human likeness of

the predicted trajectory and the predicted acceleration.

In order to compare live Traffic Orchestrator’s predicted trajecto-

ries and human trajectories, a preliminary test was implemented

without the interaction of the Traffic Orchestrator, while the rest
of the architecture was up and running. To do that, several merges

were performed in the test track to get statistics of those merges on

the road. During those tests, the Image Recognition and connected

vehicles were sending data to be stored by the Data Fusion. These
preliminary tests are the human merges that are used to compare

the predicted trajectory and the human likeness of the manoeuvre.
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(a) Negative Rewards

(b) Positive Rewards

Figure 4: Histogram for comparing assigned rewards for tra-
jectory recommendation by Dueling DQN agent.

Fig. 5𝑏 shows the latitude and longitude of the merging scenario

for human and predicted way points. The general shape of the

merge has been detected and successfully predicted by the Traffic
Orchestrator corresponding to the road architecture (Fig. 5), this

is an indicator that the model can adapt and generalise to unseen

real world scenarios, on the other hand, it is clear that there is a

bias from the predicted way points. During the tests, the RL model

required a high synchronisation level with other components in

real-time, therefore, high frequency, low latency and great precision

were required to ensure that the Traffic Orchestrator could feed the

correct data to the RL. As such, the bias could stem from the minor

delays the architecture incurred.

On the other hand, Fig.6 presents the Empirical Cumulative

Distribution Function (ECDF) of the acceleration for each vehicle

on the test track. The majority of the acceleration values lied in the

range 0−2𝑚2/𝑠 which is a good value for acceleration that mimics a

human driver during a lane merge. This is a good indicator that the

Traffic Orchestrator (TO) predicted acceleration values that provided
a smooth trajectory recommendation during the manoeuvre. From

the following vehicle’s point of view, the recommendations given

had the intended purpose of slowing down the following vehicle to

create a larger gap in between the vehicles on the target lane, for a

safer and smoother merge experience.

4.5 Lesson learnt
In general, lane merge is a challenging use case in cooperative

driving, since there aremultiple connected and unconnected entities

involved and should be coordinated. As a result, there is also a large

(a) UTAC test track for lane merge scenario
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Figure 5: Real trajectories from the test track.
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Figure 6: ECDF of acceleration during merging.

amount of architecture components to interact with each other. To

this end, the first lesson learnt is to avoid dependency on external

components, where possible. The Traffic Orchestrator faced a few

challenges during the testing phase, due to its strong dependency on

data quality, synchronisation and availability of other components

which could not be avoided.

A granular design for developing ML applications can improve

performance, for instance, creating independent and custom mi-

croservices for predicting each desired feature such as merges,

acceleration and heading. This could require the addition of a man-

agement layer on top of them. By doing so, hyperparameters can

be adjusted according to the needs of each model. This will also

speed up debugging process and future improvements. Even though
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model’s performance is very important for the Traffic Orchestrator,
in real evaluation tests, defining automotive KPIs is a key step to

measure general performance across the architecture. In the lane

merge scenario, the inter-vehicle distance, manoeuvre length and

acceleration are suggested.

In terms of network performance, the round-trip-time of a trajec-

tory recommendation is a good indicator but it requires a high level

of synchronicity across every component, in order to be measured.

In this context, default TCP configuration of certain mechanisms

like delayed acknowledgements and the congestion control algo-

rithm need to be adjusted for this particular scenario, so that the

optimal network performance can be achieved. On the other hand,

implementing a performance monitoring system is very helpful for

noticing, understanding and locating performance issues. Moreover,

it provides a new rich source of real data.

5 CONCLUSION
In this paper, we presented a cooperative driving scenario, i.e., lane

merge coordination. The model is based on central decision making

entity at the edge cloud, communicating with the vehicles using

a 5𝐺 network. Different machine learning techniques, including

Random Forest, K-Nearest Neighbours, Decision Tree, Gradient

Boosting and Dueling DQN, are used to combine information from

connected vehicles as well as roadside cameras, and predict safe

trajectories in timely manner. Our results show that the Dueling

DQN model perform best by providing more human-like trajecto-

ries. Predicted trajectories provide smooth driving experience of

acceleration in the range of 0 − 2 𝑚2/𝑠 . The Traffic Orchestrator
achieved a real-time processing for generating safe and successful

lane merges, however future works need to be carried out in order

to improve Data Fusion’s processing time and to enhance transport

protocol performance.

ACKNOWLEDGMENTS
This work has been performed in the framework of the H2020

project 5GCAR co-funded by the EU. The views expressed are those

of the authors and do not necessarily represent the project. The

consortium is not liable for any use that may be made of any of the

information contained therein. This work is also partially funded

by the EPSRC INITIATE EP/P003974/1 and The UK Programmable

Fixed and Mobile Internet Infrastructure.

REFERENCES
[1] T. Mahmoodi et al. “VirtuWind: virtual and programmable

industrial network prototype deployed in operational wind

park”. In: Emerging Telecommunication Technologies, 5GPPP
feature issue 27.9 (2016), pp. 1281–1288.

[2] M. Fallgren et al. “Fifth-Generation Technologies for the

Connected Car: Capable Systems for Vehicle-to-Anything

Communications”. In: IEEE Vehicular Technology Magazine
13.3 (2018), pp. 28–38.

[3] T. Zugno et al. “Towards Standardization of Millimeter Wave

Vehicle-to-Vehicle Networks: Open Challenges and Perfor-

mance Evaluation”. In: arXiv (2020).

[4] 5GAA. The Case for Cellular V2X for Safety and Cooperative
Driving. Nov. 2016. url: http://5gaa.org/wp-content/uploads/
2017/10/5GAA-whitepaper-23-Nov-2016.pdf.

[5] L. Sequeira et al. “A Lane Merge Coordination Model for a

V2X Scenario”. In: 2019 European Conference on Networks
and Communications (EuCNC). 2019, pp. 198–203.

[6] H. C. Hsu and A. Liu. “Kinematic Design for Platoon-Lane-

ChangeManeuvers”. In: IEEE Transactions on Intelligent Trans-
portation Systems 9.1 (2008), pp. 185–190.

[7] S. Sivaraman et al. “Merge recommendations for driver as-

sistance: A cross-modal, cost-sensitive approach”. In: 2013
IEEE Intelligent Vehicles Symposium (IV). 2013, pp. 411–416.

[8] P. Wang and C. Chan. “Formulation of deep reinforcement

learning architecture toward autonomous driving for on-

ramp merge”. In: 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC). 2017, pp. 1–6.

[9] A. R. Fayjie et al. “Driverless Car: Autonomous Driving Using

Deep Reinforcement Learning in Urban Environment”. In:

2018 15th International Conference on Ubiquitous Robots (UR).
2018, pp. 896–901.

[10] Y. Hou, P. Edara, and C. Sun. “Modeling Mandatory Lane

Changing Using Bayes Classifier and Decision Trees”. In:

IEEE Transactions on Intelligent Transportation Systems 15.2
(2014), pp. 647–655.

[11] Q. Rao and J. Frtunikj. “Deep Learning for Self-Driving Cars:

Chances and Challenges”. In: 2018 IEEE/ACM 1st Interna-
tionalWorkshop on Software Engineering for AI in Autonomous
Systems (SEFAIAS). 2018, pp. 35–38.

[12] Himanshi Sahni. Reinforcement Learning never worked, and
’deep’ only helped a bit. 2018. url: https://himanshusahni.

github . io / 2018 / 02 / 23 / reinforcement - learning - never -

worked.html.

[13] K. Cordes and H. Broszio. “Constrained Multi Camera Cali-

bration for Lane Merge Observation”. In: 14th International
Conference on Computer Vision Theory and Applications (VIS-
APP). Feb. 2019.

[14] M. Fallgren et al. “Multicast and Broadcast Enablers for High-

Performing Cellular V2X Systems”. In: IEEE Transactions on
Broadcasting 65.2 (2019), pp. 454–463.

http://5gaa.org/wp-content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf
http://5gaa.org/wp-content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf
https://himanshusahni.github.io/2018/02/23/reinforcement-learning-never-worked.html
https://himanshusahni.github.io/2018/02/23/reinforcement-learning-never-worked.html
https://himanshusahni.github.io/2018/02/23/reinforcement-learning-never-worked.html

	Abstract
	1 Introduction
	2 State of the Art
	3 Cooperative Lane Merge Model
	4 Results
	4.1 Data Preparation
	4.2 First approach: ml Classifiers
	4.3 Second approach: dueling-dqn
	4.4 Cooperative Driving Evaluation in the Test Track
	4.5 Lesson learnt

	5 Conclusion
	Acknowledgments

