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ABSTRACT
The Web is a canonical example of a competitive retrieval setting
where many documents’ authors consistently modify their doc-
uments to promote them in rankings. We present an automatic
method for quality-preserving modification of document content —
i.e., maintaining content quality — so that the document is ranked
higher for a query by a non-disclosed ranking function whose
rankings can be observed. The method replaces a passage in the
document with some other passage. To select the two passages, we
use a learning-to-rank approach with a bi-objective optimization
criterion: rank promotion and content-quality maintenance. We
used the approach as a bot in content-based ranking competitions.
Analysis of the competitions demonstrates the merits of our ap-
proach with respect to human content modifications in terms of
rank promotion, content-quality maintenance and relevance.

1 BACKGROUND AND MOTIVATION
Several research communities nurture work on adversarial attacks
on algorithms. The motivation is to push the sate-of-the-art by
identifying model and algorithmic weaknesses. The “attacked” algo-
rithms are often used in real-life systems (e.g., face recognition [14]).
Exposing their vulnerabilities is considered an accelerator for inno-
vation more than a threat.

A classic example is the crypto community. Throughout the
decades, publications of successful attacks on crypto mechanisms
helped to push forward improvedmechanisms [7]. Additional exam-
ples are the machine learning, natural language processing and vi-
sion communities. There has recently been much work on devising
adversarial attacks on machine learning algorithms — specifically
neural networks — that span different tasks: general machine learn-
ing challenges [20, 35, 40], reading comprehension [22], speaker
identification [27], object detection [43], face recognition [14], and
more. This line of work has driven forward the development of
algorithms which are more robust to adversarial examples; e.g., Jia
et al. [23], He et al. [19], Zhang et al. [47].

The Web search echo-system is, perhaps, the largest-scale ad-
versarial setting in which algorithms, specifically search methods,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

operate. That is, many document authors consistently modify their
documents to have them more highly ranked for specific queries.
This practice is often referred to as search engine optimization
(SEO) [18]. The incentive is quite clear: high ranks translate to
high utility as most of the attention — and therefore engagement
— of search engine users is focused on the documents most highly
ranked [25]. Some SEO techniques are considered “illegitimate”
(a.k.a., black hat [18]) as they are unethical and hurt the echo-
system (e.g., search effectiveness and/or user experience); spam-
ming is a prominent example. Other techniques are considered
completely “legitimate” (a.k.a., white hat [18]) as they are intended
to improve documents’ representations with respect to queries to
which they pertain. Thus, in the “ranking games” that take place
on the Web [41], the documents’ authors are “players” or “adver-
saries” whose adversarial actions can be “legitimate” (white hat) or
“illegitimate” (black hat); the search engine’s ranking function is
the mediator.

Despite its importance as a large scale and highly evolved adver-
sarial setting, and despite the research attention paid to adversarial
attacks and defenses in other research communities as mentioned
above, the adversarial effects in the Web search echo-system have
attracted relatively little research attention [1, 8]. An important
reason for this reality is that developing black hat SEO techniques
is unethical, and can hurt the search echo-system in the short term.
Yet, it can also potentially help to find vulnerabilities of search func-
tions which is important for improving them in the long run. We
subscribe to the stand that, despite the potential long term merits,
such type of work should see no place in scientific publications.

Still, an important question is why there is not a much larger
body of work on addressing adversarial effects. The vast majority
of such work has been on spam identification [1, 8]. One part of
the answer seems to be that many of the adversarial effects are
due to, or involve, the dynamic nature of the Web — changes of
pages, ranking function, indexing cycles, etc. For example, the fact
that some authors are incentivized to compete for improved rank-
ing yields, in white hat settings, negative impact on the search
echo-system; specifically, degrading topical diversity in the cor-
pus [4, 38]1. Studying such dynamics in terms of rankings seems to
require access to query logs of large-scale commercial Web search
engines. In other words, it is very difficult to impossible to replicate
the dynamic search setting on the Web. In contrast, for example,
devising and evaluating content-based spam classifiers can be done
using a static snapshot of documents and regardless of rankings.

We claim that the state-of-affairs just described, in terms of the
limited volume and scope of work on adversarial Web search, is
1Similar dynamics in recommendation systems was also studied [5].
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nowadays being challenged to a major extent and there is a call to
action. In the last few years there has been a dramatic change in
terms of the potential ability to generate large scale and high quality
black hat content effects. For example, advanced language modeling
techniques such as BERT [10], GPT2 [37] and XLNet [44] can be
used to automatically generate fake content at scale [45]. While
fake content could be considered spam, it is way more difficult to
identify than classic spam, especially when generated using the
above mentioned state-of-the-art techniques [45]; as a case in point,
fake content could still be of high quality. Another example for a
modern threat on search engines is that for neural-based retrieval
methods [34]. It could be the case that adversarial attacks on neural
methods used for vision and NLP applications as mentioned above
will soon be translated to attacks on ranking methods.

One of the important implications of the reality just described
is that Web document authors who will not use automatic tools
for content creation and manipulation, specifically for automatic
white-hat SEO which will help their documents to be highly ranked
when they deserve to, will not be competitive in the adversarial
search setting. This implication, together with the fact that creating
benchmarks that will allow to research dynamic and adversarial
search settings remains highly difficult to impossible to achieve,
motivate our work. That is, given the increased ability to hurt the
search echo-system, we strive to counter balance it by developing
legitimate, white hat, tools that can (i) help Web authors in the
competitive search setting without hurting the search echo-system,
and (ii) be used for creating publicly available benchmarks that will
allow to study competitive and adversarial dynamic search settings.

2 CONTRIBUTION
We present the first, to the best of our knowledge, attempt to devise
an automatic method of “legitimate”, white hat, content modifi-
cation of documents. The goal of the modification is promotion
in rankings induced by a non-disclosed relevance ranking func-
tion for a given query. The method can observe past rankings for
the query which are the only signals about the ranking function.
By “legitimate” modification we mean a change that maintains the
document’s content quality in contrast to black hat SEO [18].

Our method replaces a short passage of the document with an-
other short passage from a candidates pool. We cast this passage
replacement task as a learning-to-rank (LTR) [32] problem over pas-
sage pairs: a passage in the document and a candidate passage for
replacement. The optimization goal for training the LTR function
is bi-objective: rank promotion and content-quality maintenance
which we address via presumed coherence maintenance. The high-
est ranked passage pair is selected for the replacement.

We evaluated our approach by using it as a bot in content-based
ranking competitions we organized between students2. The compe-
titions were approved by international and institutional ethics com-
mittees. In the competitions, the bot produced documents which
were promoted in rankings to a larger extent than the students’ doc-
uments. Furthermore, the bot’s content modifications did not hurt
relevance in contrast to students’ modifications of their documents,
and maintained content quality to a large extent.

2The dataset is at: https://github.com/asrcompetition/content_modification_dataset;
the code is at https://github.com/asrcompetition/content_modification_code.

Hence, although simple, our approach constitutes a first scientific
proof of concept for the feasibility of manipulating document con-
tent for rank promotion in search engines while maintaining the
document quality. It is important to keep in mind that our focus in
this paper is on the basic task of selecting passages of the document,
and passages from some given pool, to perform the replacement.
Creating the pool of candidates for replacement is an important task
at its own right which we discuss as a future work; e.g., leveraging
the recent significant progress in automatic language generation
capabilities mentioned above. For the proof of concept in this paper,
we simply used a pool of passages extracted from other documents
which were highly ranked for the given query in past rankings. The
motivation for this practice is based on some recent observations
about SEO strategies employed by publishers [38]; namely, that
they tend to mimic documents highly ranked in the past. Obvi-
ously, this is not a practical solution for pool generation due to
copyright issues, but rather a means to our end of evaluating our
proposed learning-based approach for passage replacement. In addi-
tion to devising methods for creating a pool of candidate passages,
moving towards a practical application of our approach will call
for introducing modifications which are not content-based. While
content-based features are extremely important in Web ranking
functions [32], there are other types of important features.

The line of research we pursue is important not only for docu-
ment authors so as to “keep up” with the ranking game in a legiti-
mate manner, but also for those who devise ranking functions in
adversarial retrieval settings. That is, having document modifica-
tion methods will allow to create a myriad of benchmarks which
do not exist today for studying dynamic retrieval settings, even if
in our case these are white hat.

3 RELATEDWORK
There is a body of work on identifying/fighting black hat SEO;
specifically, spam [1, 8]. Our approach is essentially a content-based
white hat SEO method intended to rank-promote legitimate docu-
ments via legitimate content modifications.We are not aware of past
work on devising such automatic content modification procedures.

Our approach might seem at first glance conceptually similar to
the black hat stitching technique [18]: authors of low-quality Web
pages manually “glue” to their documents unrelated phrases from
other documents. In contrast, our approach operates on descent
quality documents and is optimized to maintain document quality.

Our approach can conceptually be viewed as ranking-incentivized
paraphrasing: modifying the document to promote it in rankings,
but keeping content quality and having the content remain faithful
to the original content. Past work on paraphrasing (e.g., [2]) does
not include methods intended to promote documents in ranking.

We use simple estimates (e.g., lexical and Word2Vec similarities)
to measure the extent to which content coherence is maintained
given the passage replacement. More evolved estimates can be
used to this end [16, 28, 29, 31, 36]. Furthermore, one could modify
the document using text-generation approaches that account for
coherence [17, 21, 26], which we leave for future work.
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4 CONTENT MODIFICATION APPROACH
Suppose that the author of a document with descent content quality
would like the document to be highly ranked for a query q by
a search engine whose ranking function is not disclosed. More
specifically, the author observes the current ranking, πcur , induced
for q, and her goal is to promote her document, dcur , in the next
induced ranking, πnext , assuming that dcur was not the highest
ranked in πcur . We present an approach to automatically modifying
dcur ’s content to this end, yielding a document dnext .3

There are three desiderata for the content modification: (i) max-
imizing the likelihood that dnext will be positioned in πnext at
a higher rank than dcur ’s current rank in πcur , (ii) maintaining
content quality, and (iii) having dnext faithful to dcur in terms of
the provided information.

In reference to work on passage-based document paraphrasing
(e.g., Barzilay and Lee [3]), we perform the content modification by
replacing one of dcur ’s short passages with another short passage
from a given pool of candidates, Gpool .4 The goal is to optimize
the replacement with respect to the desiderata mentioned above.
We cast the task as a learning-to-rank challenge [32] over pairs
of passages, (дsrc ,дtarдet ), where дsrc ∈ G(dcur ) and дtarдet ∈
Gpool ; G(dcur ) is the set of dcur ’s passages. The highest ranked
passage pair is used for replacement.

Candidate passages in the pool Gpool can be created in various
ways; e.g., from scratch using language generation techniques, or
by paraphrasing passages in dcur or those in other documents.
However, our focus here is on the passage-pair ranking challenge,
and more generally, on the first proof of concept for the content-
modification challenge we pursue. Hence, we used a simple ap-
proach to create Gpool following recent findings about strategies
employed by documents’ authors to promote their documents in
rankings [38]: authors tend to mimic content in documents that
were highly ranked in the past for a query of interest. The merits
of this strategy were demonstrated using theoretical and empirical
analysis [38]. The simple motivation behind this strategy is that
induced rankings are the only (implicit) signal about the ranking
function, and documents highly ranked are examples for what the
ranking function rewards. Accordingly, here, Gpool is the set of all
passages in documents ranked higher than dcur in πcur . In practi-
cal applications, these passages will not be used directly to avoid
copyright issues. As noted above, they can be paraphrased, or the
passage pool creation can alternatively rely on automatic passage
generation. We leave these challenges for future work.

4.1 Learning to Replace Passages
The ranking function for passage pairs, (дsrc ,дtarдet ), should be
optimized for the three desiderata described above. Here we focus
on the first two — rank promotion and maintaining content quality.
Since content quality is a difficult notion to quantify, we set as a goal
to not significantly hurt “local coherence” in terms of the passage
relations (e.g., semantic similarities) to its surrounding passages.

We do not directly address the desideratum of dnext ’s faithful-
ness to dcur . Yet, using the coherence-based features suggested

3The “next ranking” is induced after the search engine indexed dnext instead of dcur .
4The approach does not depend on the passage markup technique.

below and the fact that дsrc and дtarдet are short passages help to
keep dnext “semantically similar” to dcur .

Our passage-pair ranking function is optimized, simultaneously,
for achieving rank promotion andmaintaining local coherence. This
is a dual-objective optimization. Inspired by work on learning Web
ranking functions with a dual objective: relevance and freshness [9,
12, 13], we use labels which are aggregates of rank-promotion and
coherence labels.

Specifically, if dcur is a document in the training data, and πcur
is the current ranking it is part of, we produce a rank-promotion la-
bel r with values in {0, 1, . . . , 4} and a local-coherence maintenance
label c with values in {0, 1, . . . , 4} for each pair (дsrc ,дtarдet ) in
G(dcur ) ×Gpool . Details about producing these labels are provided
in Section 5. We then produce a single label l (∈ {0, . . . , 4}) for
(дsrc ,дtarдet ) by aggregating r and c using the (smoothed) har-

monic mean [9]: l
def
=

(1+β 2)rc
r+β 2c+ϵ , where β is a free parameter that

controls the relative weight assigned to the rank-promotion and
coherence labels, and ϵ = 10−4 is a smoothing parameter.

We can now use these labels that quantify, simultaneously, rank-
promotion and local coherence maintenance in any learning-to-
rank approach [32] to learn a ranking function for passage pairs.

4.1.1 Features for Passage Pairs. The passage pair (дsrc ,дtarдet )
is represented by a feature vector with two types of features: those
that target potential rank promotion as a result of moving from
dcur to dnext , and those that target the change of local coherence
as a result of this move. None of the features is based on assuming
knowledge of the ranking function for which promotion is sought.

Herein, ®xT denotes the TF.IDF vector representing text x (a
document or a passage); ®xW denotes its Word2Vec-based vector
representation [33]: we average the Word2Vec vectors of terms in
a passage to yield a passage vector, and we average the resultant
vectors of passages in a document to yield a document vector. We
provide details of training Word2Vec in Appendix A. We measure
the similarity between two vectors using the cosine measure.
Rank-promotion features.

The QryTermSrc and QryTermTarget features are the fraction of
occurrences of q’s terms in дsrc and дtarдet , respectively. The as-
sumption is that document retrieval scores assigned by any retrieval
method increase with increased query-terms frequency [15].

The SimSrcTop(T), SimTargetTop(T), SimSrcTop(W) and SimTar-
getTop(W) features are cos(®дTsrc , centTπcur ), cos(®д

T
tarдet , cent

T
πcur ),

cos(®дWsrc , centWπcur ) and cos(®д
W
tarдet , cent

W
πcur ), respectively; cent

T
πcur

and centWπcur are the arithmetic mean (centroids) of them TF.IDF-
based and Word2Vec-based vectors, respectively, that represent the
m most highly ranked documents in the current ranking πcur that
are also ranked higher than dcur . We set the maximum value ofm
to 3. As the ranking function is unknown, similarity to top-retrieved
documents can somewhat attest to increased retrieval score.

The next four features are based on the assumption that similar-
ity of a passage to documents which were highly ranked in the past
for the query can attest to improved retrieval score. Formally, we
observe the p past and current rankings induced for q: π−1,π−2, . . .,
π−p ; π−1 is the current ranking πcur and π−2 is the previous rank-
ing; p is a free parameter. Let dπ−i be the document most highly

3
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ranked in π−i ; we set centTπpast
def
=

∑p
i=1wi ®dTπ−i and cent

W
πpast

def
=∑p

i=1wi ®dWπ−i ;wi is a time-decay-basedweight:wi
def
=

α exp(−α i)∑p
j=1 exp(−α j)

,

which is inspired by work on time-based language models [30] with
α = 0.01 [30]. Then, the features SimSrcPrevTop(T), SimTargetPre-
vTop(T), SimSrcPrevTop(W) and SimTargetPrevTop(W) are defined
as cos(®дTsrc , centTπpast ), cos(®д

T
tarдet , cent

T
πpast ), cos(®д

W
src , cent

W
πpast )

and cos(®дWtarдet , centWπpast ), respectively.
Coherence-maintenance features. The next features, all based
on Word2Vec similarities, address local coherence. The SimSrcTar-
get(W) feature is: cos(®дWsrc , ®дWtarдet ).

The next four features are similarities of дsrc and дtarдet with
the context of дsrc in dcur : its preceding and following passages
in dcur denoted дprec and дf ollow , respectively. Specifically, Sim-
SrcPrecPsg(W), SimSrcFollowPsg(W), SimTargetPrecPsg(W) and
SimTargetFollowPsg(W) are: cos(®дWsrc , ®дWprec ), cos(®дWsrc , ®дWf ollow ),
cos(®дWtarдet , ®дWprec ) and cos(®дWtarдet , ®дWf ollow ). Ifдsrc is the first pas-
sage in dcur then we use дf ollow instead of дprec ; if дsrc is the last
passage in dcur we use дprec instead of дf ollow ; i.e., in both cases,
the same feature is used twice.

5 EVALUATION
Our document modification approach operates as follows. First, a
ranking for a query is observed. Then, the approach is applied to
modify a given document with the goal that the resulting document
will be ranked higher in the next induced ranking. In real dynamic
settings, other documents can change at the same time thereby
affecting the next ranking. Accordingly, we devise two types of
evaluation, online and offline, both based on a dynamic setting.

5.1 Experimental Setting
To perform the online evaluation, we used our approach as a bot
in live content-based ranking competitions that we organized. The
competitions were inspired by those presented by Raifer et al. [38]
who analyzed publishing strategies.

Our competitions were approved by an international and an
institutional ethics committees. In the competitions, students in a
course served as documents’ authors and were assigned to queries.
The students were incentivized via bonuses to the course grades to
write and modify plain text documents of up to 150 terms so that
the documents will be highly ranked for the queries. Students in the
course could have attained the perfect grade without participating
in the competitions. The students who participated signed consent
forms and could have opted out at any point in time.

Our bot received a document to be modified so as to compete
with the students for rank promotion. We organized a competition
for each of 15 queries randomly sampled from the 31 used by Raifer
et al. [38]5. These queries were originally selected from all topic
titles for the Web tracks of TRECs 2009-2012 by the virtue of having
a commercial intent that can stir up ranking competitions6.

Two students took part in each competition for a query. No two
students competed against each other for more than one query,
5Raifer et al.’s dataset is available at https://github.com/asrcdataset/asrc.
6The topic IDs of the 15 queries are: 10, 13, 18, 32, 33, 34, 48, 51, 69, 167, 177, 180, 182,
193, and 195.

and no student competed for more than three queries. The two
students competing for a query were provided at the beginning
of the competition with the same example of a document relevant
to the TREC topic the query represents. Some of these documents
were adopted from the dataset in Raifer et al. [38]; others were
created by the authors of this paper using a similar approach to
that in Raifer et al. [38]. The students had no incentive to stick
to these original documents. Hence, in contrast to our bot, they
had more freedom in promoting their documents. Furthermore, all
students had prior experience in participating in similar content-
based ranking competitions for queries other than those they were
assigned to in our competitions.

In the first round of the competition, the students submitted their
modified documents to the search engine. They were then shown a
ranking induced over a set of five documents: their two documents
and additional three planted documents which were randomly
selected from the first round of Raifer et al.’s competitions. The
students were not aware of the fact that other documents might not
be written by students competing with them. The identities of all
documents’ authorswere anonymized. Throughout the competition,
the students had access to all documents in rankings. The ranking
function, described below, was not disclosed to the students.

Having observed the induced ranking, the two students could
then modify their documents to potentially promote them in the
next ranking, and submit them for the second round of the com-
petition. The most highly ranked planted document in the first
round, which was not also the most highly ranked in the entire
ranking, and which was marked by at least three annotators out of
five in Raifer et al’s competitions as of high quality, was provided
as input (dcur ) to our bot. Our approach modified the document
and submitted it (dnext ) to the second round. For the other two
planted documents, their second-round versions in Raifer et al.’s
competition were submitted to our second round. As additional
baseline which was not part of the actual competitions we use a
simulated static bot: it receives the same document in the first
round as our bot, and simply submits it to the second round with
no modifications. Comparison with the static bot allows to evaluate
the merit of using a dynamic bot which responds to ranking.

Our approach was designed for a single shot modification. Hence,
our main evaluation is based on the ranking induced in the second
round of the competition with respect to that induced in the first
round. Furthermore, we used crowdsourcing via the Figure Eight
platform (https://www.figure-eight.com) to assign quality and rele-
vance labels to all documents in the competition as in Raifer et al.’s
competitions, using their annotation guidelines. Each document
was annotated by five annotators. A document was deemed rele-
vant or of high content quality if it was marked as such by at least
three annotators. Although not designed for iterative document
modification, we let our bot participate in two additional rounds
modifying its document in response to rankings. We did not bound
the number of previous rankings the bot observes (i.e., the value
of p in Section 4.1.1). The bot utilized in its rank-promotion features
information about all rankings as from the first round to the current
round. The students had access to the exact same information.
Document ranking function. Similarly to Raifer et al. [38], we
used the state-of-the-art LambdaMART learning-to-rank (LTR)

4
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method [42] with 25 standard content-based features as the search
engine’s ranking function. These features were either used in Mi-
crosoft’s learning-to-rank datasets7, or are query-independent doc-
ument quality measures [6]. Further details regarding the ranking
method are provided in Appendix A.1.
Ranking passage pairs. Our document modification approach
is based on learning-to-rank passage pairs. As the documents are
short (up to 150 terms), we used sentences for passages. We trained
the approach using the rankings available for all 31 queries from
round 6 of Raifer et al.’s competitions; RankSVM was the passage-
pair ranker [24]. Our training dataset contains 57 documents which
serve for dcur and 3399 passage pairs (дsrc ,дtarдet ). Additional
details about the training are provided in Appedix A.2. We now
describe the creation of rank-promotion (r ) and local-coherence
maintenance (c), henceforth coherence, labels for training.

For each document dcur in a ranking πcur in the training set, we
create, as described in Section 4, passage pairs (дsrc ,дtarдet )where
дsrc ∈ dcur and дtarдet is any passage in documents ranked higher
than дsrc in πcur . We replace дsrc in dcur with дtarдet to yield
dnext , and induce a new ranking πnext .8 The rank-promotion label,
r , is 0 if dnext ’s rank position in πnext is the same or worse than
that of dcur in πcur ; otherwise, r is the difference between dnext ’s
rank in πnext and dcur ’s rank in πcur . As there are 5 documents
in each ranking, r is in {0, 4} as mentioned in Section 4.

To produce a coherence label for (дsrc ,дtarдet ), we aggregated
the labels assigned by human annotators in two different crowd-
sourcing tasks performed using Amazon’s Mechanical Turk. In the
first task, the annotators were shown dcur and dnext , where дsrc
was highlighted in dcur and дtarдet was highlighted in dnext . The
annotators were asked to mark which of the two documents was the
original. The coherence label is the number of annotators, among
the 5 assigned, who failed identifying dcur as the original.

The second coherence label was produced by showing dnext to
annotators and telling them that it was obtained by replacing a
passage in a document they did not see. The annotators were asked
to point to the passage which presumably replaced a passage in
that document; all passages in the document were marked. The
number of annotators who did not identify дtarдet as the replacing
passage is the coherence label.

We scale the arithmetic mean of the two coherence labels by 4
5 to

have the resultant coherence label, c , in {0, 1, . . . , 4} as is the case
for the rank-promotion label. We then use the harmonic mean to
aggregate the coherence and rank-promotion labels as described in
Section 4.1. The resulting label, l , is a real number in {0, 4}. To train
the bot for the competitions, we set β = 1 in the harmonic mean;
i.e., coherence and rank promotion are assigned the same weight
for training. We demonstrate in the offline evaluation (Section 5.3)
the merits of using this value of β with respect to alternatives.
Offline evaluation. As was the case for training the bot for our
competitions (the online evaluation), we used the round-6 data
from Raifer et al. [38] to train our approach for offline evaluation.
Training is performed with the labeled (l) passage pairs as above.
We experiment with l = c and l = r where only the coherence and

7https://tinyurl.com/rmslr
8This procedure is challenging when using APIs of commercial search engines due to
the time until the next indexing. We leave this challenge for future work.

rank-promotion labels are used, respectively; and, with l being the
harmonic mean of c and r as described in Section 4.1 with β = 1.9

To test our approach, we let it modify each of the documents at
ranks 2–5 in round 7 of Raifer et al.’s [38] competitions for each of
the 31 queries. Each of these documents was written by a student.
Thus, in total we have 124 different experimental settings for an
instance of our approach: 4 ranks × 31 queries10. Specifically, in
each setting, our approach modifies document dcurr into dbotnext .
The student who originally submitted dcurr in round 7 (potentially)
modified it to dstudentnext for round 8. Then, we contrast the rank
position of dbotnext and d

student
next in two rankings induced over five

documents. Four of the documents are shared between the two
rankings: those from round 8 which were submitted by the four
students whose documents we did not select for modification in
round 7. The fifth document is either dbotnext or d

student
next .

In each setting we induce a ranking, using the ranker described
above, over the document modified by our approach and the four
round-8 documents of the students whose documents were not
selected to be modified by our approach in round 7.11 We also
induce a ranking over all five original documents from round 8 of
Raifer et al. [38]. We then contrast the rank position of our modified
document in the first ranking with that of the student’s modified
document in the second ranking. The other four documents are the
original student documents from round 8.

We also use five annotators as in the online competitions to eval-
uate the quality of documents produced by our approach. Quality
annotations for all other documents are available from Raifer et
al. [38] as described in Appendix A.2.

To summarize, the offline evaluation is based on contrasting our
bot with a “human” agent (student): we let the two modify the same
document which was written by the student. We then contrast
the rank-promotion, quality and relevance of the two modified
documents where all other documents in the same competition for
the query at hand were modified by other students. In contrast to
the online evaluation with our competitions described above, we
cannot run this process for more than a single round. The reason is
that the students in Raifer et al.’s competitions [38] did not respond
to rankings that included the documents produced by our approach.

5.2 Online Evaluation Results
There are five “players” per query in each live competition round:
two students from our competitions, two students from Raifer et
al.’s competitions whose documents were planted, and the bot.

We analyzed the competitions using five evaluation measures.
The first three measures quantify ranking properties, and are com-
puted per player and her document for a query. The values for
our students and Raifer et al.’s are averaged over the students. The
averaged values, and the values for the bot and the static bot, are
averaged over queries. The first measure, average rank, is the rank

9Note that setting β to 0 or to a very high value does not result in the integrated
labels l relying only on coherence (c ) or rank-promotion (r ), respectively. Hence, to
emphasize these two extreme cases, we use c or r as the integrated label l .
10In practice we have 113 different experimental settings for an instance as we do not
apply our approach on documents deemed of low quality or keyword stuffed in [38].
11The ranker we use here is the base ranker Raifer et al. [38] utilized. Raifer et al. also
added post-hoc rank penalties for low quality documents which we do not apply here.
Additional details can be found in Appendix A.1.
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Table 1: Online evalution: main result. The best result in a
block for each round is boldfaced. Promotion is with respect
to the previous round, and hence, there are no promotion
numbers for the first round. Recall that positive values for
raw and scaled promotion attest to actual promotion while
negative values attest to demotion. The lower the values of
average rank the better. (The highest rank is 1.)

round 1 round 2

average rank

students 3.200 3.400
planted 2.733 2.766
static bot 3.133 3.399
our bot 3.133 2.667

raw promotion

students NA −0.200
planted NA 0.000
static bot NA −0.266
our bot NA 0.466

scaled promotion

students NA −0.136
planted NA −0.002
static bot NA −0.177
our bot NA 0.122

quality

students 0.867 0.900
planted 0.400 0.766
static bot 1.000 1.000
our bot 1.000 0.933

relevance

students 0.933 0.866
planted 0.900 0.966
static bot 0.866 0.866
our bot 0.866 0.866

of the player’s document, averaged as described above; the highest
rank is 1. The raw promotion and scaled promotion measures
quantify the change of a document’s rank between rounds 1 and 2.
The documents at rank 1 are not considered as they can only be
demoted. Raw promotion is the number of positions by which the
document was promoted (demoted). The scaled promotion is the
raw promotion normalized by the maximum potential for promo-
tion/demotion with respect to the document’s position.

The quality scores are assigned by crowdsourcing annotators
(in our and in Raifer et al.’s competitions) and attest to the docu-
ment’s content quality. A document quality score is set to 1 if at least
three out of five annotators marked it as of high content quality;
otherwise, its quality score is 0. Using the same approach, we as-
signed documents with a 0/1 relevance grades for the TREC topic
represented by the query. For the quality and relevance measures,
we report the ratio of queries for which the player’s document
received a quality/relevance score of 1, and normalize with respect
to the number of players where needed.
Main results. Table 1 presents our main results for the online
evaluation (our competitions).12 Recall that the document the bot
(and the static bot) received per query in the first round was of high

12We do not present here statistical significance reports as only 15 queries were used
and this is a too small number for computing statistical significance. We do report
statistical significance for the offline evaluation in Section 5.1 where we use 31 queries.

quality. The static bot did not change the document for the second
round in contrast to our bot.

We see in Table 1 that by all three ranking-based evaluation
measures, our bot outperformed the two active students in our
competitions (“students”), the two students from Raifer et al.’s com-
petitions (“planted”) and the static bot. It is the only player who
has positive raw and scaled promotion values in the second round.
Furthermore, the bot’s documents started from an average rank
slightly better than that of the active students’ documents (3.133
vs. 3.2), and after the modifications for the second round they were
promoted to a higher average rank (2.667 vs 3.4); in fact, on average,
the students were demoted from average rank of 3.2 to 3.4 which is
reflected in the negative raw and scaled promotion numbers. The
documents the bot received in the first round were ranked higher
than, or the same as, those of the active students for 53% of the
queries. The percentage increased to 67% in the second round after
the documents were modified by the bot and the students.

Comparison of our bot with the static bot in terms of average
rank and rank promotion attests to the importance of a “live” bot
which responds to rankings. We also see that the average quality of
the documents of our bot in the second round (0.933) is higher than
that of the documents of the two students from our competitions
(0.9) and from Raifer et al.’s competitions (0.766). The quality of
the static bot’s document in the second round is 1 as it is the same
document from the first round (and the same document our bot
received) which by selection was of quality value 1.

Table 1 also shows that the document our bot received in round 1
from Raifer et al.’s competitions was not always relevant. (It was
relevant in 86.6% of the cases.) The bot did not hurt relevance, on
average, by its modifications (second round). This is in contrast to
the two active students who had (on average) a lower fraction of
relevant documents in the second round than in the first.

The competitions’ results are encouraging. The bot won over
the active students in terms of rank-promotion and did not hurt
relevance in contrast to the students. There was some mild qual-
ity decrease as a result of the bot modifications, but the resultant
quality still transcends that of the students’ documents. In the of-
fline evalution reported in Section 5.3, we show that there is no
statistically significant difference between the quality of documents
produced by the bot and that of documents produced by students.

Now, while the students had prior experience in ranking compe-
titions, the bot learned from a past static snapshot of a competition.
(See Section 5.1.) Moreover, the students could have modified their
documents in round 2 without maintaining faithfulness to their
documents from round 1. This was not the case for the bot by
design.

5.2.1 Repeated Competitions. Our bot was designed for a single
shot (modification) response to a ranking. Yet, we let the competi-
tions run for additional two rounds with the bot and the two partici-
pating students. The two planted documents from round i (∈ {2, 3})
were replaced with their round i + 1 versions from Raifer et al.’s
competition. We also use as a baseline the static bot which did not
change the document our bot received in round 1.

We see in Figure 1 that in terms of average rank, the bot wins
over all other players and the static bot as from round 2. (This is
the first round in which the bot modified the document it received.)
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Figure 1: Online evaluation: analysis of the four rounds of the competition. The curves for the quality and relevance of the
static bot are horizontal lines with values of 1 and 0.867, respectively.

Table 2: Offline evaluation. Our bot was trained for coher-
ence (c), rank-promotion (r ) and both (l); l is the harmonic
mean of c and r using β = 1. Statistically significant differ-
ences with the students and the static bot aremarkedwith ‘s’
and ‘b’, respectively. The best result in a column is boldfaced.

average raw scaled quality relevancerank promotion promotion

students 3.327 0.212 0.034 0.991 0.796
static bot 3.248 0.292 0.094 1.000 0.823

our bot (c ) 3.133 0.407 0.145 0.973 0.973sb

our bot (r ) 2.584sb 0.956sb 0.340sb 0.973 0.982sb

our bot (l ) 2.673sb 0.867sb 0.309sb 0.982 0.991sb

Furthermore, the bot is the only player whose scaled-promotion
values are always non-negative13. These findings attests to the
merits of the bot in terms of rank promotion.

Figure 1 also shows that the quality of the bot’s documents mono-
tonically decreases. This is not a surprise as the bot was designed
for a single modification rather than a chain of modifications; e.g.,
we did not prevent duplicate sentences in the modified documents,
which the annotators penalized in terms of quality. Yet, we note
that even in round 3, 85% of the documents produced by the bot
were considered of high content quality by the annotators; and,
in rounds 2 (the first round in which the bot started changing the
document) and 3 the quality of the bot’s documents was higher or
equal to that of the documents of the two students who participated
in the competitions. A similar, although less steep, drop of quality
is observed as from round 2 for the documents produced by the
students who participated in the competition. The increasing qual-
ity for the planted documents can be attributed to the fact that in
Raifer et al.’s competitions there were heavy ranking-penalties for
producing low-quality documents [38], which we did not impose
in our competitions.

Finally, we see in Figure 1 that the bot did not cause a decrease in
the fraction of relevant documents as a result of its modifications. In
contrast, the average fraction of relevant documents of the students
who participated in our competitions was lower in rounds 2-4 than
in round 1.

13The trends for raw promotion are similar and hence these results are omitted as they
convey no additional insight.

5.3 Offline Evaluation Results
We now turn to describe the offline evaluation results. Recall from
Section 5.1, which describes the experimental setting, that the eval-
uation is performed using the competitions of Raifer et al. [38].
Specifically, our approach, henceforth referred to as bot, is applied
to documents in round 7. The approach is trained with three types
of labels which results in three bots: one trained as in the online
evaluation for both rank-promotion and coherence (l labels) with
β = 1 in the harmonic mean; the other two are trained either only
for coherence (c labels) or only for rank-promotion (r labels).

Table 2 presents the average over (initial) ranks (2–5) and 31
queries of the rank-promotion, quality and relevance measures
for the documents produced by our three bots and for the docu-
ments produced by the corresponding students. As in the online
evaluation, we use for reference comparison a static bot which
keeps the student document as is. Figure 2 presents the per initial
rank measures when training the bot for both coherence and rank-
promotion (l ) with β = 1 as was the case in the online evaluation14.
Statistically significant differences for all measures are computed
(over the 31 queries) using the two tailed permutation (randomiza-
tion) test (with 100000 random permutations) at a 95% confidence
level. Bonferroni correction was applied for multiple testing.

We see in Table 2 that all three versions of our bot outperform
the students and the static bot for all three rank-promotion mea-
sures: average rank, raw promotion and scaled promotion. The
improvements are substantial and statistically significant when
using the r (only rank promotion) and l (rank promotion and co-
herence) labels for training the bot. Furthermore, the fraction of
relevant documents produced by each of the three bot versions
is statistically significantly higher than that for the students and
the static bot. The fraction of quality documents produced by the
three bot versions is slightly lower than that of the students, but
the differences are never statistically significant.

Among the three versions of our bot, the one trained for both
coherence and rank-promotion yields the highest quality and rele-
vance results and posts very strong rank-promotion performance
(the second best in the table); hence, it was selected for the online
evaluation discussed above. We further see in Table 2 that, as ex-
pected, training for rank-promotion — alone (r ) or together with
coherence (l ) — results in much better rank promotion than when

14The raw promotion graph is omitted as it conveys no additional insight: it shows
the exact same patterns as in the scaled promotion graph.
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Figure 2: Offline evaluation: our bot (trained with the l labels and β = 1) vs. the student(s). Both modify the same document
at the same initial rank for a query. For reference comparison we use a static bot that receives the same document and does
not modify it. The presented numbers are averages over 31 queries. Recall that lower rank means higher positioning.

training only for coherence (c). Furthermore, all the differences in
average rank, raw promotion and scaled promotion between using
r and c and between using l and c are statistically significant. The
quality of the produced documents does not vary much with respect
to the version used for training; indeed, none of the quality differ-
ences between the three versions is statistically significant. In terms
of relevance, training for both rank-promotion and coherence (l)
outperforms training only for promotion (r ) and training only for
coherence (c); however, none of the differences between the three,
in terms of relevance performance, is statistically significant.

The averages over initial ranks reported in Table 2 for the l-
label bot well reflects the per initial rank state-of-affairs shown in
Figure 2: the documents produced by our bot are (i) more highly
ranked, (ii) of quality that is statistically indistinguishable from,
and (iii) more often relevantwith respect to the students’ documents.
These findings are also aligned with those presented in Section 5.2
for the online evaluation. All in all, both the online and offline
evaluations attest to the clear merits of our proposed approach.

5.4 Feature Analysis
Table 3 presents the feature weights learned by the RankSVM
passage-pair ranker which was used in the online and offline evalua-
tions: training was performed with rank-promotion and coherence
integrated labels (l) with β = 1 in the harmonic mean. Appen-
dix A.2 provides additional details of training the RankSVM. Feature
weights are comparable as feature values are min-max normalized.

We see in Table 3 that the weight of the QryTermTarget feature,
which is a measure of query-terms occurrences in the passage to be
used for replacing another, is the highest. Indeed, using passages
that contain many occurrences of query terms can help to improve
retrieval scores and hence ranking. In accordance, the feature with
the lowest negative weight is QryTermSrc which quantifies the
query-terms occurrences in the passage that is candidate for being
replaced. Indeed, the more query terms it contains, the less likely
its replacement is to promote the document in a ranking.

The next three features with the highest weights are SimTar-
getTop(T), SimTargetPrevTop(W) and SimTargetTop(W). These are
measures of the (lexical and semantic) similarity of a candidate re-
placing passage to the documents most highly ranked in the current

Table 3: Feature weights of the passage-pair ranker.

Feature Weight

QueryTermTarget 0.189
SimTargetTop(TF.IDF) 0.134
SimTargetPrevTop(W2V) 0.138
SimTargetTop(W2V) 0.085
SimSrcPrevTop(W2V) 0.084
SimTargetPrecPsg(W2V) 0.034
SimSrcPrecPsg(W2V) 0.024
SimSrcTarget(W2V) 0.015
SimTargetFollowPsg(W2V) 0.015
SimSrcTop(W2V) −0.013
SimSrcFollowPsg(W2V) −0.015
SimSrcPrevTop(TF.IDF) −0.020
SimTargetPrevTop(TF.IDF) −0.022
SimSrcTop(TF.IDF) −0.025
QryTermSrc −0.073

(SimTargetTop(T), SimTargetTop(W)) and previous (SimTargetPre-
vTop(W)) rankings. This finding provides further support to the
merits of mimicking documents most highly ranked in the past.

Other features with positive weights include the semantic sim-
ilarity of the candidate replacing passage with the passage to be
replaced (SimSrcTarget(W)) and its preceding passage in the docu-
ment (SimTargetPrecPsg(W)). These features quantify the potential
change of local coherence as a result of the passage replacement.

6 CONCLUSIONS
We presented a novel method of modifying a document so as to
promote it in rankings induced by a non-disclosed ranking func-
tion for a given query. The only information about the function is
past rankings it induced for the query. Our method is designed to
maintain the content quality of the document it modifies.

Our method replaces a passage of the document with another
passage — a challenge we address as a learning-to-rank task over
passage pairs with a dual-objective: rank promotion and content-
quality (coherence) maintenance.

Our method served as a bot in content-based ranking competi-
tions between students. The bot produced documents that were of
high quality, and better promoted in rankings than the students’
documents. The bot’s modifications did not hurt relevance in con-
trast to the modifications introduced by students. Additional offline
evaluation further demonstrated the merits of our bot.
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Ethical considerations. Worries about potential abuse of ourmethod
for black hat SEO can be alleviated: the method is tuned for main-
taining content quality. Furthermore, as the ranking competitions
show, the method’s potential negative effects on the search echo
system are not significant, and can be smaller than those introduced
by human authors who try to promote documents. Dropping the
constraint of quality maintenance in our method will result in the
produced documents being of low quality. But in this case, simple
quality estimates used in Web search methods [6] can be used to
easily disqualify these documents or penalize them in rankings.
Acknowledgments. We thank the reviewers for their comments.
The work byMoshe Tennenholtz and Gregory Gorenwas supported
by funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme
(grant agreement 740435).

A APPENDIX
We next provide some additional technical details about the experi-
mental setting.

A.1 Document Ranking Function
For document ranking, we used the same learning-to-rank approach,
and features, used by Raifer et al. [38] in their fundamental ranker.
Specifically, the state-of-the-art LambdaMART learning-to-rank
(LTR) approach [42]15 was used with 25 content-based features.
(Recall that we focus on content-based modifications.) These fea-
tures were either used in Microsoft’s learning-to-rank datasets16, or
are query-independent document quality measures — specifically,
stopword-based measures and the entropy of the term distribution
in a document — demonstrated to be effective for Web retrieval [6].

To train the ranking function, we used the ClueWeb09 Cate-
gory B collection and its 200 topic-title queries (TREC 2009-2012).
We used the query likelihood retrieval approach [39] with Dirichlet
smoothed document language models; the smoothing parameter
was set to 1000 [46]. Documents assigned a score below 50 by Wa-
terloo’s spam classifier were removed from rankings. The resultant
top-1000 documents were used for training. We used default values
of the free parameters in the implementation except for the number
of leaves and trees which were selected from {5, 10, 25, 50} and
{250, 500}, respectively, using five-fold cross validation performed
over queries: four folds were used for training and one for vali-
dation of these two parameters; NDCG@5 was the optimization
criterion. We select the parameter values that result in the best
NDCG@5 over all 200 queries when these were used as part of the
validation folds.

A.2 Learning-To-Rank Passage Pairs
Our approach is based on ranking for a given documentdcur , which
we want to rank-promote, passage pairs (дsrc ,дtarдet ), where дsrc
is a passage in dcur and дtarдet is a passage in a document among
the most highly ranked in the current ranking, πcur . (Refer back to
Section 4 for details.) We use a learning-to-rank method to learn a
passage-pair ranker and to apply it. To train our approach, we used
all 31 queries and all the documents submitted for these queries in
15We used the RankLib implementation: www.lemurproject.org/ranklib.ph.
16https://tinyurl.com/rmslr

round 6 of Raifer et al.’s competition [38]17, except for those which
were not marked as of high quality by at least 3 out of 5 crowd-
sourcing annotators [38]. To induce document ranking, we used the
ranking function from Appendix A.1 which was also used in the
ranking competitions. Recall that our approach has no knowledge
of the document ranking function.

We let our approach modify a document, dcur , which is either
the lowest ranked or the second highest ranked for a query. Thus,
we have a mix of low ranked and high ranked documents which we
let our approach train with. As a result, for each query we consider
two identical current rankings, πcur , over the given documents. In
each of these two rankings, a single document — ranked second
or last — is designated as dcur . And, we induce two new rankings,
πnext , where dcur was modified by our approach to dnext . The
rest of the documents are not modified; i.e., we train our approach
by assuming that other documents do not change18. Our training
dataset contains 57 documents which serve for dcur and 3399 pas-
sage pairs (дsrc ,дtarдet ). For each document there are, on average,
59.6 such pairs (standard deviation: 42.32) to be ranked.

Some of the features onwhich our approach relies, namely SimSr-
cPrevTop(T), SimTargetPrevTop(T), SimSrcPrevTop(W) and SimTar-
getPrevTop(W), utilize information about the past p rankings. For
training, we let our approach observe all current and past rankings
(i.e., p = 6) where these were induced using our ranking function
over the documents in each of the first five rounds of Raifer et
al.’s competition [38]. Recall from Section 5.1 that we also do not
bound p when we apply the bot in the online evaluation.

As noted in Section 4, any feature-based learning-to-rank ap-
proach can serve for our passage-pair ranking function. Since
we do not have large amounts of training data, we used a linear
RankSVM [24]19; all free parameters were set to default values of the
implementation, except for C which was set using cross validation.
Specifically, we used 5 fold cross validation over all 57 documents20
which serve as dcur , where 4 folds were used to train RankSVM and
one fold (validation) was used to set C’s value (∈ {0.001, 0.01, 0.1})
by optimizing for NDCG@5. NDCG is computed for the ranking
of passage pairs with their assigned l labels; these lables are also
used for training; see Section 5.1 for details. As each document is
part of a single validation fold, we setC to the value that optimized
NDCG@5 over all documents when these were part of a valida-
tion fold. We then trained the approach with this C value using all
documents and used it as a bot in the online and offline evaluations.

As described in Section 4, our approach utilizes, as features,
Word2Vec-based similarities. We train a query-based Word2Vec
model [11], so as to rely on the query context, using the gen-
sim package (https://radimrehurek.com/gensim/models/word2vec.
html). Specifically, for a query q, the model was trained on the
top-10000 documents retrieved from ClueWeb09 Category B for q
using the query likelihood retrieval model [39]; spam removal was
not applied here. Default parameter values of the gensim package

17In round 5 of Raifer et al.’s competition, the incentive system has changed [38].
Hence, we selected a round which is after the change.
18The alternative would have been to have other documents modified simultaneously
to dcur . However, this would have introduced much noise to the learning phase as
the ranking of dnext could have changed with respect to that of dcur not necessarily
due to the modification of dcur , but rather due to those of others.
19https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
20Recall that ranking of passage pairs is with respect to a specific document dcur .
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were used, except for the threshold of number of occurrences per
word which was set to 0, the window size which was set to 8, and
the vector size which was set to 300.
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