

Edinburgh Research Explorer

Adaptive Asynchronous Parallelization of Graph Algorithms
Citation for published version:
Fan, W, Lu, P, Luo, X, Xu, J, Yin, Q, Yu, W & Xu, R 2018, Adaptive Asynchronous Parallelization of Graph
Algorithms. in Proceedings of the 2018 International Conference on Management of Data (SIGMOD'18).
International Conference on Management of Data, ACM, Texas, USA, pp. 1141-1156, 2018 ACM
SIGMOD/PODS International Conference on Management of Data, Houston, Texas, United States,
10/06/18. https://doi.org/10.1145/3183713.3196918

Digital Object Identifier (DOI):
10.1145/3183713.3196918

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2018 International Conference on Management of Data (SIGMOD'18)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. May. 2024

https://doi.org/10.1145/3183713.3196918
https://doi.org/10.1145/3183713.3196918
https://www.research.ed.ac.uk/en/publications/a3b6b6b0-4210-4142-973f-6ac5851cd370

Adaptive Asynchronous Parallelization of Graph Algorithms
Wenfei Fan1,2,3, Ping Lu2, Xiaojian Luo3, Jingbo Xu2,3, Qiang Yin2, Wenyuan Yu2,3, Ruiqi Xu1

1University of Edinburgh 2BDBC, Beihang University 37 Bridges Ltd.
{wenfei@inf., ruiqi.xu@}ed.ac.uk, {luping, yinqiang}@buaa.edu.cn, {xiaojian.luo, jingbo.xu, wenyuan.yu}@7bridges.io

ABSTRACT
This paper proposes an Adaptive Asynchronous Parallel (AAP)
model for graph computations. As opposed to Bulk Synchronous
Parallel (BSP) and Asynchronous Parallel (AP) models, AAP reduces
both stragglers and stale computations by dynamically adjusting
relative progress of workers. We show that BSP, AP and Stale Syn-
chronous Parallel model (SSP) are special cases of AAP. Better yet,
AAP optimizes parallel processing by adaptively switching among
these models at different stages of a single execution. Moreover, em-
ploying the programming model ofGRAPE, AAP aims to parallelize
existing sequential algorithms based on fixpoint computation with
partial and incremental evaluation. Under a monotone condition,
AAP guarantees to converge at correct answers if the sequential al-
gorithms are correct. Furthermore, we show that AAP can optimally
simulate MapReduce, PRAM, BSP, AP and SSP. Using real-life and
synthetic graphs, we experimentally verify that AAP outperforms
BSP, AP and SSP for a variety of graph computations.

KEYWORDS
parallel model; parallelization; graph computations; Church-Rosser
ACM Reference Format:
Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan Yu, and
Ruiqi Xu. 2018. Adaptive Asynchronous Parallelization of Graph Algorithms.
In SIGMOD’18: 2018 International Conference on Management of Data, June
10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3183713.3196918

1 INTRODUCTION
Bulk Synchronous Parallel (BSP) model [48] has been adopted by
graph systems, e.g., Pregel [39] and GRAPE [24]. Under BSP, itera-
tive computation is separated into supersteps, and messages from
one superstep are only accessible in the next one. This simplifies
the analysis of parallel algorithms. However, its global synchroniza-
tion barriers lead to stragglers, i.e., some workers take substantially
longer than the others. As workers converge asymmetrically, the
speed of each superstep is limited to that of the slowest worker.

To reduce stragglers, Asynchronous Parallel (AP) model has been
employed by, e.g., GraphLab [26, 38] and Maiter [57]. Under AP, a
worker has immediate access to messages. Fast workers can move
ahead, without waiting for stragglers. However,APmay incur exces-
sive stale computations, i.e., processes triggered by messages that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196918

(1)

(2)

(4)

(3)

0 5 10 15 20 25

P1

P2

P3

(1) BSP

(2) AP

(3) SSP

(4) AAP

(a) BSP, AP, SSP and AAP

0 7
F3

2

4

6

F2

1

3

5

F1

(b) A CC example
Figure 1: Runs under different parallel models

soon become stale due to more up-to-date messages. Stale compu-
tations are often redundant and increase unnecessary computation
and communication costs. It is also observed that AP makes it hard
to write, debug and analyze programs [50], and complicates the
consistency analysis (see [54] for a survey).

A recent study shows that neither AP nor BSP consistently out-
performs the other for different algorithms, input graphs and cluster
scales [52]. For many graph algorithms, different stages in a single
execution demand different models for optimal performance.

To rectify the problems, revisions of BSP and AP have been stud-
ied, notably Stale Synchronous Parallel (SSP) [30] and a hybrid
model Hsync [52]. SSP relaxes BSP by allowing fastest workers to
outpace the slowest ones by a fixed number c of steps (bounded
staleness). It reduces stragglers, but incurs redundant stale com-
putations. Hsync suggests to switch between AP and BSP, but it
requires to predict switching points and incurs switching costs.

Is it possible to have a simple parallel model that inherits the
benefits of BSP and AP, and reduces both stragglers and stale com-
putations, without explicitly switching between the two? Better
still, can the model retain BSP programming, ensure consistency,
and guarantee correct convergence under a general condition?

AAP. To answer the questions, we propose Adaptive Asynchro-
nous Parallel (AAP) model. Without global synchronization barriers,
AAP is essentially asynchronous. As opposed to BSP and AP, each
worker under AAPmaintains parameters to measure (a) its progress
relative to other workers, and (b) changes accumulated by messages
(staleness). Each worker has immediate access to incoming mes-
sages, and decides whether to start the next round of computation
based on its own parameters. In contrast to SSP, each worker dy-
namically adjusts its parameters based on its relative progress and
message staleness, instead of using a fixed bound.

Example 1: Consider a computation task being conducted at three
workers, where workers P1 and P2 take 3 time units to do one
round of computation, P3 takes 6 units, and it takes 1 unit to pass
messages. This is carried out under different models as follows,
as shown in Fig. 1(a) (it depicts runs for computing connected
components shown in Fig. 1(b), to be elaborated in Example 4).
(1) BSP. As depicted in Fig. 1(a) (1), worker P3 takes twice as long
as P1 and P2, and is a straggler. Due to its global synchronization,
each superstep takes 6 time units, the speed of the slowest P3.

https://doi.org/10.1145/3183713.3196918
https://doi.org/10.1145/3183713.3196918
https://doi.org/10.1145/3183713.3196918

(2) AP. AP allows a worker to start the next round as soon as its
message buffer is not empty. However, it comes with redundant
stale computation. As shown in Fig. 1(a) (2), at clock time 7, the
second round of P3 can only use the messages from the first round
of P1 and P2. This round of P3 becomes stale at time 8, when the
latest updates from P1 and P2 arrive. As will be seen later, a large
part of the computations of faster P1 and P2 is also redundant.
(3) SSP. Consider bounded staleness of 1, i.e., the fastest worker can
outpace the slowest one by at most 1 round. As shown in Fig. 1(a) (3),
P1 and P2 are not blocked by the straggler in the first 3 rounds.
However, like AP, the second round of P3 is stale. Moreover, P1 and
P2 cannot start their rounds 4 and 5 until P3 finishes its rounds 2
and 3, respectively, due to the bounded staleness condition. As a
result, P1, P2 and P3 behave like in BSP model after clock time 14.
(4) AAP. AAP allows a worker to accumulate changes and decides
when to start the next round based on the progress of others. As
shown in Fig. 1(a) (4), after P3 finishes one round of computation
at clock time 6, it may start the next round at time 8, at which
point the latest changes from P1 and P2 are available. As opposed
to AP, AAP reduces redundant stale computation. This also helps
us mitigate the straggler problem, since P3 can converge in less
rounds by utilizing the latest updates from fast workers. 2

AAP reduces stragglers by not blocking fast workers. This is
particularly helpful when the computation is CPU-intensive and
skewed, when an evenly partitioned graph becomes skewed due to
updates, or when we cannot afford evenly partitioning a large graph
due to the partition cost. Moreover, AAP activates a worker only
after it receives sufficient up-to-date messages and thus reduces
redundant stale computations. This allows us to reallocate resources
to useful computations via workload adjustments.

In addition, AAP differs from previous models in the following.
(1) Model switch. BSP, AP and SSP are special cases of AAP with
fixed parameters. Hence AAP can naturally switch among these
models at different stages of the same execution, without asking
for explicit switching points or incurring the switching costs. As
will be seen later, AAP is more flexible: some worker groups may
follow BSP, while at the same time, the others run AP or SSP.
(2) Programming paradigm. AAP works with the programming
model of GRAPE [24]. It allows users to extend existing sequential
(single-machine) graph algorithms with message declarations, and
parallelizes the algorithms across a cluster of machines. It employs
aggregate functions to resolve conflicts raised by updates from
different workers, without worrying about race conditions or re-
quiring extra efforts to enforce consistency by using, e.g., locks [54].
(3) Convergence guarantees. AAP is modeled as a simultaneous fix-
point computation. Based on this we develop one of the first con-
ditions under which AAP parallelization of sequential algorithms
guarantees (a) convergence at correct answers, and (b) the Church-
Rosser property, i.e., all asynchronous runs converge at the same
result, as long as the sequential algorithms are correct.
(4) Expressive power. Despite its simplicity,AAP can optimally simu-
lateMapReduce [20], PRAM (Parallel RandomAccessMachine) [49],
BSP, AP and SSP. That is, algorithms developed for these models
can be migrated to AAP without increasing the complexity.

System PageRank SSSP
Time(s) Comm(GB) Time(s) Comm(GB)

Giraph 6117.7 767.3 416.0 99.4
GraphLabsync 99.5 138.0 37.6 110.0
GraphLabasync 200.1 333.0 194.1 368.7
GiraphUC 9991.6 3616.5 278.9 121.9
Maiter 199.9 134.3 258.9 107.2

PowerSwitch 85.1 39.9 32.46 41.5
GRAPE+ 26.4 37.3 12.7 18.3
Table 1: PageRank and SSSP on parallel systems

(5) Performance. AAP outperforms BSP, AP and SSP for a variety of
graph computations. As an example, for PageRank [15] and SSSP
(single-source shortest path) on Friendster [1] with 192 workers,
Table 1 shows the performance of (a) Giraph [2] (an open-source
version of Pregel) and GraphLab [38] under BSP, (b) GraphLab and
Maiter [57] under AP, (c) GiraphUC [28] under BAP, (d) Power-
Swtich [52] under Hsync, and (e) GRAPE+, an extension of GRAPE
by supporting AAP. GRAPE+ does better than these systems.

Contributions and organization. This paper introduces AAP,
from foundations to implementation and empirical evaluation.
(1) Programming model. We present the programming model of
GRAPE (Section 2). We show that it works well with AAP.
(2) AAP. We propose AAP (Section 3). We show that AAP subsumes
BSP, AP and SSP as special cases, and reduces both stragglers and
stale computations by adjusting relative progress of workers.
(3) Foundation. We model AAP as a simultaneous fixpoint compu-
tation with partial evaluation and incremental computation (Sec-
tion 4). We provide a condition under which AAP guarantees ter-
mination and the Church-Rosser property. We also show that AAP
can optimally simulate MapReduce, PRAM, BSP, AP and SSP.
(4) AAP programming. We show that a variety of graph computa-
tions can be easily carried out by AAP (Section 5). These include
shortest paths (SSSP), connected components (CC), collaborative
filtering (CF) and PageRank (PageRank).
(5) Implementation. As proof of concept, we develop GRAPE+ by
extending GRAPE [23] from BSP to AAP (Section 6).
(6) Experiments. Using real-life and synthetic graphs, we evaluate
the performance of GRAPE+ (Section 7), compared with the state-
of-the-art graph systems listed in Table 1, and Petuum [53], a param-
eter server under SSP. Over real-life graphs and with 192 workers,
(a) GRAPE+ is at least 2.6, 4.8, 3.2 and 7.9 times faster than these
systems for SSSP, CC, PageRank and CF, respectively, up to 4127,
1635, 446 and 51 times. It incurs communications costs as small as
0.0001%, 0.027%, 0.13% and 57.7%, respectively. (b) On average AAP
outperforms BSP, AP and SSP by 4.8, 1.7 and 1.8 times in response
time, up to 27.4, 3.2 and 5.0 times, respectively. Over larger syn-
thetic graphs with 10 billion edges, it is on average 4.3, 14.7 and 4.7
times faster, respectively. (c) GRAPE+ is on average 2.37, 2.68, 2.17
and 2.3 times faster for SSSP, CC, PageRank and CF, respectively,
when the number of workers varies from 64 to 192.

Related work. Several parallel models have been studied for
graphs. PRAM [49] supports parallel RAM access with shared mem-
ory, not for the shared-nothing architecture that is used nowadays.

MapReduce [20] is adopted by, e.g., GraphX [27]. However, it is not
very efficient for iterative graph computations due to its blocking
and I/O costs. BSP [48] with vertex-centric programming works
better for graphs as shown by [39]. However, it suffers from strag-
glers. As remarked earlier, AP reduces stragglers, but it comes with
redundant stale computation. It also bears with race conditions and
their locking/unblocking costs, and complicates the convergence
analysis (see Section 4.1) and programming [50].

SSP [30] promotes bounded staleness for machine learning.
Maiter [57] reduces stragglers by accumulating updates, and sup-
ports prioritized asynchronous execution. BAP model (barrierless
asynchronous parallel) [28] reduces global barriers and local mes-
sages by using light-weighted local barriers. As remarked earlier,
Hsync proposes to switch between AP and BSP [52].

Several graph systems under these models are in place, e.g.,
Pregel [39], GPS [44], Giraph++ [47], GRAPE [24] under BSP;
GraphLab [26, 38], Maiter [57], GRACE [50] under (revised) AP; pa-
rameter servers under SSP [30, 37, 45, 51, 53]; GiraphUC [28] under
BAP; and PowerSwitch under Hsync [52]. Blogel [55] works like AP
within blocks, and in BSP across blocks. Most of these are vertex-
centric. While Giraph++ and Blogel [47] process blocks [47], they
inherit vertex-centric programming by treating blocks as vertices.
GRAPE parallelizes sequential graph algorithms as a whole.

AAP differs from the prior models in the following.
(1) AAP reduces (a) stragglers of BSP via asynchronous message
passing, and (b) redundant stale computations of AP by imposing a
bound (delay stretch), for workers to wait and accumulate updates.
AAP is not vertex-centric. It is based on fixpoint computation, which
simplifies the convergence and consistency analyses of AP.
(2) SSP mainly targets machine learning, with different correctness
criteria. When accelerating graph computations is concerned, in
contrast to SSP, (a) AAP reduces redundant stale computations by
enforcing a “lower bound” on accumulated messages, which also
serves as an “upper bound” to support bounded staleness if needed.
As will be seen in Section 3, performance can be improved when
stragglers are forced to wait, rather than to catch up as suggested
by SSP. (b) AAP dynamically adjusts the bound, instead of using a
predefined constant. (c) Bounded staleness is not needed by SSSP,
CC, and PageRank as will be seen in Section 5.3.
(3) Similar to Maiter, AAP aggregates changes accumulated. As op-
posed to Maiter, it reduces redundant computations by (a) imposing
a delay stretch on workers, to adjust their relative progress, (b)
dynamically adjusting the bound to optimize performance, and (c)
combining incremental evaluation with accumulative computation.
AAP operates on graph fragments, while Maiter is vertex-centric.
(4) Both BAP andAAP reduce unnecessarymessages. However,AAP
achieves this by operating on fragments (blocks), and moreover,
optimizes performance by adjusting relative progress of workers.
(5) Closer to AAP is Hsync, and PowerSwitch has the closest perfor-
mance to GRAPE+. As opposed to Hsync, AAP does not demand
complete switch from one mode to another. Instead, each worker
may decide its own “mode” based on its relative progress. As will
be seen in Section 3, fast workers may follow BSP within a group,
while meanwhile, the other workers may adopt AP. Moreover, the

parameters are adjusted dynamically, and hence AAP does not have
to predict switching points and pay the price of switching cost.

Close to this work is GRAPE [24]. AAP adopts the programming
model of GRAPE, and GRAPE+ extends GRAPE. However, (1) the
objective of this work is to introduce AAP and to explore appro-
priate models for graph computation. In contrast, GRAPE adopts
BSP. (2) We show that as an asynchronous model, AAP retains the
programming paradigm and ease of consistency control of GRAPE.
(3) We identify a condition for AAP to converge at correct results
and have the Church-Rosser property, which is not an issue for
GRAPE. (4) We prove stronger simulation results (see Section 4.2).
Moreover, AAP can optimally simulate BSP, AP, SSP and GRAPE
(Section 4.2). (5) We evaluate GRAPE+ and GRAPE by comparing
with graph systems of different models, while the experimental
study of [24] focused on synchronous systems only.

There has also been work on mitigating the straggler problem,
e.g., dynamic repartitioning [13, 33, 40], work stealing [10, 14],
shedding [21], LATE [56], and fine-grained partition [17]. AAP is
complementary to these methods, to reduce stragglers and stale
computation by adjusting relative progress of workers.

2 THE PROGRAMMING MODEL
AAP adopts the programming model of [24], which we review next.
As will be seen in Section 3, AAP is able to parallelize sequential
graph algorithms just likeGRAPE. That is, the asynchronous model
does not make programming harder than GRAPE.

Graph partition. AAP supports data-partitioned parallelism. It is
to work on graphs partitioned into smaller fragments.

Consider graphsG = (V ,E,L), directed or undirected, where (1)
V is a finite set of nodes; (2) E ⊆ V × V is a set of edges; and (3)
each node v in V (resp. edge e ∈ E) is labeled with L(v) (resp. L(e))
indicating its content, as found in property graphs.

Given a natural numberm, a strategy P partitions G into frag-
mentsF = (F1, . . . , Fm) such that each Fi = (Vi ,Ei ,Li) is a subgraph
ofG ,V =

⋃
i ∈[1,m]Vi , and E =

⋃
i ∈[1,m] Ei . Here Fi is called a sub-

graph of G if Vi ⊆ V , Ei ⊆ E, and for each node v ∈ Vi (resp. edge
e ∈ Ei), Li (v) = L(v) (resp. Li (e) = L(e)). Note that Fi is a graph
itself, but is not necessarily an induced subgraph of G.

AAP allows users to pick a edge-cut [11] or vertex-cut [34] strat-
egy P to partition a graph G . When P is edge-cut, a cut edge from
Fi to Fj has a copy in both Fi and Fj . Denote by

(a) Fi .I (resp. Fi .O ′) the set of nodesv ∈ Vi such that there exists
an edge (v ′,v) (resp. (v,v ′)) with a node v ′ in Fj (i , j); and

(b) Fi .O (resp. Fi .I ′) the set of nodes v ′ in some Fj (i , j) such
that there exists an edge (v,v ′) (resp. (v ′,v)) with v ∈ Vi .

We refer to the nodes in Fi .I ∪ Fi .O
′ as the border nodes of Fi

w.r.t. P. For vertex-cut, border nodes are those that have copies in
different fragments. In general, a nodev is a border node ifv has an
adjacent edge across two fragments, or a copy in another fragment.

Programming. Using our familiar terms, we refer to a graph com-
putation problem as a class Q of graph queries, and instances of the
problem as queries of Q. Following [24], to answer queries Q ∈ Q

under AAP, one only needs to specify three functions.
(1) PEval: a sequential algorithm for Q that given a queryQ ∈ Q

and a graph G, computes the answer Q(G).

Input: A fragment Fi (Vi , Ei , Li).
Output: A set Q (Fi) consists of current v .cid for v ∈ Vi .
Message preamble: /*candidate set Ci is Fi .O*/

For each node v ∈ Vi , a variable v .cid;
1. C := DFS(Fi); /* find local connective components by DFS */
2. for each C ∈ C do
3. create a new “root” node vc ;
4. vc .cid := min{v .id | v ∈ C };
5. for each v ∈ C do
6. link v to vc ; v .root := vc ; v .cid := vc .cid;
7. Q (Fi) := {v .cid | v ∈ Vi };
Message segment: M(i, j) := {v .cid | v ∈ Fi .O ∩ Fj .I, i , j };

faggr(v) := min(v .cid);

Figure 2: PEval for CC under AAP

(2) IncEval: a sequential incremental algorithm for Q that given
Q , G, Q(G) and updates ∆G to G, computes updates ∆O to
the old output Q(G) such that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O ,
where G ⊕ ∆G denotes G updated by ∆G [43].
Here IncEval only needs to deal with changes ∆G to update
parameters (status variables) to be defined shortly.

(3) Assemble: a function that collects partial answers computed
locally at each worker by PEval and IncEval, and assembles
the partial results into complete answer Q(G).

Taken together, the three functions are referred to as a PIE pro-
gram for Q (PEval, IncEval and Assemble). PEval and IncEval can
be existing sequential (incremental) algorithms for Q, which are to
operate on a fragment Fi of G partitioned via a strategy P.

The only additions are the following declarations in PEval.
(a) Update parameters. PEval declares status variables x̄ for a setCi
in a fragment Fi , to store contents of Fi or partial results of a com-
putation. Here Ci is a set of nodes and edges within d-hops of the
nodes in Fi .I ∪Fi .O

′ for an integer d . When d = 0,Ci is Fi .I ∪Fi .O
′.

We denote by Ci .x̄ the set of update parameters of Fi , which
consists of status variables associated with the nodes and edges
in Ci . As will be seen in Section 3, the variables in Ci .x̄ are the
candidates to be updated by incremental steps IncEval.
(b) Aggregate functions. PEval also specifies an aggregate function
faggr, e.g.,min andmax, to resolve conflicts when multiple workers
attempt to assign different values to the same update parameter.

These are specified in PEval and are shared by IncEval.

Example 2: Consider graph connectivity (CC). Given an undirected
graphG = (V ,E,L), a subgraphGs ofG is a connected component of
G if (a) it is connected, i.e., for any two nodes v and v ′ in Gs , there
exists a path between v and v ′, and (b) it is maximum, i.e., adding
any node of G to Gs makes the induced subgraph disconnected.

For each G, CC has a single query Q , to compute all connected
components of G, denoted by Q(G). CC is in O(|G |) time [12].

AAP parallelizes CC with the same PEval and IncEval of GRAPE
[24]. More specifically, a PIE program ρ is given as follows.
(1) As shown in Fig. 2, at each fragment Fi , PEval uses a sequen-
tial CC algorithm (Depth-First Search, DFS) to compute the local
connected components and create their ids, except that it declares
the following (underlined): (a) for each node v ∈ Vi , an integer
variable v .cid, initially v .id; (b) Fi .O as the candidate set Ci , and
Ci .x̄ = {v .cid | v ∈ Fi .O} as the update parameters; and (c) min as

Input: A fragment Fi (Vi , Ei , Li), partial result Q (Fi), and message Mi .
Output: New output Q (Fi ⊕ Mi)

1. ∆ := ∅;
2. for each v in .cid ∈ Mi do /* use min as faggr */
3. v .cid := min{v .cid, v in .cid};
4. vc := v .root;
5. if v .cid < vc .cid then
6. vc .cid := v .cid; ∆ := ∆ ∪ {vc };
7. for each vc ∈ ∆ do /* propagate the change */
8. for each v ∈ Fi .O that linked to vc do
9. v .cid := vc .cid;
10. Q (Fi) := {v .cid | v ∈ Vi };
Message segment: M(i, j) := {v .cid | v ∈ Fi .O ∩ Fj .I, v .cid decreased};

Figure 3: IncEval for CC under AAP

aggregate function faggr: if there are multiple values for the same
v .cid, the smallest value is taken by the linear order on integers.

For each local connected componentC , (a) PEval creates a “root”
node vc carrying the minimum node id inC as vc .cid, and (b) links
all the nodes in C to vc , and sets their cid as vc .cid. These can be
done in one pass of the edges in fragment Fi via DFS.
(2) Given a setMi of changed cids of border nodes, IncEval incre-
mentally updates local components in Fi , by “merging” components
when possible. As shown in Fig. 3, by using min as faggr, it (a) up-
dates the cid of each border node to the minimum one; and (b) prop-
agates the change to its root vc and all border nodes linked to vc .
(3) Assemble first updates the cid of each node to the cid of its
linked root. It then merges all the nodes having the same cids in a
single bucket, and returns all buckets as connected components. 2

We remark the following about the programming paradigm.
(1) There have been methods for incrementalizing graph algorithms,
to get incremental algorithms from their batch counterparts [9].
Moreover, it is not hard to develop IncEval by revising a batch
algorithm in response to changes to update parameters, as shown
by the cases of CC (Example 4) and PageRank (Section 5.3).
(2) We adopt edge-cut in the sequel unless stated otherwise; but
AAPworks with other partition strategies. Indeed, as will be seen in
Section 4, the correctness of asynchronous runs under AAP remains
intact under the conditions given there, regardless of partitioning
strategy used. Nonetheless, different strategies may yield partitions
with various degrees of skewness and stragglers, which have an
impact on the performance of AAP, as will be seen in Section 7.
(3) The programming model aims to facilitate users to develop
parallel programs, especially for those who are more familiar with
conventional sequential programming. This said, programming
with GRAPE still requires domain knowledge of algorithm design,
to declare update parameters and design an aggregate function.

3 THE AAP MODEL
We next present the adaptive asynchronous parallel model (AAP).
Setting. Adopting the programming model of GRAPE (Section 2),
to answer a class Q of queries on a graph G, AAP takes as input a
PIE program ρ (i.e., PEval, IncEval, Assemble) for Q, and a partition
strategy P. It partitions G into fragments (F1, . . . , Fm) using P,
such that each fragment Fi resides at a virtual worker Pi for i ∈

[1,m]. It works with a master P0 and n shared-nothing physical
workers (P1, . . . , Pn), where n < m, i.e., multiple virtual workers
are mapped to the same physical worker and share memory. Graph
G is partitioned once for all queries Q ∈ Q posed on G.

As remarked earlier, PEval and IncEval are (existing) sequential
batch and incremental algorithms for Q, respectively, except that
PEval additionally declares update parameters Ci .x̄ , and defines an
aggregate function faggr. At each worker Pi , (a) PEval computes
Q(Fi) over local fragment Fi , and (b) IncEval takes Fi and updates
Mi to Ci .x̄ as input, and computes updates ∆Oi to Q(Fi) such that
Q(Fi ⊕Mi) = Q(Fi) ⊕ ∆Oi . We refer to each invocation of PEval or
IncEval as one round of computation at worker Pi .

Message passing. After each round of computation at worker
Pi , Pi collects update parameters of Ci .x̄ with changed values in
a set ∆Ci .x̄ . It groups ∆Ci .x̄ into M(i, j) for j ∈ [1,m] and j , i ,
whereM(i, j) includes v .x ∈ ∆Ci .x̄ for v ∈ Cj , i.e., v also resides in
fragment Fj . That is,M(i, j) includes changes of ∆Ci .x̄ to the update
parameters Cj .x̄ of Fj . It sendsM(i, j) as a message to worker Pj .

MessagesM(i, j) are referred to as designated messages in [24].
More specifically, each worker Pi maintains the following:
(1) an index Ii that given a border node v , retrieves the set of

j ∈ [1,m] such that v ∈ Fj .I
′ ∪ Fj .O and i , j, i.e., where v

resides; it is deduced from the strategy P; and
(2) a buffer Bx̄i , to keep track of messages from other workers.
As opposed to GRAPE, AAP is asynchronous in nature. (1) AAP

adopts (a) point-to-point communication: a worker Pi can send a
messageM(i, j) directly to worker Pj , and (b) push-based message
passing: Pi sendsM(i, j) to worker Pj as soon asM(i, j) is available,
regardless of the progress at other workers. A worker Pj can re-
ceive messages M(i, j) at any time, and saves it in its buffer Bx̄ j ,
without being blocked by supersteps. (2) Under AAP, master P0 is
only responsible for making decision for termination and assem-
bling partial answers by Assemble (see details below). (3) Workers
exchange their status to adjust relative progress (see below).

Parameters. To reduce stragglers and redundant stale computa-
tions, each (virtual) worker Pi maintains a delay stretch DSi such
that Pi is put on hold for DSi time to accumulate updates. Stretch
DSi is dynamically adjusted by a function δ based on the following.
(1) Staleness ηi , measured by the number of messages in buffer Bx̄i
received by Pi from distinct workers. Intuitively, the larger ηi is,
the more messages are accumulated in Bx̄i and hence, the earlier
Pi should start the next round of computation.
(2) Bounds rmin and rmax, the smallest and largest rounds being
executed at all workers, respectively. Each Pi keeps track of its
current round ri . These are to control the relative speed of workers.

For example, to simulate SSP [30], when ri = rmax and ri−rmin >
c , we can set DSi = +∞, to prevent Pi from moving too far ahead.

We will present adjustment function δ for DSi shortly.

Parallel model. Given a query Q ∈ Q and a partitioned graph G,
AAP posts the same query Q to all the workers. It computes Q(G)
in three phases as shown in Fig. 4, described as follows.
(1) Partial evaluation. Upon receivingQ , PEval computes partial re-
sultsQ(Fi) at each worker Pi in parallel. After this, PEval generates
a messageM(i, j) and sends it to worker Pj for j ∈ [1,m], j , i .

master P0

…
Q(F1) Q(Fm)

PEval

…

Q(F1 ⊕M1) Q(Fm⊕Mm)

worker worker

workerworker

master P0

IncEval

Assemble

query Q

Q(G)

Figure 4: Workflow of AAP
More specifically,M(i, j) consists of triples (x , val, r), where x ∈

Ci .x̄ is associated with a nodev that is inCi ∩Cj , andCj is deduced
from the index Ii ; val is the value of x , and r indicates the round
when val is computed. Worker Pi receives messages from other
workers at any time and stores the messages in its buffer Bx̄i .
(2) Incremental evaluation. In this phase, IncEval iterates until the
termination condition is satisfied (see below). To reduce redundant
computation, AAP adjusts (a) relative progress of workers and (b)
work assignments. More specifically, IncEval works as follows.
(1) IncEval is triggered at worker Pi to start the next round if (a) Bx̄i
is nonempty, and (b) Pi has been suspended forDSi time. Intuitively,
IncEval is invoked only if changes are inflicted toCi .x̄ , i.e., Bx̄i , ∅,
and only if Pi has accumulated enough messages.
(2) When IncEval is triggered at Pi , it does the following:

◦ compute Mi = faggr(Bx̄i ∪ Ci .x̄), i.e., IncEval applies the
aggregate function to Bx̄i ∪ Ci .x̄ , to deduce changes to its
local update parameters; and it clears buffer Bx̄i ;

◦ incrementally compute Q(Fi ⊕ Mi) with IncEval, by treating
Mi as updates to its local fragment Fi (i.e., Ci .x̄); and

◦ derive messages M(i, j) that consists of updated values of
Ci .x̄ for border nodes that are in both Ci and Cj , for all
j ∈ [1,m], j , i; it sendsM(i, j) to worker Pj .

In the entire process, Pi keeps receiving messages from other work-
ers and saves them in its buffer Bx̄i . No synchronization is imposed.

When IncEval completes its current round at Pi or when Pi re-
ceives a new message, DSi is adjusted. The next round of IncEval is
triggered if the conditions (a) and (b) in (1) above are satisfied; oth-
erwise Pi is suspended for DSi time, and its resources are allocated
to other (virtual) workers Pj to do useful computation, preferably
to Pj that is assigned to the same physical worker as Pi to minimize
the overhead for data transfer. When the suspension of Pi exceeds
DSi , Pi is activated again to start the next round of IncEval.
(3) Termination. When IncEval is done with its current round of
computation, if Bx̄i = ∅, Pi sends a flag inactive to master P0
and becomes inactive. Upon receiving inactive from all workers,
P0 broadcasts a message terminate to all workers. Each Pi may
respond with either ack if it is inactive, or wait if it is active or is
in the queue for execution. If one of the workers replies wait, the
iterative incremental step proceeds (phase (2) above).

Upon receiving ack from all workers, P0 pulls partial results
from all workers, and applies Assemble to the partial results. The
outcome is referred to as the result of the parallelization of ρ under
P, denoted by ρ(Q,G). AAP returns ρ(Q,G) and terminates.

Example 3: Recall the PIE program ρ for CC from Example 2.

Under AAP, it works in three phases as follows.
(1) PEval computes connected components and their cids at each
fragment Fi by using DFS. At the end of the process, the cids of
border nodes are grouped as messages and sent to neighboring
workers. More specifically, for j ∈ [1,m], {v .cid | v ∈ Fi .O ∩ Fj .I }
is sent to worker Pj as messageM(i, j) and is stored in buffer Bx̄ j .
(2) IncEval first computes updatesMi by applying min to changed
cids in Bx̄i ∪Ci .x̄ , when it is triggered at worker Pi as described
above. It then incrementally updates local components in Fi starting
from Mi . At the end of the process, the changed cid’s are sent to
neighboring workers as messages, just like PEval does.

The process iterates until no more changes can be made.
(3) Assemble is invoked at master at this point. It computes and
returns connected components as described in Example 2. 2

The example shows that AAP works well with the programming
model of GRAPE, i.e., AAP does not make programming harder.

Special cases. BSP, AP and SSP are special cases of AAP. Indeed,
these can be carried out by AAP by specifying function δ as follows.

◦ BSP: function δ sets DSi = +∞ if ri > rmin, i.e., Pi is sus-
pended; otherwise DSi = 0, i.e., Pi proceeds at once; thus all
workers are synchronized as no one can outpace the others.

◦ AP: function δ always sets DSi = 0, i.e.,worker Pi triggers the
next round of computation as soon as its buffer is nonempty.

◦ SSP: function δ sets DSi = +∞ if ri > rmin + c for a fixed
bound c like in SSP, and sets DSi = 0 otherwise. That is, the
fastest worker may move at most c rounds ahead.

Moreover, AAP can simulate Hsync [52] by using function δ to
implement the same switching rules of Hsync.

Dynamic adjustment. AAP is able to dynamically adjust delay
sketch DSi at each worker Pi ; for example, function δ may define

DSi =


+∞ ¬S(ri , rmin, rmax) ∨ (ηi = 0)

T iLi −T iidle S(ri , rmin, rmax) ∧ (1 ≤ ηi < Li)

0 S(ri , rmin, rmax) ∧ (ηi ≥ Li)

(1)

where the parameters of function δ are described as follows.
(1) Predicate S(ri , rmin, rmax) is to decide whether Pi should be
suspended immediately. For example, under SSP, it is defined as
false if ri = rmax and |rmax − rmin | > c . When bounded staleness
is not needed (see Section 5.3), S(ri , rmin, rmax) is constantly true.
(2) Variable Li “predicts” how many messages should be accumu-
lated, to strike a balance between stale-computation reduction and
useful outcome expected from the next round of IncEval at Pi . AAP
adjusts Li as follows. Users may opt to initialize Li with a uniform
bound L⊥, to start stale-computation reduction early (see Appen-
dix B for an example). AAP adjusts Li at each round at Pi , based
on (a) predicted running time ti of the next round, and (b) the pre-
dicted arrival rate si of messages. When si is above the average
rate, Li is changed tomax(ηi , L⊥)+ ∆ti ∗ si , where ∆ti is a fraction
of ti , and L⊥ is adjusted with the number of “fast” workers. We ap-
proximate ti and si by aggregating statistics of consecutive rounds
of IncEval. One can get more precise estimate by using a random
forest model [31], with query logs as training samples.

(3) Variable T iLi estimates how longer Pi should wait to accumulate
Li many messages. We approximate it as Li−ηi

si , using the number
of messages that remain to be received, and message arrival rate
si . Finally, T iidle is the idle time of worker Pi after the last round of
IncEval. We use T iidle to prevent Pi from indefinite waiting.

Example 4: As an instantiation of Example 1, recall the PIE pro-
gram ρ for CC from Example 2 and illustrated in Example 3. Con-
sider a graphG that is partitioned into fragments F1, F2 and F3 and
distributed across workers P1, P2 and P3, respectively. As depicted
in Fig. 1(b), (a) each circle represents a connected component, anno-
tated with its cid, and (b) a dotted line indicates a cut edge between
fragments. One can see that graph G has a single connected com-
ponent with the minimal vertex id 0. Suppose that workers P1, P2
and P3 take 3, 3 and 6 time units, respectively.

One can verify the following by referencing Figure 1(a).
(a) Under BSP, Figure 1(a) (1) depicts part of a run of ρ, which takes
5 rounds for the minimal cid 0 to reach component 7.
(b) Under AP, a run is shown in Fig. 1(a) (2). Note that before getting
cid 0, workers P1 and P2 invoke 3 rounds of IncEval and exchange
cid 1 among components 1-4, while underBSP, one round of IncEval
suffices to pass cid 0 from P3 to these components. Hence a large
part of the computations of faster P1 and P2 is stale and redundant.
(c) Under SSPwith bounded staleness 1, a run is given in Fig. 1(a) (3).
It is almost the same as Fig. 1(a) (2), except that P1 and P2 cannot
start round 4 before P3 finishes round 2. More specifically, when
minimal cids in components 5 and 6 are set to 0 and 4, respectively,
P1 and P2 have to wait for P3 to set the cid of component 7 to 5.
These again lead to unnecessary stale computations.
(d) Under AAP, P3 can suspend IncEval until it receives enough
changes as shown in Fig. 1(a) (4). For instance, function δ starts
with L⊥ = 0. It setsDSi = 0 if |ηi | ≥ 1 for i ∈ [1, 2] since nomessages
are predicted to arrive within the next time unit. In contrast, it sets
DS3 = 1 if |η3 | ≤ 4 since in addition to the 2 messages accumulated,
2 more messages are expected to arrive in 1 time unit; hence δ
decides to increase DS3. These delay stretches are estimated based
on the running time (3, 3 and 6 for P1, P2 and P3, respectively) and
message arrival rates. With these delay stretches, P1 and P2 may
proceed as soon as they receive new messages, but P3 starts a new
round only after accumulating 4 messages. Now P3 only takes 2
rounds of IncEval to update all the cids in F3 to 0. Compared with
Figures 1(a) (1)–(3), the straggler reaches fixpoint in less rounds. 2

From our experimental study, we find that AAP reduces the costs
of iterative graph computations mainly from three directions.
(1) AAP reduces redundant stale computations and stragglers by
adjusting relative progress of workers. In particular, (a) some com-
putations are substantially improved when stragglers are forced to
accumulate messages; this actually enables the stragglers to con-
verge in less rounds, as shown by Example 4 for CC. (b) When the
time taken by different rounds at a worker does not vary much
(e.g., PageRank in Appendix B), fast workers are “automatically”
grouped together after a few rounds and run essentially BSPwithin
the group, while the group and slow workers run under AP. This
shows that AAP is more flexible than Hsync [52].

(2) Like GRAPE, AAP employs incremental IncEval to minimize
unnecessary recomputations. The speedup is particularly evident
when IncEval is bounded [43], localizable or relatively bounded [22].
For instance, IncEval is bounded [42] if given Fi ,Q ,Q(Fi) andMi , it
computes ∆Oi such thatQ(Fi ⊕Mi) =Q(Fi) ⊕ ∆Oi , in cost that can
be expressed as a function in |Mi |+ |∆Oi |, the size of changes in the
input and output; intuitively, it reduces the cost of computation on
(possibly big) Fi to a function of small |Mi | + |∆Oi |. As an example,
IncEval for CC (Fig. 3) is a bounded incremental algorithm.
(3) Observe that algorithms PEval and IncEval are executed on
fragments, which are graphs themselves. Hence AAP inherits all
optimization strategies developed for the sequential algorithms.

4 CONVERGENCE AND EXPRESSIVE POWER
As observed by [54], asynchronous executions complicate the con-
vergence analysis. Nonetheless, we develop a condition underwhich
AAP guarantees to converge at correct answers. In addition, AAP is
generic. We show that parallel models MapReduce, PRAM, BSP, AP
and SSP can be optimally simulated by AAP. Proofs of the results
in this section can be found in Appendix.

4.1 Convergence and Correctness
Given a PIE program ρ (i.e., PEval, IncEval, Assemble) for a class
Q of graph queries and a partition strategy P, we want to know
whether the AAP parallelization of ρ converges at correct results.
That is, whether for all queriesQ ∈ Q and all graphsG , ρ terminates
under AAP over G partitioned via P, and its result ρ(Q,G) = Q(G).

We formalize termination and correctness as follows.

Fixpoint. Similar to GRAPE [24], AAP parallelizes a PIE program
ρ based on a simultaneous fixpoint operator ϕ(R1, . . . ,Rm) that
starts with partial evaluation of PEval and employs incremental
function IncEval as the intermediate consequence operator:

R0
i = PEval(Q, F 0

i [x̄i]), (2)
Rr+1
i = IncEval(Q,Rri , F

r
i [x̄i],Mi), (3)

where i ∈ [1,m], Rri denotes partial results in round r at worker
Pi , fragment F 0

i = Fi , F ri [x̄i] is fragment Fi at the end of round r
carrying update parameters Ci .x̄ , andMi denotes changes to Ci .x̄
computed by faggr(Bxi ∪Ci .x̄) as we have seen in Section 3.

The computation reaches a fixpoint if for all i ∈ [1,m], Rri+1
i =

Rrii , i.e., no more changes to partial results Rrii at any worker. At
this point, Assemble is applied to Rrii for i ∈ [1,m], and computes
ρ(Q,G). If so, we say that ρ converges at ρ(Q,G).

In contrast to synchronous execution, a PIE program ρ may
have different asynchronous runs, when IncEval is triggered in
different orders at multiple workers depending on, e.g., partition
of G, clusters and network latency. These runs may end up with
different results [58]. A run of ρ can be represented as traces of
PEval and IncEval at all workers (see, e.g., Fig. 1(a)).

We say that ρ terminates under AAP with P if for all queries
Q ∈ Q and graphs G, all runs of ρ converge at a fixpoint. We say
that ρ has the Church-Rosser property under AAP if all its asynchro-
nous runs converge at the same result. We say that AAP correctly
parallelizes ρ if ρ has the Church-Rosser property, i.e., it always
converges at the same ρ(Q,G), and ρ(Q,G) = Q(G).

Termination and correctness. We now identify a monotone con-
dition under which a PIE program is guaranteed to converge at
correct answers under AAP. We start with some notation.
(1) We assume a partial order ⪯ on partial results Rli . This con-
trasts with GRAPE [24], which defines partial order only on update
parameters. The partial order ⪯ is needed to analyze the Church-
Rosser property of asynchronous runs under AAP. To simplify the
discussion, assume that Rli carries its update parameters Ci .x̄ .

We define the following properties of IncEval.
◦ IncEval is contracting if for all queriesQ ∈ Q and fragmented
graphs G via P, Rl+1

i ⪯ Rli for all i ∈ [1,m] in the same run.
◦ IncEval is monotonic if for all queries Q ∈ Q and graphs G,
for all i ∈ [1,m], if R̄si ⪯ Rti then R̄s+1

i ⪯ Rt+1
i , where R̄si and

Rti denote partial results in (possibly different) runs.
For instance, consider the PIE program ρ for CC (Example 2).

The order ⪯ is defined on sets of connected components (CCs) in
each fragment, such that S1 ⪯ S2 if for each CC C2 in S2, there
exists a CC C1 in S1 with C2 ⊆ C1 and cid1 ≤ cid2, where cidi is
the id of Ci for i ∈ [1, 2]. Then one can verify that the IncEval of ρ
is both contracting and monotonic, since faggr is defined as min.

(2) We want to identify a condition under which AAP correctly
parallelizes a PIE program ρ as long as its sequential algorithms
PEval, IncEval and Assemble are correct, regardless of the order in
which PEval and IncEval are triggered. We use the following.

We say that (a) PEval is correct if for all queries Q ∈ Q

and graphs G, PEval(Q,G) returns Q(G); (b) IncEval is correct if
IncEval(Q,Q(G),G,M) returns Q(G ⊕ M), where M denotes mes-
sages (updates); and (c) Assemble is correct if when ρ converges at
round r0 under BSP, Assemble(Rr0

1 , . . . ,R
r0
m) = Q(G). We say that

ρ is correct for Q if PEval, IncEval and Assemble are correct for Q.
A monotone condition. We identify three conditions for ρ.
(T1) The values of updated parameters are from a finite domain.
(T2) IncEval is contracting.
(T3) IncEval is monotonic.
While conditions T1 and T2 are essentially the same as the ones for
GRAPE [24], condition T3 does not find a counterpart in [24].

The termination condition of GRAPE remains intact under AAP.

Theorem 1: Under AAP, a PIE program ρ guarantees to terminate
with any partition strategy P if ρ satisfies conditions T1 and T2. 2

These conditions are general. Indeed, given a graphG , the values
of update parameters are often computed from the active domain of
G and are finite. By the use of aggregate function faggr, IncEval is
often contracting, as illustrated by the PIE program for CC above.
Proof: By T1 and T2, each update parameter can be changed finitely
many times. This warrants the termination of ρ since ρ terminates
when no more changes can be incurred to its update parameters. 2

However, the condition of GRAPE does not suffice to ensure the
Church-Rosser property of asynchronous runs. For the correctness
of a PIE program under AAP, we need condition T3 additionally.

Theorem 2: Under conditions T1, T2 and T3, AAP correctly paral-
lelizes a PIE program ρ for a query class Q if ρ is correct for Q, with
any partition strategy P. 2

Proof:We show the following under the conditions. (1) Both the
synchronous run of ρ under BSP and asynchronous runs of ρ un-
der AAP reach a fixpoint. (2) No partial results of ρ under BSP are
“larger” than any fixpoint of asynchronous runs. (3) No partial re-
sults of asynchronous runs are “larger” than the fixpoint under BSP.
From (2) and (3) it follows that ρ has the Church-Rosser property.
Hence AAP correctly parallelizes ρ as long as ρ is correct for Q. 2

Recall that AP, BSP and SSP are special cases of AAP. From the
proof of Theorem 2 we can conclude that as long as a PIE program
ρ is correct for Q, ρ can be correctly parallelized

◦ under conditions T1 and T2 by BSP;
◦ under conditions T1, T2 and T3 by AP; and
◦ under conditions T1, T2 and T3 by SSP.

Novelty. As far as we are aware of, T1, T2 and T3 provide the
first condition for asynchronous runs to converge and ensure the
Church-Rosser property. To see this, we examine convergence con-
ditions for GRAPE [24], Maiter [57], BAP [28] and SSP [19, 30].
(1) As remarked earlier, the condition of GRAPE does not ensure
the Church-Rosser property, which is not an issue for BSP.
(2) Maiter [57] focuses on vertex-centric programming and identi-
fies four conditions for convergence, on an update function f that
changes the state of a vertex based on its neighbors. The condi-
tions require that f is distributive, associative, commutative and
moreover, satisfies an equation on initial values.

As opposed to [57], we deal with block-centric programming of
which the vertex-centric model is a special case, when a fragment is
limited to a single node. Moreover, the last condition of [57] is quite
restrictive. Further, the proof of [57] does not suffice for the Church-
Rosser property. A counterexample could be conditional convergent
series, for which asynchronous runs may diverge [18, 35].
(3) It is shown that BAP can simulate BSP under certain conditions
on message buffers [28]. It does not consider the Church-Rosser
property, and we make no assumption about message buffers.
(4) Conditions have been studied to assure the convergence of
stochastic gradient descent (SGD) with high probability [19, 30]. In
contrast, our conditions are deterministic: under T1, T2 and T3, all
AAP runs guarantee to converge at correct answers. Moreover, we
consider AAP computations not limited to machine learning.

4.2 Simulation of Other Parallel Models
We next show that algorithms developed for MapReduce, PRAM,
BSP, AP and SSP can be migrated to AAP without extra complexity.
That is, AAP is as expressive as the other parallel models.

Note that while this paper focuses on graph computations, AAP
is not limited to graphs as a parallel computation model. It is as
generic as BSP and AP, and does not have to take graphs as input.

Following [49], we say that a parallel modelM1 optimally sim-
ulates model M2 if there exists a compilation algorithm that trans-
forms any program with costC onM2 to a program with costO(C)
on M1. The cost includes computational and communication cost.
That is, the complexity bound remains the same.

As remarked in Section 3, BSP, AP and SSP are special cases of
AAP. From this one can easily verify the following.

Proposition 3: AAP can optimally simulate BSP, AP and SSP. 2

By Proposition 3, algorithms developed for, e.g., Pregel [39],
GraphLab [26, 38] and GRAPE [24] can be migrated to AAP. As
an example, a Pregel algorithm A (with a function compute() for
vertices) can be simulated by a PIE algorithm ρ as follows. (a) PEval
runs compute() over vertices with a loop, and uses status variable
to exchange local messages instead of SendMessageTo() of Pregel.
(b) The update parameters are status variables of border nodes, and
function faggr groups messages just like Pregel, following BSP. (c)
IncEval also runs compute() over vertices in a fragment, except that
it starts from active vertices (border nodes with changed values).

We next show that AAP can optimally simulate MapReduce and
PRAM. It was shown in [24] that GRAPE can optimally simulate
MapReduce and PRAM, by adopting a form of key-value messages.
We show a stronger result, which simply uses the message scheme
of Section 3, referred to as designated messages in [24].

Theorem 4: MapReduce and PRAM can be optimally simulated by
(a) AAP and (b) GRAPE with designated messages only. 2

Proof: Since PRAM can be simulated by MapReduce [32], and AAP
can simulate GRAPE, it suffices to show that GRAPE can optimally
simulate MapReduce with the message scheme of Section 2.

A MapReduce algorithm A can be specified as a sequence
(B1, . . . ,Bk) of subroutines, where Br (r ∈ [1,k]) consists of a
mapper µr and a reducer ρr [20, 32]. To simulate A by GRAPE, we
give a PIE program ρ in which (1) PEval is the mapper µ1 of B1, and
(2) IncEval simulates reducer ρi and mapper µi+1 (i ∈ [1,k − 1]),
and reducer ρk in the final round. We define IncEval that treats the
subroutines B1, . . . , Bk of A as program branches. Assume that A
uses n processors. We add a clique GW of n nodes as input, one for
each worker, such that any two workers can exchange data stored
in the status variables of their border nodes in GW . We show that
ρ incurs no more cost than A in each step, using n processors. 2

5 PROGRAMMINGWITH AAP
We have seen how AAP parallelizes CC (Examples 2–4). We next
examine two PIE algorithms given in [24], including SSSP and CF.
We also give a PIE program for PageRank. As opposed to [24], we
parallelize these algorithms in Sections 5.1–5.3 under AAP. These
show that AAP does not make programming harder.

5.1 Graph Traversal
We start with the single source shortest path problem (SSSP). Con-
sider a directed graph G = (V ,E,L) in which for each edge e , L(e)
is a positive number. The length of a path (v0, . . . ,vk) in G is the
sum of L(vi−1,vi) for i ∈ [1,k]. For a pair (s,v) of nodes, denote by
dist(s,v) the shortest distance from s to v . SSSP is stated as follows.

◦ Input: A directed graph G as above, and a node s in G.
◦ Output: Distance dist(s,v) for all nodes v in G.

AAP parallelizes SSSP in the same way as GRAPE [24].
(1) PIE. AAP takes Dijkstra’s algorithm [25] for SSSP as PEval and
the sequential incremental algorithm developed in [42] as IncEval.
It declares a status variable xv for every node v , denoting dist(s,v),
initially ∞ (except dist(s, s) = 0). The candidate set Ci at each Fi is
Fi .O . The status variables in the candidates set are updated by PEval
and IncEval as in [24], and aggregated by usingmin as faggr. When
no changes can be incurred to these status variables, Assemble is
invoked to take the union of all partial results.

(2) Correctness is assured by the correctness of the sequential al-
gorithms for SSSP and Theorem 2. To see this, define order ⪯ on
sets S1 and S2 of nodes in the same fragment Fi such that S1 ⪯ S2
if for each node v ∈ Fi , v1.dist ≤ v2.dist, where v1 and v2 denote
the copies of v in S1 and S2, respectively. Then by the use of min
as aggregate faggr, IncEval is both contracting and monotonic.

5.2 Collaborative Filtering
We next consider collaborative filtering (CF) [36]. It takes as input
a bipartite graph G that includes two types of nodes, namely, users
U and products P , and a set of weighted edges E ⊆ U × P . More
specifically, (1) each user u ∈ U (resp. product p ∈ P) carries
an (unknown) latent factor vector u . f (resp. p. f). (2) Each edge
e = (u,p) in E carries a weight r (e), estimated asu . f T ∗p. f (possibly
∅, i.e., “unknown”) that encodes a rating from user u to product p.
The training set ET refers to edge set {e ∈ E | r (e) , ∅}, i.e., all the
known ratings. The CF problem is stated as follows.

◦ Input: A directed bipartite graph G, and a training set ET .
◦ Output: The missing factor vectors u . f and p. f that mini-
mizes a loss function ϵ(f ,ET), estimated as∑
((u,p)∈ET)(r (u,p) − u . f T ∗p. f)2 + λ(∥u . f ∥2 + ∥p. f ∥2).

AAP parallelizes stochastic gradient descent (SGD) [36], a popular
algorithm for CF. We give the following PIE program.
(1) PIE. PEval declares a status variable v .x = (v . f ,v .δ , t) for each
node v , where v . f is the factor vector of v (initially ∅), v .δ records
accumulative updates to v . f , and t bookkeeps the timestamp at
which v . f is lastly updated. Assuming w.l.o.g. |P |≪|U |, it takes
Fi .O∪Fi .I , i.e., the shared product nodes related to Fi , asCi . PEval is
essentially “mini-batched” SGD. It computes the descent gradients
for each edge (u,p) in Fi and accumulates them in u .δ and p.δ ,
receptively. The accumulated gradients are then used to update
the factor vectors of all local nodes. At the end, PEval sends the
updated values of Ci .x̄ to neighboring workers.

IncEval first aggregates the factor vector of each node p in Fi .O
by takingmax on the timestamp for tuples (p. f ,p.δ , t) inBx̄i ∪Ci .x̄ .
For each node in Fi .I , it aggregates its factor vector by applying a
weighted sum of gradients computed at other workers. It then runs
a round of SGD; it sends the updated status variables as in PEval as
long as the bounded staleness condition is not violated.

Assemble simply takes the union of the factor vectors of all nodes
from all the workers, and returns the collection.
(2) Correctness has been verified under the bounded staleness con-
dition [30, 53]. Along the same lines, we show that the PIE program
converges and correctly infers missing CF factors.

5.3 PageRank
Finally, we study PageRank [15] for ranking Web pages. Consider
a directed graph G = (V ,E) representing Web pages and links. For
each page v ∈ V , its ranking score is denoted by Pv . The PageRank
algorithm of [15] iteratively updates Pv as follows:

Pv = d ∗ Σ{u |(u,v)∈E }Pu/Nu + (1 − d),

whered is damping factor andNu is the out-degree ofu. The process
iterates until the sum of changes of two consecutive iterations is
below a threshold. The PageRank problem is stated as follows.

◦ Input: A directed graph G and a threshold ϵ .

Storage System (DFS)

Fault-tolerance
Module

GRAPE Query Engine

GRAPE API

• Message

• Partition

• Index

• Graph Alg.

Query Parser Auto. Parallel Interface

Index Mngr.

Adaptive Async Mngr.

Partition Mngr.

Partial

Evaluation

Incremental

Evaluation
Assemble

developerend user

queries results sequential algs.

Play

Plug-in

MPI Control Load Balancer

Statistics Collector

Figure 5: GRAPE+ Architecture

◦ Output: The PageRank scores of nodes in G.
AAP parallelizes PageRank along the same lines as [47, 57].
(1) PIE. PEval declares a status variable xv for each node v ∈ Fi to
keep track of updates to v from other nodes in Fi , at each fragment
Fi . It takes Fi .O as its candidate setCi . Starting from an initial score
0 and an update xv (initially 1−d) for eachv , PEval (a) increases the
score Pv by xv , and (b) updates the variable xu for each u linked
from v by an incremental change d ∗ xv/Nv . At the end of its
process, it sends the values of Ci .x̄ to its neighboring workers.

Upon receiving messages, IncEval iteratively updates scores. It
(a) first aggregates changes to each border node from other workers
by using sum as faggr; (b) it then propagates the changes to update
other nodes in the local fragment by conducting the same compu-
tation as in PEval; and (c) it derives the changes to the values of
Ci .x̄ and sends them to its neighboring workers.

Assemble collects the scores of all the nodes in G when the sum
of changes of two consecutive iterations at each worker is below ϵ .
(2) Correctness. We show that the PIE program under AAP termi-
nates and has the Church-Rosser property, along the same lines as
the proof of Theorem 2. The proof makes use of the following prop-
erty, as also observed by [57]: for each node v in graphG, Pv can
be expressed as Σp∈Pp(v) + (1 − d), where P is the set of all paths
to v in G, p is a path (vn ,vn−1, . . .v1,v), p(v) = (1 − d) ·

∏n
j=1

d
Nj

,
and Nj is the out-degree node vj for j ∈ [1,n].

Remark. Bounded staleness forbids fastest workers to outpace
the slowest ones by more than c steps. It is mainly to ensure the
correctness and convergence of CF [30, 53]. By Theorem 2, CC
and SSSP are not constrained by bounded staleness; conditions T1,
T2 and T3 suffice to guarantee their convergence and correctness.
Hence fast workers can move ahead any number of rounds without
affecting their correctness and convergence. One can show that
PageRank does not need bounded staleness either, since for each
path p ∈ P, p(v) can be added to Pv at most once (see above).

6 IMPLEMENTATION OF GRAPE+
As proof of concept, we have implemented GRAPE+ starting from
scratch, in C++ with 17000 lines of code.

The architecture ofGRAPE+ is shown in Fig. 5, to extendGRAPE
by supporting AAP. Its top layer provides interfaces for developers
to register their PIE programs, and for end users to run registered
PIE programs. The core ofGRAPE+ is its engine, to generate parallel
evaluation plans. It schedules workload for working threads to
carry out the evaluation plans. Underlying the engine are several
components, including (1) an MPI controller [5] to handle message

passing, (2) a load balancer to evenly distribute workload, (3) an
index manager to maintain indices, and (4) a partition manager for
graph partitioning. GRAPE+ employs distributed file systems, e.g.,
NFS, AWS S3 and HDFS, to store graph data.

GRAPE+ extends GRAPE by supporting the following.

Adaptive asynchronization manager. As opposed to GRAPE,
GRAPE+ dynamically adjusts relative progress of workers. This
is carried out by a scheduler in the engine. Based on statistics
collected (see below), the scheduler adjusts parameters and decides
which threads to suspend or run, to allocate resources to useful
computations. In particular, the engine allocates communication
channels between workers, buffers messages generated, packages
the messages into segments, and sends a segment each time. It
further reduces costs by overlapping data transfer and computation.

Statistics collector. During a run of a PIE program, the collector
gathers information for each worker, e.g., the amount of messages
exchanged, the evaluation time in each round, historical data for a
query workload, and the impact of the last parameter adjustment.

Fault tolerance. Asynchronous runs ofGRAPE+make it harder to
identify a consistent state to rollback in case of failures. Hence as op-
posed to GRAPE, GRAPE+ adapts Chandy-Lamport snapshots [16]
for checkpoints. The master broadcasts a checkpoint request with a
token. Upon receiving the request, each worker ignores the request
if it has already held the token. Otherwise, it snapshots its current
state before sending any messages. The token is attached to its
following messages. Messages that arrive late without the token are
added to the last snapshot. This gets us a consistent checkpointed
state, including all messages passed asynchronously.

When we deployed GRAPE+ in a POC scenario that provides
continuous online payment services, we found that on average, it
took about 40 seconds to get a snapshot of the entire state, and 20
seconds to recover from failure of one worker. In contrast, it took
40 minutes to start the system and load the graph.

Consistency. Each worker Pi uses a buffer Bx̄i to store incoming
messages, which is incrementally expanded when new messages ar-
rive. As remarked in Section 3, GRAPE+ allows users to provide an
aggregate function faggr to resolve conflicts when a status variable
receives multiple values from different workers. The only race con-
dition is that when old messages are removed from Bx̄i by IncEval
(see Section 3), the deletion is atomic. Thus consistency control of
GRAPE+ is not much harder than that of GRAPE.

7 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we conducted four sets of
experiments to evaluate the (1) efficiency, (2) communication cost,
and (3) scale-up of GRAPE+, and (4) the effectiveness of AAP and
the impact of graph partitioning strategies on its performance. We
also report a case study in Appendix B to illustrate how dynamic ad-
justment of AAPworks. We compared the performance ofGRAPE+
with (a)Giraph [2] and synchronizedGraphLabsync [26] underBSP,
(b) asynchronized GraphLabasync, GiraphUC [28] and Maiter [57]
under AP, (c) Petuum [53] under SSP, (d) PowerSwitch [52] under
Hsync, and (e) GRAPE+ simulations of BSP, AP and SSP, denoted
by GRAPE+BSP, GRAPE+AP, GRAPE+SSP, respectively.

We find that GraphLabasync, GraphLabsync, PowerSwitch and
GRAPE+ outperform the other systems. Indeed, Table 1 shows
the performance of SSSP and PageRank of the systems with 192
workers; results on the other algorithms are consistent. Hence we
only report the performance of these four systems in details. In all
the experiments we also evaluated GRAPE+BSP, GRAPE+AP and
GRAPE+SSP. Note that GRAPE [24] is essentially GRAPE+BSP.

Experimental setting. We used real-life and synthetic graphs.
Graphs. We used five real-life graphs of different types, such that
each algorithm was evaluated with two real-life graphs. These in-
clude (1) Friendster [1], a social network with 65 million users and
1.8 billion links; we randomly assigned weights to test SSSP; (2)
traffic [7], an (undirected) US road network with 23 million nodes
(locations) and 58 million edges; (3) UKWeb [8], a Web graph with
133 million nodes and 5 billion edges. We also used two recom-
mendation networks (bipartite graphs) to evaluate CF, namely, (4)
movieLens [4], with 20 million movie ratings (as weighted edges)
between 138000 users and 27000 movies; and (5) Netflix [6], with
100 million ratings between 17770 movies and 480000 customers.

To test the scalability of GRAPE+, we developed a generator to
produce synthetic graphs G = (V ,E,L) controlled by the numbers
of nodes |V | (up to 300 million) and edges |E | (up to 10 billion).

The synthetic graphs and, e.g., UKWeb, Friendster, are too large
to fit in a single machine. Parallel processing is a must for them.
Queries. For SSSP, we sampled 10 source nodes for each graph G

used such that each node has paths to or from at least 90% of the
nodes in G, and constructed an SSSP query for each of them.
Graph computations. We evaluated SSSP, CC, PageRank and CF
over GRAPE+ by using their PIE programs developed in Sections 2
and 5. We used “default” code provided by the competitor systems
when it is available. Otherwise we made our best efforts to develop
“optimal” algorithms for them, e.g., CF for PowerSwitch.

We used XtraPuLP [46] as the default graph partition strategy.
To evaluate the impact of stragglers, we randomly reshuffled a
small portion of each partitioned input graph when conducting the
evaluation, and made the graphs skewed.

We deployed the systems on anHPC cluster. For each experiment,
we used up to 20 servers, each with 16 threads of 2.40GHz, and
128GB memory. On each thread, a GRAPE+ worker is deployed.
We ran each experiment 5 times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of GRAPE+ by
varying the number n of workers used, from 64 to 192. We evalu-
ated (a) SSSP andCCwith real-life graphs traffic and Friendster; (b)
PageRankwith Friendster and UKWeb, and (c) CFwithmovieLens
andNetflix, based on applications of these algorithms in transporta-
tion networks, social networks, Web rating and recommendation.
(1) SSSP. Figures 6(a) and 6(b) report the performance of SSSP.

(a) GRAPE+ consistently outperforms these systems in all cases.
Over traffic (resp. Friendster) and with 192 workers, it is on
average 1673 (resp. 3.0) times, 1085 (resp. 15) times and 1270
(resp. 2.56) times faster than synchronized GraphLabsync, asyn-
chronized GraphLabasync and hybrid PowerSwitch, respectively.

GRAPE+ GRAPE+SSP GRAPE+AP GRAPE+BSP GraphLabasync GraphLabsync PowerSwitch

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(a) Varying n: SSSP (traffic)

 10

 100

 1000

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(b) Varying n: SSSP (Friendster)

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(c) Varying n: CC (traffic)

 0

 40

 80

 120

 160

 200

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(d) Varying n: CC (Friendster)

 80

 160

 240

 320

 400

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(e) Varying n: PageRank (Friendster)

 0

 150

 300

 450

 600

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(f) Varying n: PageRank (UKWeb)

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(g) Varying n: CF (movieLens)

 100

 1000

 10000

64 96 128 160 192

T
im

e
 (

s
e
c
o
n
d
s
)

(h) Varying n: CF (Netflix)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

64 128 192 256 320

T
im

e
 (

R
a
ti
o
)

(i) Scale up of SSSP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

64 128 192 256 320

T
im

e
 (

R
a
ti
o
)

(j) Scale up of PageRank

 0

 100

 200

 300

 400

 500

1 3 5 7 9

T
im

e
 (

s
e
c
o
n
d
s
)

(k) Impact of partitioning

 0

 100

 200

 300

 400

 500

 600

192 224 256 288 320

T
im

e
 (

s
e
c
o
n
d
s
)

(l) Speedup by AAP
Figure 6: Performance Evaluation

The performance gain of GRAPE+ comes from the following:
(i) efficient resource utilization by dynamically adjusting relative
progress of workers under AAP; (ii) reduction of redundant compu-
tation and communication by the use of incremental IncEval; and
(iii) optimization inherited from strategies for sequential algorithms.
Note that under BSP, AP and SSP, GRAPE+BSP, GRAPE+AP and
GRAPE+SSP can still benefit from (ii) and (iii).

As an example, GraphLabsync took 34 (resp. 10749) rounds over
Friendster (resp. traffic), while by using IncEval, GRAPE+BSP and
GRAPE+SSP took 21 and 30 (resp. 31 and 42) rounds, respectively,
and hence reduced synchronization barriers and communication
costs. In addition, GRAPE+ inherits the optimization techniques
from sequential (Dijkstra) algorithm by employing priority queues
to prioritize vertex processing; in contrast, this optimization strat-
egy is beyond the capacity of the vertex-centric systems.

(b) GRAPE+ is on average 2.42, 1.71, and 1.47 (resp. 2.45, 1.76, and
1.40) times faster than GRAPE+BSP, GRAPE+AP and GRAPE+SSP
over traffic (resp. Friendster), up to 2.69, 1.97 and 1.86 times, respec-
tively. Since GRAPE+, GRAPE+BSP, GRAPE+AP and GRAPE+SSP
are the same system under different modes, the gap reflects the
effectiveness of different models. We find that the idle waiting time
of AAP is 32.3% and 55.6% of that of BSP and SSP, respectively.
Moreover, when measuring stale computation in terms of the total
extra computation and communication time over BSP, the stale
computation of AAP accounts for 37.2% and 47.1% of that of AP
and SSP, respectively. These verify the effectiveness of AAP by
dynamically adjusting relative progress of different workers.

(c) GRAPE+ takes less time when n increases. It is on average 2.49

and 2.25 times faster on traffic and Friendster, respectively, when n
varies from 64 to 192. That is,AAPmakes effective use of parallelism
by reducing stragglers and redundant stale computations.

(2) CC. As reported in Figures 6(c) and 6(d) over traffic and
Friendster, respectively, (a) GRAPE+ outperforms GraphLabsync,
GraphLabasync and PowerSwitch. When n = 192, GRAPE+ is on
average 313, 93 and 51 times faster than the three systems, respec-
tively. (b)GRAPE+ is faster than its variants underBSP,AP and SSP,
on average by 20.87, 1.34 and 3.36 (resp. 3.21, 1.11 and 1.61) times
faster over traffic (resp. Friendster), respectively, up to 27.4, 1.39
and 5.04 times. (c)GRAPE+ scales well with the number of workers
used: it is on average 2.68 times faster when n varies from 64 to 192.

(3) PageRank. As shown in Figures 6(e)-6(f) over Friendster and
UKWeb, respectively, when n = 192, (a) GRAPE+ is on average
5, 9 and 5 times faster than GraphLabsync, GraphLabasync and
PowerSwitch, respectively. (b) GRAPE+ outperforms GRAPE+BSP,
GRAPE+AP and GRAPE+SSP by 1.80, 1.90 and 1.25 times, respec-
tively, up to 2.50, 2.16 and 1.57 times. This is because GRAPE+
reduces stale computations, especially those of stragglers. On aver-
age stragglers took 50, 27 and 28 rounds under BSP, AP and SSP,
respectively, as opposed to 24 rounds under AAP. (d) GRAPE+ is
on average 2.16 times faster when n varies from 64 to 192.

(4) CF. We usedmovieLens [4] and Netflix with training set |ET | =
90%|E |, as shown in Figures 6(g)-6(h), respectively. On average
(a) GRAPE+ is 11.9, 9.5, 10.0 times faster than GraphLabsync,
GraphLabasync and PowerSwitch, respectively. (b) GRAPE+ beats
GRAPE+BSP, GRAPE+AP and GRAPE+SSP by 1.38, 1.80 and 1.26

times, up to 1.67, 3.16 and 1.38 times, respectively. (c) GRAPE+ is
on average 2.3 times faster when n varies from 64 to 192.
Single-thread. Among the graphs traffic,movieLens andNetflix can
fit in a single machine. On a single machine, it takes 6.7s, 4.3s and
2354.5s for SSSP and CC over traffic, and CF over Netflix, respec-
tively. Using 64-192 workers, GRAPE+ is on average from 1.63 to
5.2, 1.64 to 14.3, and 4.4 to 12.9 times faster than single-thread,
depending on how heavy stragglers are. Observe the following. (a)
GRAPE+ incurs extra overhead of parallel computation not expe-
rienced by a single machine, just like other parallel systems. (b)
Large graphs such as UKWeb are beyond the capacity of a single
machine, and parallel computation is a must for such graphs.

Exp-2: Communication. Following [29], we tracked the total
bytes sent by each machine during a run, by monitoring the system
file /proc/net/dev. The communication costs of PageRank and SSSP
over Friendster are reported in Table 1, when 192 workers were
used. The results on other algorithms are consistent and hence not
shown. These results tell us the following.
(1) On averageGRAPE+ ships 22.4%, 8.0% and 68.3% of data shipped
by GraphLabsync, GraphLabasync and PowerSwitch, respectively.
This is because GRAPE+ (a) reduces redundant stale computations
and hence unnecessary data traffic, and (b) ships only changed
values of update parameters by incremental IncEval.
(2) The communication cost of GRAPE+ is 1.22X, 40% and 1.02X
compared to that of GRAPE+BSP, GRAPE+AP and GRAPE+SSP, re-
spectively. Since AAP allows workers with small workload to run
faster and have more iterations, the amount of messages may in-
crease. Moreover, workers under AAP additionally exchange their
states and statistics to adjust relative speed. Despite these, its com-
munication cost is not much worse than that of BSP and SSP.

Exp-3: Scale-up of GRAPE+. As observed in [41], the speed-up of
a systemmay degradewhen usingmoreworkers. Thuswe evaluated
the scale-up ofGRAPE+, which measures the ability to keep similar
performance when both the size of graph G = (|V |, |E |) and the
number n of workers increase proportionally. We varied n from 96
to 320, and for each n, deployed GRAPE+ over a synthetic graph of
size varied from (60M, 2B) to (300M, 10B), proportional to n.

As reported in Figures 6(i) and 6(j) for SSSP and PageRank, re-
spectively, GRAPE+ preserves a reasonable scale-up. That is, the
overhead of AAP does not weaken the benefit of parallel computa-
tion. Despite the overhead for adjusting relative progress, GRAPE+
retains scale-up comparable to that of BSP, AP and SSP.

The results on other algorithms are consistent (not shown).

Exp-4: Effectiveness ofAAP. To further evaluate the effectiveness
of AAP, we tested (a) the impact of graph partitioning on AAP, and
(b) the performance of AAP over larger graphs with more workers.
We evaluatedGRAPE+,GRAPE+BSP,GRAPE+AP andGRAPE+SSP.
We remark that these are the same system under different modes,
and hence the results are not affected by implementation.
Impact of graph partitioning. Define r = ∥Fmax∥/∥Fmedian∥, where
∥Fmax∥ and ∥Fmedian∥ denote the size of the largest fragment and
the median size, respectively, indicating the skewness of a partition.

As shown in Fig. 6(k) for SSSP over Friendster, in which the x
axis is r , (a) different partitions have an impact on the performance

of GRAPE+, just like on other parallel graph systems. (b) The more
skewed the partition is, the more effective AAP is. Indeed, AAP is
more effective with larger r . When r = 9, AAP outperforms BSP,
AP, SSP by 9.5, 2.3, and 4.9 times, respectively. For a well-balanced
partition (r = 1), BSP works well since the chances of having
stragglers are small. In this case AAP works as well as BSP.
AAP in a large-scale setting. We tested synthetic graphs with 300
million vertices and 10 billion edges, generated by GTgraph [3]
following the power law and the small world property. We used a
cluster of up to 320 workers. As shown in Fig. 6(l) for PageRank,
AAP is on average 4.3, 14.7 and 4.7 times faster than BSP, AP and
SSP, respectively, up to 5.0, 16.8 and 5.9 times with 320 workers.
Compared to the results in Exp-1, these show that AAP is far more
effective on larger graphs with more workers, a setting closer to
real-life applications, in which stragglers and stale computations
are often heavy. These further verify the effectiveness of AAP.

The results on other algorithms are consistent (not shown).

Summary. We find the following. (1)GRAPE+ consistently outper-
forms the state-of-the-art systems. Over real-life graphs and with
192 workers, GRAPE+ is on average (a) 2080, 838, 550, 728, 1850
and 636 times faster than Giraph, GraphLabsync, GraphLabasync,
GiraphUC, Maiter and PowerSwitch for SSSP, (b) 835, 314, 93 and
368 times faster than Giraph, GraphLabsync, GraphLabasync and
GiraphUC for CC, (c) 339, 4.8, 8.6, 346, 9.7 and 4.6 times faster
than Giraph, GraphLabsync, GraphLabasync, GiraphUC, Maiter
and PowerSwitch for PageRank, and (d) 11.9, 9.5 and 30.9 times
faster than GraphLabsync, GraphLabasync and Petuum for CF, re-
spectively. Among these PowerSwitch has the closest performance
to GRAPE+. (2) It incurs as small as 0.0001%, 0.027%, 0.13% and
57.7% of the communication cost of these systems for these prob-
lems, respectively. (3) AAP effectively reduces stragglers and redun-
dant stale computations. It is on average 4.8, 1.7 and 1.8 times faster
than BSP, AP and SSP for these problems over real-life graphs, re-
spectively. On large-scale synthetic graphs, AAP is on average 4.3,
14.7 and 4.7 times faster than BSP, AP and SSP, respectively, up to
5.0, 16.8 and 5.9 times with 320 workers. (4) The heavier stragglers
and stale computations are, or the larger the graphs are and the
more workers are used, the more effective AAP is. (5) GRAPE+
scales well with the number n of workers used. It is on average 2.37,
2.68, 2.17 and 2.3 times faster whenn varies from 64 to 192 for SSSP,
CC, PageRank and CF, respectively. Moreover, it has good scale-up.

8 CONCLUSION
We have proposed AAP to remedy the limitations of BSP and AP
by reducing both stragglers and redundant stale computations. As
opposed to [54], we have shown that as an asynchronous model,
AAP does not make programming harder, and it retains the ease
of consistency control and convergence guarantees. We have also
developed the first condition towarrant the Church-Rosser property
of asynchronous runs, and a simulation result to justify the power
and flexibility of AAP. Our experimental results have verified that
AAP is promising for large-scale graph computations.

One topic for future work is to improve adjustment function δ
for different computations. Another topic is to handle streaming
updates by capitalizing on the capability of incremental IncEval.

REFERENCES
[1] Friendster. https://snap.stanford.edu/data/com-Friendster.html.
[2] Giraph. http://giraph.apache.org/.
[3] GTgraph. http://www.cse.psu.edu/ kxm85/software/GTgraph/.
[4] Movielens. http://grouplens.org/datasets/movielens/.
[5] MPICH. https://www.mpich.org/.
[6] Netflix prize data. https://www.kaggle.com/netflix-inc/netflix-prize-data.
[7] Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml.
[8] UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/, 2006.
[9] U. A. Acar. Self-Adjusting Computation. PhD thesis, CMU, 2005.
[10] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling parallel programs by

work stealing with private deques. In PPoPP, 2013.
[11] K. Andreev and H. Racke. Balanced graph partitioning. Theory of Computing

Systems, 39(6):929–939, 2006.
[12] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Applications.

Springer, 2008.
[13] N. T. Bao and T. Suzumura. Towards highly scalable pregel-based graph process-

ing platform with x10. In WWW ’13, pages 501–508, 2013.
[14] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.
[15] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.

Computer Networks, 56(18):3825–3833, 2012.
[16] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states

of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.
[17] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological pathfinding. In

SIGMOD, 2016.
[18] C. C. Cowen, K. Davidson, and R. Kaufman. Rearranging the alternating harmonic

series. The American Mathematical Monthly, 87(10):817–819, 1980.
[19] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing. High-performance

distributed ML at scale through parameter server consistency models. In AAAI,
2015.

[20] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. Commun. ACM, 51(1), 2008.

[21] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and C. Tseng. Dynamic load
balancing of unbalanced computations using message passing. In IPDPS, 2007.

[22] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable and un-
doable. In SIGMOD, 2017.

[23] W. Fan, J. Xu, Y. Wu, W. Yu, and J. Jiang. GRAPE: Parallelizing sequential graph
computations. PVLDB, 10(12):1889–1892, 2017.

[24] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, B. Zhang, Z. Zheng, Y. Cao, and C. Tian.
Parallelizing sequential graph computations. In SIGMOD, 2017.

[25] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. JACM, 34(3):596–615, 1987.

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Dis-
tributed graph-parallel computation on natural graphs. In USENIX, 2012.

[27] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
GraphX: Graph processing in a distributed dataflow framework. In OSDI, 2014.

[28] M. Han and K. Daudjee. Giraph unchained: Barrierless asynchronous parallel
execution in pregel-like graph processing systems. PVLDB, 8(9):950–961, 2015.

[29] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and T. Jin. An experimental
comparison of Pregel-like graph processing systems. VLDB, 7(12), 2014.

[30] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. R. Ganger,
and E. P. Xing. More effective distributed ML via a stale synchronous parallel
parameter server. In NIPS, pages 1223–1231, 2013.

[31] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artif. Intell., pages 79–111, 2014.

[32] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce.
In SODA, pages 938–948, 2010.

[33] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan:
a system for dynamic load balancing in large-scale graph processing. In EuroSys
’13, pages 169–182, 2013.

[34] M. Kim and K. S. Candan. SBV-Cut: Vertex-cut based graph partitioning using
structural balance vertices. Data & Knowledge Engineering, 72:285–303, 2012.

[35] K. Knopp. Theory and application of infinite series. Courier Corporation, 2013.
[36] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. IEEE Computer, 42(8):30–37, 2009.
[37] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.

Shekita, and B.-Y. Su. Scaling Distributed Machine Learning with the Parameter
Server. In USENIX, 2014.

[38] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed GraphLab: A framework for machine learning in the cloud. PVLDB,
5(8), 2012.

[39] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In SIGMOD,
2010.

[40] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A survey of
vertex-centric frameworks for large-scale distributed graph processing. ACM

Comput. Surv., 48(2):25:1–25:39, 2015.
[41] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what cost? In HotOS,

2015.
[42] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of

the shortest-path problem. J. Algorithms, 21(2):267–305, 1996.
[43] G. Ramalingam and T. Reps. On the computational complexity of dynamic graph

problems. TCS, 158(1-2), 1996.
[44] S. Salihoglu and J. Widom. GPS: a graph processing system. In SSDBM, 2013.
[45] X. Shi, B. Cui, Y. Shao, and Y. Tong. Tornado: A system for real-time iterative

analysis over evolving data. In SIGMOD, 2016.
[46] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri. Partitioning trillion-

edge graphs in minutes. In IPDPS, 2017.
[47] Y. Tian, A. Balmin, S. A. Corsten, and J. M. Shirish Tatikonda. From "think like a

vertex" to "think like a graph". PVLDB, 7(7):193–204, 2013.
[48] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,

33(8):103–111, 1990.
[49] L. G. Valiant. General purpose parallel architectures. In Handbook of Theoretical

Computer Science, Vol A. 1990.
[50] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous large-scale graph

processing made easy. In CIDR, 2013.
[51] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson,

and E. P. Xing. Managed communication and consistency for fast data-parallel
iterative analytics. In SOCC, pages 381–394, 2015.

[52] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. SYNC or ASYNC: time to fuse
for distributed graph-parallel computation. In PPOPP, 2015.

[53] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar,
and Y. Yu. Petuum: A New Platform for Distributed Machine Learning on Big
Data. IEEE Transactions on Big Data, 1(2):49–67, June 2015.

[54] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms. Foun-
dations and Trends in Databases, 7(1-2):1–195, 2017.

[55] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework for
distributed computation on real-world graphs. PVLDB, 7(14):1981–1992, 2014.

[56] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving
mapreduce performance in heterogeneous environments. In OSDI, 2008.

[57] Y. Zhang, Q. Gao, L. Gao, and C.Wang. Maiter: An asynchronous graph processing
framework for delta-based accumulative iterative computation. TPDS, 25(8):2091–
2100, 2014.

[58] Z. Zhang and C. Douligeris. Convergence of synchronous and asynchronous
algorithms in multiclass networks. In INFOCOM, pages 939–943. IEEE, 1991.

Acknowledgments. The authors are supported in part by 973
2014CB340302, ERC 652976, NSFC 61421003, EPSRC EP/M025268/1,
and Beijing Advanced Innovation Center for Big Data and Brain
Computing. Luo is also supported in part by NSFC 61602023.

APPENDIX A: PROOFS
Proof of Theorem 1
It is easy to verify that if ρ terminates at (Ni+1)-th round underAAP
for each fragment Fi (i ∈ [1,n]), then in each round ri ≤ Ni , IncEval
changes at least one update parameter. Using this property, we show
that under conditions T1 and T2, ρ always terminates under AAP.
Assume by contradiction that there exist a queryQ ∈ Q and a graph
G such that ρ does not terminate. Denote by (a) Nx the size of the
finite set consisting of assigned values for variable x , where x is an
update parameter ofG; and (b) N =

∑
x ∈x̄i ,i ∈[1,m] Nx , i.e., the total

number of distinct values assigned to update parameters. Since ρ
does not terminate, there exists a worker Pi running at least N + 1
rounds in the trace of AAP. By the property above, in each round of
IncEval, at least one status variable is updated. Hence there exists
a variable x that is updated Nx + 1 times. Moreover, since IncEval
is contracting, the assigned values to x follow a partial order. Thus
x has to be assigned Nx + 1 distinct values, which contradicts to
the assumption that there are only Nx distinct values for x . 2

Proof of Theorem 2
By Theorem 1, any run of the PIE program ρ terminates under T1
and T2. In particular, consider the BSP run σ ∗ of ρ, a special case of
AAP runs, and assume that all workers terminate after r∗ rounds.

Denote by R̃ri the partial result on the i-th fragment in σ ∗ after r
rounds. Then (R̃r

∗

1 , . . . , R̃
r ∗
m) is a fixpoint of ρ under BSP. To show

the Church-Rosser property, we only need to show that an arbitrary
run σ of ρ under AAP converges to the same fixpoint as σ ∗. More
specifically, assume that worker Pi terminates after ri rounds at
partial result Rrii in σ . Then (Rr1

1 , . . . ,R
rm
m) = (R̃r

∗

1 , . . . , R̃
r ∗
m).

It suffices to prove the following:
(1) Rrii ⪯ R̃ri for i ∈ [1,m] and r ≥ 0, i.e., partial results in the BSP
run σ ∗ are no “smaller” than the fixpoint in the run σ (Lemma 5);
(2) R̃r ∗i ⪯ Rri for i ∈ [1,m] and r ≥ 0, i.e., the partial results in the
run σ are no “smaller” than the fixpoint in the run σ ∗ (Lemma 6).

In the sequel, we will pick a run σ of ρ under AAP and compare
the fixpoint in σ and σ ∗ by proving Lemma 5 and Lemma 6.

Notation. We first refine the partial order ⪯ on partial results Rli ,
which include update parameters x̄ . The order ⪯ implies a partial
order ≤p on the domain of update parameters. Denote by Sx and
S ′x the multi-sets of values for a parameter x . We write Sx � S ′x if
the minimal element in Sx is no “larger” than any element in S ′x
w.r.t. order ≤p . For example, if ≤p is the linear order over integers,
Sx = {|1, 3, 3, 4, 5|} and S ′x = {|3, 7, 7, 8|}, then Sx � S ′x since the
minimal element 1 in Sx satisfies the condition. We extend � to
collections x̄i . That is, we write Sx̄i �S ′x̄i if Sx �S ′x for each x ∈ x̄i .

Let S and T be the collections of updated parameters associated
with Rsi and R

t
i , respectively. Then the order Rsi ⪯ Rti “covers” both

the order on the “real” partial results Rsi and R
t
i , and the order S�T

on updated parameters. We restate conditions T2 and T3 as follows.
(T2) If Rs+1

i = IncEval(Q,Rsi , F
s
i [x̄i],Mi) and Mi = faggr(Bx̄i ∪

Csi .x̄), then Rs+1
i ⪯ Rsi and C

s+1
i .x̄ �Mi � Bx̄i ∪Csi .x̄ .

(T3) If R̄si ⪯ Rti and their associated collections of update parameters
S and T satisfy S � T , then R̄s+1

i ⪯ Rt+1
i and faggr(S) � faggr(T),

where R̄si and R
t
i denote partial results in (possibly different) runs.

Lemma 5: Rrii ⪯ R̃ri for i ∈ [1,m] and r ≥ 0. 2

Proof: The lemma follows from the following two claims.
Fixpoint. In the run σ , each worker terminates at a fixpoint, i.e.,
Rrii = IncEval(Q,Rrii , F

ri [x̄i],Mi), where Mi = faggr(∅ ∪ Crii .x̄).
Here the fixpoint means that when the set of messages from other
workers is ∅, Rrii cannot be further improved.
Consistency. When all workers terminate, the values of the update
parameters are consistent, i.e., for each i, j ∈ [1,m] with i , j, and
for each variable x ∈ Ci ∩Cj , x has the same value in Rrii and Rr jj .

Assuming these claims, we show Lemma 5 by induction on r .
• Basis case. The case Rrii ⪯ R0

i = R̃0
i follows from T2 and the fact

that the first IncEval runs after the same PEval in both σ and σ ∗.
• Inductive step. Suppose that Rrii ⪯ R̃ri for all i ∈ [1,m]. We can
show w.l.o.g. that Rri1 ⪯ R̃r+1

1 by using the inductive hypothesis and
the monotonicity of IncEval. Let R̃r+1

1 = IncEval(Q, R̃r1 , F
r
1 [x̄1],M1),

where M1 = faggr(m1 ∪ . . . ∪mk ∪ C̃r1 .x̄) (updates to x̄1), andmj

is message from R̃ri j for j ∈ [1,k]. By the fixpoint claim, Rr1
1 =

IncEval(Q,Rr1
1 , F

r1
1 [x̄1],M ′

1), where M
′
1 = faggr(∅ ∪ Cr1

1 .x̄), and P1
terminates at round r1. By the inductive hypothesis, Rr1

1 ⪯ R̃r1 . 2

It remains to verify the two claims.
Proof of the Fixpoint Claim. It suffices to show that when AAP ter-
minates, Crii .x̄ ⊆ (Bx̄i ∪Cri−1

i .x̄) (i ∈ [1,m]), where Bx̄i consists
of the messages received before the last round, andCri−1

i .x̄ denotes
the update parameters of F ri−1

i . Indeed, if Crii .x̄ ⊆ (Bx̄i ∪Cri−1
i .x̄),

we can verify that Rrii = IncEval(Q,Rrii , F
ri [x̄i],Mi) in two steps.

(1) We first show that faggr(∅ ∪Crii .x̄) = C
ri
i .x̄ . By T2 and T3,

Crii .x̄ � faggr(Bx̄i ∪Cri−1
i .x̄)� faggr(∅ ∪Crii .x̄)�Crii .x̄ . (4)

The three inequalities follow from (a) the contraction of IncEval
(T2), (b) Crii .x̄ ⊆ (Bx̄i ∪Cri−1

i .x̄) and the monotonicity of IncEval
(T3), and (c) T2, respectively. Thus faggr(∅ ∪Crii .x̄) = C

ri
i .x̄ .

(2) Next, we show that Rrii = IncEval(Q,Rrii , F
ri [x̄i],Mi). Note that

IncEval(Q,Rri−1
i , F ri−1

i [x̄i],Mi
′) computes Q(F ri−1

i ⊕ Mi
′), where

Mi
′ = faggr(Bx̄i ∪Cri−1

i .x̄). Similarly, IncEval(Q,Rrii , F
ri
i [x̄i],Mi)

computesQ(F rii ⊕Mi), whereMi = faggr(∅ ∪Crii .x̄). By inequality
(4),Mi = Mi

′. By the contraction of IncEval, F rii ⊕ Mi is the same
as F rii . It follows that Rrii = IncEval(Q,Rrii , F

ri [x̄i],Mi).

It remains to show thatCrii .x̄ ⊆ (Bx̄i ∪C
ri−1
i .x̄). We verify this by

contradiction. Suppose that Crii .x̄ ⊈ (Bx̄i ∪Cri−1
i .x̄). By T2, there

exists an update parameter x∗ in x̄i such that its value in Crii .x̄ is
strictly “smaller” than the ones in Bx̄i ∪Cri−1

i .x̄ , i.e., x∗ is updated
by IncEval. Then we show that there exists one more run of IncEval
on Rrii , a contradiction to the assumption that worker Pi terminates
after ri rounds. Let val be the value of x∗ in Crii .x̄ and Pj1 , . . .Pjk
be the workers sharing x∗. Since x∗ is updated, Pi sends a message
containing (x∗, val, ri) to Pj1 , . . . , Pjk . Let valℓ be the values of x∗
on Pjℓ for ℓ ∈ [1,k] when Pjℓ processes the message. There are
two cases. (i) If some valℓ (ℓ ∈ [1,k]) satisfies valℓ ≤p val, then
AAP sends a message containing (x∗, valℓ , rℓ) to Pi . It contradicts
to the assumption that val is strictly “smaller” than the value of x∗
in Bx̄i . (ii) If val is strictly less than all of val1, . . .valk , then by the
contraction of IncEval (T2), Pj1 , . . . , Pjk update the value of x∗ to
val′1, . . . , val

′
k , respectively, such that val′1 ≤p val, . . . , val′k ≤p val.

By assumption val′ℓ is strictly “smaller” than valℓ for ℓ ∈ [1,k]. The
value of x∗ on Pj1 ,. . . , Pjk is updated. Thus AAP sends these values
of x∗ to Pi , triggering a new round of IncEval, a contradiction. 2

Proof of the Consistency Claim. We show that if vali and valj are
the final values of an update parameter x shared by Fi and Fj , re-
spectively, then vali = valj . Let val0i and val

0
j be the initial values of

x in Fi and Fj , respectively; then val0i = val0j . Observe the following.
(a) If PEval and IncEval do not update x , then vali = valj . (b) Oth-
erwise assume w.l.o.g. that vali ≤p val0i and vali , val0i . Consider
the round updating x on Fi by assigning some val′i , vali to x . At
the end of this round, (x , vali , r) is sent to Pj , triggering one round
of computation on Fj . By the contraction of IncEval, we have that
valj ≤p vali . By a similar argument, we can show that vali ≤p valj .
Putting these together we have that vali = valj . □

Lemma 6: R̃r
∗

i ⪯ Rri for i ∈ [1,m] and r ≥ 0. 2

Proof: Since the BSP run σ ∗ is a special run under AAP, by the fix-
point and consistency claims (Lemma 5), we know the following: (a)

R̃r
∗

i is a fixpoint, i.e., R̃r ∗i = IncEval(Q, R̃r
∗

i , F
r ∗
i [x̄i],Mi), whereMi=

faggr(∅ ∪Cr
∗

i .x̄); (b) the values of update parameters are consistent.
We prove that R̃r ∗i ⪯ Rri in two steps. (1) We first construct a

finite tree T to represent the computation trace of Rri , where the
root of T is (i, r), and nodes of T are in the form of (j, t), indicating
the t-th round of IncEval on the j-th fragment. (2) We then show
that R̃r ∗j ⪯ Rtj for each node (j, t) of T . It follows that R̃r ∗i ⪯ Rri .

(1) Tree T is constructed top-down from the root (i, r). For a node
(j, t) with t , 0, we define its children based on the t-th round of
IncEval on the j-th fragment. Suppose that Rtj is computed by Rtj =
IncEval(Q,Rt−1

j , F
t−1
j [x̄ j],Mj) andMj is the aggregation result of

m1, . . . , mk , which are k messages sent from the j1-th, . . . , jk -th
worker after their t1-th, . . .tk -th round of IncEval, respectively. Then
we add k+1 pairs (j, t−1), (j1, t1), . . . , (jk , tk) as the children of (j, t).
Intuitively, the children of (j, t) encode the dependency of Rtj . The
construction stops when each path of T reaches a node (j, t) with
t = 0. Tree T is finite since (i) for (j, t1), (j, t2), . . . (j, tℓ) on a path
from the root (i, r), t1 > t2 > · · · > tℓ ; and (ii) T is finite branching
since each round of IncEval only uses finitely many messages.
(2) We show that R̃r ∗j ⪯ Rtj for each node (j, t) of T by induction on
decreasing t . For the basis case where t = 0, R̃r ∗j ⪯ R̃0

j = R0
j

by the contraction of IncEval (T2). For the inductive step, sup-
pose that (j, t) has children (j, t−1), (j1, t1), (j2, t2), . . . , (jk , tk), and
that the inductive hypothesis holds for (j, t−1), (j1, t1), (j2, t2), . . . ,
(jk , tk). We show that R̃r ∗j ⪯ Rtj . Observe that Rtj is computed
by Rtj = IncEval(Q,Rt−1

j , F
t−1
j [x̄ j],Mj), where Mj = faggr(m1 ∪

· · · ∪ mk ∪ Ct−1
j .x̄) denotes changes to x̄ j , and m1, . . . , mk are

messages from workers Pj1 , . . . , Pjk after their t1-th, . . . , tk -th
round of IncEval, respectively. Meanwhile, since R̃r ∗j is a fixpoint,
R̃r

∗

j = IncEval(Q, R̃r
∗

j , F
r ∗
j [x̄ j],M

′
j), whereM

′
j = faggr(∅∪C

r ∗
i .x̄) de-

notes changes to x̄ j . By the induction hypothesis, R̃r ∗j ⪯ Rt−1
j and

R̃r
∗

jℓ
⪯ Rtℓjℓ (ℓ ∈ [1,k]). By the monotonicity of IncEval (T3), to show

that R̃r ∗j ⪯ Rtj , it suffices to prove thatCr ∗j .x̄�m1 ∪ . . .mk ∪C
t−1
j x̄ .

The latter can be verified along the same line as Lemma 5.
This completes the proof of Lemma 6 and hence Theorem 2. 2

Proof of Theorem 4
Since PRAM can be simulated by MapReduce [32], and AAP can
simulate GRAPE (Section 3), it suffices to show that GRAPE can
optimally simulate MapReduce with designated messages.

We show that all MapReduce programs with n processors can be
optimally simulated by GRAPE with n processors. A MapReduce
algorithm A is defined as follows. Its input is a multi-set I0 of
⟨key, value⟩ pairs, and operations are a sequence (B1, . . . ,Bk) of
subroutines, where Br (r ∈ [1,k]) consists of a mapper µr and a
reducer ρr . Given I0,A iteratively runsBr (r ∈ [1,k]) as follows [20,
32]. Denote by Ir the output of subroutine Br (r ∈ [1,k]).
(i) The mapper µr handles each pair ⟨key, value⟩ in Ir−1 one by one,
and produces a multi-set I ′r of ⟨key, value⟩ pairs as output.
(ii) Group pairs in I ′r by the key values, i.e., two pairs are in the
same group if and only if they have the same key value. Group I ′r
by distinct keys. Let Gk1 , . . . , and Gkj be the obtained groups.

(iii) The reducer ρr processes the groups Gkl (l ∈ [1, j]) one by
one, and generates a multi-set Ir of ⟨key, value⟩ pairs as output.
(iv) If r < k , A runs the next subroutine Br+1 on Ii in the same
way as steps (i)-(iii); otherwise, A outputs Ik and terminates.

Given a MapReduce algorithmA with n processors, we simulate
A with a PIE program B by GRAPE with n workers. We use PEval
to simulate the mapper µ1 of B1, and (2) IncEval simulates reducer
ρi and mapper µi+1 (i ∈ [1,k − 1]), and reducer ρk in final round.

There are two mismatches: (a) A has a list (B1, . . . ,Bk) of sub-
routines, while IncEval of GRAPE is a single function; and (b) A
distributes ⟨key, value⟩ pairs across processors, while workers of
GRAPE exchange message via update parameters only.

For (a), IncEval treats subroutines B1, . . . , Bk of A as program
branches, and uses an index r (r ∈ [1,k]) to select branches. For
(b), we construct a complete graph GW of n nodes as an additional
input of B, such that each worker Pi is represented by a nodewi for
i ∈ [1,n]. Each nodewi has a status variable x to store a multi-set
of ⟨r ,key, value⟩ tuples. By using GW , all n nodes become border
nodes, and we can simulate the arbitrary shipment of data in A by
storing the data in the update parameters of the workers of GRAPE.

More specifically, consider a multi-set I0 of ⟨key, value⟩ pairs as
input. We distribute these pairs in I0 in exactly the same way as A
does; each nodewi of GW stores the pairs assigned to worker Pi .

The PIE program B is specified as follows.
(1) PEval simulates the mapper µ1 of the subroutine B1 as follows.
(a) Each worker runs the mapper µ1 of B1 on its local data.
(b) It computes the output (I1)′ of µ1 and stores it in the update

parameters for later supersteps.
(c) For each pair ⟨key, value⟩ in (I1)′, it includes a tuple

⟨1,key,value⟩ in an update parameter.
If worker Pi of the reducer ρ1 is to handle the pair ⟨key, value⟩,

PEval adds ⟨1, key, value⟩ to the update parameter of nodewi .
The aggregation function first takes a union of the update pa-

rameters of allwi (i ∈ [1,n]), and then groups the tuples by key.
(2) IncEval first extracts the index r from the ⟨r , key, value⟩ tuples
received, and uses r to select the right subroutine, as remarked
earlier. IncEval then carries out the following operations:
(a) extract a multi-set (Ir)′ of ⟨key, value⟩ pairs from the received

messages of ⟨r , key, value⟩ tuples;
(b) run the reducer ρr , which is treated as a branch program of

IncEval, on (Ii)
′; denote by Ir the output of ρr ; and

(c) if r = k , then IncEval sets the updated parameter to be empty,
which terminatesB; otherwise, IncEval runs the mapper µr+1
on Ir , constructs tuples ⟨r+1, key, value ⟩ for each ⟨key, value⟩
pairs in the output of µr+1, and distributes update parameters
in the same way as PEval.

(3) Assemble takes a union of the partial results from all workers.
It is easy to verify that the PIE program B correctly simulates

the MapReduce program A. Moreover, if A runs in T time and
incurs communication cost C , then B takes O(T) time and sends
O(C) amount of data. Formally, this is verified by induction on k
for the number of subroutines (B1, . . . ,Bk) in A. 2

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

(a) BSP

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

(b) AP

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

(c) SSP (c=5)

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

(d) AAP
Figure 7: Case Study of PageRank

APPENDIX B: MORE EXPERIMENTAL RESULTS
We did two case studies to show how AAP adaptively adjusts delay
stretches and reduces response time, with PageRank and CF.

(1) PageRank. Figure 7 shows the timing diagrams ofGRAPE+BSP,
GRAPE+AP, GRAPE+SSP and GRAPE+ for PageRank over real-life
Friendster. Among 32 workers used, P12 is a straggler (colored in
blue and green). Stragglers often arise in the presence of streaming
updates, even when we start with an evenly partitioned graph.
(a) BSP. As shown in Figure 7(a), the straggler P12 dominated the
running time. Each superstep of the BSP run was slowed down
by the straggler due to the global synchronization. The other 31
workers mostly idled, and the run took 13 rounds and 174s.
(b) AP. GRAPE+AP did slightly better and took 166s, as shown in
Figure 7(b). Idling was substantially reduced. However, fast workers
performed far more rounds of computation than BSP, and most of
these are redundant. The cost was still dominated by the straggler
P12. Indeed, after a period of time, a fast worker behaved as follows:
it moved ahead, became inactive (idle), got activated by messages
produced by P12, and so on, until P12 converged.
(c) SSP. Figure 7(c) depicts a run of GRAPE+SSP with staleness
bound c = 5, i.e., fast workers are allowed to outpace the slowest
ones by 5 rounds. It did better at the beginning. However, when
the fast workers ran out of c steps, there still existed a gap from
straggler P12. Then SSP degraded to BSP and fast workers were
essentially synchronized with the straggler. The run took 145s.
(d) AAP. Figure 7(d) shows a run of GRAPE+. It dynamically ad-
justed delay stretchDSi for each worker Pi by function δ (Section 3).
We set predicate S = true since PageRank does not need bounded
staleness (Section 5.3), and initial L⊥ = 0 to start with.

AAP adjusted delay stretch DS12 at straggler P12 as follows. (i)
Until round 6, function δ kept DS12 = η12 since messages arrived
in a near uniform speed before round 6; there was no need to
wait for extra messages. (ii) At round 6, DS12 was increased by 63
based on predicted running time t12 of IncEval at P12 and message
arrival rate s12, which were estimated by aggregating consecutive
executions of IncEval at all workers. As a result, worker P12 was
put on hold for 8s to accumulate messages before entering round

7. This effectively reduced redundant computations. Indeed, P12
converged in 8 rounds, and the run of GRAPE+ took 112s.

Observe the following. (i) Starting from round 3 of P12, fast work-
ers were actually grouped together and ran BSP within the group,
by adjusting their relative progress; meanwhile this group and strag-
gler P12 were under AP. As opposed the BSP degradation of SSP,
this BSP group does not include straggler P12. Workers in the group
had similar workload and speed; there was no straggler among
them. These workers effectively utilized resources and performed
almost optimally. (ii) Straggler P12 was put on hold from round 7 to
accumulate messages; this effectively reduced redundant computa-
tions and eventually led to less rounds for P12 to converge. (iii) The
estimate of ti and si was quite accurate since the speed of IncEval
at the same worker did not drastically vary. (iv) If users opt to set
L⊥ as, e.g., 31, function δ can start reduce redundant computations
early and straggler P12 can find “optimal” stretch DSi sooner. It is
because of this that we allow users to set L⊥ in function δ .

(2) CF. We also analyzed the runs of CF on Netflixwith 64 workers.
Note that CF requires staleness bound c . We find the following.
(a) BSP. BSP converged in the least rounds (351), but it incurred
excessive idleness and was slower than AAP and SSP.
(b) AP. While idleness was nearly zero, AP took the most rounds
(4500) and was slower than AAP and SSP, as also noted in [53].
(c) SSP. Tuning c was helpful. However, it is hard to find an optimal
c for SSP. We had to runGRAPE+SSP 50 times to find the optimal co .
(d) AAP. To enforce bounded staleness, predicate S is defined as
false if r = rmax and |rmax −rmin | > c , for c from 2 to 50 in different
tests. In the first a few rounds, function δ set delay stretch Li for
each worker Pi as 60% of the number of workers, i.e., Pi waited and
accumulated messages from 60% of other workers before the next
round. It then adjusted Li dynamically for each Pi .

AAP performed the best among the 4 models. Better yet, AAP
is robust and insensitive to c . Given a random c , AAP dynamically
adjusted Li and outperformed SSP even when SSP was provided
with the optimal co that was manually found after 50 tests.

	Abstract
	1 Introduction
	2 The Programming Model
	3 The AAP Model
	4 Convergence and Expressive Power
	4.1 Convergence and Correctness
	4.2 Simulation of Other Parallel Models

	5 Programming with AAP
	5.1 Graph Traversal
	5.2 Collaborative Filtering
	5.3 PageRank

	6 Implementation of GRAPE+
	7 Experimental Study
	8 Conclusion
	References

