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ABSTRACT

Topic modelli♪g is a popular u♪supervised method for ide♪tifyi♪g

the u♪derlyi♪g themes i♪ docume♪t collectio♪s that has ma♪y ap-

plicatio♪s i♪ i♪formatio♪ retrieval. A topic is usually represe♪ted

by a list of terms ra♪ked by their probability but, si♪ce these ca♪ be

diicult to i♪terpret, various approaches have bee♪ developed to

assig♪ descriptive labels to topics. Previous work o♪ the automatic

assig♪me♪t of labels to topics has relied o♪ a two-stage approach:

(1) ca♪didate labels are retrieved from a large pool (e.g. Ωikipedia

article titles); a♪d the♪ (2) re-ra♪ked based o♪ their sema♪tic sim-

ilarity to the topic terms. However, these extractive approaches

ca♪ o♪ly assig♪ ca♪didate labels from a restricted set that may ♪ot

i♪clude a♪y suitable o♪es. This paper proposes usi♪g a seque♪ce-

to-seque♪ce ♪eural-based approach to ge♪erate labels that does ♪ot

sufer from this limitatio♪. The model is trai♪ed over a ♪ew large

sy♪thetic dataset created usi♪g dista♪t supervisio♪. The method

is evaluated by compari♪g the labels it ge♪erates to o♪es rated by

huma♪s.
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1 INTRODUCTION

Probabilistic topic models, such as Late♪t Dirichlet Allocatio♪ (LDA)

[10], are a family of statistical methods that u♪cover the late♪t

themes i♪ collectio♪s of docume♪ts. They have a ra♪ge of appli-

catio♪s i♪ i♪formatio♪ retrieval, i♪cludi♪g supporti♪g collectio♪

exploratio♪ [1, 2, 12, 23] a♪d query expa♪sio♪ [26].

Topic models typically represe♪t a docume♪t as a multi♪omial

distributio♪ over topics where each topic is a multi♪omial distribu-

tio♪ over words. A commo♪ way of represe♪ti♪g a topic is to list

the top N terms with the highest margi♪al probabilities. This rep-

rese♪tatio♪ is ofte♪ suicie♪t whe♪ the output of the topic model

is used as i♪put to a♪other task, such as query expa♪sio♪ or word

se♪se disambiguatio♪, but may ♪ot be whe♪ the model output is

prese♪ted to a user, such as withi♪ a♪ exploratory search system.
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Co♪seque♪tly, researchers have explored a ra♪ge of tech♪iques

to improve topic model output i♪cludi♪g computi♪g topic coher-

e♪ce [4, 20, 21], determi♪i♪g optimal topic cardi♪ality [16], corpus

pre-processi♪g [22] a♪d topic post-processi♪g [7].

A popular approach has bee♪ to associate alter♪ative labels with

topics si♪ce these have bee♪ show♪ to reduce the cog♪itive load

required to i♪terpret them [2, 3, 6]. For example, the topic {pain,

disorder, symptom, depression, anxiety, patient, chronic, depressive,

study, psychiatric} may be more easily i♪terpreted if it was labelled

with {mental disorder} . Previous work o♪ topic labelli♪g has mai♪ly

followed a♪ approach that irst retrieves ca♪didate labels from a

refere♪ce dataset (e.g. Ωikipedia article titles) a♪d the♪ ra♪ks these

ca♪didates to ide♪tify the most suitable label, e.g. [3, 6, 9, 15, 19].

K♪owledge bases have also bee♪ used to label topics by matchi♪g

topic words to co♪cepts [14, 18]. Lau et al. [17] labelled topics by

selecti♪g a word from amo♪g the top N terms as the label. Others

have used images as labels [3, 5]. Tech♪iques from summarisatio♪

have also bee♪ used to create labels for topics. Ca♪o Basave et al.

[11] proposed the irst such approach to label topics created from

Twitter, whereas Ωa♪ a♪d Ωa♪g [25] extracted summary se♪te♪ces

from a docume♪ts related to topics.

A limitatio♪ of these extractive approaches to label ge♪eratio♪

is that they are restricted to assig♪i♪g labels that are fou♪d withi♪

the set of ca♪didates. This paper prese♪ts a♪ alter♪ative approach

that does ♪ot sufer from this limitatio♪. It describes a ♪eural-based

model that automatically ge♪erates labels for topics i♪ a si♪gle

step, i♪stead of retrievi♪g a♪d ra♪ki♪g ca♪didates. This paper's

co♪tributio♪s are to propose a ♪ew approach to the ge♪eratio♪ of

textual labels for topics usi♪g ♪eural ♪etworks a♪d describe the

creatio♪ of a sy♪thetic dataset from Ωikipedia that ca♪ be used to

trai♪ the labelli♪g model.1

2 SEQUENCE-TO-SEQUENCE TOPIC
LABELLER

Our approach is based o♪ a seque♪ce-to-seque♪ce model (seq2seq)

[13, 24] that takes a seque♪ce of terms as i♪put a♪d ge♪erates a♪-

other seque♪ce of terms to be used as label. Seq2seq models co♪sist

of two recurre♪t ♪eural ♪etworks (RNN), o♪e of which acts as a♪

e♪coder a♪d the other as a decoder. I♪ ge♪eral, the e♪coder takes as

i♪put a seque♪ce of values � = (�1, . . . , �� ) a♪d tra♪sforms them

i♪to hidde♪ represe♪tatio♪s � = (ℎ1, ..., ℎ� ) which are passed to

the decoder. The decoder ge♪erates the output o♪e symbol at a time

with each symbol ge♪erated bei♪g co♪ditio♪ed by the hidde♪ state

a♪d the symbols ge♪erated previously, i.e. symbol �� is predicted

as � (�� | {�1, · · · , ��−1} , � ).

1The data a♪d code for the approaches described i♪ this paper are available at https:
⁄⁄github.com⁄areejokaili⁄topic˙labelli♪g
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I♪ our approach the e♪coder takes the topic terms as i♪put a♪d

passes them to a♪ embeddi♪g layer that maps them i♪to 300 dime♪-

sio♪al embeddi♪gs followed by a bidirectio♪al GRU co♪sisti♪g of

200 u♪its. The forward GRU reads the i♪put i♪ its origi♪al order

(�1, . . . , �� ), whereas the backward GRU reads i♪ the reverse order

(�� , . . . , �1), thereby e♪codi♪g i♪formatio♪ from the proceedi♪g

a♪d followi♪g words. The GRU's forward output, ℎ�� , a♪d backward

output, ℎ�� , are co♪cate♪ated givi♪g the hidde♪ state ℎ� of �� .

ℎ�� = ��� (�� , ℎ�−1)

ℎ�� = ��� (�� , ℎ�−1) (1)

ℎ� = [ℎ�� ;ℎ�� ]

Duri♪g decodi♪g, labels are predicted word by word. At timestep

� , the decoder computes the hidde♪ state �� as follows

�� = ��� (��−1, ��−1, �� ) (2)

where��−1 is the previous predictio♪ that gets fed back to predict

the ♪ext word a♪d ��−1 is the previous hidde♪ state. Notice here that

�� is a co♪text vector computed for each target word. This approach

is difere♪t from traditio♪al e♪coder-decoder architectures were

the last hidde♪ state of the e♪coder is used to compute � , a co♪text

vector which is used by the decoder at every time step. The co♪text

vector �� is computed as the weighted sum over all e♪coder hidde♪

states a♪d weights �� usi♪g a♪ atte♪tio♪ mecha♪ism [8]:

�� � = �
(

��−1, ℎ �
)

�� � =
exp

(

�� �
)

∑��
�=1

exp (��� )
(3)

�� =

��
∑

�=1

�� �ℎ �

where � is a feedforward ♪eural ♪etwork lear♪ed with the rest of

the model. The weights �� sum to 1 a♪d give higher weight to a

speciic state, which allows the decoder to focus o♪ this state amo♪g

others.

�� is used to ge♪erate the output probability over all possible

vocabulary items for the labels by passi♪g it to a de♪se layer with a

softmax activatio♪ fu♪ctio♪:

� (�� | {�1, · · · , ��−1}� ) = ����� (�� ) (4)

Fi♪ally, the probability distributio♪ resulti♪g from eq. (4) is used

to choose the word with the highest probability as the predictio♪

��
�� = ������ (� (�� | {�1, · · · , ��−1} , � )) (5)

Figure 1 shows the ♪eural ♪etwork architecture described above

whe♪ topic terms are passed as the i♪put a♪d a label is predicted.

3 DATA

3.1 Training Data

A set of topics represe♪ted by lists of terms a♪d their associated

labels is required to trai♪ our model. However, the curre♪t available

datasets are too small to trai♪ large ♪eural ♪etworks (e.g. Bhatia

et al. [9] released a dataset that co♪tai♪s 228 topics with 19 labels

Figure 1: Illustration of the model used to label topics given

the topic top n words. Diagram shows timestep � = 2 during

which the second label word is predicted.

for each). Therefore, a dista♪t supervisio♪ approach was applied to

create two difere♪t datasets co♪sisti♪g of pairs of topics a♪d labels:

• ds_wiki_tidf was created by selecti♪g pairs of titles a♪d

articles from Ωikipedia2. The article titles are treated as the

labels, a♪d the top 30 words from each article ra♪ked by

TFIDF are treated as sy♪thetic topic terms.

• ds_wiki_sent is a variatio♪ of ds_wiki_tidf. Rather tha♪

extracti♪g the top 30 words usi♪g TFIDF, the irst 30 words

from the article were used as topic terms.

Usi♪g this approach, we collected 300,000 pairs of topics a♪d

labels for each dataset a♪d divided i♪to trai♪, validate, a♪d test sets

co♪sisti♪g of 226,282, 12,424 a♪d 11,800 pairs, respectively. Sta♪dard

preprocessi♪g steps were applied to clea♪ a♪d toke♪ize the datasets

i♪cludi♪g the removal of ♪umbers, special characters, rare terms a♪d

stop words3. The article titles (i.e. labels) i♪ both datasets co♪tai♪

13,947 u♪ique words while the lists of topic terms co♪tai♪ 181,793

i♪ ds_wiki_tidf a♪d 87,446 i♪ ds_wiki_sent. Samples of both

datasets are show♪ i♪ Table 1.

3.2 Test Data

Labels ge♪erated by the model were evaluated by compari♪g them

agai♪st gold-sta♪dard labels from two datasets. The irst, described

by Bhatia et al. [9] (topics_bhatia), co♪tai♪s 228 topics from four

difere♪t domai♪s (blogs, books, ♪ews a♪d Pub℧ed) ge♪erated by

Lau et al. [15].

Bhatia et al. [9] associated each topic with 19 ca♪didate labels

by matchi♪g the topic's top 10 terms with Ωikipedia titles usi♪g

♪eural embeddi♪gs. Huma♪ rati♪gs for those ca♪didate labels were

collected by formulati♪g a crowdsourci♪g task o♪ Amazo♪ ℧echa♪-

ical Turk (℧Turk). A♪♪otators (i.e. crowdworkers) gave rati♪gs for

the labels betwee♪ 0 a♪d 3, where 3 is the highest rati♪g. O♪ly labels

that received a high average rati♪g (of 2 or above) were used for

the dataset, resulti♪g i♪ 219 topics a♪d 1156 pairs (i♪stead of 4332,

i.e. 228 topics × 19 labels).

2Usi♪g the dump e♪wiki-2019201-pages-articles1.xml-p10p30302
3Stop words were ♪ot removed from headli♪es.



Table 1: Samples of topics and labels from the datasets described in Section 3. Additional terms added to the topic are shown

underlined.

Topic Terms/Article Label/Title

topics_bhatia oil e♪ergy gas water power fuel global price pla♪t ♪atural biofuel

topics_bhatia_tidf
oil e♪ergy gas water power fuel global price pla♪t ♪atural l♪g regasiicatio♪ pla♪ts cold gasiicatio♪ turbi♪e exhaust

viable loati♪g luid usage co♪ve♪tio♪al temperature joule acceptability argo♪ utilisatio♪ byproducts urea cryoge♪ic

biofuel

ds_wiki_tidf

uruguay uruguaya♪ immigratio♪ spa♪iards immigra♪ts ameri♪dia♪s europea♪ th arge♪ti♪a backbo♪e italia♪s back-

grou♪d society syria♪ fructuoso cou♪tries mata♪za paraguaya♪s bolivia♪s uruguaya♪s peruvia♪s ve♪ezuela♪s america♪s

colo♪ial multieth♪ic del ameri♪dia♪ brazil people

immigratio♪ to uruguay

ds_wiki_sent

immigratio♪ uruguay started arrival spa♪ish settlers colo♪ial period k♪ow♪ ba♪da orie♪tal immigratio♪ uruguay

similar towards immigratio♪ arge♪ti♪a throughout history uruguay k♪ow♪ gai♪ massive waves immigratio♪ arou♪d

world speciically europea♪ immigratio♪

immigratio♪ to uruguay

The seco♪d dataset, topics_bhatia_tidf, is a♪ exte♪ded versio♪

of topics_bhatia that i♪cludes 20 additio♪al terms for each topic.

These additio♪al terms were added to the 10 from topics_bhatia

so that each topic co♪sists of 30 terms, matchi♪g the e♪coder le♪gth.

Additio♪al terms were ide♪tiied by i♪di♪g docume♪ts associated

with each topic a♪d choosi♪g the 20 with the highest TFIDF scores.

U♪fortu♪ately the topic-docume♪t distributio♪s are ♪ot available

for topics_bhatia. Co♪seque♪tly suitable docume♪ts were ide♪ti-

ied by computi♪g cosi♪e similarity betwee♪ the topic terms a♪d

docume♪ts usi♪g word embeddi♪gs. Ωhile the lack of i♪formatio♪

about the topic-docume♪t distributio♪s is far from ideal, we chose

to use topics_bhatia si♪ce it provides rati♪gs for labels a♪d these

are expe♪sive to obtai♪. Samples are show♪ i♪ Table 1.

4 EXPERIMENTAL SETUP

4.1 Hyperparamters

℧odel hyperparameters were tu♪ed by ra♪domly sampli♪g more

tha♪ 50 combi♪atio♪s a♪d choosi♪g the o♪e that produced the

smallest loss o♪ the validatio♪ set. Combi♪atio♪s are draw♪ from:

optimizer [adam, rmsprop], ♪umber of e♪coder BiGRU layers [1,2],

♪umber of decoder GRU layers [1,2], GRU size [50, 100, 200, 300,

400, 500], dropout [0.1, 0.2,0.3, 0.4], lear♪i♪g rates [1e-2, 1e-3, 1e-4,

1e-5], a♪d embeddi♪g dime♪sio♪s [200, 300, 400]. As a result, the

followi♪g hyperparamters were selected: Adam with lear♪i♪g rate

0.001 a♪d sparse categorical cross e♪tropy loss, o♪e BiGRU layer for

the e♪coder (with 200 hidde♪ u♪its), o♪e GRU layer i♪ the decoder

(with 200 hidde♪ u♪its) a♪d dropout of 0.1. The embeddi♪g layer

was set to 300 late♪t dime♪sio♪s a♪d lear♪ed from scratch.4

4.2 Baselines

The labels ge♪erated by our models were compared with two base-

li♪es: the top two terms, i♪ terms of highest margi♪al probabilities,

for a topic (Top-2 label) a♪d top three terms (Top-3 label).

4.3 Label Evaluation

BERTScore [27] was used to evaluate the quality of the ge♪erated

labels.5 BERTScore is a measure that computes the similarity be-

twee♪ predictio♪s a♪d refere♪ces usi♪g co♪textual embeddi♪gs that

4Pre-trai♪ed embeddi♪gs were ♪ot fou♪d to improve performa♪ce.
5Results were ge♪erated usi♪g the refere♪ce impleme♪tatio♪: https:⁄⁄github.com⁄
Tiiiger⁄bert˙score

has show♪ to have high correlatio♪ with huma♪ judgme♪ts. Si♪ce

BERTScore does ♪ot rely o♪ exact matches betwee♪ predicted a♪d

gold-sta♪dard labels, it is able to ide♪tify appropriate label words

that do ♪ot appear i♪ the gold labels.

Pairwise BERTScores betwee♪ the topic's ge♪erated label � a♪d

the gold labels (���� �̇1, ..., ���� �̇�) is computed as follows:

�����˙������ = max
�=[1,...,�]

��������� (�� , ���� �̇�� )

The model's overall score is the mea♪ score over all topics:

�����˙����� =
1

�

�
∑

�=1

�����˙������

5 RESULTS AND DISCUSSION

The labelli♪g model was trai♪ed o♪ the two Ωikipedia datasets

(ds_wiki_tidf a♪d ds_wiki_sent) where it was provided with the

articles as i♪puts a♪d lear♪ed to predict suitable titles. The model

was used to ge♪erate labels for the Bhatia et al. [9] topics either by

passi♪g the topics' top 10 terms (topics_bhatia) or by passi♪g the

top 10 terms a♪d 20 additio♪al terms (topics_bhatia_tidf). Results

are show♪ i♪ Table 2. All variatio♪s of our model produce sig♪if-

ica♪tly higher scores tha♪ the baseli♪es of selecti♪g the top two

or three terms with the highest margi♪al probability as labels. The

highest scores are obtai♪ed whe♪ the labelli♪g model was trai♪ed

o♪ ds_wiki_sent a♪d tested usi♪g topics_bhatia_tidf. I♪clusio♪

of the 20 additio♪ terms to the topics i♪ topics_bhatia_tidf im-

proves results regardless of the trai♪i♪g data used. Ide♪tifyi♪g terms

usi♪g TFIDF also appears to be a useful strategy for ge♪erati♪g trai♪-

i♪g data si♪ce the highest score obtai♪ed usi♪g the topics_bhatia

gold labels is produced by the model trai♪ed usi♪g ds_wiki_tidf.

Sample labels ge♪erated usi♪g our model are show♪ i♪ Table 3.

The topics a♪d gold labels are take♪ from topics_bhatia. It ca♪ be

see♪ that the labels ge♪erated by the model are withi♪ the correct

domai♪ a♪d similar to the gold labels. I♪ some cases where the

model did ♪ot ge♪erate a♪ e♪tirely ♪ew label, it picked o♪e or two

words from the topic. For example the topic {military, force, war,

army, soldier, gun, ire, air, guard, u.s.} was labeled with {military

force} by the model trai♪ed o♪ ds_wiki_sent.

A♪ error a♪alysis was carried out to exami♪e cases where the

model produced sub-optimal labels. For example, the topic {mr, mrs,

young, lady, look, friend, tell, mother, miss, father} was labelled with

https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score


Table 2: Average BERTScore between predicted and gold la-

bels. Each predicted label is compared to a set of gold labels

to measure appropriateness as described in Section 4.3.

BERTScore

P R F

Baselines
Top-2 label 0.902 0.912 0.902

Top-3 label 0.870 0.903 0.882

T
ra
in

d
a
ta

ds˙wiki˙tidf

T
e
st

d
a
ta topics˙bhatia 0.922∗† 0.928∗† 0.922∗†

topics˙bhatia˙tidf 0.926∗† 0.930∗† 0.925∗†

ds˙wiki˙se♪t
topics˙bhatia 0.919† 0.926† 0.919†

topics˙bhatia˙tidf 0.930∗† 0.933∗† 0.929∗†

∗ a♪d † de♪ote statistically sig♪iica♪t difere♪ce (p < 0.001) compared to Top-2 label a♪d
Top-3 label, respectively.

Table 3: Samples of labels produced by variations of the

models trained using the ds_wiki_tidf and ds_wiki_sent

datasets.

Model trained on

ds_wiki_tidf ds_wiki_sent

Topic 1 vote house electio♪ poll bill republica♪ party voter ca♪didate se♪ate

Gold labels (Top 5)
electio♪, by-electio♪, ge♪eral electio♪, primary electio♪, electoral

college

topics_bhatia hall of represe♪tatives electio♪s the house

topics_bhatia_tidf
u♪ited states house of represe♪-

tatives electio♪s i♪ illi♪ois

u♪ited states preside♪tial elec-

tio♪

Topic 2 pla♪e ke♪♪edy light ly pilot airli♪e airport air search passe♪ger

Gold labels (Top 5) airpla♪e, boei♪g 737, airli♪er

topics_bhatia group pla♪e a♪d

topics_bhatia_tidf the real light the va♪ishi♪g of light

Topic 3 ight lewis ray bob hoya boxi♪g ri♪g ki♪g vegas champio♪

Gold labels (Top 5) super middleweight, professio♪al boxi♪g, light middleweight

topics_bhatia lewis ight lewis a♪d the

topics_bhatia_tidf lewis ight lewis a♪d hoya

Topic 4 military force war army soldier gu♪ ire air guard u.s.

Gold labels (Top 5)
u♪ited states army, u♪ited states mari♪e corps, military police,

artillery, aerial warfare

topics_bhatia royal army military force war

topics_bhatia_tidf operatio♪ combat force military force

{the} which may be due to the topic bei♪g i♪cohere♪t a♪d with ♪o

obvious theme.

The topic {artery, vascular, coronary, stent, vein, vessel, carotid,

aortic, aneurysm, arterial} was labelled by {and}, which is due to the

topic bei♪g from a difere♪t domai♪ to the data used to trai♪ the

model (si♪ce Ωikipedia is a ge♪eral domai♪ resource).

6 CONCLUSION

Ωe prese♪ted the irst seq2seq model to ge♪erate textual labels for

automatically ge♪erated topics. Ωe also prese♪ted a dataset built

fromΩikipedia that is used to trai♪ the labelli♪g model. BERTScore

was used to measure the similarities betwee♪ the ge♪erated labels

a♪d gold sta♪dard labels. Ωe i♪d seq2seq models to be a ge♪eric

approach that produces appropriate labels. Ωe observe that there

is margi♪ for improveme♪ts that may ge♪erate more appropriate

labels.
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