
Interactive Recommender System via Knowledge
Graph-enhanced Reinforcement Learning
Sijin Zhou1, Xinyi Dai1, Haokun Chen1, Weinan Zhang1, Kan Ren1

Ruiming Tang2, Xiuqiang He2, Yong Yu1
1Shanghai Jiao Tong University, 2Huawei Noah’s Ark Lab

{zhousijin, xydai, chenhaokun, wnzhang, kren, yyu}@apex.sjtu.edu.cn, {tangruiming, hexiuqiang1}@huawei.com

ABSTRACT
Interactive recommender system (IRS) has drawn huge attention
because of its flexible recommendation strategy and the consid-
eration of optimal long-term user experiences. To deal with the
dynamic user preference and optimize accumulative utilities, re-
searchers have introduced reinforcement learning (RL) into IRS.
However, RL methods share a common issue of sample efficiency,
i.e., huge amount of interaction data is required to train an effec-
tive recommendation policy, which is caused by the sparse user
responses and the large action space consisting of a large number of
candidate items. Moreover, it is infeasible to collect much data with
explorative policies in online environments, which will probably
harm user experience. In this work, we investigate the potential of
leveraging knowledge graph (KG) in dealing with these issues of RL
methods for IRS, which provides rich side information for recom-
mendation decision making. Instead of learning RL policies from
scratch, we make use of the prior knowledge of the item correlation
learned from KG to (i) guide the candidate selection for better can-
didate item retrieval, (ii) enrich the representation of items and user
states, and (iii) propagate user preferences among the correlated
items over KG to deal with the sparsity of user feedback. Com-
prehensive experiments have been conducted on two real-world
datasets, which demonstrate the superiority of our approach with
significant improvements against state-of-the-arts.

KEYWORDS
Interactive Recommender Systems, Reinforcement Learning, Knowl-
edge Graphs, Graph Neural Networks

ACM Reference Format:
Sijin Zhou, Xinyi Dai, Haokun Chen, Weinan Zhang, Kan Ren, Ruiming
Tang, Xiuqiang He and Yong Yu. 2020. Interactive Recommender System
via Knowledge Graph-enhanced Reinforcement Learning. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’20), July 25–30, 2020, Virtual Event, China.
ACM, NY, NY, USA, 10 pages. https://doi.org/10.1145/3397271.3401174

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401174

1 INTRODUCTION
With the wide use of mobile applications such as TikTok, Pandora
radio and Instagram feeds, interactive recommender systems (IRS)
have received much attention in recent years [29, 43]. Unlike that in
traditional recommender systems [11, 19, 33], where the recommen-
dation is treated as a one-step prediction task, the recommendation
in IRS is formulated as a multi-step decision-making process. In
each step, the system delivers an item to the user and may receive
feedback from her, which subsequently derives the next recom-
mendation decision in a sequential manner. The recommendation-
feedback interaction is repeated until the end of this visit session
of the user. The goal of the IRS is to explore users’ new interests, as
well as to exploit the learned preferences, to provide accurate predic-
tions, so as to optimize the outcome of the entire recommendation
sequence [42, 43].

One way to implement IRS and balance the exploration and
exploitation is multi-armed bandit (MAB) methods [20, 29, 37].
In MAB-based models, the user preference is often modeled by
a linear function that is continuously learned through the inter-
actions with proper exploration-exploitation tradeoff. However,
these MAB-based models pre-assume that the underlying user pref-
erence remains unchanged during the recommendation process,
i.e., they do not model the dynamic transitions of user preferences
[43]. The key advantage for modern IRS is to learn about the possi-
ble dynamic transitions of the user’s preference and optimize the
long-term utility.

Recently, some researchers have incorporated deep reinforce-
ment learning (DRL) models into interactive recommender system
[3, 13, 41, 42, 44], due to the great potential of DRL in decision mak-
ing and long-term planning in dynamic environment [26]. Mah-
mood and Ricci [22] first proposed to used model-based techniques
in RL where dynamic programming algorithms such as policy iter-
ation are utilized. Some recent works use model-free frameworks
to tackle IRS tasks, e.g., deep Q-network (DQN) [42] and deep de-
terministic policy gradient (DDPG) [13].

Nevertheless, employing DRL in real-world interactive recom-
mender system is still challenging. A common method for training
recommendation models is to make use of offline logged data di-
rectly, but it will suffer from the estimation bias problem [4] under
the real-time interaction setting. In contrast, the ideal setting of
learning the optimal recommendation policy is to train the agent
online. However, due to the item-state search space for each rec-
ommendation step and the trial-and-error nature of RL algorithms,
DRL methods normally face sample efficiency problem [45], i.e.,
learning such a policy requires a huge amount of data through inter-
acting with real users before achieving the best policy, which may

ar
X

iv
:2

00
6.

10
38

9v
1

 [
cs

.I
R

]
 1

8
Ju

n
20

20

https://doi.org/10.1145/3397271.3401174

degrade user experience and damage system profit [39]. Therefore,
it is quite crucial to improve the sample efficiency of existing DRL
models with only a limited amount of interaction data.

Fortunately, there is rich prior knowledge from other external
sources that may contribute to dealing with the above problems,
such as textual reviews, visual images or item attributes [5]. Among
these, knowledge graph (KG), a well-known structured knowledge
base, represents various relations as the attributes of items and
links items if they have common attributes, which has shown great
effectiveness for representing the correlation between items [30].
The association between the items provided by KG is very suitable
for the recommendation scenarios. For example, a user likes the
movie Inception, and the information behind it may be that her
favorite director is Nolan. With such links among actions (items) on
the graph, one user-item interaction record could reveal the user’s
preference on multiple connected items. In addition, the informa-
tion contained in the semantic space of the entire knowledge graph
will also be helpful in extracting user interest during the recom-
mendation process. Since there have been many successful works
applying open-sourced KGs (such as DBpedia, NELL, and Microsoft
Satori) to traditional recommendation systems [30, 36, 38], we be-
lieve that it is reasonably promising to leverage KG to DRL-based
methods in IRS scenarios.

In this paper, we make the first attempt to leverage KG for rein-
forcement learning in interactive recommender systems, trying to
address the aforementioned limitations of the existing DRL meth-
ods. We propose KGQR (Knowledge Graph enhanced Q-learning
framework for interactive Recommendation), a novel architecture
that extends DQN. Specifically, we integrate graph learning and
sequential decision making as a whole to facilitate knowledge in KG
and pattern mining in IRS. On one hand, to alleviate data sparsity,
the user feedback is modeled to propagate via structure informa-
tion of KG, so that the user’s preference can be transited among
correlated items (in the KG). In this way, one interactive record can
affect multiple connected items, thus the sample efficiency is im-
proved. On the other hand, by aggregating the semantic correlations
among items in KG, the item embedding and the user’s preference
are effectively represented, which leads to more accurate Q-value
approximation and hence better recommendation performance. In
addition, we also conduct a methodology to deal with action selec-
tion in such large space. Rather than enumerating the whole item
set, each step the candidate set for recommendation is dynamically
generated from the local graph of KG, by considering the neigh-
borhood of the items in user’s high-scored interacted items. The
method of candidate selection forces the deep Q-network to fit on
the samples that KG considers more useful through the structure of
item correlations, hence it can make better use of limited learning
samples for RL-algorithm.

To the best of our knowledge, this is the first work to introduce
KG into RL-based methods to interactive recommender systems.
The contributions of our work can be summarized as follows.
• We propose a novel end-to-end deep reinforcement learning
based framework KGQR for interactive recommendation to ad-
dresses the sparsity issue. By leveraging prior knowledge in KG
in both candidate selection and the learning of user preference
from sparse user feedback, KGQR can improve sample efficiency
of RL-based IRS models.

• The dynamic user preference can be represented more precisely
by considering the semantic correlations of items in KG, with
graph neural networks.
• Extensive experiments have been conducted on two real-world
datasets, demonstrating that KGQR is able to achieve better
performance than state-of-the-arts with much fewer user-item
interactions, which indicates high sample efficiency.

2 RELATEDWORK
Traditional KG Enhanced Recommendation. Traditional KG
enhanced recommendation models can be classified into three cate-
gories: path-based methods, embedding-based methods and hybrid
methods. In path-based methods [25, 36, 40], KG is often treated
as a heterogeneous information network (HIN), in which specific
meta-paths/meta-graphs are manually designed to represent dif-
ferent patterns of connections. The performance of these methods
is heavily dependent on the hand-crafted meta-paths, which are
hard to design. In embedding-based methods, the entity embedding
extracted from KG via Knowledge Graph Embedding (KGE) algo-
rithms (like TransE [2], TransD [15], TransR [21]), is utilized to
better represent items in recommendation. Zhang et al. [38] propose
Collaborative Knowledge Base Embedding (CKE), to jointly learn
the latent representations in collaborative filtering as well as items’
semantic representations from the knowledge base, including KG,
texts, and images. MKR [31] associates the embedding learning
on KG with the recommendation task by cross & compress units.
KSR [14] extends the GRU-based sequential recommender by inte-
grating it with a knowledge-enhanced Key-Value Memory Network.
In hybrid methods, researchers combine the above two categories
to learn the user/item embeddings by exploiting high-order infor-
mation in KG. Ripplenet [30] is a memory-network-like model that
propagates users’ potential preferences along with links in the KG.
Inspired by the development of graph neural network [9, 17, 28],
KGAT [34] applies graph attention network [28] framework in a
collaborative knowledge graph to learn the user, item and entity
embeddings in an end-to-end manner.

However, most of these methods are one-step prediction tasks
and can not model the iterative interactions with users. Besides,
they all greedily optimize an immediate user’s feedback and don’t
take the user’s long-term utility into consideration.

Reinforcement Learning in IRS. RL-based recommendationmeth-
ods model the interactive recommendation process as a Markov
Decision Process (MDP), which can be divided into model-based
and model-free methods. As one of the model-based techniques,
Mahmood and Ricci [22] utilize policy iteration to search for the
optimal recommendation policy where an action is defined to be an
item and a state is represented as n-gram of items. Policy iteration
needs to go through the whole state space in each iteration, with
exponential complexity to the number of items. Therefore, it is
unable to handle large state and action space.

Recently, mostworks on RL-based recommendation prefermodel-
free techniques, including policy gradient (PG)-based, DQN-based
and DDPG-based methods. PG-based methods, as well as DQN-
based, treat recommending an item as an action. PG-based meth-
ods [3] learn a stochastic policy as a distribution over the whole
item space and sample an item according to such distribution.

interaction
history

fe
ed

ba
ck

en
tit

y
re

pr
es

en
ta

tio
n

item pool
Candidate
Selection

re
co

m
m

en
de

d
ite

m

item candidates

current state
State

RepresentationQ-network

Graph
Convolutional

networkKnowledge Graph
User

back-propagationinference

Figure 1: The overall KGQR framework. The left part illus-
trates the interaction process between the user and the IRS.
The right part illustrates how the IRS recommends an item
to the user according to past interaction history.

DQN-based methods [42, 44, 45] learn Q-value for each item
and select the item with the maximum Q-value. Zheng et al. [44]
combine DQN and Dueling Bandit Gradient Decent (DBGD) [8]
to conduct online news recommendation. Zou et al. [45] integrate
both the intent engagement (such as click and order) and long-
term engagement (such as dwell time and revisit) when modeling
versatile user behaviors. In DDPG-based works, an action is often
defined as a continuous ranking vector. Dulac et al. [7] represent the
discrete actions in a continuous vector space, pick a proto-action
in a continuous hidden space according to the policy and then
choose the valid item via a nearest neighbor method. In [13, 41],
the policies compute the ranking score of an item by calculating
the pre-defined function value (such as an inner product) of the
generated action vector and the item embedding.

Nevertheless, all existing RL-based recommendation models suf-
fer from low sample efficiency issue and need to pre-train user/item
embeddings from history, which means that they cannot handle
recommendation on cold-start problem well. A significant differ-
ence between our approach and the existing models is that we first
propose a framework that combines the semantic and structural
information of KG with the IRS to break such limitations.

3 PROBLEM FORMULATION
In feed streaming recommendation scenario, the interactive nature
between the recommender system and the user is a multi-step in-
teraction process that lasts for a period of time. At each timestep
t , according to the observations on past interactions, the recom-
mendation agent delivers an item it ∈ I to the user, and receives
feedback (e.g., click, purchase or skip) from her. This process con-
tinues until the user leaves the recommender system. Under such
circumstances, the interactive recommendation process can be for-
mulated as a Markov Decision Process (MDP). The ultimate goal
of the recommender system is to learn a recommendation policy
π : S → I, which maximizes the cumulative utility over the whole
interactive recommendation process as

π∗ = argmax
π ∈Π
E
[T∑
t=0

r (st , it)
]
. (1)

Table 1: Notations and descriptions.
Notations Descriptions
U,I Set of users and items in IRS.

G = (E,R) Knowledge graph.
E,R Set of entities and relations in G.

ot = {i1, i2, ...in } Recorded user’s positively interacted at timestep t .
st Dense representation of user’s preference at timestep t .
rt The user’s reward at timestep t .
T Episode length.

eh ,h ∈ E Dense representation of an entity.
It (G) Candidate action space at timestep t .
θS Parameters of state representation network.

θQ ,θ
′
Q Parameters of online Q-network /target Q-network.

D Replay Buffer.

Here st ∈ S is a representation abstracted from user’s positively
interacted items ot = {i1, i2, ...in } that denotes user’s preference at
timestep t ; r (st , it) is the user’s immediate feedback to the recom-
mended item it at the state st according to some internal function
R : S × I → R, abbreviated as rt .

To achieve this goal, traditional recommendation methods usu-
ally adopt a greedy strategy and only optimize one-step reward, i.e.,
at each timestep t , they optimize the immediate reward rt . Different
from them, DRL algorithms take the long-term impact into consid-
eration and explicitly model the long-run performance. They will
optimize

∑T−t
j=0 γ jrt+j at timestep t , instead. And γ ∈ (0, 1] is the

discount factor to control the degressively accumulated long-term
rewards.

In general, we can use Q-value to evaluate the value of an action
(i.e., recommending an item) taken at a given state, defined as

Qπ (st , it) = E
[T−t∑
j=0

γ jrt+j
]
= E

[
rt +

T−t∑
j=1

γ jrt+j
]
, (2)

which is a weighted sum of the expected reward of all future steps
starting from the current state and following the policy π to take ac-
tions. Then following the optimal Bellman equation [1], the optimal
Q∗, having the maximum expected reward achievable is:

Q∗(st , it) = Est+1 [rt + γ max
it+1

Q∗(st+1, it+1)|st , it]. (3)

Since the state and action spaces are usually enormous, we nor-
mally estimate the Q-value of each state-action (st , it) pair via a θQ -
parameterized deep neural network, i.e., Q∗θQ (st , it) ≈ Q

∗(st , it).
As mentioned in Section 1, learning this Q-function from scratch

requires numerous interactions with real users due to the low data
efficiency problem that is common in the RL algorithm. However,
unlike basic RL algorithms, in RS scenarios, KG can provide com-
plementary and distinguishable information for each item by their
latent knowledge-level connection in the graph. Thus, with the
prior knowledge of the environment and actions, the Q-function
can be learned more efficiently,

Q∗θQ (st , it ;G) = Q
∗
θQ

(
st (G), it (G)

)
. (4)

Here G is the knowledge graph comprised of subject-property-
object triples facts, e.g., triple (Nolan,DirectorOf, Inception), which
denotes Nolan is the director of Inception. And it is ofen present
as (head, relation, tail), head ∈ E, relation ∈ R , tail ∈ E and E,
R denote the set of entities and relationships in G, respectively.

Usually, an item i ∈ I can be linked to an entity e ∈ E in the
knowledge graph, e.g., the movieGodfather fromMovieLens dataset
has a corresponding entity entry in DBpedia. We will introduce
how we design the knowledge enhanced DRL framework for IRS
in the following sections and the key notations used in this paper
are summarized in Table 1.

4 KGQR METHODOLOGY
The overview of our proposed framework is shown in Figure 1.
Generally, our KGQR model contains four main components: graph
convolution module, state representation module, candidate selec-
tion module and Q-learning network module. In the interactive
recommendation process, at each timestep t , the IRS sequentially
recommends items it to users, and correspondingly updates its
subsequent recommendation strategy based on user’s feedback rt .
At the specific time during one recommendation session, according
to the interaction history ot combined with the knowledge graph
G, the IRS models the user’s preference st via graph convolution
module and state representation module. The details of these two
representation learning modules will be discussed in Section 4.1.
Then the IRS calculates the highest-scored item in the candidate set
through Q-network and recommends it to the user. We will intro-
duce the candidate selection module and deep Q-network module
in Section 4.2 and Section 4.3, respectively.

4.1 KG Enhanced State Representation
In IRS scenario, it is impossible to get user’s state st directly, and
what we can directly observe is the recorded user-system interac-
tion history ot . As state is one of the key part in MDP, the design
of state representation module is critical to study the optimal rec-
ommendation strategy.

4.1.1 Graph convolutional embedding layer. Generally, the state
representation in IRS is abstracted from the user’s clicked1 items,
since the positive items represent the key information about what
the user prefers [42]. Given the user’s history, we first convert the
clicked item set {it } into embedding vectors it ∈ Rd , where d is
the dimension of the embeddings. Since we have already linked
items with entities in KG, we can take advantage of the semantic
and correlation information among items in KG for better item
embedding it (G).

In order to distill structural and semantic knowledge in the graph
into a low-dimensional dense node representation, different ap-
proaches of graph embedding methods can be applied. In addition
to harvesting the semantic information, we incline to explicitly link
these items so that one data can affect more items. Thus, a graph
convolutional network (GCN) [17] is used in our work to recur-
sively propagate embeddings along the connectivity of items and
learn the embeddings of all entities {eh ∈ Rd }h∈E on the graph G.

The computation of the node’s representation in a single graph
convolutional embedding layer is a two-step procedure: aggregation
and integration. These two procedures can naturally be extended to
multiple hops, andwe use the notationk to identifyk-th hop. In each
layer, first, we aggregate the representations of the neighboring

1Without loss of generality, we take “click” behavior as user positive feedback as the
running example.

nodes of a given node h:

ek−1N (h) =
1
|N (h)|

∑
t ∈N (h)

ek−1t , (5)

where N (h) = N (head) = {tail | (head, relation, tail) ∈ G} is the set
of neighboring nodes of h. Notice that, here we consider the classic
Average aggregator for example, other aggregator like concat aggre-
gator [9], neighbor aggregator or attention mechanism (GAT) [28]
can also be implemented.

Second, we integrate the neighborhood representation with h’s
representation as

ekh = σ (Wke
k−1
N (h) + Bke

k−1
h), (6)

where Wk and Bk are trainable parameters for k-hop neighbor-
hood aggregator and σ is the activation function implemented as
ReLU(x) = max(0,x). In Equation 6, we assume the neighborhood
representation and the target entity representation are integrated
via a multi-layer perceptron. After k-hop graph convolutional em-
bedding layer, each clicked item is then converted into it (G) = ekit .

4.1.2 Behavior aggregation layer. Since the interactive recommen-
dation is a sequential decision-making process, at each step, the
model requires the current observation of the user as input, and
provides a recommended item it as output. It is natural to use auto-
regressive models such as recurrent neural networks (RNN) to rep-
resent the state based on the observation-action sequence [10, 23].
Thus, we use an RNN with a gated recurrent unit (GRU) as the
network cell [6] to aggregate user’s historical behaviors and distill
user’s state st (G). The update function of a GRU cell is defined as

zt = σд (Wz it + Uzht−1 + bz) ,
rt = σд (Wr it + Ur ht−1 + br) ,

ĥt = σh (Wh it + Uh (rt ◦ ht−1) + bh) ,

ht = (1 − zt) ◦ ht−1 + zt ◦ ĥt ,

(7)

where it denotes the input vector, zt and rt denote the update gate
and reset gate vector respectively, ◦ is the elementwise product
operator. The update function of hidden state ht is a linear interpo-
lation of previous hidden state ht−1 and a new candidate hidden
state ĥt . The hidden state ht is the representation of current user
state, which is then fed into the Q-network, i.e.,

st (G) = ht . (8)

For simplicity, the set of the whole network parameters for com-
puting st (G), including parameters of graph convolutional layer
and parameters of GRU cell, is denoted as θS .

In Figure 2(a), we illustrate the knowledge enhanced state repre-
sentation module elaborated above. The upper part is the recurrent
neural network that takes clicked item’s embedding at each timestep
as the input vector, and outputs the hidden state of the current step
as the state representation. The item embeddings, which are the in-
put to GRU, are learned by performing graph convolutional network
in KG, as shown in the bottom part.

4.2 Neighbor-based Candidate Selection
Generally, the clicked items have some inherent semantic charac-
teristics, e.g., similar genre movies [30]. Since users are usually

5

Graph
Convolutional

Network

State Representation
GRU ...

...

GRUGRU

7

3

0 4

11

12 13

2

6
8

10

9

1

1

2

3

4

6

0

6

0

7

3

2

4

9

11

12

5

1

8

1-hop

2-hop

Knowledge Graph

Graph Convolutional Network

item
non-item entity

Knowledge
Graph

Candidates
item space

Graph
Convolutional

Network

Candidate Selection

Adavantage
Network

Value
Network

+

State
Representation

Candidate
Selection

Q-Network

(a)

(b) (c)

Figure 2: The neural architecture of KGQR. (a) The
knowledge-enhanced state representation module main-
tains user’s preferenceswith a recurrent neural network and
a graph neural network; (b) The candidate selection module
dynamically reduces large action space according to user’s
positive feedback; (c) The Q-value network predicts the Q-
value with a value network and an advantage network.

not likely to be interested in all items, we can focus on selecting
the potential candidates for restricted retrieval based on this se-
mantic information in KG. Specifically, we utilize KG to filter some
irrelevant items (i.e., actions) and dynamically obtain the potential
candidates. The restricted retrieval will focus the data samples on
the area that is more useful, as suggested in the structure of item
correlation. Thus, these potential candidates would not only reduce
the large searching space, but also improve the sample efficiency
of policy learning.

More specifically, we perform a sampling strategy based on the
k-hop neighborhood in KG. In each timestep t , the user’s historical
interacted items serve as the seed set E0t = {i1, i2, ...in }. The k-hop
neighborhood set starting from the seed entities is denoted as

Ekt =
{
tail | (head, relation, tail) ∈ G and head ∈ El−1t

}
,

l = 1, 2, . . . ,k .
(9)

Then, the candidate action set for the current user state is defined
as

It (G) =
{
item|item ∈

k⋃
l=1
Elt and item ∈ I

}
, (10)

with a user-defined cardinality. The shallow part in "candidate
selection" in Figure 2(b) denotes the selected actions with the in-
formation from KG. Then all candidate items get their embedding
through the graph convolutional layers.

4.3 Learning Deep Q-Network
After modeling the user’s state st (G) and obtaining candidate sets
It (G), we need to design Q-network to combine this information
and improve the recommendation policy for the interactive recom-
mendation process. Here we implement a deep Q-network (DQN)
with dueling-Q [35] and double-Q [27] techniques to model the
expected long-term user satisfaction from the current user state as
well as to learn the optimal strategy.

4.3.1 Deep Q-network. We adopt dueling technique to reduce the
approximation variance and stabilize training [35]. That is, using
two networks to compute the value function V (it (G)) and advan-
tage functions A(st (G), it (G)) respectively, and it is shown in Fig-
ure 2. Then the Q-value can be computed as,
Q(st (G), it (G);θV ,θA) = V (it (G);θV) +A(st (G), it (G);θA). (11)
Here the approximation of value function and advantage func-

tion are accomplished by multi-layer perceptrons. θV and θA is the
parameter of value function and advantage function respectively
and we denote θQ = {θV ,θA}.

4.3.2 Model training. With the proposed framework, we can train
the parameters of themodel through trial-and-error process. During
the interactive recommendation process, at timestep t , the recom-
mender agent gets the user’s state st from the observations ot about
her, and recommendeds an item it via an ϵ-greedy policy (i.e., with
probability 1 − ϵ choosing the item in the candidate with the max
Q-value, with probability ϵ choosing a random item). Then the
agent receives the reward rt from the user’s feedback and stores
the experience (ot , it , rt ,ot+1) in the replay buffer D. From D, we
sample mini-batch of experiences, and minimize the mean-square
loss function to improve the Q-network, defined as

L(θQ) = E(ot ,it ,rt ,ot+1)∼D [(yt −Q(st , it ;θQ))
2]. (12)

Here yt is the target value based on the optimal Q∗. According
to Equation (3), yt is defined as

yt = rt + γ max
it+1∈It+1(G)

Q(st+1, it+1;θQ). (13)

To alleviate the overestimation problem in original DQN, we
also utilize a target network Q ′ along with the online network
Q (i.e., the double DQN architecture [27]). The online network
back-propagates and updates its weights at each training step. The
target network is a duplicate of the online network and updates
its parameters with training delay. The target value of the online
network update is then changed to

yt = rt + γQ
′
(
st+1, argmax

it+1∈It+1(G)
Q(st+1, it+1;θQ);θ ′Q

)
, (14)

where θ ′Q denotes the parameter of the target network, and θ ′Q
updates according to soft assign as

θ ′Q = τθQ + (1 − τ)θ
′
Q , (15)

where the interpolation parameter τ is also called update frequency.

Algorithm 1: Training KGQR
Input: D; τ ; ϵ ;
Output: θS ; θQ ; {eh }h∈E ;

1 Initialize all parameters: θS , θQ , {eh }h∈E , θ ′Q ← θQ ;
2 repeat
3 for u ∈ U do
4 Initialize the clicked history x← {};
5 for t ∈ {0, 1, . . . , T } do
6 for x = ot = {i1, i2, . . . , in }, get {i1, . . . , in } via

Eq.(5), Eq.(6);
7 Get st via Eq.(7), Eq.(8);
8 Recommend it by ϵ -greedy w.r.t Q-value in Eq.(11);
9 Receive reward rt ;

10 if rt > 0 then
11 Append it to x;
12 end
13 Set ot+1 ← x;
14 Get It+1(G) via Eq.(9), Eq.(10);
15 Store (ot , it , rt , ot+1, It+1(G)) to buffer D;
16 end
17 Sample mini-batch of tuples

(ot , it , rt , ot+1, It+1(G)) ∼ Unif(D);
18 Get st , st+1 from ot , ot+1 via Eq.(5), Eq.(6) and Eq.(7);
19 Construct target values yt via Eq. (14);
20 Update θS , θQ , {eh }h∈E via SGD w.r.t the loss function

Eq.(12);
21 Update θ ′Q via Eq. (15) ;
22 end
23 until coverged;

To summarize, the training procedure of our KGQR is presented
in Algorithm 1. Note that this paper mainly focuses on the way of
incorporating KG into DRL methods for IRS. Thus we study the
most typical DQN model as a running example. Our method can
be seamlessly incorporated into other DRL models such as policy
gradient (PG) [3], DDPG [13] etc.

5 EXPERIMENT
We conduct experiments on two real-world datasets to evaluate
our proposed KGQR framework. We aim to study the following
research questions (RQs):
• RQ1: How does KGQR perform as compared with state-of-the-
art interactive recommendation methods?
• RQ2: Does KGQR improve sample efficiency?
• RQ3: How do different components (i.e., KG-enhanced state
representation, GCN-based task-specific representation learning,
neighbor-based candidate selection) affect the performance of
KGQR?

5.1 Experimental Settings
5.1.1 Datasets. We adopt two real-world benchmark datasets for
evaluation and describe them as below.
Book-Crossing2 is a book rating dataset from Book-Crossing

community. The ratings are ranging from 0 to 10. This dataset is
linked with Microsoft Satori and the sub-KG is released by [30].

Table 2: Statistics of the datasets.
Book-crossing Movielens-20M

User-Item
Interaction

#User 17,860 16,525
#Linked Items 14,910 16,426
#Interactions 139,746 6,711,013

Knowledge
Graph

#Entities 77,903 101,769
#Relation Types 25 32
#Triples 151,500 489,758

Movielens-20M3 is a benchmark dataset, which consists of 20
million ratings from users to movies in MovieLens website. The
ratings are ranging from 1 to 5. It is also linked with Microsoft
Satori and the sub-KG is released by [32].
For Book-Crossing dataset, we follow the processing of [30] to

convert original ratings into two categories, 1 for high ratings, 0 for
others. For MovieLens-20M dataset, we keep the users with at least
200 interactions. The statistics information of these two datasets is
presented in Table 2.

We choose these two typical datasets since our work focuses on
incorporating KG into RL-based models for IRS. The experiments
on more datasets with rich domain information such as news or
images will be left as future work.

5.1.2 Simulator. Due to the interactive nature of our problem, on-
line experiments where the recommender system interacts with
users and learns the policy according to the users’ feedback di-
rectly would be ideal. However, as mentioned in Section 1, the
trial-and-error strategy for training policy in an online fashion
would degrade the user’s experience, as well as the system profit.
Thus, the community has formed a protocol [3, 7, 13, 29, 41] to
build up an environment simulator based on offline datasets for
evaluation.

Following the experiment protocol in [3], our mimic environ-
ment simulator takes into account the instinctive feedback as well
as the sequence nature of user behavior. We perform matrix fac-
torization to train the 20-dimensional embeddings of the users and
items. Then we normalize the ratings of each dataset into the range
[-1,1], and use them as users’ instinctive feedback. Then we com-
bine a sequential reward with the instinctive reward. For instance,
if the recommender system recommends an item i j to a user ui at
timestep t , the final reward function comes as

R(st , it) = ri j + η(cp − cn), (16)

where ri j is the predicted rating given by the simulator, cp and cn
means the consecutive positive and negative counts representing
the sequential pattern, and η is a trade-off between instinctive
feedback and sequential nature. In our experiment, η is chosen
from {0.0, 0.1, 0.2}, following the empirical experience in [3].

For each dataset, we randomly divide the users into two parts:
80% of the users are used for training the parameters of our model,
and the other 20% are used for testing the model performance. Due
to train/test dataset splitting style, the users in our test set never
exist in the training set. That is to say, the experiment is a cold-start
scenario, whichmeans there is no user click history at the beginning.
2http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
3https://grouplens.org/datasets/movielens/

To handle cold-start problem, the recommender system collects the
most popular items among the training users, and recommends
a popular item to a test user at step t0. Then, according to the
user’s feedback, the recommender system recommends items to
the user interactively. Besides, we remove the recommended items
from the candidate set to avoid repeated recommendation in one
episode. The episode length T = 32 for all the two datasets in our
experiment.

5.1.3 Evaluation Metrics. Three evaluation metrics are used.
Average Reward. As an IRS aims to maximize the reward of the
whole episode, a straightforward evaluation measure is the average
reward over each interaction of test users.

Reward =
1

#users ×T
∑
users

T∑
t=1

γ tR(st , it) (17)

We also check for the precision and recall duringT timesteps of the
interactions, which are widely used metrics in traditional recom-
mendation tasks.
Average Cumulative Precision@T .

Precision@T =
1

#users ×T
∑
users

T∑
t=1

θhit (18)

Average Cumulative Recall@T .

Recall@T =
1

#users
∑
users

T∑
t=1

θhit
#pre f erences (19)

We define θhit = 1 if the instinctive feedback of the recommended
item given by the simulator is higher than the predefined threshold,
which is 0.5 in Book-Crossing and 3.5 in Movielens-20M. And we
define #pre f erences is the total number of the positive instinctive
feedback among all items, i.e., number of items with ri j > boundary
based on the simulator.
Significance test. The Wilocoxon signed-rank test has been per-
formed to evaluate whether the difference between KGQR and the
other baselines is significant.

5.1.4 Baselines. We compare KGQR with 7 representative baseline
methods in the IRS scenario, where GreedySVD and GRU4Rec are
traditional recommendation methods, LinearUCB and HLinearUCB
are based on multi-armed bandits, DDPGKNN, DDPGR, DQNR are
DRL-based methods.
GreedySVD is a well-known collaborative filtering methods via

singular value decomposition [18]. In interactive scenarios, we
train the model after each interaction with users and recommend
an item with the predicted highest rating to one user.

GRU4Rec is a representative RNN-based sequential recommenda-
tion algorithm [12] to predict what the user will click at the next
timestep based on the browsing histories.

LinearUCB is a multi-armed bandit algorithm [20] which selects
items according to the estimated upper confidence bound (UCB)
of the potential reward based on contextual information about
the users and items.

HLinearUCB is a contextual bandit algorithm combined with ex-
tra hidden features [29].

DDPGKNN is a DDPG-based method [7] which represents the
discrete actions into a continuous vector space. The actor selects

a proto-action in the continuous space and then chooses the
item with the max Q-value from the candidate items selected
via K-nearest-neighbor (KNN) according to the proto-action. In
this approach, a larger K value boosts the performance but also
brings computational cost, indicating the existence of a trade-off
between performance and efficiency. In our experiment, the K
value is set to {1, 0.1N , N }, where N is the total number of items.

DDPGR is a DDPG-based method [41] where the actor learns a
ranking vector. The vector is utilized to compute the ranking
score of each item, by performing product operation between
this vector and item embedding. Then the item with the highest
ranking score is recommended to the user.

DQNR is a DQN-based method [44] where the recommender sys-
tem learns a Q function to estimate the Q-value of all the actions
at a given state. The method then recommends the item with
highest Q-value at the current state.
Note that, traditional knowledge enhanced recommendation

methods like CKE [38], RippleNet [30], KGAT [34] and etc. are
not suitable for the online interactive recommendation as tested
in this paper. Because our recommendation process is an online
sequential recommendation in the case of cold-start setting, this
means there is no data about the test user at the beginning. We
model user preferences in real-time through the user interaction
process and provide recommendations under the current situation.
These traditional models could not handle this cold-start problem;
thus, we do not compare our proposed model with them.

5.1.5 Parameter Settings. In KGQR, we set the maximal hop num-
ber k = 2 for both datasets. We have tried larger hops, and find
that the model with larger hops brings exponential growth of com-
putational cost with only limited performance improvement. The
dimension of item embedding is fixed to 50 for all the models. For
baseline methods, the item embedding is pre-trained by matrix
factorization with the training set. For KGQR, we pre-train the em-
bedding of KG by TransE [2], and then embedding will be updated
while learning the deep Q-network. Besides, other parameters are
randomly initialized with uniform distribution. The policy network
in all the RL-based methods takes two fully-connected layers with
activation function as ReLU. The hyper-parameters of all models
are chosen by grid search, including learning rate, L2 norm regular-
ization, discount factor γ and etc. All the trainable parameters are
optimized by Adam optimizer [16] in an end-to-end manner. We
use PyTorch [24] to implement the pipelines and train networks
with an NVIDIA GTX 1080Ti GPU. We repeat the experiments 5
times by changing the random seed for KGQR and all the baselines.

5.2 Overall Performance (RQ1)
Table 3 reports the performance comparison results. We have the
following observations: (i) KGQR consistently obtains the best per-
formance across all environment settings on both datasets. For in-
stance, compared to RL-based recommendation methods like DQN-
based (i.e., DQNR) and DDPG-based (e.g., DDPGKNN, DDPGR),
KGQR improves over the strongest baselines in terms of Reward by
3.2% and 5.3% in Book-Crossing and MovieLens-20M, respectively.
For traditional evaluation metrics, KGQR improves Precision@32
by 0.5% and 1.9% in the two datasets, respectively. This demon-
strates that the leverage of prior knowledge in KG significantly

Table 3: Overall Performance Comparison.

Dataset Method η = 0 η = 0.1 η = 0.2
Reward Precision@32 Recall@32 Reward Precision@32 Recall@32 Reward Precision@32 Recall@32

Book-Crossing

Greedy SVD -0.0890 0.3947 0.0031 -0.1637 0.4052 0.0032 -0.2268 0.4133 0.0033
GRU4Rec 0.5162 0.8611 0.0070 1.3427 0.8595 0.0070 2.1797 0.8625 0.0070
LinearUCB -0.0885 0.3956 0.0032 -0.1640 0.4049 0.0032 -0.2268 0.4133 0.0033
HLinearUCB -0.1346 0.3819 0.0031 -0.3566 0.3841 0.0031 -0.6064 0.3713 0.0031

DDPGR 0.5521 0.9115 0.0074 1.1412 0.8800 0.0072 2.2057 0.9270 0.0076
DDPGKNN(K=1) 0.3159 0.7302 0.0059 0.7312 0.7990 0.0065 0.8409 0.7472 0.0061

DDPGKNN(K=0.1N) 0.7312 0.9907 0.0080 2.0750 0.9813 0.0080 3.3288 0.9758 0.0079
DDPGKNN(K=N) 0.7639 0.9927 0.0081 2.2729 0.9942 0.0081 3.7179 0.9915 0.0081

DQNR 0.7634 0.9936 0.0081 2.2262 0.9907 0.0080 3.6118 0.9881 0.0080
KGQR 0.8307* 0.9945* 0.0081 2.3451* 0.9971* 0.0081 3.7661* 0.9966* 0.0081*

MovieLens-20M

Greedy SVD 0.4320 0.6569 0.0049 0.6915 0.6199 0.0048 0.9042 0.5932 0.0046
GRU4Rec 0.7822 0.8382 0.0074 1.5267 0.8253 0.0072 2.3500 0.8316 0.0073
LinearUCB 0.2307 0.3790 0.0029 0.6147 0.5821 0.0046 0.8017 0.5614 0.0044
HLinearUCB 0.0995 0.3852 0.0029 0.0172 0.3841 0.0028 0.2265 0.3774 0.0027

DDPGR 0.2979 0.4917 0.0034 1.4952 0.7626 0.0055 2.3003 0.6977 0.0045
DDPGKNN(K=1) 0.5755 0.7293 0.0059 1.0854 0.7165 0.0058 1.6912 0.7371 0.0061

DDPGKNN(K=0.1N) 0.6694 0.8167 0.0070 1.1578 0.8165 0.0069 2.2212 0.8215 0.0068
DDPGKNN(K=N) 0.8071 0.9606 0.0082 2.1544 0.9446 0.0081 3.6071 0.9533 0.0082

DQNR 0.8863 0.9680 0.0086 2.3025 0.9667 0.0081 3.4036 0.9089 0.0071
KGQR 0.9213* 0.9726* 0.0086* 2.4242* 0.9722* 0.0083* 3.7695* 0.9713* 0.0084*

* indicates statistically significant improvements (measured by Wilocoxon signed-rank test at p < 0.05) over all baselines.

Table 4: Sample Efficiency Comparison: number of interac-
tions to achieve reward 0.5,1.0,1.5,2.0 for each dataset.

Model Book-Crossing Movielens-20M
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

DDPGR 0.46M 2.49M - - 2.28M 2.62M 3.82M -
DDPGKNN 0.20M 0.49M 1.46M 2.44M 0.04M 0.07M 1.76M 2.42M
DQNR 0.20M 1.06M 3.09M 4.83M 0.06M 0.08M 2.47M 4.27M
KGQR 0.06M 0.17M 0.24M 0.40M 0.04M 0.06M 0.16M 0.33M

improves the recommendation performance. (ii) In most conditions,
non-RL methods including conventional methods and MAB-based
methods, perform worse than the RL-based methods. Two reasons
stand for the significant performance gap. On the one hand, except
GRU4Rec, the capacity of other non-RL methods are limited in mod-
eling user preference without considering sequential information.
On the other hand, they all focus on the immediate item reward
and do not take the present value of the overall performance of
the whole sequence into the current decision, which makes them
perform even worse in environments that give future rewards more
(e.g., η = 0.1, η = 0.2). (iii) Among the RL-based baselines, we
can observe that DQNR and DDPGKNN (K = N) achieves much
better performance than the other DDPG based methods. When
K = N (N is the total number of items), DDPGKNN can be seen as
a greedy policy that always picks the item with max Q-value. We
also notice that the training process of DDPG based methods is not
stable, e.g., their training curves sometimes experience a sudden
drop. This may be accounted for that the continuous proto-action
picked by the actor is inconsistent with the final action that the
critic is learned with. Such inconsistency between actor and critic
may result in inferior performance.

0 1 2 3 4 5 6
the number of interactions with users (×10^6)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

te
st

 re
wa

rd

(b) MovieLens-20M

DDPGR DDPGKNN DQNR KGQR−CS KGQR

0 1 2 3 4 5 6
the number of interactions with users (×10^6)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

te
st

 re
wa

rd

(a) Book-Crossing

Figure 3: Learning curves of KGQR and DRL-based baseline
models.

5.3 Sample Efficiency (RQ2)
One motivation of exploiting KG is to improve sample efficiency
in RL-based recommendation, i.e., to reduce the amount of inter-
action data needed to achieve the same performance. In Figure 3
and Table 4, we analyze the number of interactions needed for each
DRL-based model to achieve the same performance with the envi-
ronment of η = 0.1 in Eq.(16). As can be observed, our proposed
KGQR can achieve the same performance as the other RL-based
methods using the least number of interactions. More specifically, to
achieve a test reward of 2.0, KGQR only needs 17.3% and 13.6% of in-
teractions compared to the second efficient baseline (i.e., DDPGKNN)
in the two datasets. This result empirically validates that sample
efficiency is improved by utilizing the semantic and correlation
information of items in KG. The detailed analysis of different com-
ponents that contributes to improve sample efficiency is proposed
in Section 5.4.2.

Table 5: Comparison of Different KGQR Variants.
KGQR-KG KGQR-GCN-CS KGQR-CS KGQR

KGemb* × ✓ ✓ ✓
GCNprop* × × ✓ ✓

CS* × × × ✓
* KGemb denotes KG enhanced item representation; GCNprop denotes GCN
propagation in state representation; CS denotes the neighbor-based candidate
selection.

Table 6: Ablation Study of KGQR.

Model Book-Crossing Movielens-20M
Reward Precision@32 Reward Precision@32

KGQR-KG 2.2262 0.9907 2.3025 0.9667
KGQR-GCN-CS 2.2181 0.9819 2.2402 0.9621
KGQR-CS 2.2836 0.9939 2.3689 0.9698
KGQR 2.3451 0.9971 2.4242 0.9722

1000 2000 3000 5000 10000
candidate size

2.1

2.2

2.3

2.4

av
er

ag
e

re
wa

rd

Reward
Precision@32

0.990

0.995

1.000

pr
ec

isi
on

@
32

(a) Book-Crossing

1000 2000 3000 5000 10000
candidate size

2.1

2.2

2.3

2.4

2.5

av
er

ag
e

re
wa

rd

Reward
Precision@32

0.965

0.970

0.975

pr
ec

isi
on

@
32

(b) MovieLens-20M

Figure 4: Influence of Candidate Size.

5.4 Analysis (RQ3)
In this section, we further analyze the effectiveness of different
components in the proposed framework. In KGQR, there are three
components utilizing KG that may affect the performance of KGQR:
KG enhanced item representation, GCN propagation in state rep-
resentation (Section 4.1) and neighbor-based candidate selection
(Section 4.2). To study the effectiveness of each such component, we
evaluate the performance of four different KGQR variants, namely
KGQR-KG (i.e.,DQNR), KGQR-CS, KGQR-GCN-CS and KGQR. The re-
lationship between KGQR variants and different components is
presented in Table 5. In the ablation study, we consider the envi-
ronment of η = 0.1 in Eq.(16), and Table 6 shows the performance
of these four variants.

5.4.1 Recommendation performance. Effect ofKGenhanced item
representation. In KGQR-KG, the item embeddings are pretrained
by MF model from the historical interaction data, while in KGQR-
GCN-CS, they are retrieved from KG, pretrained with TransE. There-
fore, the marginal difference between KGQR-KG and KGQR-GCN-
CS performance indicates that the information in KG has almost
equal contribution with the historical interaction data, which sug-
gests the superiority of applying KG for cold-start scenario (i.e., no
historical interaction data exists).
Effect of GCN propagation in state representation. Compar-
ing the performance of KGQR-GCN-CS with KGQR-CS in Table 6,
the improvement in KGQR-GCN-CS indicates that the signal from
RL-based recommendation guides the update of KG embedding
so that the items in KG can be represented more suitably for the
current specific recommendation task.

Effect of neighbor-based candidate selection. The comparison
between the performance of KGQR-CS and KGQR validates the
effectiveness of neighbor-based candidate selection, for candidate
selection module can leverage the local structure of interacted items
in KG to filter irrelevant items and such restricted retrieval improves
the final recommendation performance.

To study the influence of candidate size, we vary the candidate
size in the range of {1000, 2000, 3000, 5000, 10000} and present the
recommendation performance in Figure 4. We observe that rec-
ommendation performance first grows as candidate size increases,
since a small size of candidate limits possible choices of the rec-
ommendation algorithm. However, further increasing of candidate
size degrades the performance, since the neighbor-based candidate
selection filters some irrelevant items in advance. Such irrelevant
items have very limited chance to be recommended and to collect
feedback which makes them not be able to learn well by the recom-
mendation algorithm and eventually gains a negative effect to the
performance.

5.4.2 Sample efficiency. Effect of KG-enhanced state represen-
tation. Comparing the number of interactions of KGQR-KG with
that of KGQR w.r.t same test average reward in Figure 3, we notice
that in both two environments the utilizing of KG and task-specific
representation learning improves the sample efficiency. This ob-
servation demonstrates our motivation that the propagation of
user preference through the correlated items via GCN is helpful in
dealing with sample efficiency issues.
Effect of neighbor-based candidate selection. Besides the per-
formance improvements, the candidate selection significantly im-
proves the sample efficiency, as shown in Figure 3 (comparing the
purple line and red line).

6 CONCLUSION
In this work, we proposed a knowledge graph enhanced Q-learning
framework (KGQR) for the interactive recommendation. To the best
of our knowledge, it is the first work leveraging KG in RL-based
interactive recommender systems, which to a large extent addresses
the sample complexity issue and significantly improves the perfor-
mance. Moreover, we directly narrow down the action space by
utilizing the structure information of knowledge graphs to effec-
tively address the large action space issue. The model propagates
user preference among the correlated items in the graph, to deal
with the extremely sparse user feedback problem in IRS. All these
designs improve sample efficiency, which is a common issue in
previous works. The comprehensive experiments with a carefully-
designed simulation environment based on two real-world datasets
demonstrate that our model can lead to significantly better perfor-
mance with higher sample efficiency compared to state-of-the-arts.

For future work, we plan to investigate KGQR on news and
image recommendation tasks with other DRL frameworks such as
PG and DDPG. We are also scheduling the process of deploying
KGQR onto an online commercial recommender system. Further,
we are interested in inducing a more complex sequential model
to represent the dynamics of user preferences, e.g., taking user’s
propensity to different relations that the click history shows into
consideration.

ACKNOWLEDGEMENT
The corresponding author Weinan Zhang thanks the support of
"New Generation of AI 2030" Major Project 2018AAA0100900 and
NSFC (61702327, 61772333, 61632017, 81771937). The work is also
sponsored by Huawei Innovation Research Program.

REFERENCES
[1] Richard Bellman. 1952. On the theory of dynamic programming. Proceedings of

the National Academy of Sciences of the United States of America 38, 8 (1952), 716.
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NeuIPS’13. 2787–2795.

[3] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,
Yuzhou Zhang, and Yong Yu. 2019. Large-scale interactive recommendation with
tree-structured policy gradient. In AAAI’19, Vol. 33. 3312–3320.

[4] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In WSDM’19. ACM, 456–464.

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[7] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

[8] ArtemGrotov andMaarten de Rijke. 2016. Online learning to rank for information
retrieval: SIGIR 2016 Tutorial. In SIGIR’16. ACM, 1215–1218.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeuIPS’17. 1024–1034.

[10] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent q-learning for
partially observable mdps. In 2015 AAAI Fall Symposium Series.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWebConf’17. International World
Wide Web Conferences Steering Committee, 173–182.

[12] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. ICLR’16.

[13] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-
ment learning to rank in e-commerce search engine: Formalization, analysis, and
application. In SIGKDD’18. ACM, 368–377.

[14] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced memory
networks. In SIGIR’18. ACM, 505–514.

[15] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge
graph embedding via dynamic mapping matrix. In IJCNLP’15. 687–696.

[16] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. ICLR’15.

[17] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[18] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In SIGKDD’08. ACM, 426–434.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. InWebConf’10.
ACM, 661–670.

[21] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In AAAI’15.

[22] Tariq Mahmood and Francesco Ricci. 2007. Learning and adaptivity in interactive
recommender systems. In Proceedings of the ninth international conference on
Electronic commerce. ACM, 75–84.

[23] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. 2015. Language under-
standing for text-based games using deep reinforcement learning. EMNLPâĂŸ15.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
NeuIPS’19. 8024–8035.

[25] Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S Yu, Yading Yue, and Bin Wu. 2015.
Semantic path based personalized recommendation on weighted heterogeneous
information networks. In CIKM’15. ACM, 453–462.

[26] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[27] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In AAAI’16.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[29] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2017. Factorization bandits
for interactive recommendation. In AAAI’17.

[30] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. RippleNet: Propagating user preferences on the knowledge
graph for recommender systems. In CIKM’18. ACM, 417–426.

[31] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-Task Feature Learning for Knowledge Graph Enhanced Recom-
mendation. In WebConf’19. ACM, 2000–2010.

[32] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. InWebConf’19. ACM,
3307–3313.

[33] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In SIGIR’06.
ACM, 501–508.

[34] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. SIGKDD’19.

[35] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. 2016. Dueling network architectures for deep reinforcement
learning. ICML’16.

[36] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
A heterogeneous information network approach. In WSDM’14. ACM, 283–292.

[37] Chunqiu Zeng, QingWang, ShekoofehMokhtari, and Tao Li. 2016. Online context-
aware recommendation with time varying multi-armed bandit. In SIGKDD’16.
ACM, 2025–2034.

[38] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
SIGKDD’16. ACM, 353–362.

[39] Weinan Zhang, Ulrich Paquet, and Katja Hofmann. 2016. Collective noise con-
trastive estimation for policy transfer learning. In AAAI’16.

[40] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. Meta-
graph based recommendation fusion over heterogeneous information networks.
In SIGKDD’17. ACM, 635–644.

[41] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
ACM RecSys’18. ACM, 95–103.

[42] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In SIGKDD’18. ACM, 1040–1048.

[43] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive collaborative
filtering. In CIKM’13. ACM, 1411–1420.

[44] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning frame-
work for news recommendation. In WebConf’18. International World Wide Web
Conferences Steering Committee, 167–176.

[45] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement Learning to Optimize Long-term User Engagement in
Recommender Systems. arXiv preprint arXiv:1902.05570 (2019).

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 KGQR Methodology
	4.1 KG Enhanced State Representation
	4.2 Neighbor-based Candidate Selection
	4.3 Learning Deep Q-Network

	5 Experiment
	5.1 Experimental Settings
	5.2 Overall Performance (RQ1)
	5.3 Sample Efficiency (RQ2)
	5.4 Analysis (RQ3)

	6 Conclusion
	References

