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V2iFi: in-Vehicle Vital Sign Monitoring via Compact RF Sensing
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Given the significant amount of time people spend in vehicles, health issues under driving condition have become a major
concern. Such issues may vary from fatigue, asthma, stroke, to even heart attack, yet they can be adequately indicated by
vital signs and abnormal activities. Therefore, in-vehicle vital sign monitoring can help us predict and hence prevent these
issues. Whereas existing sensor-based (including camera) methods could be used to detect these indicators, privacy concern
and system complexity both call for a convenient yet effective and robust alternative. This paper aims to develop V2iFi, an
intelligent system performing monitoring tasks using a COTS impulse radio mounted on the windshield. V2iFi is capable of
reliably detecting driver’s vital signs under driving condition and with the presence of passengers, thus allowing for potentially
inferring corresponding health issues. Compared with prior work based on Wi-Fi CSI, V2iFi is able to distinguish reflected
signals from multiple users, and hence provide finer-grained measurements under more realistic settings. We evaluate V2iFi
both in lab environments and during real-life road tests; the results demonstrate that respiratory rate, heart rate, and heart rate
variability can all be estimated accurately. Based on these estimation results, we further discuss how machine learning models
can be applied on top of V2iFi so as to improve both physiological and psychological wellbeing in driving environments.
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1 INTRODUCTION
With the rapid development of artificial intelligence, vehicles are becoming increasingly “smart” nowadays:
they not only learn to drive by itself, but also attempt to better understand and interact with the driver and
passengers. In particular, health monitoring is one of the essential components of intelligent vehicles; it aims to
figure out the health status of people under driving condition, especially after long hours of daily commutes
and frustrating traffic jams [21]. For example, drowsy driving has been reported to have caused 25% fatal vehicle
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crashes [26], and vital signs such as respiration and heartbeat are important indicators for early detection of
drowsiness [13, 52]. Consequently, an in-vehicle health monitoring system that keeps watching these indicators
offers both the vehicle and driver better perception and decision-making capabilities, thus leading to a healthy
and safe driving experiences.
To enable healthy and safe driving, automotive companies have built various monitoring system, including

ATTENTION ASSIST® by Mercedes-Benz [17], Driver Alert Control (DAC) by Volvo [57] and SmartSenior
by BMW [7]. In the meantime, research groups from around the world have also been attracted to this topic
[3, 9, 12, 30, 35, 62]. By far, two main categories of such systems work on monitoring person (driver in particular)
directly, namely camera-based [12, 30, 57] and wearable sensor-based [3, 9, 35] (e.g., EEG and ECG). Although
these approaches work well technically, they may not be exactly practical in real life, because of well-known
weaknesses including privacy concern, poor performance in low-light, as well as the use of intrusive sensors
(causing uncomfortable user experience).

Fortunately, recent progress in wireless sensing has brought us new hope to overcome the aforementioned
weaknesses [2, 36, 59, 63]. Such a system always transmits wireless (e.g., radio and acoustic) signals and captures
their reflections. As the reflections off persons carry their respective vital signs,1 one may extract these vital signs
from the reflections without intrusive sensors touching human bodies, while respecting the privacy of users
and avoiding the interference of ambient light. However, different from the state-of-the-art wireless based vital
sign monitoring, in-vehicle monitoring is much more complicated because of the confined and noisy nature of
driving environments. To tackle these challenges, there have been a few existing studies on in-vehicle monitoring
of either general health or specific vital signs via acoustic [62] or Radio Frequency (RF) [32] signals. Although
acoustic signals can deliver vital sign monitoring ubiquitously via smart devices such as smartphones [62], they
are prone to be contaminated by background sounds under driving condition. Moreover, babies and pets may feel
uncomfortable as they are sensitive to the high frequency acoustic signals used by acoustic sensing.

Compared with acoustic signals, RF signals are even less sensitive to ambient noises such as heat and sounds,
hence it poses a more promising solution for in-vehicle monitoring. WiFind [32] leverages Channel State
Information (CSI) of Wi-Fi devices to detect driver motions and respiratory rate, based on which fatigue state
could potentially be inferred. However, it only offers coarse-grained measurements due to its narrow Wi-Fi
bandwidth. To make things worse, the system may fail in the presence of multiple persons in the vehicle. In order
to better illustrate this latter issue, we use Wi-Fi card Intel 5300 [29] to detect respiratory waveform in a vehicle.
Whereas the respiratory waveform of a driver alone can be clearly identified in Fig. 1(a), the periodic feature of
this waveform is corrupted and cannot be easily distinguished when multiple passengers are present, as shown
in Fig. 1(b). The reason is that the narrow Wi-Fi bandwidth cannot support high temporal resolution in such an
extreme multipath environment. Note that differentiating multiple persons via their respective respiratory rates
does not help, as identifying the critical monitoring target (e.g., the driver) is still impossible without position
information, and the respiratory rates can be similar even for different persons. As a teaser to our work, Fig. 1(c)
demonstrates that, when properly used, an impulse radio with ultra-wideband offers a much higher temporal
resolution, and hence can readily differentiate multiple persons based on their relative distances, and then focus
on monitoring the driver. Last but not least, using standard Wi-Fi radio for sensing purpose may affect its normal
data communication function, and the resulted setting is bistatic (i.e., transmitter and receiver are separated [46]);
these all make it difficult to test and deploy a system.

To summarize, in order to further improve the performance of driver vital sign monitoring system based on RF
sensing, we face the following challenges that largely confine the capability of existing systems:

1As vital signs are actually micro-scale body activities, the ability to monitor the former implies the same to the latter. Therefore, our technical
discussions focus only on vital sign monitoring for the sake of conciseness.
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• Deployment complexity. In-vehicle vital signmonitoring based onWi-Fi CSI requires anAccess Point (AP)
and a STAtion (STA) [32]. Such a bistatic system is too complicated to be adopted as an intelligent component
of smart vehicles in practice.
• Passenger interference. Previous research works based on Wi-Fi CSI are not robust to the cases where
multiple persons are in a vehicle. Respiratory movements caused by other passengers in the cabin can
distort the CSI and worsen the performance.
• Excessive noise. Previous vital sign monitoring systems are mostly designed for a home setting [2, 63].
Performance of in-vehicle vital sign monitoring can deteriorate with the presence of excessive noise caused
by the running vehicle and moving human body parts.
• Low sensitivity. Technologies based on Wi-Fi CSI cannot ensure sufficient temporal resolution because of
the narrow bandwidth. Therefore, measurements of vital signs using Wi-Fi CSI cannot be very accurate,
especially given the vibration background created by engines and road conditions.

To answer these challenges, we propose V2iFi as a compact in-Vehicle Vital sign monitoring system endowed
with fine-grained sensitivity. It consists of low-cost Commercial Off-The-Shelf (COTS) components, and is hence
readily deployable, as illustrated in Fig. 2. V2iFi can filter the interference from passengers and vibrations caused
by moving vehicles while focusing on driver’s vital sign monitoring. The reconstructed RF signals induced by vital
signs can then be used to estimate respiratory rate, heart rate, and even finer-grained heart rate variability. As
V2iFi offers continuous monitoring on driver’s vital signs, we will be able to perform real-time and comprehensive
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(a) Wi-Fi monitoring for driver alone.
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(b) Wi-Fi monitoring with multiple persons.
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(c) Impulse radio with multiple persons.

Fig. 1. Drivers’ respiratory waveform can be detected without any other person using Wi-Fi CSI shown in (a). However, (b)
illustrates that multiple persons degrade the respiratory waveform of driver due to narrow band Wi-Fi in the rich multipath
in-vehicle environment. Instead, V2iFi leverages a COTS impulse radio to distinguish multiple persons, so as to further filter
out multiple persons’ interference as demonstrated in (c).

Driver’s Raw RF Reflections Denoised RF Reflections
Respiratory Waveform

Heartbeat Waveform

Impulse radio

Fig. 2. A vital signs monitoring scenario of driving vehicle. The driver’s RF reflections always contains his or her vital signs
with noise introduced by vehicle’s vibrations. V2iFi separates such vibrations to reconstruct signals of vital signs.
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diagnosis of the health status of the driver. Particularly, we should be able to detect driver drowsiness in its early
stage and hence prevent vehicle accidents.
Specifically, V2iFi employs a COTS impulse radio to collect RF reflections from people. The COTS impulse

radio is compact and monostatic (i.e., the transmitter and receiver are co-located [46]); it can be readily integrated
with embedded devices such as Raspberry Pi [47] adopted by us to form an edge computing node, rendering
a straightforward in-vehicle deployment shown in Fig. 2 (leftmost). The radio’s ultra-wideband enables us to
develop algorithms that accurately sorts out signals reflected from different people under complex multipath
conditions. This further allows us to zoom in and inspect the RF reflections from the driver and hence extract
his/her vital signs. In addition, the competent sensitivity of V2iFi delivers abundant information for combating
other background noises. Leveraging this capability, our new Multi-Sequence Variational Mode Decomposition
(MS-VMD) algorithm decomposes a set of related time series into multiple band-separated intrinsic modes.
This enables V2iFi to filter out noises such as vibrations of vehicle, reconstruct both respiratory and heartbeat
waveforms, and in turn estimate respiratory rate, heart rate, and even heart rate variability accordingly. In
summary, our major contributions in this paper are:

• Our hardware design for V2iFi innovatively combines a COTS impulse radio with a compact edge computing
platform. Leveraging the high temporal resolution offered by an impulse radio, V2iFi is able to distinguish
signals reflected from various users and hence focus on monitoring the driver. Moreover, compared with
existing wireless solutions (e.g., [32]), V2iFi is convenient to deploy thanks to its low system complexity,
making it a practical system for complicated driving environments.
• We emphasize on the robustness in vital sign monitoring to overcome noise in driving environments. To
prepare the signal for vital sign extraction, V2iFi uses a combination of filters to remove noise and improve
signal quality, it then detects and discards unstable data frames corrupted by noise. As a result, V2iFi can
extract vital sign information from noisy data frames to the largest extent.
• We develop a novel MS-VMD algorithm to fully leverage the wide bandwidth of the UWB signal and
perform signal separation via optimization techniques. The MS-VMD algorithm allows V2iFi to jointly
extract vital signs from multiple sequences of signals. This enables V2iFi to accurately estimate driver’s
vital signs carried by reflected signals, including even the subtle heart rate variability, which, to the best of
our knowledge, has never been extracted by wireless sensing under driving condition.
• We conduct extensive experiments to evaluate the performance of V2iFi under various conditions. All the
results demonstrate that V2iFi is robust to various unfavorable factors including bumpy road and heavy
clothing of the driver, proving its outstanding effectiveness in practice.

The rest of the paper is organized as follows. Sec. 2 explains the vital signs to be measured by V2iFi. Sec. 3
presents the system design of V2iFi. Sec. 4 reports the evaluation results. Limitations and potentials are discussed
in Sec. 5. Sec. 6 gives a brief review of related work. Sec. 7 concludes this paper.

2 VITAL SIGNS AS HEALTH INDICATORS IN DRIVING ENVIRONMENTS
Before proceeding to present our system details, we first discuss the measurable vital signs as health indicators
in driving environments. The essential idea is to provide a necessary background and strong motivation for
the development of V2iFi, in the sense of which vital signs can be quantitatively measured and how they are
relevant to personal health status. Basically, we propose adopting the following dimensions: i) respiratory rate:
the number of breaths a person takes per minute, ii) heart rate: the number of times a person’s heart contracts
and relaxes per minute, and iii) heart rate variability (HRV): the physiological phenomenon of variation in time
intervals between heartbeats. All these can be measured by V2iFi’s impulse radio, and they are closely related to
personal health status.
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2.1 Respiratory Rate and Heart Rate
Respiratory rate is one of the crucial indicators of a person’s health issues. Abnormal respiratory rate under 12
breaths-per-minute (bpm) or over 25bpm has been shown to be an important predictor of health issues, such
as asthma [10], anxiety [28], pneumonia [53], lung disease [14], heart disease [15, 25] and drug overdose. In
particular, Solaz et al. [52] observe abnormal change in respiratory rates and use it to infer abnormal health
issues like driver drowsiness. Lisper et al. [37] report that, during a long-time continuous driving, respiratory
rate of the driver and passengers are found to have slowed down gradually. Similarly, irregular heart rate is also
a crucial indicator of serious health issues such as cardiac disease [16, 40]. Also, Sharma et al. [51] show that
irregular heart rate is a sign of electrolyte imbalance. In terms of driving environments, Jo et al. [33] demonstrate
that heart rate significantly decreases during sleepy driving. Banning et al. [4] report that people with irregular
heartbeat are more likely to cause a traffic accident.
The aforementioned discussions have clearly shown the relevance of both respiratory rate and heart rate

as indicators for driving-specific health status (e.g., driver fatigue, drunk driving), so they should be chosen
as key vital signs for in-vehicle monitoring, yet we would need to avoid using intrusive sensors that cause
uncomfortable user experience. Recently progress in RF sensing provide us with an alternative solution for
remotely extracting these vital signs. Zeng et al. [63] design a Wi-Fi based system for respiration detection, and
Adib et al. [2] demonstrate that respiratory rate and heart rate can both be measured remotely by leveraging
an FMCW radio. In particular, for the driving environments, Peng et al. [32] has migrated the Wi-Fi based for
estimating respiratory rate, while Park et al. [44] design a special RF sensor for monitoring both respiratory
rate and heart rate of the driver. However, it is still not clear if these proposals may effectively handle realistic
scenarios with multiple passenger present.

2.2 Heart Rate Variability
It is well known that a healthy heart does not beat at a regular interval [50]. In other words, the rhythms
of a healthy heart are not as stable as heart rate; they are instead non-linear and offer a higher-dimensional
information. Therefore, it is a more useful indicator of a personal health status than respiratory and heart rates.
Variations in heart beat intervals are controlled by the unconscious part of human nervous system, i.e., the
Automatic Nervous System (ANS) [24]. This part of the nervous system regulates heart beat, respiration, pupillary
response, urination, sexual arousal and digestive process. The ANS can be further divided into two sub-systems,
i.e., sympathetic and parasympathetic nervous system. Human heart without external input will beat at constant
rate of approximately 100bpm. However, the two nervous subsystems compete with each other, influencing
nerves in heart tissues and causing variations in heart beat intervals. Therefore, HRV clearly reflects the general
state of the nervous system and thus personal health status.
Specifically, HRV has been used to detect multiple health issues. In [48], Sessa et al. report abnormal HRV

precedes sudden cardiac attack. In [27], Fujiwara et al. demonstrate that changes in sleep patterns affect nervous
system, and HRV changes as a result. In another study, Benichou et al. [5] show that type 2 diabetes cause
significant decrease in HRV. HRV is also shown to be linked to asthma [38], anxiety [11] and drug overdose [60].
Similar to respiratory rate and heart rate, HRV can also be obtained from reflected RF signals. Although HRV
signal is weak and hard to capture, Zhao et al. [65] demonstrated that ECG-like HRV signal can be extracted from
mixed signal of heartbeat and respiration using numerical differentiation. Whereas their findings have confirmed
the existence of HRV signal in the reflected RF signal, their method may not be robust to noise and interference
under driving conditions, so we require a novel estimation algorithm for V2iFi.
In brief, HRV is particularly useful for indicating health status in any environments, and it can be obtained

from RF signals, so we choose it to be one of the key vital signs for V2iFi. However, there are multiple indices
that describe HRV, and they can be categorized into categories summarized in Table 1 [49]. Some of these indices
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Table 1. A summary of HRV measurements.

Category Parameters
Time Domain Interbeat Interval (IBI), SDNN, SDRR, SDANN, SDNN index (SDNNI),

pNN50, HR Max - HR Min, RMSSD, HRV triangular index
Frequency Domain ULF power, VLF power, LF peak, LF power, HF peak, HF power, LF/HF
Non-linear SD1, SD2, SD1/SD2, ApEn, SampEN, DFA𝛼1, DFA𝛼2, 𝐷2

require complex computation and processing (e.g., ECG-like waveform). In our work, as RF signal only carries
temporal information about heartbeats. We choose Interbeat Interval (IBI) as the HRV index. In fact, some other
indicators, such as SDNN, SDRR and LF/HF, can be derived from IBI.

3 SYSTEM DESIGN OF V2IFI
V2iFi is composed of two hardware components, a single-board computer and an impulse radio, as well as backend
algorithms for signal processing. It utilizes RF signals transmitted by the impulse radio for vital sign monitoring.
Upon receiving the reflected signals, delicate procedures are taken to distill the targeted vital signs out of them,
notably by our novel MS-VMD algorithm. In the following, we first provide a software system overview in Sec. 3.1,
while leaving the explanations for hardware components to Sec. 4.1. Then we present the RF channel model in
Sec. 3.2 and discuss algorithms for signal prepossessing, signal separation, and vital sign extraction in Sec. 3.3,
3.4, and 3.5, respectively.

Noise Reduction

Background Subtraction

User Identification

Respiratory Rate 
Estimation

Heart Rate Estimation

Respiration Cancellation

Vibration 
Decomposition

IBI Segmentation

Signal
Preprocessing

Signal 
Separation

Vital Sign
Processing 

Raw Signals

Respiratory Rate

Heart Rate

Heart Rate Variability

Fig. 3. Software system design of V2iFi.

3.1 Software System Overview
V2iFi’s software architecture is illustrated in Fig. 3. The whole system consists of three components: signal
preprocessing, signal separation, and vital sign processing.
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• RF signal preprocessing component. This component includes noise reduction and background subtraction.
After the reflected signal is received by the radio, the data is forwarded to the embedded computer for
processing. Due to low power of the wideband Guassian pulse ( −41 dBm/MHz ) [42], we need to improve
the SNR of signals. Basically, we employ smooth filter to reduce noise in the signals. Then, we utilize a
loopback filter to remove the static reflections from clutters for background subtraction.
• Signal separation component. The greatest difficulty of in-vehicle vital sign estimation is how to remove the
noise caused by vibrations of vehicle from the reflectors. We perform two steps to eliminate the vibration.
First, we locate the driver, and extract driver-specific signals. Second, we propose a novel MS-VMD algorithm
to decompose the mixed signals containing vibration noises and vital signs via leveraging the reflections
from multiple body parts (i.e., signals from different fast-time bins).
• Vital sign processing component. After decomposing the signals, V2iFi identifies respiration and heartbeat
signals from them. Next, V2iFi can estimate vital signs like respiratory rate, heart rate, and IBI. Together
with all of them can be used to determine health issues of the driver.

We will model RF channel first, and elaborate on all components of V2iFi in the next few sections.

3.2 Modeling RF Channel
In this section, we introduce the theory of RF modeling of the impulse radio. V2iFi utilizes a system-on-chip
impulse radio for transmitting and receiving wireless pulses. The system diagram of V2iFi is illustrated in Fig. 4.
The transmitted signal is 𝑠𝑘 (𝑡), the modulated signal is 𝑥𝑘 (𝑡), the signal after passing the channel is 𝑦𝑘 (𝑡), and
the demodulated signal is 𝑦𝑏

𝑘
(𝑡). The architecture of the impulse radio is slightly different from traditional

architecture [41]: it only employs an in-phase single-carrier frequency cos(2𝜋 𝑓𝑐𝑡) for upconversion, but In-phase
and Quadrature (IQ) sampling (cos(2𝜋 𝑓𝑐𝑡) and sin(2𝜋 𝑓𝑐𝑡)) at the receiver side for downconversion.

Lowpass
Filtering

Lowpass
Filtering

In Phase

Quadrature

Fig. 4. System diagram from the baseband transmitted signal 𝑠𝑘 (𝑡) to the baseband received signal 𝑦𝑏
𝑘
(𝑡).

The Gaussian pulse transmitted by V2iFi can be expressed by the following equation: 𝑠 (𝑡) = 𝑉𝑡𝑥 exp
(
− (𝑡−

𝑇𝑝

2 )
2

2𝜎2
𝑝

)
where the amplitude of the pulse is 𝑉𝑡𝑥 , 𝑇𝑝 is the duration of the signal, and 𝜎2

𝑝 is the variance corresponding to
the -10 dB bandwidth, actually we have 𝜎𝑝 = 1

2𝜋𝐵−10𝑑𝐵 (log10 (𝑒))1/2
. After upconversion, the transmitted signal in

time domain is given by:

𝑥𝑘 (𝑡) = 𝑠 (𝑡 − 𝑘𝑇𝑠 ) · cos(2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 )), (1)

where 𝑓𝑐 is carrier frequency, 𝑇𝑠 = 1
𝑓𝑝

is duration of frame where 𝑓𝑝 is the pulse repetition frequency, 𝑘 denotes
the 𝑘-th frame. Because the impulse radio transmits a sequence of identical pulses, we have 𝑠 (𝑡 − 𝑘𝑇𝑠 ) = 𝑠 (𝑡). For
simplicity, we can denote 𝑡 = 𝑡

′ + 𝑘𝑇𝑠 with 𝑡
′ ∈ [0,𝑇𝑠 ], and E.q. (1) can be written as 𝑥𝑘 (𝑡) = 𝑠 (𝑡) · cos(2𝜋 𝑓𝑐𝑡).
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Fig. 5. Transmitted 𝑥𝑘 (𝑡) in time domain.
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Fig. 6. Transmitted 𝑥𝑘 (𝑡) in frequency domain.

The transmitted signal 𝑥𝑘 (𝑡) is illustrated in Fig. 5, and its representation in the frequency domain is shown in
Fig. 6. It can be seen that the carrier frequency is 7.3GHz, and bandwidth is 1.4GHz.
The impulse response ℎ𝑘 (𝑡) of the in-vehicle environment is given by: ℎ𝑘 (𝑡) =

∑𝑃
𝑝=1 𝛼𝑝𝛿

(
𝑡 − 𝜏𝑝 − 𝜏𝐷𝑝 (𝑘𝑇𝑠 )

)
where 𝛼𝑝 is the channel gain of the 𝑝 th reflection path signal in the vehicle, 𝜏𝑝 is the time delay of the 𝑝-th path,
𝜏𝐷𝑝 (𝑘𝑇𝑠 ) is the time delay caused by Doppler frequency shift of the 𝑝-th path. Moreover, for the impulse radio
used in V2iFi , 𝜏𝑝 =

2𝑅𝑝

𝑐
and 𝜏𝐷𝑝 (𝑘𝑇𝑠 ) =

2𝑣𝑝𝑘𝑇𝑠
𝑐

, where 𝑅𝑝 is the distance between the target to be detected and the
UWB radio, 𝑐 is the speed of light, 𝑣𝑝 is the speed of the moving target. The range resolution of V2iFi is given by
Δ𝑟 = 𝑐

2𝐵 where 𝐵 is the bandwidth of the impulse radio. Therefore, the time resolution of V2iFi can be calculated
as Δ𝜏 = 1

2𝐵 .
In summary, the received signal of the impulse radio is:

𝑦𝑘 (𝑡) = ℎ𝑘 (𝑡) ∗ 𝑥𝑘 (𝑡) =
𝑃∑︁

𝑝=1
𝛼𝑝 cos(2𝜋 𝑓𝑐 (𝑡 − 𝑘𝑇𝑠 − 𝜏𝑝 − 𝜏𝐷𝑝 (𝑘𝑇𝑠 )) · 𝑠 (𝑡 − 𝑘𝑇𝑠 − 𝜏𝑝 − 𝜏𝐷𝑝 (𝑘𝑇𝑠 )) + 𝑛(𝑡), (2)

where 𝑛(𝑡) is Gaussian noise with a variance of 𝜖2, and the symbol ∗ denotes convolutional operation.
In a radar system, Pulse Repetition Interval (PRI) is the time between two consecutive pulses. We place the

reflected signal of the same pulse in the same row, for example, the reflected signal of the first pulse in the
first row, the reflected signal of the second pulse in the second row. We define the dimension of the row as the
"fast-time" dimension, that is, the dimension of time slots composing a single PRI, and define the dimension of
the column as the "slow-time" dimension, which updates every PRI [6].
By transforming the time sequence of the signal into a matrix, the idea of "fast-time" and "slow-time" can be

visualized, as shown in Fig. 7, and an example of real received signals from UWB radio are illustrated in Fig. 8.
Generally speaking, the fast-time dimension denotes time delays of range distance, and the slow-time axis is used
to estimate Doppler effect by observing over a long time span. Hereafter, we abuse the terminology by using
sequence to denote the vector of a ranging distance in the fast-time, such as a column vector in Fig. 7.

Received baseband signals 𝑦𝑏
𝑘
(𝑡) are obtained after applying IQ downconversion, we have:

𝑦𝑏
𝑘
(𝑡) =

𝑃∑︁
𝑝=1

𝛼𝑝𝑒
2𝜋 𝑓𝑐 (𝜏𝑝+𝜏𝐷𝑝 (𝑘𝑇𝑠 ) · 𝑠 (𝑡 − 𝑘𝑇𝑠 − 𝜏𝑝 − 𝜏𝐷𝑝 (𝑘𝑇𝑠 )) + 𝑛(𝑡). (3)

Let 𝑡 = 𝑙𝑇𝑛 represent 𝑙-th discrete samples obtained from ADC where 𝑇𝑛 is the sampling interval. Then the
discrete baseband signals can be represented by 𝑦𝑏

𝑘
(𝑙𝑇𝑛). E.q. (3) indicated that different minute movements
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Fig. 7. The matrix of received baseband signals.
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Fig. 8. An example of received baseband signals.

caused by vital signs in the vehicle have different 𝜏𝑝 and 𝜏𝐷𝑝 (𝑘𝑇𝑠 ) in 𝑦𝑏𝑘 (𝑡). By utilizing the differences, different
vital signs can be distinguished.

3.3 RF Signal Preprocessing
Before extracting information from RF signals, the effects from hardware or environment should be removed to
guarantee signal quality. The RF signals preprocessing has two main steps: i) noise reduction and ii) background
subtraction.

3.3.1 Noise Reduction. The received baseband signals are polluted with noise, as shown in Fig. 9. Noise will
prevent the following vital signs extraction modules to work properly. Especially, vital signs will be immersed in
noise. Therefore, a cascading filter comprised of a low-pass Finite Impulse Response (FIR) filter and a smoothing
filter are utilized to enhance the SNR of the signals. The order of the designed FIR filter is 26 and Hamming
window is used. The smooth filter with a window size of 50 points is used to further smooth the output signal of
the FIR filter. Fig. 10. illustrates the output of the cascading filter. It can be seen that noise is suppressed.
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Fig. 9. Received signal without SNR enhancement.
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Fig. 10. Received signal with SNR enhancement.

3.3.2 Background Subtraction. Background subtraction removes all static reflectors in the background. Reflectors
includes static and moving objects. Therefore, besides reflected signal from the human body, there are many
sources of unwanted static signals reflected in the vehicle shown in Fig. 11. Unwanted signals in a radar are
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generally described as noise and clutter. Loopback filters can be used to remove clutter from the original signal [1].
The clutter of the system can be described as: 𝑐𝑘 (𝑡) = 𝛽𝑐𝑘−1 (𝑡) + (1 − 𝛽)𝑟𝑘 (𝑡) and the background subtracted
signal can be represented as 𝑦𝑘 (𝑡) = 𝑟𝑘 (𝑡) − 𝑐𝑘 (𝑡). In which 𝛽 is a constant used for weighting, 𝑟𝑘 (𝑡) is the value
at 𝑘-th frame. We can see that the signal after background subtraction is illustrated in Fig. 12, where the clutters
have been removed. A low 𝛽 value enables the filter to remove background fast, but the filter is not robust to
noise. On the other hand, a high 𝛽 value makes background removal slow, but the process is robust to noise. In
our work, 𝛽 is set to 0.97.
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Fig. 11. Signal before background subtraction.
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Fig. 12. Signal after background subtraction.

3.4 Signal Separation
3.4.1 User Identification. User identification is the process of identifying the driver’s vital sign signal hidden in
the radar data frames. It enables us to focus on the driver’s signal for further vital sign extraction. The diagram of
the user identification process is shown in Fig. 13.

The first step of user identification is to filter out the radar data frames that are unsuitable for user identification
and further processing. In the diagram, we can see that fast movements in the driving environments degrade vital
sign signals greatly. To combat this, we take out 5s data and 20s matrix from the input radar data frames, and these
two matrices are called the short observation 𝑜𝑠 and long observation 𝑜𝑙 . We perform FFT along the slow-time
axes of the two matrices to get the Doppler map of the long observation and short observation respectively.
The Doppler map of the long observation is used for vital sign extraction, and the Doppler map of the short
observation is used to detect fast movement.

By our definition, 𝑏 =
𝛼peak∑

𝑖

∑
𝑗 𝛼𝑖 𝑗 /(𝐼×𝐽 ) is the measure of relative signal strength, where 𝑖 denotes the 𝑖-th fast-time

index, 𝑗 denotes the 𝑗-th frequency index, 𝛼peak is the peak amplitude on the Doppler map, and 𝛼𝑖 𝑗 is the amplitude
at fast-time index 𝑖 and frequency index 𝑗 , 𝐼 is the total number of fast-time indices, and 𝐽 is the total number of
frequency indices, hence 𝑏𝑠 (i.e., 𝑏 of the short observation) is a measure of the relative strength of fast movement
signal, and 𝑏𝑙 (i.e., 𝑏 of the long observation) is a measure of the relative strength of vital sign signal. 𝑏𝑠 > 𝑐 × 𝑏𝑙 ,
where 𝑐 is empirically set to 1.2, is an empirical formula based on our experiments, it indicates that fast movement
signal dominates vital sign signal. When this happens, the received signal is not stable and no valid vital signs can
be extracted, hence we remove invalid frames. Otherwise, if there is no fast movement, peak detection algorithm
is further used to locate the driver on the Doppler map.

The peak detection algorithm uses an adaptive threshold to detect real peaks where humans exist, it determines
the best threshold above which any peak can be considered to be from the desired target. A sliding window is
used to scan all values and estimate the noise threshold near the fast-time sample indices under test. The window
size is set to 60cm × 0.16Hz, where 60cm is the width of the human body and 0.16Hz is the maximum difference
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Fig. 13. The diagram of the user identification process. In the diagram, FFT means column-wise FFT, i.e., FFT along the
slow-time axis.

of a specific person’s respiratory rate. For example, if two peak indices are separated by a distance less than 60cm,
we only pick the peak index with higher amplitude. Last, we output the range value of the detected peak, which
defines the location of the driver.

That algorithm is illustrated in Fig. 14. It can be seen that the noise floor threshold 𝑡ℎmotion can be estimated by
averaging the values around the fast-time index under test, and the value 𝑣𝑎𝑙 of the fast-time bin under test is
compared with coef · thmotion where coef is a constant coefficient. Empirically, coef is set to 1.5 in V2iFi . In Fig. 13,
we can see that the peaks circled in red represent users occupying a fast-time index (range) and a frequency,
hence the peaks can be used to identify different users.

Detection exceeds threshold

Guard cells

Noise floor, used as threshold

Fig. 14. The procedure of peak-average detection algorithm.

3.4.2 Vibration Decomposition via Variational Mode Decomposition. V2iFi separates breathing and heartbeat
signals from noise in driving environments by utilizing the novel MS-VMD algorithm proposed by us, and further
estimates respiratory rate, heart rate and fine-grained IBIs. Although we separate each people and identify the
driver, vibrations of the vehicle always influences the vital sign estimation. The received signal contain mainly
four components [62].
• Respiration of the driver. The respiration frequency of an adult ranges from 0.16Hz to 0.6Hz.
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• Heartbeat of the driver. The heartbeat frequency of an adult ranges from 1Hz to 2Hz.
• The vehicle’s vibrations. Frequency of vibrations of a running vehicle, caused by engine, transmission, wheel
and bumps on the road ranges from 0.5Hz to 10Hz.
• Vibrations of driver’s motions. Frequency of human motions such as turning steering wheel may bring
interference with ranges from 0.5Hz to 2Hz.

We can see that the four components of the received signal are overlapping in frequency, hence a simple band-
pass filter with specified frequency range cannot filter out undesired noise caused by vibrations. Although the
vibrations of driver’s motions may be separated via distances, there are some cases where the motions and vital
signs occur at the same distance.

To separate the vital sign signals from other interference, VMD algorithm is used to decompose the signal into
various modes by calculus of variation. Each mode of the signal is assumed to be around a central frequency and
have a narrow bandwidth. VMD calculates these central frequencies and the mode functions concurrently, by
using an optimization technique called Alternating Direction Method Method of Multipliers (ADMM). However,
the VMD only supports single “sequence” decomposition (terminology defined in Sec. 3.2). Due to the complicated
in-vehicle environment, a single sequence of signal may not be enough to extract vital signs, so we need to combine
multiple sequences to enable accurate vital sign extractions. Therefore, to better refine the vital signs of the
driver, we hereby design a Multi-Sequence VMD (MS-VMD) algorithm, an enhanced version of the conventional
VMD algorithm.

It is noticed that in the radar data matrix a person does not just occupy a fast-time index, but multiple fast-time
indices. Generally speaking, indices occupied by the same person carry similar information of the person’s vital
signs. This phenomenon is called time diversity in wireless communication theory. Our MS-VMD algorithm
employs time diversity, and jointly optimizes the problem of minimum bandwidth with multiple sequences
taken into account, hence better than other algorithms (e.g. Hilbert-Huang transform [32], signal fitting [34] and
traditional VMD algorithm [20]), where only one data sequence is considered.
We leverage this time diversity to reformulate the objective function of VMD according to [20]. Our modi-

fied VMD algorithm decomposes the data 𝑧 (𝑡) into multiple Intrinsic Mode Functions(IMFs). We have 𝑧 (𝑡) =∑𝑁
𝑛=1 𝑢𝑛 (𝑡) where 𝑢𝑛 (𝑡) is the 𝑛-th IMF. However, for data of multiple lags (time delays in V2iFi) z(𝑡) =

[𝑧1 (𝑡), 𝑧2 (𝑡), · · · , 𝑧𝑀 (𝑡)]𝑇 where 𝑀 represents the number of lags, we can obtain z(𝑡) =
∑𝑁

𝑛=1 u𝑛 (𝑡) where
u𝑛 (𝑡) = [𝑢1 (𝑡) = 𝑢𝑛 (𝑡), 𝑢2 (𝑡) = 𝑢𝑛 (𝑡), · · · , 𝑢𝑀 (𝑡) = 𝑢𝑛 (𝑡)]𝑇 . Same as the conventional VMD, to estimate the
bandwidth of IMFs, we need to follow the three steps: 1) each u𝑛 (𝑡) uses the Hilbert transform to compute the
associated analytic signal, 2) u𝑛 (𝑡) is mixed with a complex exponential of center frequency 𝜔𝑛 to baseband, and
3) The bandwidth of u𝑛 (𝑡) can be estimated via the squared 𝑙2-norm of the gradient. In this way, our constrained
problem can be formulated as2:

min
𝑢𝑛,𝜔𝑛

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

wwwwwww
𝜕

[(
𝛿 (𝑡) + 𝑗

𝜋𝑡

)
∗ 𝑢𝑛 (𝑡)

]
𝑒−𝑗𝜔𝑛𝑡

𝜕𝑡

wwwwwww
2

2

s.t. 𝑧𝑚 (𝑡) =
𝑁∑︁
𝑛=1

𝑢𝑛 (𝑡), 𝑚 = 1, 2, · · · , 𝑀. (4)

2 𝑗 is the imaginary number unit, not the 𝑗 as we used as frequency index in Section 3.4.1
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Different from [20], the constraints become multiple linear equations corresponding to the number of lags.
Therefore, the augmented Lagrangian function L is

L =

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

wwwwwww
𝜕

[(
𝛿 (𝑡) + 𝑗

𝜋𝑡

)
∗ 𝑢𝑛 (𝑡)

]
𝑒−𝑗𝜔𝑛𝑡

𝜕𝑡

wwwwwww
2

2

+
𝑀∑︁

𝑚=1

wwwww𝑧𝑚 (𝑡) −
𝑁∑︁
𝑛=1

𝑢𝑛 (𝑡)
wwwww
2

2

+
𝑀∑︁

𝑚=1

〈
𝜆𝑚 (𝑡), 𝑧𝑚 (𝑡) −

𝑁∑︁
𝑛=1

𝑢𝑛 (𝑡)
〉
.

(5)

Similar to [20], the E.q. (5) is also can be transformed to multiple simpler sub-optimization problems and solved
by ADMM algorithm. Next, we divide the problem into two sub-problems: IMF update and center frequency
update.
IMF update.We fix the center frequency 𝜔𝑖 firstly, and solve the minimization problem with respect to IMF

𝑢𝑖 (𝑡). Then, we can obtain

𝑢
𝑞+1
𝑖
(𝑡) = argmin

𝑢𝑖

wwwwwww
𝜕

[(
𝛿 (𝑡) + 𝑗

𝜋𝑡

)
∗ 𝑢𝑖 (𝑡)

]
𝑒−𝑗𝜔𝑖𝑡

𝜕𝑡

wwwwwww
2

2

+
𝑀∑︁

𝑚=1

wwwww𝑧𝑚 (𝑡) −
𝑁∑︁
𝑛=1

𝑢𝑛 (𝑡) +
𝜆𝑚 (𝑡)
2

wwwww
2

2

, (6)

where 𝑞 is the current iteration.
According to Parseval/Plancherel Fourier isometry under the 𝑙2-norm, the problem E.q. (6) is equal to solving

the following problem in frequency domain:

𝑢
𝑞+1
𝑖
(𝜔) = argmin

𝑢𝑖
∥ 𝑗𝜔 [(1 + sgn(𝜔 + 𝜔𝑖 )) 𝑢𝑖 (𝜔 + 𝜔𝑖 )] ∥22 +

𝑀∑︁
𝑚=1

wwwww𝑧𝑚 (𝜔) −
𝑁∑︁
𝑛=1

𝑢𝑛 (𝜔) +
𝜆𝑚 (𝜔)

2

wwwww
2

2

, (7)

where sgn(·) is the sign function. We can use 𝜔 = 𝜔 − 𝜔𝑖 in the first term:

𝑢
𝑞+1
𝑖
(𝜔) = argmin

𝑢𝑖


∫ +∞

−∞

4(𝜔 − 𝜔𝑖 )2 |𝑢𝑖 (𝜔) |2 +
𝑀∑︁

𝑚=1

�����𝑧𝑚 (𝜔) − 𝑁∑︁
𝑛=1

𝑢𝑛 (𝜔) +
𝜆𝑚 (𝜔)

2

�����2 𝑑𝜔
 . (8)

We can rewrite both terms in E.q. (8) using half-space integrals over the non-negative frequencies, due to the
Hermitian symmetry of real signals in the reconstruction term:

𝑢
𝑞+1
𝑖
(𝜔) = argmin

𝑢𝑖


∫ +∞

0

4(𝜔 − 𝜔𝑖 )2 |𝑢𝑖 (𝜔) |2 + 2
𝑀∑︁

𝑚=1

�����𝑧𝑚 (𝜔) − 𝑁∑︁
𝑛=1

𝑢𝑛 (𝜔) +
𝜆𝑚 (𝜔)

2

�����2 𝑑𝜔
 . (9)

Considering the problem E.q. (9) is to find the minimal function 𝑢𝑛 , and then, according to the Euler-Lagrange
equation [55] of the calculus of variations 𝜕𝐿

𝜕𝑓
− 𝑑

𝑑𝜔
𝜕𝐿

𝜕𝑓
′ = 0, we can define

𝐿 = 4(𝜔 − 𝜔𝑖 )2 |𝑢𝑖 (𝜔) |2 + 2
𝑀∑︁

𝑚=1

�����𝑧𝑚 (𝜔) − 𝑁∑︁
𝑛=1

𝑢𝑛 (𝜔) +
𝜆𝑚 (𝜔)

2

�����2 and 𝑓 = 𝑢𝑖 (𝜔). (10)

Since 𝑓 ′ is not explicit in 𝐿 , the second term in the Euler-Lagrange equation vanishes. Thus, we let 𝜕𝐿
𝜕𝑓

= 0, and
the first sub-problem can be solved

𝑢
𝑞+1
𝑖
(𝜔) =

∑𝑀
𝑚=1

[
𝑧𝑚 (𝜔) −

∑
𝑛≠𝑖 𝑢

𝑞+1
𝑛 (𝜔) + 𝜆𝑚 (𝜔)

2

]
𝑀 + 2(𝜔 − 𝜔𝑚)2

. (11)
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Center frequency update. The center frequency 𝜔𝑖 is only related to the first term in E.q. (5), hence the second
sub-problem is

𝜔
𝑞+1
𝑖

= argmin
𝜔𝑖

wwwwwww
𝜕

[(
𝛿 (𝑡) + 𝑗

𝜋𝑡

)
∗ 𝑢𝑖 (𝑡)

]
𝑒−𝑗𝜔𝑖𝑡

𝜕𝑡

wwwwwww
2

2

. (12)

The optimization problem can also solved in frequency domain efficiently using the Plancherel theorem:

𝜔
𝑞+1
𝑖

= argmin
𝜔𝑖

∫ +∞

0
(𝜔 − 𝜔𝑖 )2 |𝑢𝑖 (𝜔) |2𝑑𝜔. (13)

We also give the update expression at (𝑞 + 1)-th iteration result as

𝜔̂
𝑞+1
𝑖

=

∫ ∞
0 𝜔 |𝑢𝑖 (𝜔) |2𝑑𝜔∫ ∞
0 |𝑢𝑖 (𝜔) |2𝑑𝜔

. (14)

After that, we can plug the above two IMFs and center frequency updates into AMDD [8] to solve the MS-VMD
problem. The complete MS-VMD algorithm is illustrated in Algorithm 1. Line 4 and line 6 are used to update
𝑢
𝑞+1
𝑖
(𝜔) and 𝜔̂𝑞+1

𝑖
according to E.q. (11) and E.q. (14), respectively in (𝑞 + 1)-th iteration. In line 9, 𝜂 is the update

parameter. Line 11 is a condition to check convergence of this algorithm. Fig. 15 illustrates that our MS-VMD
decompose the noisy signals into four modes, including respiration, heartbeat and other vehicle vibrations treated
as noise components.

Algorithm 1: Complete MS-VMD
input : {𝑢0

𝑖 } , {𝜔̂
0
𝑖 }, {𝜆0𝑚}, 𝑞 ← 0

output : {𝑢𝑞
𝑖
} , {𝜔̂𝑞

𝑖
}

1 while 𝑞 ← 𝑞 + 1 do
2 for 𝑖 ← 1 to 𝑁 do
3 Update 𝑢𝑖 for all 𝜔 ≥ 0:

4 𝑢
𝑞+1
𝑖
(𝜔) ←

∑𝑀
𝑚=1

[
𝑧𝑚 (𝜔)−

∑
𝑛<𝑖 𝑢̂

𝑞+1
𝑛 (𝜔)−∑𝑛>𝑖 𝑢̂

𝑞
𝑛 (𝜔)

𝜆
𝑞
𝑚 (𝜔 )
2

]
𝑀+2(𝜔−𝜔𝑚)2 ;

5 Update 𝜔̂𝑖 :

6 𝜔̂
𝑞+1
𝑖
←

∫ ∞
0 𝜔 |𝑢̂𝑖 (𝜔) |2𝑑𝜔∫ ∞
0 |𝑢̂𝑖 (𝜔) |2𝑑𝜔

7 for𝑚 ← 1 to𝑀 do
8 Dual ascent for all 𝜔 ≥ 0:
9 𝜆

𝑞+1
𝑚 (𝜔) ← 𝜆

𝑞
𝑚 (𝜔) + 𝜂

(
𝑧𝑚 (𝜔) −

∑𝑁
𝑛 𝑢

𝑞+1
𝑛 (𝜔)

)
;

10 Convergence:

11 if
∑𝑁

𝑛 ∥𝑢̂
𝑞+1
𝑛 −𝑢̂

𝑞
𝑛 ∥22

∥𝑢̂ ∥22
< 𝜖 then

12 break;
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Fig. 15. Reflected signal decomposed by MS-VMD.

3.5 Vital Signs Extraction
So far we have decomposed the RF signal into its components, including respiration signal, heartbeat signal and
noise caused by vehicle vibration. In this section, we introduce how we identify the respiratory and heartbeat
component and extract vital signs.

3.5.1 Respiratory Rate Estimation. Respiration can be modeled as follows: when the driver or passengers inhales,
his diaphragm and other related muscle contracts to create space in the lungs and the lungs expands and let
the air flow in. Looking from outside, chest and abdomen of the driver move forward. If the impulse radio is
placed at the front of the vehicle, chest and abdomen get closer to the impulse radio. Conversely, if the driver
or passengers exhale, diaphragm and related muscles relax, therefore the space in the chest gets smaller and
the air inside is squeezed out, his chest and abdomen move backward and further away from the device. Since
the distance between human and V2iFi and the signal is linearly related, V2iFi can track the respiration of the
driver or the passenger by detecting the amplitude. To determine the respiratory rate of the driver, we apply Fast
Fourier Transform (FFT) to the IMFs obtained from MS-VMD. Since the frequency of respiration ranges from
0.16Hz to 0.6Hz, the component whose frequency matches the range is the respiratory component. And the peak
frequency of this IMF is respiratory rate. Respiration is the blue line shown both in time domain and frequency
domain in Fig. 16 and Fig. 17.

3.5.2 Heart Rate Estimation. Similar to respiration, the contraction and relaxation of human heart cause small
displacements on the surface of different parts of the person’s body. This phenomenon is called ventricular pump
activity [45]. Ventricular pump activities are found in the head, torso, leg, buttock and etc. The minute movement
caused by heartbeat also makes the signal change periodically, so V2iFi can also track heartbeat. To determine
the heart rate of the driver, we again apply FFT to the IMFs obtained from MS-VMD (except the breathing-related
IMF). Since the frequency of heartbeat ranges from 1Hz to 2Hz, the component whose frequency matches the
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range is the heartbeat component. And the peak frequency of this IMF is heart rate. Heartbeat is the red line
shown both in time domain and frequency domain in Fig. 16 and Fig. 17.

3.5.3 Interbeat Interval Segmentation. To estimate interbeat intervals, we look into the heartbeat IMF, as shown
in 16. IBIs are determined by the timings of each heartbeat. To obtain the exact timings, we detect peaks in
the decomposed heartbeat IMF. However, the heartbeat waveform signal is weak and easily affected by noise
and artifacts. Hence there are challenges in detecting peaks: i) heartbeat peak detection should be adaptive,
since the strength of the signal is not stable and ii) fake peaks should be removed. To solve these challenges,
we design a peak detection algorithm in which peaks are separated by at least 𝑑min samples, that is to say, we
find peaks that are the local maxima in a region of 2𝑑min + 1. 𝑑min is determined by the heart rate estimated in
Sec. 3.5.2. If the heart rate of the driver is 𝐻𝑅, the heartbeat frequency is 𝐻𝑅/60. Since the sampling rate of V2iFi
is 400Hz, the average number of samples in one interval should be 𝑁avg = 𝐻𝑅 × 400/60. The relation between
the minimum samples in one IBI and the average samples is given by 𝑁 IBI

min = 𝑐𝑁 IBI
avg, where 𝑐 is a constant, and set

to 0.7 empirically. To summarize, we detect local peaks separated by at least 0.7𝐻𝑅 × 400/60 samples. The result
of the peak detection algorithm is shown in Fig. 18. It can be seen that the timings of the beats are recovered
accurately.

4 EVALUATION
In this section, we evaluate V2iFi’s performance by conducting road test. We tested on different road conditions,
participants and procedures. As shown in Table 2, V2iFi is able to measure respiratory rate, heart rate and heart
rate variability for the driver, but it can only measure respiratory rate for all the other 3 people in the vehicle.

4.1 Experiment Setup
V2iFi adopts a COTS impulse radio XETHRU [41] model X4M05 as its front-end. The radio transmits pulses with
a width of 0.4ns. The center frequency of the radio is 7.3GHz, the bandwidth is 1.4GHz, the sampling frequency
is 23.328GHz, and we set frame per second as 400. The radio is connected to a Raspberry Pi via Serial Peripheral
Interface (SPI). The hardware PCB is rather small with a size of 6.5 × 3cm2. The whole hardware including power
supply, 5V fan, Raspberry Pi, and impulse radio is shown in Fig. 19. We place the whole V2iFi on the windshield
of a vehicle. Since the impulse radio is facing the driver (also shown in Fig. 19), it can capture maximum amount
of weak signals from multiple body parts (e.g., chest, abdomen, forehead and neck). We implement the software
system presented in Sec. 3 using C++; it operates in real-time.
Extensive road tests have been performed while developing V2iFi. The driving route is designed to cover

different road conditions and different traffic flows. Different conditions covered in the experiment include:
parking, driving on smooth highway, driving on traffic-heavy road, driving in school area, driving at zebra and
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Impulse Radio

Fig. 19. COTS impulse radio used in V2iFi and radio setup inside the vehicle.

pedestrian crossing, entering and leaving intersections, driving uphill, driving downhill, driving in roundabouts,
changing lanes, turning left, turning right and making U-turns. We have 4 drivers in total; each of them drive 15
miles and 30 minutes, so the total road test takes 60 miles and 2 hours. The vehicle used in the evaluation is a
Mazda Axela. While the driver is driving, a copilot is responsible for collecting data. Two more passengers are in
the back seats. We also tested effects of different clothing (lightweight T-shirt, heavyweight T-shirt, sweatshirt +
lightweight T-shirt and sweatshirt + heavyweight T-shirt) on road tests.
We use a NEULOG respiration monitor belt logger sensor NUL-236 to obtain the ground truth of breathing.

For heartbeat ground truth, we use the Heal Force PC-80B portable ECG monitor and extend the electrodes by
exterior electrodes with lead wires to record the ECG data. The data is further processed to obtain heart rate and
heart rate variability, which are then used as ground truth.

4.2 Overall Performance
4.2.1 Respiratory Rate Estimation Evaluation. Respiratory rate estimation error is used for the evaluation. The
error is defined as the absolute value of the difference between the estimated respiratory rate 𝑅𝐸 and the actual
respiratory rate 𝑅𝐴, i.e., |𝑅𝐸 − 𝑅𝐴 |. We evaluate the respiratory rate estimation performance of V2iFi against
WiFind* and Leem et al. [34]. In WiFind*, we port the existing algorithm of WiFind [32] to UWB radio, so as
to compare algorithms rather than radios. Leem et al. is one of the very few state-of-the-art research proposals
leveraging UWB for vital sign detection [34]. Fig. 20(a) plots the CDF of respiratory rate measurement errors
over all experiments. We can see that V2iFi achieves a median error of 0.06rpm for the driver. As a comparison,
the median error of respiratory rate of WiFind* and Leem et al. are 0.08rpm and 0.06rpm respectively, and they
all have long tails indicating their performance is unstable in extreme conditions.

4.2.2 Heart Rate Estimation Evaluation. We evaluate the heart rate estimation performance of V2iFi against Leem
et al. The heart rate estimation error is defined as the absolute value of the difference between the estimated heart
rate 𝑅𝐸 and the actual heart rate 𝑅𝐴, i.e., |𝑅𝐸 − 𝑅𝐴 |. Fig. 20(b) plots the CDF of respiratory rate measurement errors
over all experiments. We can see that V2iFi achieves a median error of 0.6 bpm for the driver. As a comparison, the
median error of heart rate of Leem et al. [34] is 1.8bpm, and has a relatively long tail indicating the performance
is unstable in extreme conditions.

4.2.3 Heart Rate Variability Estimation Evaluation. Next, we evaluate V2iFi’s heart rate variability estimation
performance against Leem et al.. Since all other indicators, such as SDNN, SDRR, SDANN are all derived from IBI,
we evaluate the accuracy of IBI measurement accuracy. Fig. 20(c) plots the CDF of IBI measurement errors over
all experiments. We can see that V2iFi achieves a median error of 50ms for the IBI of the driver. As a comparison,
the median error of IBI of Leem et al. [34] is 166ms, which is almost useless for vital sign monitoring.
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Fig. 20. Comparison of vital sign estimation performance among V2iFi, WiFind* and Leem et al.

4.2.4 Breathing and Heartbeat Transitions Evaluation. One thing to keep in mind is that V2iFi is designed for
detecting abnormal human vital signs and alert the user when suspicious signals exist. Therefore it should
not only detect normal signals, but also abnormal signals of the driver and passengers. Next we evaluate the
performance of V2iFi for detecting abnormal vital signs. We ask the driver in the vehicle to intentionally change
their respiratory rate (from 10 rpm to 15 rpm after 2 minutes) and respiration pattern. For heartbeat, we ask the
people in the vehicle to do some vigorous exercising to increase heart rate before entering the vehicle, and we
observe how heart rate decreases with time. The result is shown in Fig. 21(a) and Fig. 21(b). It can be seen that
the detected vital signs of V2iFi follow the same trends as the actual abnormal vital signs for all these respiration
heartbeat transitions. During the transitions, the average error of the estimated respiratory rate is 0.2 rpm, the
average error of the estimated heart rate is 1.6 bpm.
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Fig. 21. Vital sign estimation performance of V2iFi when respiratory rate and heart rate change.

4.3 User and Environment Issue Study
4.3.1 Number of Users. Although V2iFi focuses on monitoring vital signs of the driver, the system can potentially
be extended to monitor copilot and passengers in theory. In this section, we study the multi-user vital sign
monitoring performance of V2iFi. However, due to the Field of View (FOV) and noise in the vehicle, for the copilot
and passengers, V2iFi can measure respiratory rate only. Table 2 summarize the vital signs V2iFi can measure for
different users. In Fig. 22, it can be clearly seen that estimation error increases with distance, the respiratory rate
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estimation error of the driver is the smallest while passengers in the rear seats have the largest respiratory rate
estimation error.

Table 2. Measured vital signs for different users.

Respiratory
Rate

Heart
Rate

Heart Rate
Variability

Driver Yes Yes Yes
Copilot Yes No No
Passenger 1 Yes No No
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Fig. 22. Respiratory rate estimation error of different users.

4.3.2 Impact of Radio Placement. To get the best performance of V2iFi, we study the impact of different radio
placements for V2iFi by placing the radio at three different locations in the vehicle, i.e., at the top of the windshield,
at the bottom of the windshield, at the top of the chair and on the door. The estimation errors of the vital signs
are shown in Fig. 23. It can be seen that the performance of V2iFi is the best when the radio is placed at the top of
the windshield and faces the driver. In addition, when the radio is placed at the top of chair, the estimation errors
of heart rate and IBI are relatively low. This is because when the impulse radio is placed at the top of the chair, it
faces the driver’s neck, where the carotid artery is located and movements caused by heartbeat is most obvious.
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Fig. 23. Respiratory rate, heart rate and IBI estimation error of the driver. In the figure, class 1 is the case the radio is mounted
at the top of the windshield; class 2 is the case when the radio is mounted at the bottom of the windshield; class 3 is the case
when the radar is mounted at the top of the chair; class 4 is the case when the radio is mounted on the door of the vehicle.

4.3.3 Impact of Clothing. In our experiment, we ask our driver to wear different clothes and observe their
respective results. The performance of V2iFi is studied extensively under different clothing conditions. The
clothing in our experiment are: (1) lightweight T-shirt (2) heavyweight T-shirt (3) sweatshirt +lightweight T-shirt
(4) sweatshirt + heavyweight T-shirt. The result is shown in Fig. 24.

It can be seen for all the different clothing, V2iFi reaches a median estimation error 0.2rpm for respiratory
rate, a median estimation error 0.4 bpm for heart rate and 100 ms estimation error for IBI. Moreover, it can be
seen that V2iFi performs better when the driver wear less, e.g., the result when the driver wear lightweight
T-shirt is better than that of sweatshirt + heavyweight T-shirt. This is because some signals unable to penetrate
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heavyweight clothing and reach people’s chest and abdomen and still able to detect minute movements like
heartbeat. Moreover, even in the worst case, where the driver or passenger wears sweatshirt + heavy weight
T-shirt, the estimation error for respiratory rate and heart rate is still acceptable.

1 2 3 4

0

0.1

0.2

0.3

0.4

|R
E
-R

A
| 
(r

p
m

)

(a) Respiratory rate estimation error.

1 2 3 4

1

2

3

4

|R
E
-R

A
| 
(b

p
m

)
(b) Heart rate estimation error.

1 2 3 4
0

100

200

IB
I 

e
rr

o
r 

(m
s
)

(c) IBI estimation error.

Fig. 24. Respiratory rate, heart rate and IBI estimation error of the driver. In the figure, class 1 is the case when the driver
wear lightweight T-shirt; class 2 is the case when the driver wear heavyweight T-shirt; class 3 is the case when the driver
wear sweatshirt + lightweight T-shirt; class 4 is the case when the driver wear sweatshirt + heavyweight T-shirt.

4.3.4 Impact of Road Types and Traffic Conditions. The signal quality of V2iFi can be affect by different road
types and traffic conditions, and thus the performance of V2iFi can be impacted. To make sure V2iFi works on
different road types and under different traffic conditions. We collect data of different road types (e.g., smooth
highway, bumpy road, uphill road, downhill road, intersections, left turns, right turns, roundabouts, U-turns) and
analyzed the results respectively. The results are shown in Fig. 25. It can be seen that if the surface of the road is
smooth and not many manoeuvres are made, the estimation error of vital signs are low, while bumpy roads and
driving manoeuvres increase the estimation error.
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Fig. 25. Respiratory rate, heart rate and IBI estimation error of the driver. In the figure, class 1 is the case when driving on
smooth highway; class 2 is the case when driving uphill/downhill; class 3 is the case when taking turns (e.g., left turns, right
turns, U-turns and roundabouts); class 4 is the case when driving on bumpy road.

4.4 Key Processes Study
4.4.1 Baseband Signal Processing. According to the analysis in Sec. 3, both amplitude and phase of the reflected
signal after IQ downconversion contain vital sign information. V2iFi chooses amplitude to estimate breathing
and heartbeat. Contrary to common belief that amplitude is more vulnerable to random noises, our evaluation
show that estimating vital signs by amplitude gives a better performance. Our explanation for this is as follows:
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if phase signal is to be used, we have to select a static fast-time bin as reference and do phase correction first.
However, in driving environments, it is nearly impossible to find fast-time bin which represents a static reflector.
Therefore, in V2iFi, amplitude of the baseband signal is selected for vital sign extraction.
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Fig. 26. Respiratory rate, heart rate and IBI estimation error of using the amplitude and phase of the baseband signal.

The experiment result is shown in Fig. 26. It can be seen that system using amplitude signal achieves less
overall errors than systems using phase signal. For respiratory rate estimation error, the median with amplitude
baseband processing is 0.06 rpm, and the median with phase baseband processing is 0.08 rpm. For heart rate
estimation error, the median with amplitude baseband processing is 0.6 bpm, and the median with phase baseband
processing is 1.1 bpm. For IBI estimation error, the median with amplitude baseband processing is 50 ms, and
median with phase baseband processing is 60 ms.

4.4.2 Signal Decomposition. In V2iFi, our novel MS-VMD algorithm is used to decompose the filtered signal
into its vital sign components. According to the analysis in Sec. 3.4, our novel MS-VMD algorithm employs
time diversity to enhance vital signals. It jointly optimizes the problem of minimum bandwidth with multiple
sequences taken into account, hence better than VMD, where only one data sequence is considered. Fig. 27 gives
the resulting waveforms of a case where conventional VMD algorithm only obtains a mix of respiration and
heartbeat, while MS-VMD separates the two signals successfully.
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Fig. 27. Example of VMD and MS-VMD on decomposing signals to respiration and heartbeat component.

To evaluate their performance, we test these two algorithms on the same data, and the result is shown in Fig. 28.
In the figure, it can be seen that system using MS-VMD algorithm achieves less overall errors than systems using
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VMD algorithm. For respiratory rate estimation error, the median with MS-VMD algorithm is 0.06 rpm, and the
median with VMD algorithm is 0.07 rpm. For heart rate estimation error, the median with MS-VMD algorithm is
0.6 bpm, and the median with VMD algorithm is 0.8 bpm. For IBI estimation error, the median with MS-VMD
algorithm is 50 ms, and the median with VMD algorithm is 100 ms.
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Fig. 28. Respiratory rate, heart rate and IBI estimation error of MS-VMD algorithm and VMD algorithm.

5 LIMITATIONS AND POTENTIALS

5.1 Limitation of V2iFi
We designed V2iFi in the hope of bringing well-being to the driving environments. V2iFi is successful in terms
of monitoring vital signs. However, monitoring is not the final goal: the vital sign data collected should be
used by the vehicle to infer user states and take actions correspondingly. To achieve this, vital signs should be
mapped to physiological and psychological states. In previous studies it is shown that the vital signs can indeed
reflect physical health (e.g., cadiac health and drowsiness level) [16, 25, 35] and mental health (e.g., emotion and
mental workload) [9, 65]. A commonly used approach for such mapping is supervised learning, e.g., decision
tree and SVM [32]. However, learning algorithms do not work without properly labelled data. Awais et al. [3]
use subjective measures (i.e., what the participant says) to label both physical and mental states, but subjective
measures are unreliable and inaccurate, potentially leading to inconsistent inference results. To measure the
person-specific states objectively and accurately, we face many challenges such as infringement of privacy and
lack of gauging device. Moreover, medical organizations do not easily provide related data because of potential
misuse of information and violation of law. Nevertheless, once we have properly labelled data at hand, we envision
that V2iFi can become the foundation of more interesting applications, as we present in the following.

5.2 Application 1: Driver Drowsiness Detection
Driver drowsiness is one of the biggest culprit in car accidents, research shows that driver drowsiness is a
contributing factor in 20% of all the crashes [31], and about 25% of all fatalities on road [26]. A series of vital sign
changes indicate a drowsy driver, e.g., decreased respiratory rate, decreased heart rate and decreased HRV. V2iFi
can detect all these changes, and a high-level learning algorithm such as decision tree and SVM can be used to
combine the aforementioned change in vital signs to make a binary decision(i.e., drowsy or awake) in a specific
time span. An example decision tree is shown in Fig. 29.

5.3 Application 2: Road Rage Prevention
Road rage is violent behaviors perpetrated by drivers and it is extremely dangerous. Being slowed down and
blocked by others on overly crowded streets make drivers on the road irritated and road rage arises thereafter.
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Fig. 29. Driver drowsiness decision tree: an example.

DePasquale et al. [19] show road rage incidents is on the rise in recent years. To prevent road rage, legal measures,
better vehicle design, education in everyday life and infrastructure improvement have been tested. However,
because road rage events are sporadic, all these preventive measures cannot handle a real road rage event in time.
Since reflected RF signals of V2iFi carry information of the emotion of the driver [65], it is possible to build a
road rage detection system on top of V2iFi and the vehicle can respond, take precautions and combat road rage.
Similar to driver drowsiness detection, we can use a learning algorithm, such as a decision tree similar to that in
Fig. 29 to infer the driver’s road rage level. The vehicle can then sends an alert to the driver in time or brakes if
necessary.

5.4 Application 3: Health Monitoring for Children and Seniors in the Vehicle
It has long been known that environments inside vehicle cause significant health harm and hazards. Particularly,
seniors and children are more vulnerable and tend to become victims. There are two reasons: i) seniors and
children are more physically inactive inside a vehicle and ii) children and seniors are more sensitive to the
car exhaust in vehicle. With V2iFi, vital signs of children and seniors inside can be monitored, and common
diseases such as childhood asthma and heart failure among the senior people can be infered from abnormal vital
signs, hence be prevented. V2iFi is a potential solution to solve the health issues and build a healthy and secure
environments for the children and seniors.

6 RELATED WORK
Existing work in health monitoring in driving environments can be roughly categorized into three classes: (1)
vision-based method, (2) sensor-based method and (3) RF-based method.

The accuracy of the detection systems depends largely on the invasiveness allowed. The detection systems with
direct contact with the driver are the most accurate ones, but they hinder the body movements of the driver and
thus cause inconvenience while driving, so they are not accepted very well in the industry. On the other side of
the invasiveness spectrum are those "aerial" sensors, they are not in direct contact with the driver. These systems
get indirect signals of the driver, such as eye movement to infer other physiological variables, so they cannot
be very accurate. Although these systems are more easily accepted in the industry, they need more data and
calibration to characterize health states of the people effectively. In the following, we elaborate the subcategories
of the systems:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 70. Publication date: June 2020.



70:24 • Zheng and Chen, et al.

Vision-based methods: Vision-based methods deploy one camera, usually at the front of the vehicle, to
capture the activities, various signals and performance of the driver and passengers. Eriksson et al. [23] proposed
a system to track movements of eyes and eyelids of the driver. Following preprocessing, they locate the driver’s
face in the grayscale image, and then eyes are further located and tracked. The states of the eyes, whether open or
closed are determined by template matching. However, taking photo of the driver’s face raises privacy concerns,
which makes it not good for private room such as driving environments. Meanwhile, vision-based systems are
also sensible to external conditions, lighting and weather conditions, different dress and fashion accessories like
glasses, winter clothes will decrease the detection accuracy.
Sensor-based methods: Sensor-based methods can be further categorized to two groups: EEG-based and

ECG-based method. EEG-based methods use brain physiological changes to detect vital signs. Multiple thin metal
wires (electrodes) are placed on the scalp. The waveform obtained by EEG reflects the mental activities of the
brain. In [39], nonlinear and chaotic vital signs of drivers are extracted. Another portable low-cost EEG method is
proposed in [43], and SVM is used to classify EEG data as different health states. Similar to EEG-based methods,
ECG-based methods provide accurate physiological signals of the driver under test. Heart rate variability is
extracted from the ECG signal in [22, 56]. In another work, a smart cushion containing an integrated micro-
bending fiber sensor is used to imitate ECG sensors [18]. However, EEG and ECG deploy sensors on human skin
to detect biological signals. They require conductive paste to reduce skin impedance to build electrical contact,
making the methods intrusive, time-consuming and inconsistent when long recording is needed [54]. These
methods always make the users aware of its existence and degrade user experience.
Wi-Fi-based methods: Wi-Fi sensing based vital sign estimation has been investigated in recent works such

as [58, 61, 63, 64]. These works focus on static environment but not in-vehicle environment. In [32], Jia et al.
propose a fatigue detection approach Wi-Find based on Wi-Fi CSI. Channel State Information (CSI) describes
the channel properties of a communication link from the transmitter to the receiver. For a Wi-Fi router, CSI
information can be obtained at different carrier frequencies and along different paths. The CSI measured by
Wi-Fi devices is widely used for localization, occupation sensing, activity recognition and other sensing purposes.
Compared to the aforementioned sensor-based systems, the system proposed in [32] only requires a wireless
STA and AP, thus is device-free.
Despite the existence of several vital signs monitoring systems, few of them are practical in the driving

environments. Our work answers challenges such as passenger interference, in-vehicle vibration, human motion,
etc., and monitors vital signs in driving environments successfully.

7 CONCLUSION
In this paper, we present the design and implementation of V2iFi, which a vital sign monitoring system in
driving environments leveraging the power of impulse radio. We address several challenges including extracting
fine-grained driver’s vital sign from RF signal polluted with vehicle vibration noise and mixed with vital signals
from other passengers. V2iFi consists of multiple algorithms for removing noise, including the novel MS-VMD
algorithm. The system is evaluated in real road test and demonstrated low respiratory rate, heart rate and heart
rate variability estimation error. In the future, we will extend V2iFi to a fully-grown in-vehicle health monitoring
system. We believe V2iFi takes a big step toward enabling health monitoring in driving environments, it allows
vehicles to “listen” and understand the driver and passengers and thus become more intelligent.

ACKNOWLEDGMENTS
This paper is supported by the Ministry of Education, Singapore, under its AcRF Tier 2 Grant MOE2016-T2-2-022
and AcRF Tier 1 Grant RG17/19. We would also like to extend our thanks to the technicians of WiRUSH.ai
(http://www.wirush.ai) for their help in offering us the hardware and technical support.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 70. Publication date: June 2020.

http://www.wirush.ai


V2iFi: in-Vehicle Vital Sign Monitoring via Compact RF Sensing • 70:25

REFERENCES
[1] Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C Miller. 2014. 3D Tracking via Body Radio Reflections. In Proc. of the 10th USENIX

NSDI. 317–329.
[2] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C Miller. 2015. Smart Homes That Monitor Breathing and Heart

Rate. In Proc. of the 33rd ACM CHI. 837–846.
[3] Muhammad Awais, Nasreen Badruddin, and Micheal Drieberg. 2017. A Hybrid Approach to Detect Driver Drowsiness Utilizing

Physiological Signals to Improve System Performance and Wearability. Sensors 17, 9 (2017), 1991.
[4] Amerjeet S Banning and G Andre Ng. 2012. Driving and Arrhythmia: A Review of Scientific Basis for International Guidelines. European

Heart Journal 34, 3 (2012), 236–244.
[5] Thomas Benichou, Bruno Pereira, Martial Mermillod, Igor Tauveron, Daniela Pfabigan, Salwan Maqdasy, and Frederic Dutheil. 2018.

Heart Rate Variability in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. PLOS One 13, 4 (2018), e0195166.
[6] Svante Björklund, Anders Nelander, and Mats I Pettersson. 2015. Fast-Time and Slow-Time Space-Time Adaptive Processing for Bistatic

Radar Interference Suppression. In 2015 IEEE Radar Conference (Radarcon). 0674–0678.
[7] BMW AG. 2019. Smartsenior: Intelligente Dienste Und Dienstleistungen Für Senioren. http://www1.smart-senior.de/pdf/presse/

SmartSenior_CeBIT_Partnerflyer_BMW_DE_EN_2012_final.pdf. Accessed: 2019-10-09.
[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. Distributed Optimization and Statistical Learning via

the Alternating Direction Method of Multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122.
[9] Karel A Brookhuis and Dick de Waard. 2010. Monitoring Drivers’ Mental Workload in Driving Simulators using Physiological Measures.

Accident Analysis & Prevention 42, 3 (2010), 898–903.
[10] JR Catterall, PMA Calverley, V Brezinova, NJ Douglas, HM Brash, CM Shapiro, and DC Flenley. 1982. Irregular Breathing and Hypoxaemia

During Sleep in Chronic Stable Asthma. The Lancet 319, 8267 (1982), 301–304.
[11] John A Chalmers, Daniel S Quintana, Maree J Abbott, Andrew H Kemp, et al. 2014. Anxiety Disorders Are Associated with Reduced

Heart Rate Variability: A Meta-Analysis. Frontiers in Psychiatry 5 (2014), 80.
[12] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragunathan Raj Rajkumar. 2014. A Multi-Sensor Fusion System for Moving

Object Detection and Tracking in Urban Driving Environments. In IEEE International Conference on Robotics and Automation (ICRA).
1836–1843.

[13] Eric Chern-Pin Chua, Wen-Qi Tan, Sing-Chen Yeo, Pauline Lau, Ivan Lee, Ivan Ho Mien, Kathiravelu Puvanendran, and Joshua J. Gooley.
2012. Heart Rate Variability Can Be Used to Estimate Sleepiness-related Decrements in Psychomotor Vigilance during Total Sleep
Deprivation. Sleep 35, 3 (03 2012), 325–334.

[14] Vivian L Clark and James A Kruse. 1990. Clinical Methods: The History, Physical, and Laboratory Examinations. Jama 264, 21 (1990),
2808–2809.

[15] Michelle A Cretikos, Rinaldo Bellomo, Ken Hillman, Jack Chen, Simon Finfer, and Arthas Flabouris. 2008. Respiratory Rate: The
Neglected Vital Sign. Medical Journal of Australia 188, 11 (2008), 657–659.

[16] Dirk Cysarz, Silke Lange, Peter F Matthiessen, and Peter van Leeuwen. 2007. Regular Heartbeat Dynamics Are Associated with Cardiac
Health. Am. J. Physiol 292, 1 (2007), R368–R372.

[17] Daimler AG. 2019. Attention Assist: Drowsiness-Detection System Warns Drivers to Prevent Them Falling Asleep Momentarily -
Daimler Global Media Site. https://media.daimler.com/marsMediaSite/en/instance/ko/ATTENTION-ASSIST-Drowsiness-detection-
system-warns-drivers-to-prevent-them-falling-asleep-momentarily.xhtml?oid=9361586. Accessed: 2019-10-09.

[18] Chacko John Deepu, Zhihao Chen, Ju Teng Teo, Soon Huat Ng, Xiefeng Yang, and Yong Lian. 2012. A Smart Cushion for Real-Time
Heart Rate Monitoring. In 2012 IEEE Biomedical Circuits and Systems Conference. 53–56.

[19] Jason P DePasquale, E Scott Geller, Steven W Clarke, and Lawrence C Littleton. 2001. Measuring Road Rage: Development of The
Propensity for Angry Driving Scale. J. Saf. Res. 32, 1 (2001), 1–16.

[20] Konstantin Dragomiretskiy and Dominique Zosso. 2013. Variational Mode Decomposition. IEEE Transactions on Signal Processing 62, 3
(2013), 531–544.

[21] Malcolm Elliott and Alysia Coventry. 2012. Critical Care: the Eight Vital Signs of Patient Monitoring. British Journal of Nursing 21, 10
(2012), 621–625.

[22] Sigrid Elsenbruch, Michael J Harnish, and William C Orr. 1999. Heart Rate Variability During Waking and Sleep in Healthy Males and
Females. Sleep 22, 8 (1999), 1067–1071.

[23] Martin Eriksson and Nikolaos P Papanikotopoulos. 1997. Eye-Tracking for Detection of Driver Fatigue. In Proc. of Conference on
Intelligent Transportation Systems. 314–319.

[24] Gernot Ernst. 2017. Heart-Rate Variability-More than Heart Beats? Frontiers in Public Health 5 (2017), 240.
[25] John F Fieselmann, Michael S Hendryx, Charles M Helms, and Douglas S Wakefield. 1993. Respiratory Rate Predicts Cardiopulmonary

Arrest for Internal Medicine Inpatients. Journal of General Internal Medicine 8, 7 (1993), 354–360.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 70. Publication date: June 2020.

http://www1.smart-senior.de/pdf/presse/SmartSenior_CeBIT_Partnerflyer_BMW_DE_EN_2012_final.pdf
http://www1.smart-senior.de/pdf/presse/SmartSenior_CeBIT_Partnerflyer_BMW_DE_EN_2012_final.pdf
https://media.daimler.com/marsMediaSite/en/instance/ko/ATTENTION-ASSIST-Drowsiness-detection-system-warns-drivers-to-prevent-them-falling-asleep-momentarily.xhtml?oid=9361586
https://media.daimler.com/marsMediaSite/en/instance/ko/ATTENTION-ASSIST-Drowsiness-detection-system-warns-drivers-to-prevent-them-falling-asleep-momentarily.xhtml?oid=9361586


70:26 • Zheng and Chen, et al.

[26] Diane Flatley, LA Reyner, and James A Horne. 2004. Sleep-Related Crashes on Sections of Different Road Types in the UK (1995-2001).
Road Safety United States Naval School of Aviation Medicine 52 (2004).

[27] Koichi Fujiwara, Erika Abe, Keisuke Kamata, Chikao Nakayama, Yoko Suzuki, Toshitaka Yamakawa, Toshihiro Hiraoka, Manabu Kano,
Yukiyoshi Sumi, Fumi Masuda, et al. 2018. Heart Rate Variability-Based Driver Drowsiness Detection and its Validation with EEG. IEEE
Transactions on Biomedical Engineering 66, 6 (2018), 1769–1778.

[28] Nicholas D Giardino, Seth D Friedman, and Stephen R Dager. 2007. Anxiety, Respiration, and Cerebral Blood Flow: Implications for
Functional Brain Imaging. Comprehensive Psychiatry 48, 2 (2007), 103–112.

[29] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2011. Tool Release: Gathering 802.11n Traces with Channel State
Information. ACM SIGCOMM Computer Communication Review 41, 1 (2011), 53.

[30] Sinh Huynh, Rajesh Krishna Balan, JeongGil Ko, and Youngki Lee. 2019. VitaMon: Measuring Heart Rate Variability Using Smartphone
Front Camera. In Proc. of the 17th ACM Sensys. 1–14.

[31] P Jackson, C Hilditch, A Holmes, N Reed, N Merat, and L Smith. 2011. Fatigue and Road Safety: A Critical Analysis of Recent Evidence.
Department for Transport, Road Safety Web Publication 21 (2011).

[32] Wenjia Jia, Hongjian Peng, Na Ruan, Zhiping Tang, and Wei Zhao. 2018. WiFind: Driver Fatigue Detection with Fine-Grained Wi-Fi
Signal Features. IEEE Transactions on Big Data (2018), 1–14.

[33] Sang-Ho Jo, Jin-Myung Kim, and Dong Kyoo Kim. 2019. Heart Rate Change While Drowsy Driving. Journal of Korean Medical Science
34, 8 (2019).

[34] Seong Kyu Leem, Faheem Khan, and Sung Ho Cho. 2017. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB
Radar for Intended Use in Car Crash Prevention. Sensors (2017).

[35] Gang Li, Boon-Leng Lee, and Wan-Young Chung. 2015. Smartwatch-based Wearable EEG System for Driver Drowsiness Detection. IEEE
Sensors Journal 15, 12 (2015), 7169–7180.

[36] Xiang Li, Daqing Zhang, Qin Lv, Jie Xiong, Shengjie Li, Yue Zhang, and Hong Mei. 2017. IndoTrack: Device-Free Indoor Human Tracking
with Commodity Wi-Fi. Proc. of the 17th ACM UbiComp 1, 3 (2017), 72.

[37] H-O Lisper, Hans Laurell, and G Stening. 1973. Effects of Experience of The Driver on Heart-Rate, Respiration-Rate, and Subsidiary
Reaction Time in A Three Hours Continuous Driving Task. Ergonomics 16, 4 (1973), 501–506.

[38] Mohamed Faisal Lutfi. 2015. Patterns of Heart Rate Variability and Cardiac Autonomic Modulations in Controlled and Uncontrolled
Asthmatic Patients. BMC Pulmonary Medicine 15, 1 (2015), 119.

[39] Zahra Mardi, Seyedeh Naghmeh Miri Ashtiani, and Mohammad Mikaili. 2011. EEG-Based Drowsiness Detection for Safe Driving Using
Chaotic Features and Statistical Tests. Journal of Medical Signals and Sensors 1, 2 (2011), 130.

[40] Hermann Nabi, Martica Hall, Markku Koskenvuo, Archana Singh-Manoux, Tuula Oksanen, Sakari Suominen, Mika Kivimäki, and Jussi
Vahtera. 2010. Psychological and Somatic Symptoms of Anxiety and Risk of Coronary Heart Disease: the Health and Social Support
Prospective Cohort Study. Biological Psychiatry 67, 4 (2010), 378–385.

[41] Novelda AS. 2017. Single-Chip Radar Sensors with Sub-mm Resolution - XETHRU. https://www.xethru.com/. Accessed: 2019-10-03.
[42] Novelda AS. 2017. XETHRU Sensor Emissions: An In-Depth Look at Radar Safety Regulations. https://www.xethru.com/blog/posts/

xethru-radar-emission-comparison. Accessed: 2019-10-03.
[43] Mikito Ogino and Yasue Mitsukura. 2018. Portable Drowsiness Detection Through Use of A Prefrontal Single-Channel Electroencephalo-

gram. Sensors 18, 12 (2018), 4477.
[44] Jin-Kwan Park, Yunseog Hong, Hyunjae Lee, Chorom Jang, Gi-Ho Yun, Hee-Jo Lee, and Jong-Gwan Yook. 2019. Noncontact RF Vital

Sign Sensor for Continuous Monitoring of Driver Status. IEEE Transactions on Biomedical Circuits and Systems 13, 3 (2019), 493–502.
[45] Eduardo Pinheiro, Octavian Postolache, and Pedro Girão. 2010. Theory and Developments in An Unobtrusive Cardiovascular System

Representation: Ballistocardiography. The Open Biomedical Engineering Journal 4 (2010), 201.
[46] Harold R Raemer. 1996. Radar Systems Principles. CRC press.
[47] Raspberry Pi Foundation. 2019. Teach, Learn and Make with Raspberry Pi - Raspberry Pi. https://https://www.raspberrypi.org/. Accessed:

2019-10-03.
[48] Francesco Sessa, Valenzano Anna, Giovanni Messina, Giuseppe Cibelli, Vincenzo Monda, Gabriella Marsala, Maria Ruberto, Antonio

Biondi, Orazio Cascio, Giuseppe Bertozzi, et al. 2018. Heart Rate Variability As Predictive Factor for Sudden Cardiac Death. Aging
(Albany NY) 10, 2 (2018), 166.

[49] Fred Shaffer and JP Ginsberg. 2017. An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health 5 (2017), 258.
[50] Fred Shaffer, Rollin McCraty, and Christopher L Zerr. 2014. A Healthy Heart Is Not A Metronome: An Integrative Review of the Heart’s

Anatomy and Heart Rate Variability. Frontiers in Psychology 5 (2014), 1040.
[51] Anupriya Sharma, NB Hirulkar, and Payal Ranka. 2011. Effect of Hyperglycemia on Electrolytes Imbalance. Int J Pharm Biol Arch 2

(2011), 526–33.
[52] José Solaz, José Laparra-Hernández, Daniel Bande, Noelia Rodríguez, Sergio Veleff, José Gerpe, and Enrique Medina. 2016. Drowsiness

Detection Based on the Analysis of Breathing Rate Obtained from Real-Time Image Recognition. Transportation Research Procedia 14
(2016), 3867–3876.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 70. Publication date: June 2020.

https://www.xethru.com/
https://www.xethru.com/blog/posts/xethru-radar-emission-comparison
https://www.xethru.com/blog/posts/xethru-radar-emission-comparison
https://https://www.raspberrypi.org/


V2iFi: in-Vehicle Vital Sign Monitoring via Compact RF Sensing • 70:27

[53] Richard Strauß, Santiago Ewig, Klaus Richter, Thomas König, Günther Heller, and Torsten T Bauer. 2014. The Prognostic Significance of
Respiratory Rate in Patients with Pneumonia: A Retrospective Analysis of Data from 705 928 Hospitalized Patients in Germany from
2010–2012. Deutsches Ärzteblatt International 111, 29-30 (2014), 503.

[54] Thomas J Sullivan, Stephen R Deiss, and Gert Cauwenberghs. 2007. A Low-Noise, Non-Contact EEG/ECG Sensor. In 2007 IEEE Biomedical
Circuits and Systems Conference. 154–157.

[55] John L Troutman. 2012. Variational Calculus and Optimal Control: Optimization with Elementary Convexity. Springer Science & Business
Media.

[56] Mihoko Tsunoda, Takuro Endo, Satoko Hashimoto, Sato Honma, and Ken-Ichi Honma. 2001. Effects of Light and Sleep Stages on Heart
Rate Variability in Humans. Psychiatry and Clinical Neurosciences 55, 3 (2001), 285–286.

[57] Volvo Group. 2019. Driver Alert System. https://www.volvocars.com/en-th/support/manuals/s60/2014/driver-support/driver-alert-
system/driver-alert-control-dac---operation. Accessed: 2019-10-09.

[58] Chuyu Wang, Lei Xie, Wei Wang, Yingying Chen, Yanling Bu, and Sanglu Lu. 2018. RF-ECG: Heart Rate Variability Assessment Based
on COTS RFID Tag Array. Proc. of the 17th ACM UbiComp 2, 2 (2018), 85.

[59] Tianben Wang, Daqing Zhang, Yuanqing Zheng, Tao Gu, Xingshe Zhou, and Bernadette Dorizzi. 2018. C-FMCW Based Contactless
Respiration Detection Using Acoustic Signal. Proc. of the 17th ACM UbiComp 1, 4 (2018), 170.

[60] WS Waring, JY Rhee, DN Bateman, GE Leggett, and H Jamie. 2008. Impaired Heart Rate Variability and Altered Cardiac Sympathovagal
Balance After Antidepressant Overdose. European Journal of Clinical Pharmacology 64, 11 (2008), 1037–1041.

[61] Dan Wu, Daqing Zhang, Chenren Xu, Hao Wang, and Xiang Li. 2017. Device-Free WiFi Human Sensing: From Pattern-Based to
Model-Based Approaches. IEEE Communications Magazine 55, 10 (2017), 91–97.

[62] Xiangyu Xu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Linghe Kong, andMinglu Li. 2019. BreathListener: Fine-Grained BreathingMonitoring
in Driving Environments Utilizing Acoustic Signals. In Proc. of the 17th ACM MobiSys. 54–66.

[63] Youwei Zeng, Dan Wu, Ruiyang Gao, Tao Gu, and Daqing Zhang. 2018. FullBreathe: Full Human Respiration Detection Exploiting
Complementarity of CSI Phase and Amplitude of WiFi Signals. Proc. of the 18th ACM UbiComp 2, 3 (2018), 148.

[64] Jin Zhang, Weitao Xu, Wen Hu, and Salil S Kanhere. 2017. WiCare: Towards In-Situ Breath Monitoring. In Proc. of the 14th ACM
MobiQuitous. ACM, 126–135.

[65] Mingmin Zhao, Fadel Adib, and Dina Katabi. 2016. Emotion Recognition Using Wireless Signals. In Proc. of the 22nd ACM MobiCom.
95–108.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 70. Publication date: June 2020.

https://www.volvocars.com/en-th/support/manuals/s60/2014/driver-support/driver-alert-system/driver-alert-control-dac---operation
https://www.volvocars.com/en-th/support/manuals/s60/2014/driver-support/driver-alert-system/driver-alert-control-dac---operation

	Abstract
	1 Introduction
	2 Vital Signs as Health Indicators in Driving Environments
	2.1 Respiratory Rate and Heart Rate
	2.2 Heart Rate Variability

	3 System Design of V2iFi
	3.1 Software System Overview
	3.2 Modeling RF Channel
	3.3 RF Signal Preprocessing
	3.4 Signal Separation
	3.5 Vital Signs Extraction

	4 Evaluation
	4.1 Experiment Setup
	4.2 Overall Performance
	4.3 User and Environment Issue Study
	4.4 Key Processes Study

	5 Limitations and Potentials
	5.1 Limitation of V2iFi
	5.2 Application 1: Driver Drowsiness Detection
	5.3 Application 2: Road Rage Prevention
	5.4 Application 3: Health Monitoring for Children and Seniors in the Vehicle

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

