A Visual Explorer for Geolocated Time Series

Georgios Chatzigeorgakidis
IMSI, Athena R.C., Greece
gchatzi@athenarc.gr

Dimitrios Skoutas
IMSI, Athena R.C., Greece
dskoutas@athenarc.gr

ABSTRACT

We present spaTScope, a web application for visual exploration
of geolocated time series. Analyzing such data is becoming in-
creasingly important in many domains, such as energy demand
management, geomarketing and geosocial networks. spaTScope
allows users to visually explore large collections of geolocated time
series and obtain insights about trends and patterns in their area of
interest. The provided functionalities leverage a hybrid index that
allows to navigate and group the available time series based not
only on their similarity but also on spatial proximity. The results
are visualized using linked plots combining maps and timelines.

CCS CONCEPTS

« Information systems — Spatial-temporal systems.

KEYWORDS

geolocated time series, hybrid indexing, visualization

ACM Reference Format:

Georgios Chatzigeorgakidis, Kostas Patroumpas, Dimitrios Skoutas, and Spiros
Athanasiou. 2020. A Visual Explorer for Geolocated Time Series. In 28th
International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’20), November 3—6, 2020, Seattle, WA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3397536.3422345

1 INTRODUCTION

Geolocated time series can be found in various domains and appli-
cations, especially related to geosocial networks and IoT. A typical
example involves analyzing and forecasting water consumption
measured by smart meters installed in urban households [4]. An-
alyzing such time series can provide valuable insights regarding
trends and patterns of consumer behavior in daily life. These results
can then be used to forecast and balance water demand, as well
as to plan and prioritize interventions that can guide consumers
towards more sensible water use. Similar use cases can be found in
other domains, such as in geomarketing or mobile advertisement,
where geolocated time series may represent the number of visitors
or the business revenue generated at a certain location across time.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL °20, November 3—6, 2020, Seattle, WA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8019-5/20/11.

https://doi.org/10.1145/3397536.3422345

Kostas Patroumpas
IMSI, Athena R.C., Greece
kpatro@athenarc.gr

Spiros Athanasiou
IMSI, Athena R.C., Greece
spathan@athenarc.gr

Extracting insights, trends, and patterns can be significantly facil-
itated by linked visualizations combining map and timeline views to
summarize large collections of geolocated time series. For instance,
such visualizations can reveal which type of consumption patterns
are most frequently observed among consumers in a certain area or
what the spatial distribution of sales for a certain product looks like.
However, to enable interactive visualizations, queries and aggre-
gations over geolocated time series need to be executed efficiently.
Thus, an appropriate index structure becomes indispensable.

In recent work, we have presented BTSR-Tree [2], a hybrid index
for geolocated time series that combines both spatial proximity and
time series similarity. BTSR-Tree is an extension to the R-tree spatial
index; in addition to the standard Minimum Bounding Rectangle
(MBR) denoting the spatial extent of its contents, each node is
augmented with a Minimum Bounding Time Series (MBTS), i.e., a
pair of sequences that encloses all the time series contained in its
subtree. Maintaining both kinds of bounds per node enables pruning
the search space simultaneously in the spatial and the time series
domains while traversing the index in order to provide response to
queries against the dataset. To increase pruning effectiveness, time
series indexed in a given node are further grouped into bundles
on the basis of their similarity, hence achieving tighter bounds in
the MBTS of these bundles. Each node can also store statistics, e.g.,
the number of time series pertaining to each bundle, in order to
facilitate fast computation of aggregates, if necessary.

In this work, we demonstrate spaTScope!, a web application that
leverages the BTSR-Tree index to enable interactive visual explo-
ration over large collections of geolocated time series. spaTScope
takes advantage of the summarization approach we introduced
in [3] and further enhanced in [1]. This technique can generate
composite summaries on-the-fly for the geolocated time series
within a selected area of interest in order to facilitate identification
of significant patterns characterizing these time series as well as
their distribution in space. More specifically, spaTScope offers an
interactive UI consisting of two linked panels: (i) a timeline view
that essentially groups similar time series together in a common
plot as a band (i.e., bundle) representing the magnitude of their
fluctuations across time, and (ii) a map view that displays MBRs
with different colors and varying sizes to convey the spatial where-
abouts of the locations for a selected bundle (i.e., group of time
series). The application is supported by a back-end component,
which communicates with the Ul upon any user interaction (e.g.,
zoom in/out, pan). After focusing on the map area of interest, the
user can trigger a search query against a BTSR-Tree index built

!https://github.com/smartdatalake/spaTScope

https://doi.org/10.1145/3397536.3422345
https://doi.org/10.1145/3397536.3422345

SIGSPATIAL ’20, November 3-6, 2020, Seattle, WA, USA

’

]

]

] (

: Dataset Map Timeline

i Selection Panel Panel

N e e R e
REST API
Requests

e ———E N e —-- ———-

(QU

] Ve \'
] BTSR-Tree A Query 1
i Index N—V Engine]
] AN 1)
] ~]
N e Application BackEnd _____________. /

Figure 1: spaTScope architecture.

for the examined dataset. Summaries representing the qualifying
results both in the spatial and time series domains are returned to
the UI for rendering on the map and timeline panels, respectively.

Overall, spaTScope offers an interactive and user-friendly way to
inspect and explore a dataset of geolocated time series. Through the
panels, users can swiftly drill down to more detailed representations
of the data or roll up to more concise renditions, depending on their
area of interest and the degree of summarization applied on the
underlying dataset.

The remainder of this paper proceeds as follows. Section 2 pro-
vides an overview of the application. Section 3 discusses the two
back-end modules, and Section 4 presents the user interface. Sec-
tion 5 outlines a demonstration scenario against a real-world dataset.

2 SYSTEM OVERVIEW

Figure 1 presents an overview of spaTScope’s architecture. This
client-server application consists of three main components:

e User Interface. On the front-end, spaTScope offers a web-
based interface that enables users to select a dataset of ge-
olocated time series and explore it through the provided
visualizations. Bundles are visualized in two linked panels: a
map renders their spatial distribution and intensity, whereas
on the timeline panel users can inspect their variations across
time. Choosing a bundle from the timeline triggers a map
update to focus on the time series belonging to that bundle.
When interacting with the map, e.g., panning or zooming in,
queries are sent to the back-end, and results are summarized
and used to refresh or refine the depicted bundles. These
changes are also reflected in the timeline panel.

e Query Engine. User interactions with the Ul issue requests

via a REST API to the query engine in spaTScope’s back-

end. Such requests are essentially search queries against the

BTSR-Tree index of the explored dataset. Upon receiving the

resulting bundle summaries, the query engine propagates

them back to the UI for rendering them in the two panels.

BTSR-Tree Index. To support efficient exploration and sum-

marization in both the spatial and time series domains, this

index structure is constructed in the back-end over the se-
lected dataset of geolocated time series. The constructed

BTSR-Tree is available for requests specified through the

Query Engine module during data exploration. For efficiency,

this index resides in memory for fast retrieval of results.

G. Chatzigeorgakidis, et al.

root

_ ©

B AN AN

T,T,T,T, T, T, T;T,
(b) Hybrid BTSR-Tree index

NI: .. S T, ”zl e " n; ﬂ
LSIAL |l Ry
T,
%

~

(a) Sample dataset

Figure 3: The BTSR-Tree index.

3 APPLICATION BACK-END

We first outline the BTSR-Tree, a state-of-the-art hybrid index tai-
lored to efficient search against geolocated time series. We then
present how the Query Engine module handles requests specified
when users interact with the application.

3.1 The BTSR-Tree Index

The BTSR-Tree index [2] is based on the notion of Minimum Bound-
ing Time Series (MBTS). Like an MBR that contains a set of geome-
tries in the spatial domain, an MBTS encloses a set of time series T .
Each MBTS consists of an upper bounding time series B and a lower
bounding time series B, constructed by respectively selecting the
maximum and minimum of values at each timestamp i € {1,...,n}
among all time series in set 7. Figure 2 depicts an example of two
MBTSs Bj, By for two disjoint sets of time series.

A BTSR-Tree index is initialized as an R-tree built on the spatial
attributes of the given geolocated time series dataset, as depicted
in the example of Figure 3. Besides MBRs, each node is enhanced
to also store MBTSs of similarly evolving time series, shown as
colored strips per node in Figure 3b. This enables efficient pruning
of the search space when evaluating hybrid queries combining time
series similarity with spatial proximity.

For each child, a node stores a pre-specified number of MBTSs.
Construction and maintenance of the BTSR-Tree follow the proce-
dures of the R-tree for data insertion, deletion and node splitting.
Objects (i.e., geolocated time series) are inserted into leaf nodes and

A Visual Explorer for Geolocated Time Series

SIGSPATIAL °20, November 3-6, 2020, Seattle, WA, USA

I 7 S Y

e
y/ 4 ¢
&
L

J ¢
J S
| I
0 50 100 150 /

103 A
s 1 I | Ml i |
43 U PV W "1 f |) {E
o
23 T\C"s“s AdGuard Assistant

= D
L3 y o e i g Weehggvken
VD

NY 495

t t
o 50 100 150

- 5 N —— ~,
s %
g 25 .
&
/2~ \é} C’/\”
N
X
NN
NS 7
o~
&
123 8
; %
i
S I
A ;
NY 25
X .
5 Q
; NY 25
S 49 NY 25 q
[T
S |
£ i
B) S i
OO Map ties by Stamen Design, by OpenSiraotMap, under CC BY 84

Figure 4: Application front-end visualizing taxi dropoff patterns in Manhattan, NYC.

any resulting changes are propagated upwards. Once the nodes have
been populated, the MBTS of each node are calculated bottom-up,
relying on k-means clustering according to their Euclidean distance
in the time series domain, as exemplified for k = 2 in Figure 2. In a
BTSR-Tree, each parent node receives all the MBTSs of its children
and computes its own k MBTSs. To facilitate summarization, each
node also retains the count of objects per MBTS indexed in the
leaves of its subtree; this count is kept as a list C = {Cy,...,C¢}. In
Figure 2 such counts are shown within circles in each node. The
process continues upwards, until reaching the root.

3.2 The Query Engine

In [3] we introduced an efficient approach for constructing sum-
maries over a BTSR-Tree index. This was further enhanced in [1]
for advanced visualizations of geolocated time series. In the sequel,
we briefly outline this framework, which serves as the Query En-
gine in spaTScope. Query parameters include an area of interest,
abstracted as the rectangle g of the currently visible area on map,
and the number k of bundles to be retrieved from the index. The
process comprises three successive steps:

Step 1: BISR-Tree Traversal. For a given query, we search the index
in order to fetch bundles having their MBRs within the specified
area of interest g. A breadth-first search traversal of the index
examines its nodes level by level. Once M nodes are fully contained
within rectangle g, the traversal terminates, and their summarized
data (i.e., MBR, MBTS, and the counts C per MBTS) are retrieved
and added to the intermediate results. M is a system parameter that
controls the maximum number of regions to be displayed on the
map in order to avoid cluttering.

Step 2: Bundle Clustering. The set {(MBR, MBTS, C)} of interme-
diate results qualifying to the query criteria are further summarized

in this stage. In particular, we apply a k-means clustering based on
the obtained MBTS’s, abstracting each one by the average of its
upper B" and lower bounding series B-.

Step 3: Bundle Calculation and MBR Assignment. Each of the k
clusters produced in the previous step will represent the bundles
returned for visualization. Thus, for each cluster we need to con-
struct its respective MBTS from its members. Indeed, the overall
MBTS per bundle is derived with the same process used during
BTSR-Tree construction, i.e., taking the maximum (minimum) value
per timestamp among all upper (respectively, lower) bounds among
the members of the corresponding cluster. The MBRs per cluster are
not combined, unless two of them coincide; in that case, we keep a
single MBR and sum up the total number of objects in the original
two MBRs. Finally, each bundle is represented with a single MBTS,
multiple (possibly overlapping) MBRs, and each MBR denotes the
number of geolocated time series contained therein.

4 USER INTERFACE

Figure 4 illustrates the user interface of spaTScope, which consists
of two interactive panels. On the left side, a timeline visualizes
bundle summaries fetched from the back-end. On the right side, a
map displays the spatial distribution of a selected bundle. The two
panels are linked, meaning that changes in one are also reflected
to the other. For instance, if the user picks another bundle from
the timeline panel, the corresponding MBRs appear on the map.
Moreover, if the user focuses the map to another area by zooming
or panning, a new search request is invoked to the back-end to
refresh the bundles that correspond to the new area of interest.
Once the application is launched, the user can select the file
containing the dataset for exploration. If the BTSR-Tree index for

SIGSPATIAL ’20, November 3-6, 2020, Seattle, WA, USA

this dataset exists, it is automatically loaded; otherwise, it is con-
structed, and also stored for future use. The Ul also contains buttons
and drop-down lists for fetching the summaries from the back-end,
resetting the map to its initial position, selecting the dataset file
and selecting a specific scale value for the map.

Timeline panel. This container displays the collection of k bun-
dle summaries fetched from the back-end. Users may specify a
desired value k for bundles from a drop-down list; once this request
is processed in the back-end, the map is updated accordingly to
mirror the new bundle summaries. Each bundle in the timeline
panel illustrates its MBTS as a band that fully encloses the time
series summarized by this bundle. The average time series of each
bundle is also drawn (in dark blue color in Figure 4) to indicate
the general trend. Intuitively, as the displayed bundles have been
derived after clustering (Section 3.2), the user will be able to identify
diverse patterns in their fluctuation across time. By scrolling down
this list, the user can choose a bundle for inspection by clicking on
the corresponding button, which automatically draws its spatial
distribution as MBRs on the map. Note that the bundles in this
panel become progressively refined (i.e., bands get narrower) as
the spatial area of interest shrinks. At the finest granularity, the
timeline panel displays the raw time series, each one corresponding
to a particular location on map. Selecting a time series in this panel
highlights its location on map, and vice versa.

Map panel. This component has the typical functionalities of a
web-based map application (zoom, pan, full extent). The user can
move, or zoom in/out the map using her mouse. Each time the user
clicks the “Fetch” button, a new search request is triggered to the
query engine and the newly fetched results are rendered. Over a
backdrop of raster map tiles (e.g., OpenStreetMap?), spaTScope can
display the spatial distribution of the bundle selected in the timeline
panel in the form of MBRs, as obtained by BTSR-Tree index. The
corresponding total number of objects (i.e., raw geolocated time
series) contained within each MBR is also shown. To convey the
local density of objects, each MBR is colored accordingly using
the spectral palette, i.e., ranging from blue for less dense MBRs, to
yellow for moderately densed ones, up to red for the most densely
populated MBRs.

When the user clicks on an MBR, the map automatically zooms
in to its extend and a new search request is triggered in the back-
end using the visible map extent as the new area of interest. In case
the zoom level has reached the MBR of a leaf in the underlying
BTSR-Tree, the map will eventually pinpoint the exact locations of
the corresponding raw time series (and these time series will be
shown in the timeline panel).

Finally, by pressing the reset button, the user can reset the appli-
cation and render in both panels the same contents shown when
the dataset was first chosen by the user (i.e., full spatial extent).

5 DEMONSTRATION SCENARIO

To demonstrate spaTScope, we have prepared a scenario based on
geolocated time series extracted from taxi dropoff data in New York
City. Specifically, this dataset contains time series extracted from

Zhttps://www.openstreetmap.org

G. Chatzigeorgakidis, et al.

yellow taxi rides in NYC during 20153. Based on the timestamped
locations for drop-off per ride, we generated time series per cell
of a uniform spatial grid over the entire city (cell side was 200
meters). In each cell, we counted all drop-offs for each day of the
week at the time granularity of one hour. Thus, we obtained the
number of drop-offs for 24 X 7 time intervals in every cell, which
essentially captures the weekly fluctuation of taxi destinations
there. The centroid of each cell is used as the geolocation of the
corresponding time series. In total, this dataset contains 417,960
geolocated time series. Performance-wise, the time between issuing
arequest to the application back-end and rendering the results on
the UI for this dataset does not exceed two seconds.

Once the user connects to the web application, she is presented
with its basic visual interface. First, she clicks on the file selection
button to pick a dataset for exploration. The respective BTSR-Tree
index is then loaded. The default number of bundles is set to k = 5;
thus, 5 bundles that summarize the time series of the entire dataset
are shown in the timeline panel. The first of those bundles is chosen
and its corresponding MBRs are displayed on the map. Each bundle
captures a distinct pattern of fluctuations in the time series domain,
so the user will be able to directly identify on map the spatial
distribution and intensity separately for each such pattern. This
first-cut insight may be further refined by clicking on an MBR
for closer inspection. The map zooms automatically to fully cover
this MBR and both panels are refreshed: in the timeline, more fine-
grained bundles are drawn capturing the patterns of time series
located in the visible map area only. In addition, new MBRs are
shown on map, corresponding to one of the bundles just retrieved.
In case the user specifies another value for k, e.g., wishing to display
k = 10 bundles, more refined ones are fetched from the back-end
and the map is refreshed to show the new MBRs. Naturally, each of
those fresh MBRs now summarizes fewer objects, hence the MBR
extents and counts are adjusted accordingly. Thus, the user is able to
progressively proceed her analysis into more detail, until reaching
the finest zoom level. Then, individual locations are depicted on
map along with their corresponding time series in the timeline. If
the user zooms in/out or pans the map, fresh summaries are fetched
from the back-end to illustrate the bundles and their distribution in
the new map extent. Thus, when choosing a different area, the user
can identify differing patterns in drop-offs and also locate where
each one has strong presence.

ACKNOWLEDGMENTS

This work was supported by the EU H2020 project SmartDataLake
(Grant No. 825041).

REFERENCES

[1] G. Chatzigeorgakidis, K. Patroumpas, D. Skoutas, S. Athanasiou, and S. Skiadopou-
los. Visual exploration of geolocated time series with hybrid indexing. Big Data
Research, 15:12-28, 2019.

[2] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, S. Athanasiou, and S. Skiadopou-
los. Indexing geolocated time series data. In SIGSPATIAL, pages 19:1-19:10, 2017.

[3] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, S. Athanasiou, and S. Skiadopou-
los. Map-based visual exploration of geolocated time series. In BigVis (EDBT/ICDT
Workshops), pages 92-99, 2018.

[4] P. Chronis, G. Giannopoulos, and S. Athanasiou. Open issues and challenges
on time series forecasting for water consumption. In DAMASCA (EDBT/ICDT
Workshops), 2016.

Shttps://www1.nyc.gov/site/tlc/about/tlc-trip-record- data.page

https://www.openstreetmap.org
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Abstract
	1 Introduction
	2 System Overview
	3 Application Back-end
	3.1 The BTSR-Tree Index
	3.2 The Query Engine

	4 User Interface
	5 Demonstration Scenario
	Acknowledgments
	References

