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Routing engines and navigation services are among the top applications that take advantage 

of the OpenStreetMap (OSM) collaborative project. With that said, the underlying road network 

data provided by the OSM public geographic datasets must be as accurate as possible for these 

services to work correctly. This means that road networks must be fully connected, and other 

constraints such as turn restrictions, road directionality and correct road classification must be 

respected. However, being an open-license project with around 7 million users and a daily average 

of about 3 and half million map changes, errors in the data are far from lacking. Issues like 

misclassified road segments, incorrect connections and gaps in road networks are fairly common, 

and they pose a complex yet notable obstacle that jeopardizes the accuracy and reliability of 

routing services that rely on OSM data. In this research, we demonstrate and analyze a system we 

have developed (the OSM connectivity system, or OCS) that tackles and remedies all sorts of 

connectivity errors in an OSM road network graph. The system enables the end-user (cartographer) 

to discover errors and achieve full connectivity in any chosen OSM road network graph. It 



 

automatically detects connectivity errors that otherwise require an extensive manual process to 

discover, accepts user input through its friendly graphical user interface, and allows for further 

error investigation, fix suggestion, and easy access to official editing tools.  
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I. INTRODUCTION 

 

OpenStreetMap (OSM) is a rapidly growing open license project that offers map services 

and geospatial data sets which are made available by editors and cartographers all over the world. 

It currently serves over 7 million users [1] in various applications and services such as routing 

engines, global positioning systems, and other G.I.S. systems.  

Every day there are about 4.5 million map changes. With such huge number of daily 

contributions, errors are bound to happen, and in fact often do. Incorrect connections, gaps, road 

misclassifications and broken links are common connectivity errors found in the road network data 

of a given region. These errors translate into scenarios like highways that exit directly onto 

residential roads, U-turns with wrong directionality, and roads that are isolated from other road 

segments in the road network graph. These faults pose serious obstacles to the reliability of any 

routine engine or entity relying on OSM road network data.  

In addition to the connectivity errors mentioned above, the road network graph of a given 

region must be fully connected in order for routing engines to properly function. For example, if a 

user wants to go from their home (point A) to their relative’s home (point B), the routing engine 

will ideally route them through the highest classified road network for as long as possible since 

these roads are considered to be the widest and fastest to drive on (freeways). Such a trip will 

typically consist of a few low-class road segments (like residential roads) that reach a highway 

access point from point A, then the bulk of the trip would be spent on freeways as they are the 
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fastest option before finally driving again through lower-class roads that exit the freeway and 

reaching point B. However, if connectivity errors exist in the freeway road network, the routing 

engine will incorrectly route the user to go through more lower-class roads and take more detours, 

decreasing the time spent on freeways and increasing the total travel time.  

On top of accurate routing, fixing connectivity errors also has various significant benefits. 

It reduces travel time and therefore saves money and resources by spending less time on the road 

and using less gas. It increases driving options as more routing options are made available when 

there are more options to go from point A to point B, which in turn distributes traffic density more 

efficiently. A fully connected road network also improves reachability and can even in- creases 

the number of transportation modes (when lower-class road networks are fully connected, biking 

is made possible). The benefits of an optimal road infrastructure on a region’s overall socio-

economic productivity have long been studied, and our system aims at achieving them by 

providing adaptable solutions for detecting errors in road network data and suggesting connectivity 

fixes for them.  

Our research offers reasonable contributions in the areas of OSM, road networks and graph 

theory, specifically surrounding the problem of optimally connecting disjoint directed subgraphs. 

Automated error detection and fix suggestions for OSM road network data are made available in 

an intuitive never seen before manner. In fact, no other tool as far as we know tackles OSM road 

networks and offers complex solutions for connectivity errors. Algorithmically, the problem of 

suggesting connectivity fixes to real disconnected subgraphs is truly a challenging one. When 

dealing with real life roads, there is a plethora of constraints to be considered such as directionality, 

turn restrictions, shortest distance needed to connect them, fault tolerance, minimal number of 
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roads needed to connect them, etc. We are dealing with thousands of differently classified road 

segments within different road network graphs. Additionally, there are multiple combinations to 

the problem and different orders of connectivity: the more the subgraphs the more there are 

different ways to connect them. There is also the reality of cascading consequences: if a road 

segment is re-classified to fix a road network’s connectivity, it might break the connectivity of 

already existing road networks as we are essentially dealing with a single multi-layered composite 

road network graph.  

Existing research surrounding strongly connected components and OSM road networks 

and quality assurance have aided our research as is expanded in Chapter II. However, no related 

work directly scratches the issue of road network connectivity and how to optimally connect them. 

Before we dive into the innards of OCS, we define core definitions and nomenclature in Chapter 

III. We then describe the algorithms and methods used to develop our system in Chapter IV 

followed by the architecture used to implement the said methods in Chapter V. We demonstrate 

the capabilities and showcase results of our system for different countries in Chapter VI.  
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II. RELATED WORK 

 

A.   Strongly Connected Component (SCC)  

The proposed system and its contributions fall under different buckets, the first of which is the 

detection of strongly connected components (SCC). By definition, a strongly connected graph is a 

graph in which every vertex is reachable from every other vertex. SCC detection nowadays has 

many uses in various field such as analyzing web graphs [2], social media networks [3] [4], model 

checking for state space graphs [5], reinforcement learning [6], mesh refinement [7], computer 

aided design [8] and scientific computing [9].  

A considerable amount of research has been (and is still being) done on SCC detection, and we 

can classify these researches into two different kinds: parallel SCC detection algorithms and 

sequential SCC detection algorithm. Larger datasets and dynamic graphs require parallel detection 

algorithms (the use of multiple CPU cores or GPUs simultaneously) as the complexity of the task 

becomes more challenging when the dataset grows. Such algorithms include the MG-Hybrid [10], 

the Multistep method [11], the Forward-Backward (FW-BW) method [12] and Orzan’s coloring 

method [13]. The second kind of algorithms are the sequential algorithms. They are a better fit for 

smaller static datasets which are abundant when it comes to individual road networks. Notable 

sequential SCC algorithms include Kosaraju’s [14], Dijkstra’s [15], and Tarjan’s [16], which OCS 

heavily draws upon. We are essentially detecting subgraphs and trying to connect them into an 

SCC as best we can. As detailed in the following chapters, OCS makes strong use of graph theory 
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and algorithms such as Tarjan’s SCC detection algorithm in its design of an algorithm for 

suggesting connectivity fixes.   

 

B.   OpenStreetMap (OSM) and road networks  

First and foremost, this research expands on the published demo paper showcasing this system we 

built [17]. As a result of its continuous exponential growth, OSM road and transportation network 

data is being used more and more in applications. These applications include but are not limited to 

autonomous car space detection (22), road elevation [18] and inclination [19] [20] estimation, 

transportation network partitioning [21], inter- vehicle communication simulation [22] and graph 

reduction and interpolation [23].  

Even though the advantages of GIS systems [24] have always been clear, correctly charted digital 

road network and infrastructure data is of utmost importance now more than ever as our world 

relies heavily on digital datasets. As mentioned earlier, OSM is a huge open-source project with 

millions of users [1], which means that errors and faults in the data are very likely to occur. It is 

no surprise that wrong data will lead to wrong results, and there is no exception when it comes to 

road network data. Proof of errors in the road network data directly reflected onto routing engine 

results can be found in researches and systems that tackle routing error discrepancies when 

different underlying map providers are involved [25]. OCS offers solutions for detecting and fixing 

different errors in OSM road network data, making the overall datasets more reliable and accurate 

for all of its userbase.  
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C.   Quality Assurance 

Various OSM quality assurance tools already exist such as Osmose [26], JOSM/Validator [27] and 

OSM Inspector [28]. Additionally, research has also been conducted on mechanisms to further 

improve the OSM data quality [29], some even targeting road networks [30]. However, most of 

the available tools do not provide suggestions for fixes, and none of them tackle the crucial 

problem of achieving road network connectivity. OCS is also adaptable as it can cover any region 

in the world, and it has a user-friendly graphical user interface which makes rectifying road 

network connectivity errors even more intuitive.



 

III. PRELIMINARIES 

 

Road segments, also referred to as “ways”, are classified into seven main geographical entities. In 

the descending order of importance, a road segment is either a: motorway, trunk, primary, 

secondary, tertiary, residential, or unclassified road. Motorways (also known as freeways) are 

restricted access divided highways, usually with at least two running lanes and shoulders. Trunks 

are the most important roads in a country’s system, which are not motorways (they are not 

necessarily a divided highway). After that come primary, secondary and tertiary roads which are 

based on length, width and significance. Residential roads are road segments that offer access to 

housing areas without the purpose of connecting settlements together. Unclassified roads are minor 

roads that serve purposes other than connecting properties, they are the least important roads in a 

country’s system [31].  

A road network graph G is a pair (V, E), where V is a set of vertices, and E is a set of edges 

between the vertices E ⊆ {(u, v) | u, v ∈ V}. That is, each edge can be followed from one vertex 

to another vertex. In terms of OSM data terminology, OSM ”nodes” represent vertices and OSM 

”ways”(or road segments) represent edges.  

With that said, every road classification described above has its own road network graph. For 

instance, the motorway road network graph is the graph exclusively made out of motorway road 

segments, GMotorways = (V, E) where E ⊆ M, and M represents the set of all motorway road 

segments.  
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Although these road networks can exist separately, they are often grouped together to achieve a 

connected graph. Just like in real life, when you drive from your workplace to your residential 

street, you are following a path of interconnected road segments which are a subset of the seven 

different road class we mentioned earlier. Higher-class road segments are connected to each other 

via lower class road segments, i.e. motorways are often connected by trunks, and trunks are often 

connected by primaries (and so on going down the road hierarchy). Accordingly, we attribute 

“levels” to road networks which contain a grouping of different road classes. The highest road 

network level (also referred to as level 1) is the road network graph made out of the highest road 

classes in a country, usually motorways and trunks. For example, the highest road classes in New 

Zealand are motorways and trunks, so Glevel1 in New Zealand = (V, E) where E ⊆ {M, T}, and M 

and T represent the set of all motorway and trunk road segments respectively. In the Fiji Islands’ 

case, there are no motorways or trunks, so Glevel1 in the Fiji Islands = (V, E) where E ⊆ {P, S}, and 

P and S represent the set of all primary and secondary road segments respectively.  
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IV. METHODOLOGY 

 

We can divide the overall OCS workflow and process into 4 main steps: extracting and preparing 

the data, processing it into custom data structures, detecting road network errors, and suggesting 

connectivity fixes.  

 

A.    Data preparation  

The OSM geographical map data is generally made available in protocol buffer binary format 

(.pbf) or .osm format, which are extended versions of XML. This crowdsourced data is made 

available under the Open Database License; however, it cannot be used as-is and needs to be 

converted into other formats to be used by our algorithms. Moreover, this raw data contains 

granular levels of details for the selected region such as information about amenities like 

restaurants. As mentioned in Section III, we are mainly interested in two geographical entities - 

ways and nodes - and their dependent objects. Apart from these we are also interested in extracting 

relations defined for ways and nodes. OSM ’relations’ define geographic relationships between 

ways, nodes and other relations. For example, a relation R can define that “no U-Turn” can be 

made at a node N when going from a way W1 to way W2.  

We perform a first level of optimization at this stage by extracting only the required data and the 

tags (i.e. nodes, ways, relations with required metadata/tags), including their dependent objects 

such as the nodes that make up ways, ways of relations, relations of other relations. We convert 
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the raw data to .xml files by using OSMConvert [32] and filter it by using OSMFilter [33], two 

powerful command line tools. Once we have the data filtered and in XML format, it can readily 

be used by algorithms and programs for further processing.  

 

B. Pre-processing data  

We designed our system to be object-oriented, thus all operations performed mainly include three 

objects - Node, Way and JunctionNode. We also define a Country object which stores all the 

metadata and the road-hierarchy for a particular country. Since XML format does not provide the 

fastest lookup for large data sets like ours (even after filtering), we transform this data to a more 

suitable format. We parse this data through our system and save it as a collection of maps. Having 

the data as key-value pairs provides both fast and easy access to any entity we need. This collection 

is distributed into 4 major maps: Nodes, Ways, Relations and Junction nodes. All 4 hash maps 

follow a uniform structure of key being the entity id (identifier) and its corresponding value being 

the information about that entity. The Node map contains information such as each node’s id, list 

of ways, and road classes that it is a part of. The way map is comprised of information such as 

each way’s id, road class, geometry or nodes present in the way, start and end nodes, and its 

directionality (i.e. whether the node is bidirectional or unidirectional). Similarly, the Relations map 

contains the relation’s id, nodes, and ways. The Junction nodes map houses nodes which are either 

the start or end node of a way (i.e. junction points/ vertices in a graph). This map contains the basic 

geometry of the entire road network graph.  

Once OCS processes the pre-filtered OSM files, it creates the above collection of maps and saves 

them as JSON files to avoid pre-processing again in case the data remains the same.  
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While the data is being parsed, we simultaneously address the following issues:  

• Detecting road hierarchies: We enumerate the road-classes available in OSM data as per 

their importance. The road- hierarchy for each country is initialized to the lowest road level. 

Once we start reading the XML files into objects, the road-type tag of each way object is 

compared to the existing road-hierarchy of the country and updated if it is at a higher level 

than the existing road-hierarchy.  

 

• Resolving the 180-degree issue on flat maps: The 180th meridian or antimeridian is the 

longitude which is both 180-degree east and west of the prime meridian (the zero-based 

reference on which all longitudes are placed). In most software or geographic data, earth is 

represented as a rectangle, and the antimeridian acts as the edge of the map. However, 

OSM data maintains two copies of antimeridians to represent traversal directions: +180 

degree and -180 degree. For each geographic node that falls on these antimeridian lines, 

OSM represents the same node with two copies. For example, a single node that falls on 

an antimeridian can be represented by two different OSM nodes with coordinates like (-

16.7935583, 180.0000000) and (-16.7935583, -180.0000000). Even though these two 

OSM nodes represent the exact same location, the data has no way object connecting these 

two nodes. This causes the generation of disconnected components at these nodes even 

though we should achieve continuous connectivity. To resolve this issue, we resorted to 

generating hypothetical ways that connect these two nodes, which we refer to as 

complementary nodes. The idea behind this is to collect all the nodes that lie on the 

antimeridian for a particular country, identify the pair of nodes with same latitude but 

complementary longitudes, and create a hypothetical way which has starting point as one 
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node and ending point as the other node in the pair (considering it to be bi-directional). 

This enables us to form a continuous connection passing through these two nodes, 

rectifying any invalid disconnections caused by the antimeridian. This is illustrated in 

Figure 1 where N1 and N2 lie on antimeridian and have same latitudes but complementary 

longitudes (+180 and -180), even though they represent the same geographic location. 

Since N1 and N2 do not connect through any ways, we cannot traverse from W1 to W2 or 

vice-versa depending on the directionality even though these ways are actually connected. 

Adding the hypothetical way AM_W between N1 and N2 resolves this issue.  

 

• Detecting ferry terminals: Countries such as New Zealand (which are a collection of 

islands) are interconnected by waterways. To achieve connectivity for a particular level 

such as level 1 (connect motorways with least number of trunks), we need to connect all 

motorways present in all the islands. We propose to achieve this by firstly connecting all 

the motorways in the individual islands using trunks, connecting the resultant graphs on 

Figure 1. Adding hypothetical ways 
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each island to the nearest ferry terminals, and finally connecting these ferry terminals 

together via waterways. The prerequisites to do this is to identify the waterways and the 

ferry terminals. We perform this identification while parsing the XML files by adding a 

”ferry” attribute to the way object if it is a waterway and by collecting the nodes with 

”amenity” tag as ”ferry terminal”.  

 

• Detecting and resolving T-intersections: Each way is composed by a collection of nodes: 

a start node, an end node and the intermediate nodes in between them. For our algorithms 

we focus only on the starting and ending nodes of the ways, which we refer to as junction 

nodes, since these are sufficient in and of themselves to achieve connectivity (solely 

connecting the start and end nodes of ways together is practically how we connect them). 

However, there are a few scenarios as illustrated in Figure 2 where way W1 has NS as the 

starting node, NE as the end node and N2 as an intermediate node; and way W2 has N1 as 

the starting node and N2 as the end node. Now since our algorithms are based on start and 

end nodes, they will not be able to make out a path from W2 because N2 would be 

considered as a dead end (it isn’t a junction between another start/end node). To enable 

such traversals, we divide the way at points where an intermediate node is either the start 

or end point of other ways into sub-ways we create. As you can see in the illustration, we 

divided W1 into 2 different ways: W1A with NS as the start node and N2 as the end node, 

and to W1B with N2 as the start node and NE as the end node, enabling traversal between 

NS, N2, N1 and NE. We detect all such T-shaped intersections and process them to enable 

all traversal paths.  



 

 

14 

 

• Turn restrictions: It is crucial to consider traffic signs while applying traversal algorithms. 

In our work, we focus mainly on four types of restrictions: no U-turn, no right turn, no left 

turn, and no straight on. In OSM, such restrictions are expressed as relations. Each relation 

has ’from’, ’via’ and ’to’ tags. These tags imply that for a particular relation like a “no U-

turn”, one is not allowed to traverse from the way objects tagged as ’from’ to way objects 

tagged as ’to’ through a node tagged as ’via’. For our algorithm, we find the starting nodes 

for the ’from’ ways and tag these nodes as ’from’. Similarly, we tag ’to’ nodes and ’via’ 

nodes. If a tag combination of the form ’from-via-to’ is encountered while traversing, then 

the node tagged as ’to’ is not considered for further traversal and not included in the 

resulting graph. In other words, for a particular relation R: if the currently explored node 

is tagged as ’via’ for R, its parent is tagged as ’from’ for R, and its child is tagged as ’to’ 

for R, we do not consider its child node for further traversal. Figure 3 illustrates this by 

showing a restriction R in which x is tagged as ’from’, N1 as ’via’, and N2 is tagged as 

Figure 2. Detecting T intersections 
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’to’: it dictates that one cannot traverse from W1 to W2 via N1 (as represented by the red 

dotted line).  

 

Let us assume x has just been traversed by our algorithms and N1, the child of x, is the current 

node being explored. Even though N1 has two children (z and N2), only z is added in the child 

queue of N1 for further exploration. N2 is not added as a child of N1 because it would complete 

the combination ’from-via-to’ R since its parent is the ’from’ node x, N1 itself is the ’via’ node 

and N2 is the ’to’ node. With this approach, we are able to effectively implement turn 

restrictions.  

 

C. Detecting errors in OSM road network  

There are some restrictions imposed by the OSM documentation on the possibility of having two 

different road classes connected to each other [34]. These restrictions dictate which road classes 

can be directly connected to each other. For example, it is forbidden for a motorway road segment 

Figure 3. Incorporating turn restrictions 



 

 

16 

to be directly connected to a residential road segment, but it is the norm for it to connect directly 

to another motorway or a trunk link. To detect and extract such errors, the system cycles through 

all the different road segments and imposes condition checks that enforce the connectivity 

restrictions between different road classes. Once a violation is found, the system records the 

specific error, adds it to an “incorrect connection” record file to be downloaded by the user, and 

displays it to on its graphical user interface. For each incorrect connection found, the user is given 

information about the exact incompatible road segments and classes that cause the issue, as well 

as the exact junction node that connects them. OCS also gives the user direct access to links that 

will open up the error on different official OSM editors for a quick and convenient way of directly 

fixing the issue as is shown in Figure 4.  

 

 

Figure 4. An incorrect connection 
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D. Suggesting connectivity fixes  

The true innovation our system offers lies in its ability to suggest fixes to achieve full connectivity 

for any desired road network. A road network graph is fully connected if every node in that graph 

is reachable from every other node (a strongly connected graph).  
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Algorithm 1 portrays how our system finds disconnected portions in a graph and how it computes 

their respective connectivity fixes. First, the system detects disconnections in the given list of road 

network graph. For example, if we would like the system to suggest connectivity fixes in a 

motorway road network of a country and use trunks to suggest fixes, the system would detect 

disconnections in the motorway road network graph. Finding disconnections is done using graph 

traversal algorithms, in our case we have used Breath First Search (BFS) to do so. Applying a 

graph traversal algorithm in the same example above, we find a list of disconnected subgraphs of 

motorways we name DRNG. From this list we pick at random a disconnected subgraph which will 

be used as a source graph Gsource. Gsource is then used as the starting point to connect all the 

disjoint subgraphs. Since road network graphs are considered to be directed graphs, every 

disconnected subgraph will have incoming edges and outgoing edges (roads that enter and exit the 

subgraph). For each of these subgraphs we create a list of vertices of endpoints of inward edges 

and another list of vertices which endpoints of outward edges. Incoming vertices are used as 

incoming nodes for a particular subgraph whereas outgoing vertices are used as nodes used to 

traverse away from a subgraph. Using the same graph traversal algorithms, we traverse away from 

Gsource using the outgoing vertices as starting point and try to find any incoming vertices from 

another disjoint subgraph. Referring back to the same example, we traverse using the road network 

class roads that are given by the user (in this case, using trunk roads). Once we encounter an 

incoming node from another disjoint subgraph, we connect the two subgraphs using the paths we 

computed using the graph traversal algorithm. In our case since we used BFS algorithm, this 

connects the two subgraphs using least number of hops/nodes between the two subgraphs. We 

know that there will exist multiple paths between any two graphs, so we first try to connect the 

two using the shortest path from source graph to the newly found subgraph (say Graph A) and vice 
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versa. After this step, we have a newly formed graph which contains source graph Gsource, Graph 

A and to-and-fro paths from the two. From there, we check whether this graph is a strongly 

connected component using Targan’s Strongly Connected Component Algorithm. If this new 

graph is not a Strongly Connected Component (SCC), we continue appending the to-and-fro paths 

into this newly formed graph in order of least number of nodes in the paths first till this graph is a 

SCC or till we have exhausted all the paths between them. This resultant graph becomes a new 

Gsource. Outgoing vertices of this updated Gsource are used to find incoming vertices from the 

remaining disjoint subgraphs.  

 

 

Sometimes Gsource cannot find a disjoint subgraph despite other subgraphs are present, these 

cases generally arise in scenarios when road network graphs are spread across multiple islands or 

due to road constructions. When faced with this issue, we randomly pick a disjoint subgraph and 

append it to Gsource. This gives the Source graph new outgoing vertices and help spread across a 

Figure 5. Connecting subgraphs in New Zealand’s level 1 road 

network 
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new region of graph. The algorithm continues to run the same process described above till all the 

disconnected subgraphs are appended to Gsource. This newly updated Gsource contains all the 

paths which are required to connect the disjoint subgraphs and hence we have achieved a 

connectivity fix for the graph.  

Figure 5 above visualizes the before and after of running algorithm 1 on New Zealand’s level 1 

road network (Northern island). On the left, the different subgraphs detected are shown, and on 

the right the final connectivity fix result is displayed.   
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V. IMPLEMENTATION 

 

Our system contains 2 major components: the backend module which runs all the algorithms and 

contains the business logic, and the frontend module which generates visualizations.  

 

A. Backend  

The backend is an independent module that takes already prepared XML data files as input (as 

explained in Section IV-A). The data fetched is refreshed daily to keep up with daily map changes. 

From there, the logic and techniques mentioned in Section IV-B are applied to parse the XML files 

into data structures and make them ready as input for our algorithms. Once our algorithms run, 

Figure 6. OCS System Architecture 



 

 

22 

JSON files representing the results of all operations are generated and fed to the frontend. The 

backend module was built using the general-purpose C# programming language.  

 

B. Frontend  

Built using the Microsoft ASP.NET MVC framework, the fronted module acts the graphical user 

interface from which the user can interact with OCS. It allows the user to:  

• Visualize different road networks, waterways, ferry terminals, incorrect connections, 

disconnected components, and connectivity fixes with different colors to denote their 

isolation.  

• Pop up red markers for all incorrect connections. When clicked, the markers provide in 

depth details about the error detected and allow one-click access to major OSM editing 

websites in which the error would already be loaded in.  

• Flag (or ’whitelist’) an error as a false positive. This reversible action will prevent said 

error from appearing when other users are detecting errors.  

• Download all the detected errors and connectivity fixes as JSON files for further analysis.  

• Hover on an entity to get more information such as the number of ways of each type used 

to achieve connectivity, the id of a road segment, a link to open it on the OSM website etc.  

 

  



 

 

23 

 

VI. EXPERIMENTS 

 

In this section, we evaluate the performance of OCS. First, we describe the environment of the 

experiments. Then, we explore and elaborate the results in terms of incorrect connections and 

connectivity fixes across different countries.  

 

A. Experimental Setup  

For all our experiments, we used the most up-to-date data for New Zealand (NZ), Venezuela (VZ), 

Serbia (SB) and Fiji (FJ) that was retrieved on December 10th, 2020 from the OSM servers [35]. 

All evaluations were conducted on a Macbook (macOS 11.0.1) with a 2.6 GHz Quad-Core Intel 

Core i7 processor and 16GiB RAM.  

 

B. Incorrect Connections  

We ran our algorithms to detect incorrect connections across the four most significant road classes: 

motorways, trunks, primaries and secondaries (note that Fiji does not have any motorways or 

trunks). Table I shows the exact numbers our algorithms go through for each country.  
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Country Ways Nodes Junction Nodes 

New Zealand 43898 368008 37540 

Fiji Islands 1126 18972 1001 

Venezuela 32755 377710 25852 

Serbia 28586 579198 25579 

TABLE I Experimental data for each country 

 

 
Figure 7. Incorrect connections statistics 

 

Figure 8. Incorrect connections statistics 
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Time wise, detecting incorrect connections for all our experiments was an almost instantaneous 

process due to the efficiency of our algorithms and data structures. As can be seen in Figure 8, 

OCS was able to detect a significant amount of incorrect connections across these different classes. 

In most cases, it seems that the lower the road class the higher the number of incorrect connections 

found. This makes sense because in general, the lower the road class the larger its road network in 

terms of the amount of roads it is comprised of (i.e. there are less motorways than trunks, and less 

trunks than primaries). To get more concrete results and eliminate this bias, we have extracted the 

percentage of incorrect connections by road class (i.e. number of motorway incorrect 

connections/total number of motorway connections) and have displayed the results in Figure 7. 

The bar chart illustrates a very powerful and concerning result with some error percentages close 

to 25% (like VZ’s primaries). To put that into perspective, this means that approximately 1 out of 

4 primary road junctions in Venezuela go against the connectivity rules outlined in the OSM 

documentation [34]. Another observation made is that the error percentage for motorways is 

relatively low compared to other road classes. This might be because there are much less 

motorways than other road classes which makes manual error detection more manageable and 

effective, or because of greater meticulousness by cartographers due to the sheer importance of 

these roads. As we move away from motorways, there is much more data to go through which 

makes it exponentially more difficult to detect errors manually, resulting in higher error 

percentage.  
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C. Connectivity Fixes  

We demonstrate our proposed algorithm for suggesting fixes to achieve full connectivity for the 

two major islands in New Zealand (Northern and Southern), three major islands in the Fiji Islands, 

and Venezuela. Table I shows the total number of nodes, ways, and junction nodes that our 

algorithms go through for each country (As discussed in Section IV-B).  

To achieve connectivity for a certain level, our algorithms first detect the different disconnected 

subgraphs within that level, then proceed by connecting them. For each country and level, Table 

II illustrates the number of subgraphs detected, number of ways to be added (minimum number of 

road segments needed to connect them), total ways (total number of road segments that make up a 

connectivity fix) and the time it took to generate the results. To get a better insight, we have 

recorded iteration of different connectivity fixes and plotted them. Figure 9 illustrates how many 

total ways it takes to connect the subgraphs until all of them are connected. Typically, connectivity 

the subgraphs each step of the algorithm our algorithm starts connecting all the subgraphs by 

connecting every pair of subgraphs into one. This pairwise connection is done by adding ways and 

it can be observed that as we connect and merge more subgraphs, the total number of ways to be 

added to achieve full connectivity keeps increasing.  

Country Connectivity Level subgraphs (S) Ways needed 
(WA) 

Total ways 
(WC) 

Time (h:mm) 
(T) 

New Zealand Level 1 (Northern Island) 10 3087 3696 1:22 
New Zealand Level 2 (Northern Island) 2 328 5385 0:12 
New Zealand Level 1 (Southern Island) 3 1193 1294 0:04 
New Zealand Level 2 (Southern Island) 2 982 3898 0:16 
Fiji Islands Level 1 (3 main Islands) 2 7 742 0:01 
Fiji Islands Level 2 (3 main Islands) 3 24 1077 0:02 
Fiji Islands Level 3 (3 main Islands) 4 3 1080 0:04 
Venezuela Level 1 16 3432 5230 3:41 

TABLE II Connectivity information by level and country 
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As can be seen in Table II, the lower in connectivity levels for the same region we go, the higher 

the number of total ways that make up the connectivity fix (WC). This reflects the fact that the 

more road types we want to connect, the more road segments there are to consider (level 2 contains 

level 1 roads classes, and level 3 contains both levels 1 and 2 road classes).  

 

 

Another observation tightly linked to the above statement and clearly shown by the trend of every 

curve in Figure 9 is that an increase in the number of subgraphs leads to an increase in the number 

of ways required to connect them. For example, consider achieving level 1 connectivity in the 

Northern island of New Zealand. To connect all motorways using trunks, our system detected 10 

isolated motorway subgraphs. It is clear that each iteration of the algorithm when connecting 

subgraphs requires more ways, as detailed in Figure 9). Once completed, Table II shows us that an 

additional 3087 ways (trunks) that are not part of these 10 subgraphs were needed to result in a 

Figure 9. Total number of ways at each connectivity fix 

subgraph iteration 
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fully connected graph (which totals 3696 ways composed of motorways and trunks). As we go 

down to level 2, our aim becomes to connect all level 1 and level 2 roads (motorways and trunks). 

In this case, only 2 subgraphs are detected. Since these subgraphs are made out of both motorways 

and trunks, we can safely assume that level 2 connectivity will have more ways than level 1 

connectivity because we now also want to connect all trunks on top of all motorways (instead of 

all motorways using the least amount of trunks as in level 1). Another not so obvious observation 

to make is that we cannot correlate processing time with the number of subgraphs. As proved in 

Table II, for the Fiji Islands it takes double the time to connect 4 subgraph (level 3) than it does to 

connect 3 (level 2). However, it takes more time to connect these 3 subgraphs than it does for the 

2 level 1 subgraphs. For New Zealand, it almost takes an extra hour to connect 10 subgraphs (level 

1 Northern Island) than it does for 2 subgraphs (level 2 Northern Islands). Contrarily, it takes less 

time to connect 3 subgraphs (level 1 Southern Island) than it does for 2 (level 2 Southern Island). 

This is due to the unpredictable circumstances for each subgraph such as its distance from other 

subgraphs, the number of distinct paths that lead to them, the number of turn restrictions, T-

intersection and other complex pathways that lie in between them, etc.  

 

D. Experimental Summary  

Our experiments prove that our system is capable of detecting connectivity errors and suggest 

connectivity fixes across different levels to achieve full connectivity. Across the four major road 

classes, OCS detected an incorrect connection average of about 10.57% for junction node in New 

Zealand, 7.53% in the Fiji Islands, 18.75% in Venezuela and 7.57% in Serbia. We were able to 

suggest connectivity fixes for level 1&2 for New Zealand, levels 1,2&3 for the Fiji Islands and 
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level 1 for Venezuela by determining the minimum number of ways belonging to the immediate 

lower level needed to do so.  
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VII.  CONCLUSION 

 

In this thesis, we analyze a system we built to tackle connectivity in OSM road networks. Our 

algorithms allow for an unprecedented automation of tedious and complex tasks for any given road 

network such as detecting incorrect connections, detecting isolated subgraphs and suggesting 

connectivity fix whilst offering the user an intuitive graphical user interface and easy access to 

official fixing tools. The use of our system is sure to save countless hours on maintaining and 

improving the accuracy of road network data which is paramount for reliable routing and 

dependable use for the ever-growing user-base of OSM.  
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