
How to Retrain Recommender System? A Sequential
Meta-Learning Method∗

Yang Zhang1, Fuli Feng2, Chenxu Wang1, Xiangnan He1, Meng Wang3, Yan Li4, Yongdong Zhang1
1University of Science and Technology of China, 2National University of Singapore

3Hefei University of Technology, 4Beijing Kuaishou Technology Co., Ltd. Beijing, China
{fulifeng93,xiangnanhe}@gmail.com,{zy2015,wcx123}@mail.ustc.edu.cn
eric.mengwang@gmail.com,liyan@kuaishou.com,zhyd73@ustc.edu.cn

ABSTRACT
Practical recommender systems need be periodically retrained
to refresh the model with new interaction data. To pursue high
model fidelity, it is usually desirable to retrain the model on both
historical and new data, since it can account for both long-term
and short-term user preference. However, a full model retraining
could be very time-consuming and memory-costly, especially when
the scale of historical data is large. In this work, we study the
model retraining mechanism for recommender systems, a topic of
high practical values but has been relatively little explored in the
research community.

Our first belief is that retraining the model on historical data
is unnecessary, since the model has been trained on it before.
Nevertheless, normal training on new data only may easily cause
overfitting and forgetting issues, since the new data is of a smaller
scale and contains fewer information on long-term user preference.
To address this dilemma, we propose a new training method, aiming
to abandon the historical data during retraining through learning to
transfer the past training experience. Specifically, we design a neural
network-based transfer component, which transforms the old
model to a new model that is tailored for future recommendations.
To learn the transfer component well, we optimize the “future
performance” — i.e., the recommendation accuracy evaluated in the
next time period. Our SequentialMeta-Learning (SML)method offers
a general training paradigm that is applicable to any differentiable
model. We demonstrate SML on matrix factorization and conduct
experiments on two real-world datasets. Empirical results show that
SML not only achieves significant speed-up, but also outperforms
the full model retraining in recommendation accuracy, validating
the effectiveness of our proposals. We release our codes at: https:
//github.com/zyang1580/SML.

CCS CONCEPTS
• Information systems→ Recommender systems.

∗This work is supported by the National Natural Science Foundation of China
(61972372, U19A2079,61725203). Fuli Feng is the Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401167

KEYWORDS
Recommendation; Model Retraining; Meta-Learning

ACM Reference Format:
Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li,
Yongdong Zhang. 2020. How to Retrain Recommender System? A Sequential
Meta-Learning Method∗. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’20),
July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3397271.3401167

1 INTRODUCTION
Recommender systems play an increasingly important role in
the current Web 2.0 era which faces with serious information
overload issues. The key technique in a recommender system is the
personalization model, which estimates the preference of a user
on items based on the historical user-item interactions [14, 33].
Since users keep interacting with the system, new interaction data
is collected continuously, providing the latest evidence on user
preference. Therefore, it is important to retrain the model with
the new interaction data, so as to provide timely personalization
and avoid being stale [36]. With the increasing complexity of
recommender models, it is technically challenging to apply real-
time updates on the models in an online fashion, especially
for those expressive but computationally expensive deep neural
networks [13, 26, 43]. As such, a common practice in industry is to
perform model retraining periodically, for example, on a daily or
weekly basis. Figure 1 illustrates the model retraining process.

Intuitively, the historical interactions provide more evidence
on user long-term (e.g., inherent) interest and the newly collected
interactions are more reflective of user short-term preference. To
date, three retraining strategies are most widely adopted, depending
on the data utilization:
• Fine-tuning, which updates the model based on the new
interactions only [35, 41]. This way is memory and time efficient,
since only new data is to be handled. However, it ignores the
historical data that contains long-term preference signal, thus
can easily cause overfitting and forgetting issues [6].
• Sample-based retraining, which samples historical interactions
and adds them to new interactions to form the training data [6,
42]. The sampled interactions are expected to retain long-
term preference signal, which need be carefully selected to
obtain representative interactions. In terms of recommendation
accuracy, it is usually worse than using all historical interactions
due to the information loss caused by sampling [42].
• Full retraining, which trains the model on the whole data that
includes all historical and new interactions. Undoubtedly, this

ar
X

iv
:2

00
5.

13
25

8v
1

 [
cs

.I
R

]
 2

7
M

ay
 2

02
0

https://github.com/zyang1580/SML
https://github.com/zyang1580/SML
https://doi.org/10.1145/3397271.3401167
https://doi.org/10.1145/3397271.3401167

Figure 1: An illustration of periodical model retraining.

method costs most resources and training time, but it provides the
highest model fidelity since all available interactions are utilized.

While the above three strategies have their pros and cons, we
argue a key limitation is that they lack an explicit optimization
towards the retraining objective — i.e., the retrained model should
serve well for the recommendations of the next time period. In
practice, user interactions of the next time period provide the
most important evidence on the generalization performance of
the current model, and are usually used for model selection or
validation. As such, an effective retraining method should take
this objective into account and formulate the retraining process
towards optimizing the objective, a much more principled way than
manually crafting heuristics to select data examples [6, 35, 40, 42].

In this work, we explore the central theme of model retraining
in recommendation, a topic of high practical value in industry
recommender systems but receives relatively little scrutiny in
research. Although full model retraining provides the highest
fidelity, we argue that it is not necessary to do so. The key
reason is that the historical interactions have been trained in the
previous training, which means the model has already distilled
the “knowledge” from the historical data. If there is a way to
retain the knowledge well and transfer it to the training on new
interactions, we should be able to keep the same performance level
as the full retraining, even though we do not use the historical data
during model retraining. Furthermore, if the knowledge transfer is
“smart” enough to capture more patterns like recent data is more
reflective of near future performance, we even have the opportunity
to improve over the full retraining in recommendation accuracy.

To this end, we propose a new retraining method with two major
considerations: (1) building an expressive component that transfers
the knowledge gained in previous training to the training on new
interactions, and (2) optimizing the transfer component towards
the recommendation performance in the near future. To achieve
the first goal, we devise the transfer component as a convolutional
neural network (CNN), which inputs the previousmodel parameters
as constant and the present model as trainable parameters. The
rationality is that the knowledge gained in previous training is
condensed in model parameters, such that an expressive neural
network should be able to distill the knowledge towards the desired
purpose. To achieve the second goal, in addition to normal training
on newly collected interactions, we further train the transfer CNN
on the future interactions of next time period. As such, the CNN can
learn how to combine the old parameters with present parameters,
with the objective of predicting the user interactions of the near

future. The whole architecture can be seen as an instance of meta-
learning [9]: the retraining of each time period is a task, which has
the new interactions of the current period as the training set and the
future interactions of the next period as the testing set. By learning
to train historical tasks well, we expect the method to perform well
for future tasks. Since our meta-learning mechanism is operated
on sequential data, we name it as Sequential Meta-Learning (SML).

The main contributions of this work are summarized as follows:
• We highlight the importance of recommender retraining research
and formulate the sequential retraining process as an optimizable
problem.
• We propose a new retraining approach that is 1) efficient by
training on new interactions only, and 2) effective by optimizing
for the future recommendation performance.
• We conduct experiments on two real-world datasets of Adressa
news and Yelp business. Extensive results demonstrate the
effectiveness and rationality of our method.

2 PROBLEM FORMULATION
In real-world recommender systems, user interaction data streams
in continuously. To keep the predictive model fresh with recent
data, a common choice is to retrain the model periodically. We
represent the data as {D0, . . . ,Dt ,Dt+1, . . . }, whereDt denotes the
data newly collected in the time period t . Assume each retraining
is triggered right after Dt is collected. A period can be any
length of time, e.g., daily, weekly or until a certrain number of
interactions are collected, depending on the system requirement
and implementation abilty.

In the retraining of time period t , the system has access to all
previous data, i.e., {D0, . . . ,Dt−1}, and the new data Dt . Since the
retrained model is used to serve for the near future, it is reasonable
to judge its effectiveness based on Dt+1 — the data collected in the
next time period. As such, we set the recommendation performance
on Dt+1 as the generalization goal of the t-th period retraining. Let
the model parameters after the t-th peirod retraining beWt . We
treat each retraining as a task, formulating it as:

({Dm :m ≤ t},Wt−1)
дet
−−−→Wt

test←−−−− Dt+1. (1)

That is, based on all accessible data at the time of retraining and the
model parameters of the previous retraining, we aim to get a new
set of model parameters that can perform well on the near future
data Dt+1. The mostly used solution in industry is to perform a full
retraining on the whole data withWt−1 as the initialization. This
solution is straightforward to implement. However, the drawback
is that it takes too many computation resources, a relative long
retraining time, and requires to enlarge the computation power as
time goes by. Another limitation is that the full retraining lacks
explicit optimization for the performance on Dt+1. This is non-
trivial to address, since directly using Dt+1 in training will cause
information leak and worse generalization ability.

In this work, we aim to utilize the newly collected data Dt only
plus the previous model parametersWt−1, so as to pursue a good
retrained model as evaluated on Dt+1. Thus we reformulate the
retraining process as:

(Dt ,Wt−1)
дet
−−−→Wt

test←−−−− Dt+1, (2)

Figure 2: Model overview of our transfer-based retraining
for the t-th time period. Wt−1 represents the previous
recommender, Ŵt is a recommender learned on new data Dt
only. The transfer component is to combine the “knowledge”
in Wt−1 and Ŵt to obtain the new recommender Wt for
serving the next period.

which we denote as the task τt . For τ0, the previous model
parameters are just random initialization. A straightforward
solution is to perform stochastic gradient descent (SGD) updates on
Dt withWt−1 as initialization. However, it is easy to encounter
the forgetting issue of user long-term interest, since the effect
of initialization is weakening with more updates. Moreover, this
solution also lacks optimization scheme towards serving Dt+1.

Distinct from the definition of task in standard meta-learning [9,
21], the tasks here naturally form a sequence {τ0, ...,τt ,τt+1, ...}.
In online serving (testing), only if τt has been completed we can
move to τt+1. As such, the offline training should follow the similar
manner of sequential training to ensure the method can generalize
well in future serving. Lastly, addressing the problem can be seen
as an instance of meta-learning, since the learning target is how
to solve the tasks well (i.e., with a good generalization ability on
future tasks), which is a higher-level problem than simply learning
model parameters on Dt .

3 METHOD
Firstly, we present the model overview to solve the task τt , the core
of which is to design a transfer component that effectively converts
the old modelWt−1 to a new modelWt . Then, we elaborate our
design of the transfer. Next, we discuss how to train the model with
good performance on current dataDt as well as good generalization
to future data Dt+1. Lastly, we demonstrate how to instantiate our
generic method on matrix factorization, one of the most classic and
representative models for collaborative filtering.

3.1 Model Overview
We aim to solve the task τt defined in Equation (2) which leverages
only the new data Dt to achieve a comparable or even better
performance than the full retraining. The belief is that the past
data {D0, ...,Dt−1} have been seen in previous training, such that
the “knowledge” useful for recommendation has been gained and
stored in model parametersWt−1. Another consideration is to make

our method technically applicable to many recommender models,
rather than a specific one.

To this end, we design a generic model framework, as illustrated
in Figure 2. It has three components: 1)Wt−1 represents the previous
recommender model that is trained from past data, 2) Ŵt denotes a
new recommender model that needs to be learned from the current
data Dt , and 3) Transfer is the module to combine the “knowledge”
contained inWt−1 and Ŵt to form a new recommender modelWt ,
which is used for serving next period recommendations. In the t-th
period retraining,Wt−1 is set as constant input, and the retraining
consists of two main steps:

1. Obtaining Ŵt , which is expected to contain useful signal
for recommendation from Dt . This step can be done
by optimizing standard recommendation loss, denoted as
Lr (Ŵt |Dt).

2. ObtainingWt , which is the output of the transfer module:

Wt = fΘ(Wt−1,Ŵt) (3)

where fΘ denotes the transfer function, Θ denotes its
parameters, andWt−1 and Ŵt are its input.

In this framework, Wt−1 and Ŵt can be any differentiable
recommender model, as long as they are of the same architecture
(i.e., the parameter number and semantics are the same). Only the
transfer component needs to be carefully designed, which is our
contribution to be introduced next.

3.2 Transfer Design
Functionally speaking, the transfer combines parametersWt−1 and
Ŵt to form a new group of parameters Wt . As the most basic
requirement,Wt needs be of the same shape withWt−1 and Ŵt .
This requirement can be easily satisfied by operations like weighted
sum:

Wt = αWt−1 + (1 − α)Ŵt ,

where α is the combination coefficient which can be either pre-
defined or learned. The method is simple to interpret by paying
different attentions to previous and current trained knowledge; it
is also easy to train, since few parameters are introduced. However
it has limited representation ability, for example, cannot account
for the relations between different dimensions of parameters.

For expressiveness of the transfer, multi-layer perceptron (MLP)
can be another option:

Wt = MLP(Wt−1 | |Ŵt).
Despite the universal approximation theorem ofMLP [19], it may be
practically difficult to be trained well [1, 13]. Another limitation is
that it does not emphasize the interactions beweeen the parameters
of the same dimension, which could be important for understanding
parameter evolution. As an example, suppose the model is matrix
factorization and the parameters are user embedding. Then the
difference Ŵt −Wt−1 means parameter change which can capture
the interest drift; and each dimension of the productWt−1 ⊙ Ŵt
indicates the importance of the dimension in reflecting user interest
of both short-term and long-term. However, MLP lacks mechanisms
to explicitly capture such patterns.

To this end, we design the transfer component to be capable
of not only emphasizing the relation between Wt−1 and Ŵt at

each dimension, but also capturing the relations among different
dimensions. Inspired by the success of convolutional neural network
(CNN) in capturing local-region features in image processing, we
design the transfer based on CNN. The CNN architecture can be
found in the green box of Figure 2, which consists of a stack layer,
two convolution layers, and a fully connected layer for output.

Next we detail the CNN design. Without loss of generality,
we treatWt−1 and Ŵt as a row vector, denoted as wt−1 and ŵt ,
respectively, even though their original form can be matrix or
tensor. This facilitates us performing dimension-wise operations
on combining two models.

Stack layer. This layer stacks wt−1, ŵt , and their element-wise
product interaction vector as a 2Dmatrix, which serves as an “image”
to be processed by the later convolution layers. Specifically, we
formulate it as:

H0 =


wt−1
ŵt
wdot

 ,wherewdot =
wt−1 ⊙ ŵt
∥wt−1∥ + ϵ

. (4)

Thewt−1 ⊙ ŵt can capture that when wt−1 evolves to ŵt , which
dimension values are enlarged or diminished. The denominator of
wdot is used for normalization, and ϵ = 10−15 is a small number to
prevent the denominator being zero. The size of H0 is 3 × d , where
d denotes the size ofwt−1 and ŵt .

Convolution layers. H0 is fed into two cascaded convolution
layers that further model dimension-wise relations. We describe the
first convolution layer since the second one is formulated similarly.
Let the first convolution layer have n1 vertical filters, where each
filter is denoted as Fj ∈ R3×1 (where j = 1, ...,n1 denotes the filter
index). Fj slides from the first column to the last column of H0 to
perform operations on each column vector:

H1
j,m = GELU(< Fj , H

0
:,m >), (5)

where H0
:,m is them-th column vector of H0, <, > denotes vector

inner product, andH1
j,m ∈ R is the convolution result of Fj onH0

:,m .
GELU is the Gaussian Error Linear Units activation function [17],
which can be seen as a smoothed variant of ReLU with gradients
for negative values.

Note that the vertical filter Fj can learn various relations between
ŵt and wt−1 at the same dimension. For example, if the filter is
[−1, 1, 0], it can express the difference between ŵt andwt−1; if the
filter is [1, 1, 1], it can obtain prominent features that have high
positive value on both ŵt andwt−1. Another reason we use such 1D
filter rather than the standard 2D filters is that the dimension order
inwt−1 or ŵ is not meaningful for many recommender models. For
example, if we permutate the embedding order for factorization
models, the model prediction will not be changed.

The output of the first convolution layer H1 is a matrix of size
n1 × d , which is then fed into the second convolution layer of n2
filters, where each filter is of size n1 × 1. As a result, we obtain the
output of this component H2, which is a matrix of size n2 × d .

Full-connected and output layers. H2 is fed into a fully-
connected (FC) layer to capture the relations among different
dimensions. We first flatten H2 as a vector which has the size dn2,

and then feed into a fully connected layer:

z = GELU(WT
f flatten(H2) + b1), (6)

whereWf ∈ R(dn2)×df and b1 ∈ Rdf are the weight matrix and
bias vector of the FC layer, respectively, and df denotes the layer
size. The vector z ∈ Rdf is then transformed by a linear layer to
output the new parameter vectorwt :

wt =W
T
o z + b2, (7)

whereWo ∈ Rdf ×d and b2 ∈ Rd are the weight matrix and bias
vector of the linear layer, respectively. Lastly, the parameter vector
wt is reshaped to theWt — i.e., the new model parameters after
retraining.

To summarize, all trainable parameters of the transfer component
are Θ = {F (1), F (2),Wf ,b1,Wo ,b2}, where F (1) ∈ Rn1×3 and F (2) ∈
Rn2×n1 denote the filters of the first and second convolution layer,
respectively. It is worth mentioning that we can categorize the
parameters of a recommender model into different groups, and
apply a separate transfer network for each group. For example,
the matrix factorization model has two groups of parameters —
user embedding and item embedding. Then we use two transfer
networks, one for user embedding and another for item embedding
(see details in Section 3.4).

3.3 Sequential Training
We now consider how to train model parameters, including the
transfer input Ŵt for each task τt , and the tranfer parameter Θ
that is shared for all tasks. Functionally speaking, Ŵt is expected
to extract recommendation knowledge from the current data Dt ,
whereas Θ combines the previous modelWt−1 and Ŵt , which is
expected tomake the transfer outputWt performwell on future data
Dt+1. Since the data comes in sequentially, we perform training in
the same sequential way, i.e., solving the task τt−1 before moving to
the next task τt . Algorithm 1 shows the sequential training process.
We next describe how to train for a task τt (i.e., line 3 to 11), which
has two main steps:

Step 1. Learning the transfer input Ŵt . A straightforward
solution is to directly learn it based on the recommendation loss on
Dt . However, the resultant Ŵt may not be suitable as the input to
the transfer, which assumesWt−1,Ŵt , andWt are in the same space
(i.e., the parameter dimensions are aligned for the same semantics
and the values are in the same scale range). To address this problem,
we propose to optimize the transfer output onDt , back-propogating
gradients to the transfer input Ŵt . Specifically, we formulate the
loss as:

Lr (Ŵt |Dt) = L0(fΘ(Wt−1,Ŵt)|Dt) + λ1 | |Ŵt | |2, (8)

where L0(x |Dt) denotes the recommendation loss (e.g., the log
loss [15] or pairwise loss [33]) on data Dt with x as the
recommender model parameters (note x = fΘ(Wt−1,Ŵt) here).
λ1 is a hyper-parameter to control L2 regularization to prevent
overfitting. When optimizing the loss, Θ is treated as constant and
is not updated, so only the gradient of Ŵt needs be evaluated:

∂Lr (Ŵt |Dt)
∂Ŵt

=
∂L0(x |Dt)
∂x

· ∂ fΘ(Wt−1,Ŵt)
∂Ŵt

+ 2λ1Ŵt , (9)

After getting this gradient, we can apply gradient descent optimizer
to update Ŵt like SGD and Adam [22]. Through this way, we can
achieve the two effects simultaneously 1) distilling recommendation
knowledge from Dt , and 2) making Ŵt suitable as the input to the
transfer network.

Step 2. Learning the transfer parameter Θ. Since Θ is shared
across all tasks, it can capture some task-invariant patterns, e.g.,
which parameter dimensions are more relective of user short-term
interests and should be emphasized when combiningWt−1 and Ŵt .
The general aim is to obtain such patterns that are tailored for the
next-period recommendations. As such, we consider optimizing
Θ on the next-period data Dt+1. Specifically, we formulate the
objective function as:

Ls (Θ|Dt+1) = L0(fΘ(Wt−1,Ŵt)|Dt+1) + λ2 | |Θ| |2, (10)

where λ2 is regularization hyper-parameter. Note that theŴt gained
in Step 1 is a function of Θ. Thus, when computing the gradients of
Θ, it will cause high-order gradients that are expensive to obtain.
As such, we follow the first-order MAML algorithm [9], ignoring
such high-order gradients which have minor impacts on gradients
but are expensive to obtain. By treating Ŵt as constant in this step,
we evaluate the gradient of Θ as:

∂Ls (Θ|Dt+1)
∂Θ

=
∂L0(x |Dt+1)
∂x

· ∂ fΘ(Wt−1,Ŵt)
∂Θ

+ 2λ2Θ, (11)

where x = fΘ(Wt−1,Ŵt) for brevity.

The above two steps are iterated until convergence or a
maximum number of iterations is reached (line 4). As Algorithm 1
shows, the update of Θ is not performed in the last training period
T , since its next period data DT+1 is not available in training. Note
that we can run multiple passes of such sequential training on
{Dt }Tt=0, while we empirically find one pass is sufficient to obtain
good performance, thus we train only one pass.

It is worth mentioning that the parameter update procedure of
the serving (evaluation) phase slightly differs. Algorithm 2 shows
how we perform model evaluation for testing (validation) with
newly collected data Dt+1. First, we use it to test the modelWt
that served the period t + 1. Then, we need to update Θ and Ŵt+1
with Dt+1, so as to obtainWt+1 for serving next period (note that
Wt+1 = fΘ(Wt ,Ŵt+1)). As shown in line 3-8, we first iterate the
updating of Θ and Ŵt , which is same as the training phase. When
stopping condition meets, we used the refreshed Θ to update Ŵt+1,
which is finally fed into fΘ(Wt ,Ŵt+1) to achieveWt+1.

3.4 Instantiation on Matrix Factorization
To demonstrate how our proposed SML framework works, we
provide an implementation based on matrix factorization (MF),
a representative embedding model for recommendation. Given a
user-item pair (u, i), MF predicts the interaction score as:

ŷui = p
T
u qi , (12)

where pu ∈ Rdim and qi ∈ Rdim denote the embedding of user u
and item i , respectively, and dim denotes the embedding size. As we
can see, MF has two groups of parameters: user embedding and item
embedding. Thus we build two separate transfer networks, one for
user embedding and another for item embedding. Instead of feeding

Algorithm 1: Sequential Training of SML
Input: Training data of T periods {Dt }Tt=0
Output: RecommenderWT , transfer Θ

1 Randomly initializeW−1 and Θ ;
2 for t = 0 to T do
3 Ŵt ←Wt−1 ;
4 while Stop condition is not reached do
5 // Step 1: Learning Ŵt

6 Update Ŵt by optimizing Lr (Ŵt |Dt);
7 // Step 2: Learning Θ
8 if t == T then break ;
9 Update Θ by optimizing Ls (Θ|Dt+1);

10 end
11 Wt ← fΘ(Wt−1,Ŵt) ;
12 end
13 returnWT ,Θ

Algorithm 2:Model evaluation and update
Input: Newly collected data Dt+1, recommenderWt to test
Output: Updated recommenderWt+1

1 Use Dt+1 to test the modelWt ;
2 // Model update for next period;
3 while Stop condition is not reached do
4 Update Θ by optimizing Ls (Θ|Dt+1) ;
5 Update Ŵt by optimizing Lr (Ŵt |Dt) ;
6 end
7 Run line 4 andWt ← fΘ(Wt−1,Ŵt) ;
8 Update Ŵt+1 by optimizing Lr (Ŵt+1 |Dt+1) ;
9 Wt+1 = fΘ(Wt ,Ŵt+1) ;

10 returnWt+1

the embeddings of all users into the user transfer network, we
operate the transfer network on the basis of each user embedding;
same for the item side. The rationality is that the semantics of
embedding dimensions across all users are the same, thus we
can share the transfer network for all users. This largely reduces
the number of transfer parameters and makes the transfer more
generalizable.

For the recommendation loss L0, we adopt the pointwise log
loss, which is a common choice for recommender training [15, 26].
For each interaction (u, i) ∈ Dt , we randomly sample 1 unobserved
interactions of u to form the negative data set D−t . Then the log
loss is formulated as:
L0(P ,Q |Dt) = −

∑
(u,i)∈Dt

log(σ (ŷui)) −
∑

(u, j)∈D−t

log(1 − σ (ŷuj)),

(13)
where P and Q denote the embeddings of all users and items, σ (·)
denotes the sigmoid function. The same log loss is used in both
optimization of the recommender Lr and the transfer Ls .

4 EXPERIMENTS
We conduct experiments to answer the following questions:

RQ1: How is the performance of SML compared with existing
retraining strategies and recommender models?

RQ2: How do the components of SML affect its effectiveness?
RQ3: How does the CNN architecture affect the transfer network?
RQ4: Where are the improvements of SML come from?

We first present experimental settings, followed by results and
analyses to answer each research question.

4.1 Experimental Settings
4.1.1 Datasets. We experiment with two real-world datasets from
Adressa and Yelp.

Yelp: The dataset is adopted in Yelp Challenge 20191, which
contains the interaction records between users and businesses like
restaurants and bars, spanning a period of more than 10 years. For
ease of evaluation, we remove the inactive users with less than 10
interactions and unpopular items with less than 20 interactions.
The experimented data contains 3,014,421 interactions from 59,082
users and 122,816 items.

Adressa [11]: The dataset is from Adressa2, which records
user clicks on news articles in three weeks. We remove invalid
interactions that have a news reading time of zero. The
experimented data has 3,664,225 interactions between 478,612 users
and 20,875 items.

We purposefully choose the two datasets because of their
different properties — the Adressa dataset emphasizes more on user
short-term interest, since the news domain is more time-sensitive;
in contrast, the Yelp dataset emphasizes more on user long-term
interest, since it lasts longer and a user’s choice on businesses is
less time-sensitive.

To test the periodical model retraining, we organize each dataset
into periods (i.e., {D0, . . . ,DT }) according to the timestamp of
interaction. For Adressa, we split each day into three periods
based on the morning (0:00-10:00), afternoon (10:00-17:00), and
evening (17:00-24:00), obtaining 63 periods in total. As for the Yelp
dataset which lasts longer, we split it into 40 periods with an equal
number of interactions, where each period roughly corresponds
to a quarter. We further split the periods of each dataset into
training/validation/testing sets: for Adressa the ratio is 48/5/10, and
for Yelp the ratio is 30/3/7. For each testing period, data collected
in all the previous periods can be used for model retraining.

4.1.2 Baselines. We compare the proposed SMLmethod with three
retraining strategies that are also applied to MF:

- Full-retrain. This method trains the MF model on all past data
{D0, ...,Dt−1} and newly collected data Dt at each period t .

- Fine-tune. This method updates the MF model on the newly
collected data Dt only.

- SPMF [42].This is a state-of-the-art streaming recommendation
method that belongs to the category of sampled-based retraining.
It maintains a reservoir of historical interaction samples and adds
them into Dt to retrain the MF model. We tune the reservoir size
in {7000,15000,30000,70000}.

We also compare with two sequential recommendation methods,
which are designed for modeling sequential user-item interactions:

1https://www.yelp.com/dataset/
2http://reclab.idi.ntnu.no/dataset/

- GRU4Rec [18].This is a representative sequential recommender
based on recurrent neural network (RNN). It builds a RNN for
each user’s interaction sequence to capture her interest evolution.
We employ full retraining strategy at each testing period, which
performs better than fine-tuning for the method, and keep loss as
the paper. The hidden layer size of GRU is tuned in the range of
{64, 128, 256}.

- Caser [38]. This method uses CNN for sequential modeling. It
takes L most recently interacted items and forms their embeddings
as a 2D matrix, feeding the matrix into a CNN with two types of
convolution layers — horizontal layer and vertical layer. We tune
L in the range of {2, ..., 5},CNN kernel number in {4, 8, 16}, and
other hyper-parameters follow the optimal setting as reported in
the paper. We employ fine-tuning strategy at each testing period,
which performs better than full training for the method.

For fair comparison, all methods are optimized with the same log
loss (except GRU4Rec) and tuned on the validation set. For the four
methods based on MF (i.e., Full-retrain, Fine-tune, SPMF, and our
SML), we tune three hyper-parameters: L2 regularization coefficient
λ in {1e-1, 1e-2, ..., 1e-7, 0}, learning rate in {0.1, 0.01, 0.001}, and
training epochs in {5,10,20,50,100}, respectively. For SML, we
additionally tune the number of maximum iterations (line 4 of
Algorithm 1) in {5, 6, . . . , 10}. The CNN filter size is set as [10, 5]
and the fully connected layer size is 512 for both datasets.

4.1.3 Evaluation Protocols. To simulate the real-world scenario
that there are typically some historical data to train an initial model,
we start model retraining from the 10-th and 20-th period of Yelp
and Adressa, respectively, using the previous data to train an initial
model. We perform evaluation at each testing period and report the
average scores. The evaluation is done on each interaction basis. As
it is time consuming to rank all non-interacted items, we sample 999
non-interacted items of a user as the recommendation candidates.
For each testing interaction, the method outputs a ranking list on
the 1 interacted item and 999 non-interacted items. We adopt two
widely-used evaluation metrics: Recall@K and NDCG@K [15] and
K is set to 5,10, and 20. For parameters tuning on validation sets,
we take Recall@20 as the main referential metric.

4.2 Performance Comparison (RQ1)
4.2.1 Overall Comparison. Table 1 shows the top-K recommendation
performance of compared methods. From the table, we have the
following observations:
• Full-retrain outperforms Fine-tune on Yelp, but it is significantly
worse on Adressa. This shows the varying properties of the
two datasets: Yelp users choose businesses based more on their
inherent (long-term) interest, whereas Adressa users are more
time-sensitive to choose recent news and driven by their short-
term interest. Full-retrain makes use of all data to do model
retraining, which is effective in capturing user long-term interest;
however, it suffers from emphasizing the importance of recent
data. This demonstrates the necessity of properly handling both
long-term and short-term user preference in the periodical model
retraining.
• Our proposed SML achieves the best performance on both
datasets, consistently outperforming Full-retrain and the most
competitive baseline Caser. This result signifies the effectiveness

Table 1: Average recommendation performance over online testing periods on Adressa and Yelp. “RI” indicates the relative
improvement of SML over the corresponding baseline.

Datasets Methods recall@5 recall@10 recall@20 RI NDCG@5 NDCG@10 NDCG@20 RI

Adressa

Full-retrain 0.0495 0.0915 0.1631 319.7% 0.0303 0.0437 0.0616 393.1%
Fine-tune 0.1085 0.2235 0.3776 82.8% 0.0594 0.0962 0.1351 135.5%
SPMF 0.1047 0.2183 0.3647 87.3% 0.0572 0.0935 0.1306 143.6%
GRU4Rec 0.0213 0.0430 0.0860 809.0% 0.0125 0.0194 0.0302 1018.4%
Caser 0.2658 0.3516 0.4259 6.5% 0.1817 0.2096 0.2285 2.1%
SML 0.2815 0.3794 0.4498 - 0.1838 0.2156 0.2336 -

Yelp

Full-retrain 0.1849 0.2876 0.4139 18.0% 0.1178 0.1514 0.1829 22.7%
Fine-tune 0.1507 0.2386 0.3534 41.7% 0.0963 0.1246 0.1535 48.5%
SPMF 0.1664 0.2591 0.3749 30.7% 0.1072 0.1370 0.1662 35.1%
GRU4Rec 0.1706 0.2764 0.4158 22.8% 0.1080 0.1420 0.1771 30.5%
Caser 0.2195 0.3320 0.4565 2.8% 0.1440 0.1802 0.2117 3.12%
SML 0.2251 0.3380 0.4748 - 0.1485 0.1849 0.2194 -

of SML, which is attributed to the dedicated design of the
transfer network and the sequential training algorithm. The
strong performance on both datasets shows that SML is capable
of adapting long-term and short-term interests by optimizing the
transfer network on the next-period data.
• In particular, SML outperforms Full-retrain by 18% on Yelp. It
validates our belief that historical data can be discarded during
retraining, as long as the previous model can be properly utilized.
This can largely save computation resources in model retraining,
which has high value for practical use.
• The sample-based retraining method SPMF performs better
than Fine-tune on Yelp, but not on Adressa. The reservoir in
SPMF is designed heuristically to bias towards retaining old
interactions, which shows strength in capturing long-term user
interest. However, it sacrifices the ability of modeling short-term
interest, making it fall short on recommendation scenarios where
recent data are more important. Generally speaking, such sample-
based retraining method pursues a trade-off between Fine-tune
and Full-retrain, and its performance is bounded by eithermethod
(on Adressa SPMF is weaker than Fine-tune and on Yelp SPMF is
weaker than Full-retrain).
• Among the two sequential recommender models, Caser performs
much better than GRU4Rec, which implies that CNN would be
a better choice than RNN to model the interaction sequence.
Moreover, Caser outperforms the three MF-based baselines,
which indicates its effectiveness in sequence modeling. However,
its advantages can be surpassed by our SML, which wisely
retrains MF towards the next-period performance. As a future
extension, we will implement SML on Caser to see whether
combing their advantages can lead to further improvements.

4.2.2 Period-wise Performance. Figure 3 shows the detailed
recommendation performance at each online testing period
evaluated by recall@10. To save space, we omit the results of other
metrics which show the same trend3. From the figure, we can see
that SML achieves the best performance inmost cases, which further
validates its strong generalization ability. Moreover, the fluctuations
on Adressa are larger than Yelp, which further validate the strong
3Since GRU4Rec achieves the lowest scores, its results are not shown in the figure for
better visualization.

0 1 2 3 4 5 6
0.21

0.24

0.27

0.30

0.33

0.36

period

Recall@
10

(b) Yelp

0 2 4 6 80.0

0.1

0.2

0.3

0.4

0.5

period

Re
ca

ll@
10

(a) Adressa

Full-retrain Fine-tune SPMF Caser SML

Figure 3: Recall@10 of each testing period.
Table 2: Retraining time (seconds) at each testing period on
Yelp. SML-S is the variant that disables transfer update.
period 0 1 2 3 4 5 6
Full-retrain 1,458 1,492 1,546 1,599 1,634 1,701 1,749
SML 90 91 89 89 89 89 90
Fine-tune 34 34 35 34 34 35 34
SML-S 8 8 8 8 8 8 8
Full-retrain is trained with 20 epochs with recommendation performance slightly worse than that
reported in Table 1 which is trained with 100 epochs.

timeliness of the news domain (i.e., user interest changes quickly)
and the importance of performing fast model retraining so that the
recommender is adapted to the changes of short-term interest.

4.2.3 Speed-up. Recall that one motivation of the work is to
accelerate model retraining by avoiding using previous data. We
compare the retraining time of SML with Full-retrain and Fine-tune
at different testing periods. The testing platform is a 1080Ti GPU
with 2 CPUs and 16GBmemory. Table 2 shows the time cost on Yelp
by period. As can be seen: 1) the time cost of Full-retrain increases
linearly as the testing process goes on, which is caused by the
increase of training data. 2) SML is about 18 times faster than Full-
retrain, and the retraining time is stable across different periods.
3) By disabling the update of the transfer network in the testing
process, SML-S is even faster than Fine-tune, and also outperforms
Fine-tune in recommendation accuracy (see Figure 4). This shows
the potential of SML in supporting fast model retraining, which is
highly valuable in practice.

4.3 Ablation Studies (RQ2)
The strengths of SML come from two novel components: 1) the
transfer network that combines the “knowledge” contained in
the old model and new model; and 2) the sequential training
process that optimizes the transfer network towards next-period
performance. To justify the designs in SML, we investigate the
influence of each important design. We study the performance of
the following five variants:
- SML-CNN, it removes the CNN layers from the transfer network.
- SML-FC, which removes the FC layer from the transfer network.
- SML-N, which disables the optimization of the transfer network
towards the next-period performance. It trains all parameters onDt ,
i.e., replacing Ls (Θ|Dt+1) with Ls (Θ|Dt) in Line 9 of Algorithm 1.
- SML-S, which disables the update of the transfer network during
testing, i.e., removing Line 4 of Algorithm 2. The transfer network
is fixed when updating the recommender.
- SML-FP, which learns the transfer input Ŵt directly based on
the recommendation loss on Dt , rather than forward propagation
through the transfer network.

Figure 4 shows the recommendation performance of SML and the
five variants on Adressa and Yelp. We omit the results of NDCG@K
which show the same trend. We have the following observations:
• Regarding the design of transfer model, SML performs better
than SML-CNN and SML-FC, which signifies the effectiveness
of the hybrid structure with both CNN and fully connected
layers. The improvement is attributed to the consideration of
both dimension-wise relations and cross-dimension relations
between the previous modelWt−1 and the new model Ŵt . This
finding is consistent with prior work [7], which also verify
the efficacy of jointly considering dimension-wise and cross-
dimension relations in recommendation.
• Regarding the sequential training process, the performance
of SML-N is worse than SML by 18.81% and 34.53% on
average, which validate the advantages of optimizing towards
future performance. Existing study on meta-learning [4, 9] also
demonstrated the effectiveness of optimizing model parameters
towards testing (validation) data. As such, it is promising to solve
periodical model retraining as a sequential meta-learning task.
• When the transfer network is not updated during testing,
the performance of SML (i.e., SML-S) drops by 7.87% and
9.43%. This might be caused by the drift of user interests.
The performance drop signifies the importance of model
retraining, which further suggests a future direction to explore
online recommender updates. Lastly, SML-FP fails to achieve a
comparable performance as SML on both datasets, which justifies
our design of learning new model Ŵt based on the transfer
output.

4.4 Hyper-parameter Studies (RQ3)
We study how the CNN architecture affects the performance, more
specifically, the number of filters and the number of CNN layers.

4.4.1 Number of CNN Filters. We fix the number of convolution
layer to be one and adjust the number of filters from [6,8,10,12,14].
As shown in Figure 5(a), the performance on Yelp is rather stable
across different numbers of filters. While on Adressa, SML with

Recall@5 Recall@10Recall@200.1

0.2

0.3

0.4

0.5

Re
ca

ll@
K

SML-CNN SML-FC SML

(a) Adressa

Recall@5 Recall@10Recall@200.1

0.2

0.3

0.4

0.5

Re
ca

ll@
K

SML-N SML-FP SML-S

(b) Yelp
Figure 4: Recommendation performance of SML and its five
variants with different designs being disabled.

6 140.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce

@s 10sa RecallAdre
sa NDCG@10Adres

Recall10Yelp
NDCG@10yelp

Number of Filters
8 10 12

(a) Impact of filter number

1 2 3 4
Number of Convolution Layers

0.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce

(b) Impact of convolution layers

Figure 5: Performance of SML w.r.t. different numbers of
CNN filters and CNN layers in the transfer component.

more than 10 filters performs better than the filter number of 6 and
8. These results suggest that for applications like Adressa where
the timeliness is strong, there may exist complex relations between
user short-term and long-term interests. In this case, using a large
number of filters is beneficial.

4.4.2 Number of Convolution Layers. We fix the first convolution
layer with 10 filters and test the effect of stacking more convolution
layers with 5 filters. As shown in Figure 5, SML achieves the best
performance on Yelp with 1 convolution layer, and stacking more
convolution layers degrades the performance because of overfitting.
For Adressa, the best performance is achieved when the number of
convolution layers is 2 or 3, and further increasing it also degrades
the performance. These results suggest that the optimal number of
convolution layers varies, depending on the features of the dataset.

4.5 In-depth Analyses (RQ4)
We conduct in-depth analyses to understandwhere the improvements
come from compared with the Full-retrain, and scrutinize the CNN
filters to interpret their rationality.

4.5.1 Performance of Different Interaction Types. We divide users
into two groups: new users mean the users that only occur in the
testing data, otherwise old users; same for the item side. We then
cross user groups and item groups, dividing the interaction into
four types: old user-new item (OU-NI), new user-new item (NU-NI),
old user-old item (OU-OI), and new user-old item (NU-OI). We then
perform evaluation on each type of interactions. Figure 6 shows
the performance of SML and Full-retrain at each testing period
on the Yelp data. From the left subfigure (a), we observe that SML
outperforms Full-retrain on the two types of new items (OU-NI
and NU-NI) by a large margin. From the right subfigure (b), we
observe that SML improves over Full-retrain on the type of new

0 1 2 3 4 5 6period
0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll@
10

Full-retraining OU-NI
SML OU-NI
Full-retraining NU-NI
SML NU-NI

(a) Two types of new items

0 1 2 3 4 5 6period
0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll@
10

Full-retraining OU-OI
SML OU-OI
Full-retraining NU-OI
SML NU-OI

(b) Two types of old items

Figure 6: Recommendation performance of SML and Full-
retrain on Yelp grouped by four interaction types: old user-
new item (OU-NI), new user-new item (NU-NI), old user-old
item (OU-OI), and new user-old item (NU-OI).

user-old item (NU-OI), while achieves a performance comparable
with Full-retrain on the type of old user-old item (OU-OI).

From these results, we draw the conclusion that the improvements
of SML over Full-retrain are mainly from the recommendations for
new users and new items. This shows the strong ability of SML in
quickly adapting to new data that are more reflective of user short-
term interests. Moreover, the performance on the interaction type
of old user-old item is not degraded, which verifies the effectiveness
of SML in capturing long-term interests.

4.5.2 Visualization of CNN Filters. We study the learned CNN
filters to disentangle how the transfer fusesWt−1 andŴt . In Figure 7,
we visualize the learned filters of the first CNN layer in the item
transfer network. Note that similar patterns can be observed in
the user transfer network, which are omitted for space. We can
see that the filters learned from Yelp and Adressa encode different
patterns. For Adressa, the row vector corresponding to Ŵt (i.e.,
dim = 1) has higher values than the other two vectors in general,
justifying that the transfer network pays more attention to recent
data. For Yelp, we can see two special filters (the 2nd and 8th one),
where the values at dim = 0 (corresponding toWt−1) and dim = 1
have opposite sign. It means that the transfer learns to utilize the
difference betweenŴt andWt−1, which is beneficial to capture how
user interests evolve.

5 RELATEDWORKS
5.1 Recommendation on Sequential Data
The user-item interaction data naturally forms a sequence because
each interaction is associated with timestamp information. A large
body of work has modeled a sequence of interactions to predict the
next interaction, called as sequential [29], next-item/basket [20, 47]
or session-based recommendation [18, 46]. An early representative
method is Factorized Personalized Markov Chain (FPMC) [34],
which models the transition between an interacted item and the
previously interacted itemwith matrix factorization. Later work has
extended the first-order modeling [12] to high-order modeling [45].
Recently, many neural network models have been developed,
wherein recurrent neural network (RNN) is a natural choice for
sequence modeling [18]. The latest work [20] points out a limitation
of RNN that it fails to learn the personalized item frequency
information in next-basket recommendation. In addition, CNN has
also been used for sequential recommendation [38, 46, 47], which

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0 2 4 6 8

0

2

di
m

(a) Adressa
/filter 0 2 4 6 8

0

2

di
m

(b) Yelp
/filter

1 1

Figure 7: Visualization of the learned filters.

is stronger than RNN in modeling the inter-independency between
items. Here we consider the sequential nature of interaction data
in an orthogonal way — the model needs be periodically retrained
to adapt to new data. We propose a general sequential training
paradigm, which is technically viable to deploy on the sequential
recommendation models.

Another line of work is online or streaming recommendation [3,
16, 37], which aims to refresh recommendations based on real-time
user interactions. Several strategies have been proposed, which
make different trade-offs between model freshness and accuracy.
For example, [5, 16, 25] perform local model updates for each
new interaction, which is easy to suffer from forgetting long-term
preference whenmany new interactions are updated. [6, 42] address
the issue by sampling a faction of historical interactions and mixing
them with new interactions for model updating. The sampler is
designed heuristically and needs be adapted manually for different
recommendation domains. Our method does not use historical data
for model refreshing, achieving good trade-off between long-term
and short-term modeling by optimizing for the future performance.

5.2 Meta-Learning
Meta-learning, or learning to learn, aims to quickly and effectively
adapt to new tasks by using the prior experience learned from the
related tasks [9, 30]. A representative method is Model-Agnostic
Meta-Learning (MAML) [9], which represents a general paradigm
that uses the testing data of a task to optimize the training process
(e.g., initialization and hyper-parameters [10]). The idea of MAML
has been taken to solve the cold-start recommendation problem [2, 8,
24, 28, 39]. For example, by treating each user as a task, [2, 24] learn
how to generalize well with few iterations. Besides, some works
have utilized meta learning to select recommendation algorithms
[31] and a recent work [4] proposes λOpt to optimize regularization
hyper-parameters based on the validation performance. Inspired by
MAML and λOpt, we optimize the model retraining process based
on the future validation data, proposing a new training paradigm
for sequential user-item interactions.

Beyond recommendation, lifelong learning [23, 27] is weakly
relevant to this work, which aims to learn different tasks in a
sequence. Several strategies were devised to avoid catastrophically
forget old tasks when learning a new task so that all tasks are
well served. For instance, [23] remembers old tasks by selectively
slowing down learning on the weights important for those tasks.
As the key objective of lifelong learning is to serve the current
task (on Dt) without suffering performance on previous task,
these strategies are not suitable for the sequential training of
recommendation model where optimizing the model for better
serving the future task (on Dt+1) is of importance.

6 CONCLUSION
In this work, we investigated the retraining of recommender models.
We formulated the task of recommender retraining, which aims to
achieve good generalization on next-period data by modeling the
newly collected data. To address the task, we proposed a sequential
meta-learning (SML) approach, which consists of 1) an expressive
transfer network that converts the previous model to a new model
based on the newly collected data, and 2) a sequential training
method that effectively utilizes the next-period data to learn the
transfer network. We conducted experiments on two datasets of
different properties, providing extensive results and analyses on
the effectiveness, efficiency, and rationality of SML.

In future, we will extend our generic training paradigm to a wide
range of recommender models, such as the recently emerging graph
neural networks [14, 44] that are more effective for collaborative
filtering, and factorization machines [13, 32] that can incorporate
various side information and sequential recommender models [38].
Currently, we do not consider online learning strategy (e.g., bandit
methods and local parameter updates) in each serving period, and
we plan to take it into account. Lastly, we will develop personalized
meta-learning mechanisms that optimize the learning process for
different users differently.

REFERENCES
[1] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H

Chi. 2018. Latent cross: Making use of context in recurrent recommender systems.
In WSDM. 46–54.

[2] Homanga Bharadhwaj. 2019. Meta-Learning for User Cold-Start
Recommendation. In IJCNN. 1–8.

[3] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-
Johnson, and Thomas S Huang. 2017. Streaming recommender systems. InWWW.
525–534.

[4] Yihong Chen, Bei Chen, Xiangnan He, Chen Gao, Yong Li, Jian-Guang Lou, and
Yue Wang. 2019. λOpt: Learn to Regularize Recommender Models in Finer Levels.
In SIGKDD. 978–986.

[5] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix
factorization with priors on unknown values. In SIGKDD. 189–198.

[6] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolfgang Nejdl.
2012. Real-time top-n recommendation in social streams. In RecSys. 59–66.

[7] Xiaoyu Du, Xiangnan He, Fajie Yuan, Jinhui Tang, Zhiguang Qin, and Tat-Seng
Chua. 2019. Modeling Embedding Dimension Correlations via Convolutional
Neural Collaborative Filtering. TOIS 37, 4 (2019), 47:1–47:22.

[8] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Sequential Scenario-Specific Meta Learner for Online Recommendation. In
SIGKDD. 2895–2904.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML, Vol. 70. 1126–1135.

[10] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, andMassimiliano
Pontil. 2018. Bilevel Programming for Hyperparameter Optimization and Meta-
Learning. In ICML, Vol. 80. 1563–1572.

[11] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. 2017.
The Adressa dataset for news recommendation. In WI. 1042–1048.

[12] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In RecSys. 161–169.

[13] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In SIGIR. 355–364.

[14] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[16] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
Matrix Factorization for Online Recommendation with Implicit Feedback. In
SIGIR. 549–558.

[17] Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).

[18] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In

ICLR.
[19] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward

networks. Neural networks 4, 2 (1991), 251–257.
[20] Haoji Hu, Xiangnan He, Jinyang Gao, and Zhi-Li Zhang. 2020. Modeling

Personalized Item Frequency Information for Next-basket Recommendation.
In SIGIR.

[21] Muhammad Abdullah Jamal and Guo-Jun Qi. 2019. Task Agnostic Meta-Learning
for Few-Shot Learning. In CVPR. 11719–11727.

[22] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

[23] James Kirkpatrick, Razvan Pascanu, Neil C Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabskabarwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. PNAS 114, 13 (2017), 3521–3526.

[24] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In SIGKDD. 1073–1082.

[25] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-Yen
Kan, and Tat-Seng Chua. 2020. Estimation-Action-Reflection: Towards Deep
Interaction Between Conversational and Recommender Systems. In WSDM. 304–
312.

[26] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature
interactions for recommender systems. In SIGKDD. 1754–1763.

[27] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient Episodic Memory
for Continual Learning. In NeurlPS 2017. 6467–6476.

[28] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm
Up Cold-start Advertisements: Improving CTR Predictions via Learning to Learn
ID Embeddings. In SIGIR. 695–704.

[29] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
aware recommender systems. ACM Computing Surveys (CSUR) 51, 4 (2018),
66:1–66:36.

[30] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In ICLR.

[31] Yi Ren, Cuirong Chi, and Zhang Jintao. 2019. A Survey of Personalized
Recommendation Algorithm Selection Based on Meta-learning. In CSIA. 1383–
1388.

[32] Steffen Rendle. 2010. Factorization Machines. In ICDM. 995–1000.
[33] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[34] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010.
Factorizing personalized markov chains for next-basket recommendation. In
WWW. 811–820.

[35] Steffen Rendle and Lars Schmidt-Thieme. 2008. Online-updating regularized
kernel matrix factorization models for large-scale recommender systems. In
RecSys. 251–258.

[36] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. 2015. Hidden technical debt in machine learning systems. In
NeurlPS. 2503–2511.

[37] Karthik Subbian, Charu Aggarwal, and Kshiteesh Hegde. 2016. Recommendations
for streaming data. In CIKM. 2185–2190.

[38] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In WSDM. 565–573.

[39] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. In NeurlPS. 6904–6914.

[40] Jeffrey S Vitter. 1985. Random sampling with a reservoir. TOMS 11, 1, 37–57.
[41] Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi Huang.

2018. Neural memory streaming recommender networks with adversarial
training. In SIGKDD. 2467–2475.

[42] Weiqing Wang, Hongzhi Yin, Zi Huang, Qinyong Wang, Xingzhong Du, and
Quoc Viet Hung Nguyen. 2018. Streaming ranking based recommender systems.
In SIGIR. 525–534.

[43] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In SIGKDD. 950–958.

[44] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[45] Bin Wu, Xiangnan He, Zhongchuan Sun, Liang Chen, and Yangdong Ye. 2019.
ATM: An Attentive Translation Model for Next-Item Recommendation. IEEE
Transactions on Industrial Informatics 16, 3 (2019), 1448–1459.

[46] Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao Xu,
and Yilin Xiong. 2020. Future Data Helps Training: Modeling Future Contexts
for Session-based Recommendation. In WWW. 303–313.

[47] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and
Xiangnan He. 2019. A Simple Convolutional Generative Network for Next Item
Recommendation. In WSDM. 582–590.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 METHOD
	3.1 Model Overview
	3.2 Transfer Design
	3.3 Sequential Training
	3.4 Instantiation on Matrix Factorization

	4 EXPERIMENTS
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1)
	4.3 Ablation Studies (RQ2)
	4.4 Hyper-parameter Studies (RQ3)
	4.5 In-depth Analyses (RQ4)

	5 Related Works
	5.1 Recommendation on Sequential Data
	5.2 Meta-Learning

	6 conclusion
	References

