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ABSTRACT
Recommender systems based on collaborative filtering are highly

vulnerable to data poisoning attacks, where a determined attacker

injects fake users with false user-item feedback, with an objective

to either corrupt the recommender system or promote/demote a

target set of items. Recently, differential privacy was explored as

a defense technique against data poisoning attacks in the typical

machine learning setting. In this paper, we study the effectiveness

of differential privacy against such attacks on matrix factorization

based collaborative filtering systems. Concretely, we conduct exten-

sive experiments for evaluating robustness to injection of malicious

user profiles by simulating common types of shilling attacks on

real-world data and comparing the predictions of typical matrix

factorization with differentially private matrix factorization.
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1 INTRODUCTION
Collaborative Filtering (CF) recommender systems have been shown

to be prone to data poisoning in which fake users along with their

feedback are injected into the system [4]. The attacker can construct

the preferences of these fake users so as to fool the recommender

system into behaving in a way desired by the attacker. The attacker

may have an objective to promote a certain set of items, or may try

to compromise the overall quality of the recommendations. While
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such attacks are possible on all kinds collaborative filtering systems,

we focus on matrix factorization based CF in this paper.

[8] studied defense against data poisoning attacks, focusing on

classification algorithms. However, their technique of outlier re-

moval doesn’t naturally lend itself to thematrix factorization setting.

Recently, [6] proposed differential privacy as a defense technique

against data poisoning attacks on machine learning systems, while

formally defining the attacker’s cost and proving bounds on the

minimization of this cost against the proposed defense mechanism.

We extend this work to our CF setting. Concretely,

• We define attacker utility for a given data poisoning attack

objective, and derive a finite upper bound on this utility for

a differentially private matrix factorization algorithm.

• We simulate different types of shilling attacks (for promot-

ing specific movies) on a real world dataset (MovieLens) to

compare the difference in impact of data poisoning between

typical matrix factorization and differentially private matrix

factorization (DPMF). We observe empirically that DPMF

is more robust to such attacks and leads to lower values of

attack utility up to a reasonable level of injection.

2 BACKGROUND
2.1 Differential Privacy

Given data space Z, let M be a randomized learner and D =
∞⋃
𝑖=0

Z𝑖

be the space of all training data with 𝐷 ∈ D being a particular data

set. We define Differential Privacy [1] as follows:

Definition 2.1. (Differential Privacy)We call a randomized learner,

M, (𝜖 ,𝛿)-differentially private if∀𝐷 ,𝐷 ′ ∈ D that differ by one item

and for all measurable sets S ⊂ 𝑅𝑎𝑛𝑔𝑒 (M)

P(M(𝐷) ∈ S) ≤ 𝑒𝜖P(M(𝐷 ′) ∈ S) + 𝛿

If 𝛿 = 0, we callM 𝜖-differentially private. Informally, the above

definition states that if any one point in the database is modified,

the output of the randomized learner will not change by much. In

the above equation, 𝜖 is positive, and the smaller the value of 𝜖 , the

stronger is the privacy guarantee.

2.2 Collaborative Filtering
We assume the standard setting of collaborative filtering, where𝑚

users rate a subset of 𝑛 items. We denote the full rating matrix by

R = [𝑟𝑖 𝑗 ]𝑚×𝑛 and R ⊂ [𝑚] × [𝑛] as the 𝑟𝑖 𝑗 entries in R where user 𝑖

has rated item 𝑗 ("seen" or "observed" ratings). Our goal is to predict
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the ratings for the remaining blank user-item entries R/R of the

rating matrix. For this, a popular method is Matrix Factorization

(MF) which approximates R using low rank factorization. Each

user 𝑖 is represented using a low dimensional vector 𝑢𝑖 ∈ R𝑑 and

similarly each item 𝑗 is represented using vector 𝑣 𝑗 ∈ R𝑑 . Each
𝑟𝑖 𝑗 ∈ R is then approximated using the inner product < 𝑢𝑖 , 𝑣 𝑗 >.

Usually, the dimension 𝑑 is set to a small value (≈ 10 − 200). Matrix

U = [𝑢𝑖 ]𝑖∈[𝑚] is called the user matrix, where each row is the

vector representation 𝑢𝑖 of user 𝑖 . Similarly, V = [𝑣 𝑗 ]𝑗 ∈[𝑛] is the
item matrix, where each row is the vector representation 𝑣 𝑗 of item

𝑗 . The goal is to computematricesU andV byminimizing the square

of the difference between all observed ratings and predictions:

min

U,V

∑
𝑖 ,𝑗 ∈R

(𝑟𝑖 𝑗− < 𝑢𝑖 , 𝑣 𝑗 >)2 + 𝜆(∥U∥2

2
+ ∥V∥2

2
) (1)

where the regularization parameter (𝜆) is a positive constant. We

use Stochastic Gradient Descent (SGD) to minimize Equation (1).

In SGD, an update step for seen rating 𝑟𝑖 𝑗 (learning rate 𝜂) is:

𝑒𝑖 𝑗 = 𝑟𝑖 𝑗− < 𝑢𝑖 , 𝑣 𝑗 >

𝑢𝑖 = 𝑢𝑖 + 𝜂 (𝑣 𝑗𝑒𝑖 𝑗 − 𝜆𝑢𝑖 )
𝑣 𝑗 = 𝑣 𝑗 + 𝜂 (𝑢𝑖𝑒𝑖 𝑗 − 𝜆𝑣 𝑗 )

(2)

2.3 Differentially Private Matrix Factorization
(DPMF)

We adopt the method proposed by [5] to make matrix factorization

differentially private, which uses the result that posterior sampling

preserves differential privacy, given log-likelihood of each user is

uniformly bounded [9]. Formally, if the max sum of errors per user,

maxU,V,R,𝑖

∑
𝑗 ∈R𝑖

(𝑟𝑖 𝑗− < 𝑢𝑖 , 𝑣 𝑗 >)2 ≤ 𝐵 then matrices 𝑈 and 𝑉

sampled from the distribution

P(U, V) ∝ exp( −𝜖
4𝐵

𝐹 (U, V)) (3)

where 𝐹 (U, V) = ∑
𝑖 ,𝑗 ∈R (𝑟𝑖 𝑗− < 𝑢𝑖 , 𝑣 𝑗 >)2 + 𝜆(∥U∥2

2
+ ∥V∥2

2
), pre-

serve 𝜖-differential privacy. Since the ratings are bounded (1 ≤
𝑟𝑖 𝑗 ≤ 5) and there exists a reasonable sublevel set

{U, V : (1 − 𝜅) ≤ < 𝑢𝑖 , 𝑣 𝑗 > ≤ (5 + 𝜅)} (4)

every summand is bounded by (5 − 1 + 𝜅)2
. To ensure that their

sum, the bound 𝐵, is not too large, [5] proposes methods such as

trimming and re-weighting. In this paper, we achieve the same

using the trimming mechanism and fix the maximum number of

ratings (𝜏) that each user has. For users with more than 𝜏 ratings,

we randomly sample 𝜏 ratings and delete the others. A tractable

approach called Stochastic Gradient Langevin Dynamics (SGLD) is

used to sample from the distribution (3). The basic update rule is:

(𝑢𝑖 , 𝑣 𝑗 ) = (𝑢𝑖 , 𝑣 𝑗 ) − 𝜂𝑠 ˆ∇(𝑢𝑖 ,𝑣𝑗 )𝐹 (U, V) + N (0,𝜂𝑠 𝐼 )

where 𝜂𝑠 is the learning rate at iteration step 𝑠 , ˆ∇ is the gradient,N
is Gaussian noise. We encourage readers to refer to [5] for details.

3 DATA POISONING ATTACKS ON DPMF
3.1 Threat Model
Attacker’s Knowledge: The attacker has knowledge about the

learning algorithm being used for recommendation (i.e. matrix fac-

torization) as well as some aggregate statistics (mean, standard

deviation) about ratings per item and across all items, hence the

attack methodology is based on intuition about the algorithm and

might not be optimal given full knowledge, as derived in [4].

Attacker’s Power: The attacker can modify the clean rating ma-

trix R by injecting fake users along with their ratings to obtain a

poisoned matrix
˜R. We consider the case where the attacker can

alter at most 𝑘 ratings. Formally,
˜R should lie in ball B(R,𝑘), where

matrix R represents the center of the ball and radius 𝑘 is the maxi-

mum number of added or modified ratings.

Attacker’s Goal: The goal of the attacker is to force Ũ and Ṽ, learnt
from the poisoned rating matrix

˜R, to achieve certain targets. For-

mally, we define a utility function 𝜙 , which measures the extent to

which the aim of the attack is attained. Let the randomized (differen-

tially private) learner beM. Then, Ũ, Ṽ = M( ˜R) and we formulate

the problem as maximization of the expected utility:

max

˜R∈B(R,𝑘)
Φ(R̃) := EM( ˜R) [𝜙 (M( ˜R))] (5)

For the scope of this paper, we focus on integrity attacks, inspired

from [4], which are aimed at promoting specific target items and

define the attacker’s utility as:

𝜙 (M( ˜R)) = 𝜙 (𝑈̃ , 𝑉̃ ) = 1

𝑚

∑
𝑖∈𝑃

∑
𝑡 ∈𝑄𝑇

< 𝑢̃𝑖 , 𝑣𝑡 > (6)

where𝑚 is the number of real users, 𝑃 is the set of all real users, and

𝑄𝑇 is the set of target items for promotion. However, our theoretical

analysis is applicable to all non-negative utility functions.

3.2 Upper Bound for Attacks
Similar to [6], we provide a finite upper bound on the extent to

which Φ( ˜R) can be maximized, demonstrating that differentially

private matrix factorization is, in theory, resistant to data poisoning

attacks. We first prove an upper bound on utility for the case where

the attacker can modify / add / delete exactly one rating and then

trivially extend it for the case of 𝑘 ratings. Note that 𝜙 ≥ 0.

Lemma 3.1. Let M be an 𝜖-differentially private matrix factor-
ization algorithm. Then, 𝑈 ,𝑉 = M(R) and 𝑈 ′

,𝑉 ′ = M(R ′). Let
Φ(R ′) be the objective function to maximize, where R ′ ∈ B(R, 1),
then

Φ(R ′) ≤ 𝑒𝜖Φ(R) (7)

Proof. Given 𝜙 ≥ 0, let Ω(𝑥) = {𝑈 ,𝑉 : 𝜙 (𝑈 ,𝑉 ) > 𝑥},∀𝑥 ≥ 0.

Since, R ′ ∈ B(R, 1), i.e., R and R ′
differ by one rating, differential

privacy provides the guarantee that ∀𝑥 ≥ 0,

P(M(R ′) ∈ Ω(𝑥)) ≤ 𝑒𝜖P(M(R) ∈ Ω(𝑥))

Since Φ(R) ≥ 0, using integral identity, we have

Φ(R ′) = EM(R′) [𝜙 (M(R ′))] =
∫ ∞

0

P(𝜙 (M(R ′)) > 𝑥) 𝑑𝑥

=

∫ ∞

0

P(M(R ′) ∈ Ω(𝑥)) 𝑑𝑥 ≤ 𝑒𝜖
∫ ∞

0

P(M(R) ∈ Ω(𝑥)) 𝑑𝑥

= 𝑒𝜖
∫ ∞

0

P(𝜙 (M(R)) > 𝑥) 𝑑𝑥 = 𝑒𝜖Φ(R)

Thus, we prove that Φ(R ′) ≤ 𝑒𝜖Φ(R). □
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Theorem 3.2. Let M be an 𝜖-differentially private learner. Let
Φ( ˜R) be the attack utility and 𝑛𝑇 be the number of target items,
where ˜R ∈ B(R,𝑘), then

Φ( ˜R) ≤ 𝑛𝑇 (5 + 𝜅)𝑒𝑘𝜖 (8)

Proof. We can view
˜R ∈ B(R,𝑘) as changing ratings in the

clean rating matrix, R, 𝑘 times. So, we can apply Lemma 3.1 𝑘 times

to obtain that Φ( ˜R) ≤ 𝑒𝑘𝜖Φ(R). From (4) and (6), we observe

𝜙 (M(R)) ≤ 1

𝑚

∑
𝑖∈𝑃

∑
𝑡 ∈𝑄𝑇

(5 + 𝜅) ≤ 𝑛𝑇 (5 + 𝜅)

Thus, Φ(R) ≤ 𝑛𝑇 (5 + 𝜅), and substituting this value back into the

equation, we can obtain (8). □

3.3 Common Attacks on MF
Since the focus of this paper is on the defense capability of differ-

entially private MF and not on the attack methodology, we do not

directly optimize the attack objective. Rather, we cater to common

attacks on collaborative filtering systems in literature ([10] [3] [7]

[11]) which lead to high utility values for the attacker. Items under

consideration per injected user for the attacks are categorized as:

• Null Items (𝐼𝑁 ): Items which do not have any fake injection.

• Filler Items (𝐼𝐹 ): Randomly sampled items for which feedback

is injected to make the malicious users seem real, and ensure

that some correlation is established with other existing items.

• Selected Items (𝐼𝑆 ): Items, usually popular, for which inject-

ing ratings makes the attack more effective (at the cost of

increased risk of detection) since the ratings for the selected

and target items become highly correlated for the fake users.

• Target Items (𝐼𝑇 ): Items that the attacker wants to promote

or demote using data poisoning.

We consider the following common shilling/data injection attacks:

• Random Attack: Filler items are chosen randomly from all

items and their ratings are sampled fromN(𝜇all,𝜎2

all). There
are no selected items and the target items are given the max

rating (push) or min rating (nuke).

• Average Attack: Filler items are chosen randomly from all

items and ratings are sampled from N(𝜇item,𝜎2

item) for each
item. There are no selected items and the target items are

given the max rating (push) or min rating (nuke).

• Average over Popular (AoP) Attack: Filler items are chosen ran-

domly from a fixed percentage of popular items tomake injec-

tions more realistic and ratings sampled fromN(𝜇item,𝜎2

item)
for each item. There are no selected items and the target

items are given the max rating (push) or min rating (nuke).

• Bandwagon (Random / Average) Attack: Equivalent to a ran-

dom / average attack along with a fixed number of selected

(usually popular) items which are given fake max ratings.

4 EXPERIMENTS
We conduct experiments on the MovieLens-100k dataset [2] which

consists of 100,000 ratings (1-5) collected via the MovieLens website,

from 943 users on 1682 movies.

We split up our dataset into training (80%) and test (20%) data, and

compute the𝑈 and 𝑉 matrices for both non-private (optimization

Model Type 𝜏 rmse

SGD - 0.98

SGLD 50 1.11

SGLD 100 1.05

SGLD 200 1.02

SGLD 400 1.01

Table 1: RMSE values for variations of MF
using SGD) and private (sampling using SGLD) matrix factorization.

The number of latent factors (dimensions) learnt is 10 in both cases,

with batch-size = 100, learning rate decaying as per 𝜂𝑠 =
𝜂0

𝑠𝛾 and

L2 regularization weight (𝜆) = 0.1. The parameters used for SGD

to minimize sum of squared errors are initial learning rate (𝜂0)

= 0.016, with 𝛾 = 1.0 and this converges after around 10 epochs,

overfitting thereafter. For SGLD, 𝜂0 was set to 5×10
−4
, with 𝛾 = 0.5

and this almost converges after around 200 epochs. The sampling

is allowed to burn-in for around 10% of the total number of steps

and a temperature parameter of 𝜁 = 0.002 is multiplied with the

variance of the inserted Gaussian noise to speed up the burn-in

process. Additionally, there are also parameters 𝜏 , which is the

maximum number of ratings per user (trimmed otherwise), and

𝜅, which bounds the error value for each predicted rating (each

prediction should be in the range [1 − 𝜅, 5 + 𝜅]) for the SGLD

sampling mechanism, which determine the privacy guarantees that

it provides [5]. We set 𝜅 = 1 and experiment with different values

of 𝜏 . Higher the value of 𝜏 , weaker the privacy guarantee and better

the accuracy for differentially private matrix factorization. Table

1 shows the root mean squared error (RMSE) results for test data,

which increases as the value of 𝜏 decreases, since a higher fraction

of ratings data which can be used for training gets discarded as a

part of the trimming process, to ensure more privacy.

Based on our observations, we chose 𝜏 = 200 for our attack

experiments (almost 90% of users rated less than 200 movies). We

keep the filler item set (𝐼𝐹 ) size fixed at 3% of all movies, the pop-

ularity percentage for sampling filler items in AoP attacks at 15%

and the selected item set (𝐼𝑆 ) size for Bandwagon attacks at 0.5%.

For simplicity, we report results (in Table 2) for the most unpopular

movie in the dataset, but the analysis can easily be extended to

other items as well. Note that the mean predicted rating of the tar-

get item (target mean) is equivalent to the attacker’s utility defined

for an integrity attack in Equation (6).

We can see that as the attack percentage increases, there is a

considerable increase in the mean predicted rating for the target

item. We suspect that the sharp increase, even for lower injection

rates, is due to two factors: the target item is unpopular and has

very few ratings (only one), and the dataset size is fairly small.

However, especially for reasonable levels of malicious injections,

the differentially private MF method is significantly more robust,

slightly less so for the bandwagon attacks. At 5% injection, SGD

leads to a slightly lower predicted value of the target mean. We also

compute hit rate at 40 as the fraction of users for whom the target

item appeared within their top 40 recommended movies. This is a

commonly used metric for gauging the final impact of the attack.

Here, DPMF consistently outperforms typical MF, and we observe

much lower hit rates indicating that the attacks are less successful

at boosting the target item in the differentially private setting. AoP

seems to be the most effective type of attack, followed closely by
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Attack Type Attack %age Hit Rate@40 Target Mean

SGD SGLD SGD SGLD

None None 0.00 0.00 1.44 1.62

Random

0.5% 0.01 0.00 3.61 2.12
1.0% 0.25 0.01 4.21 3.50
3.0% 0.48 0.36 4.39 4.38
5.0% 0.63 0.53 4.50 4.54

Average

0.5% 0.02 0.00 3.69 2.12
1.0% 0.51 0.01 4.43 3.55
3.0% 0.75 0.60 4.64 4.59
5.0% 0.84 0.76 4.72 4.75

AoP

0.5% 0.01 0.00 3.41 2.12
1.0% 0.58 0.01 4.48 3.57
3.0% 0.86 0.70 4.76 4.71
5.0% 0.91 0.81 4.79 4.82

Bandwagon

Random

0.5% 0.00 0.00 3.54 2.41
1.0% 0.21 0.01 4.18 3.46
3.0% 0.26 0.24 4.27 4.27
5.0% 0.44 0.40 4.38 4.41

Bandwagon

Average

0.5% 0.01 0.00 3.62 2.40
1.0% 0.43 0.01 4.35 3.51
3.0% 0.50 0.42 4.42 4.43

5.0% 0.65 0.61 4.52 4.59

Table 2: Attack Metrics for Typical and DP MF Algorithms

Figure 1: Comparison of Attack Metrics for AoP Attacks

the average attack. The shift in the overall mean predicted rating

is more subtle, but still seems to be lower for DPMF versus MF for

attacks such as random and bandwagon random attacks.

Next, we conduct some experiments (with attack percentage

3%) to check how the defense capabilities of differentially private

matrix factorization vary when we vary 𝜏 which reflects the degree

of privacy offered by the algorithm. Results are shown in Table 3.

We can clearly observe an increasing trend in the value of the

target mean as 𝜏 increases and the privacy guarantee becomes

weaker. This can be because of two reasons. One, lower values of 𝜏

increase the randomness component of the differentially private

learner, M, and hence lead to higher robustness to attacks. Two,

fake user profiles have a higher likelihood of getting their ratings

trimmed for lower values of 𝜏 , which can directly reduce impact.

Attack Type 𝜏 value Hit Rate@40 Target Mean

SGD SGLD SGD SGLD

None

50

0.00

0.00

1.44

1.23

100 0.00 1.34

200 0.00 1.62

Random

50

0.48

0.06

4.39

4.07

100 0.23 4.29

200 0.36 4.38

Average

50

0.75

0.25

4.64

4.32

100 0.47 4.52

200 0.60 4.59

AoP

50

0.86

0.49

4.76

4.60

100 0.64 4.68

200 0.70 4.71

Bandwagon

Random

50

0.26

0.07

4.27

4.12

100 0.15 4.19

200 0.24 4.27

Bandwagon

Average

50

0.50

0.26

4.42

4.34

100 0.33 4.36

200 0.42 4.43

Table 3: Attack Metrics for Varying Privacy Guarantees

5 CONCLUSION
In this work, we derived an upper bound on attack utility for a dif-

ferentially private matrix factorization algorithm. We experimented

with different types of data poisoning attacks on real world user-

item feedback data, and observed that differentially private MF is

more robust to such attacks than typical MF and leads to lower val-

ues of attack utility in most cases. While we demonstrated results

for integrity attacks, in the future, this work can be extended to

other types of attacks, like availability attacks. Also, we leave eval-

uation on larger datasets, and comparison of the obtained results

with existing baselines to future work.
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