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ABSTRACT

Programming is everywhere, and is becoming an increasingly essen-
tial component of knowledge work outside the realms of traditional
software development. Examples include data journalism, scientific
computing, machine control, machine learning, financial manage-
ment, and others. A key aspect of this trend is that users have to use
programming tools, but typically lack programming education, let
alone a computer science background. In this short paper we revisit
potential assumptions and preconceptions underlying traditional
programming system design, from the perspective of practicing
scientists using tools like MATLAB, R, Bash, Python, C++, and oth-
ers. Specifically, we aim to peel off some ingrained assumptions
that have informed programming language and system design for
decades. Without giving a lot of answers, we hope some of our con-
trarian observations may turn out to be controversial, and stimulate
a meaningful discussion towards a better programmer experience
in the domain of science.
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1 INTRODUCTION

Programming is everywhere, but not everyone is a professional
software developer. Fields such as data journalism, medical sci-
ence, financial auditing, machine control, and many others, are
increasingly dependent on computing, yet their practitioners often
lack formal programming education, let alone a computer science
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background. In this essay we take a personal look at one such
domain, namely medical imaging research in the area of neurophar-
macology. We sketch a typical scientific workflow in this domain to
uncover which aspects of programming are at stake and how they
are (mis)aligned with what end-users actually need [8]. Specifically,
we aim to contrast the way that practitioners experience dealing
with common programming systems (such as MATLAB, R, Python,
Bash, etc.), with the expectations such tools have of their users.

The core problem that we aim to isolate and circumscribe is
epitomized by the title: “MATLAB doesn’t love me”, a phrase of
frustration to provocatively capture the experience of neuroscientist
programmers and their discontent. The subtext of this phrase is
threefold:

o The Other. Programming systems are anthropomorphized as
The Other, the ultimate stranger, whose language we do not
speak and who is unresponsive to our advances.

e Self-blame Even though the subject of the quote is “MATLAB”
it is clear that it presupposes that MATLAB is interpreted
as a given, and that the failure of love is due to the user: it
is our own fault that MATLAB does not love us; the tool is
above reproach.

o Despair The quote expresses an experience of one being left
alone, to one’s own devices.

Instead of computers as “bicycles for the mind” [9], it seems
programming systems in particular are experienced as loveless
entities, necessary evils, that, rather than work for their users,
actually work against them. In the area of neuroscience this state of
affairs has real and serious consequences: it stifles scientific progress
because current programming processes and tools take inordinate
amounts of time, are error-prone, and prevent scientific results
to be easily reproduced. Finally, domain-experts (MRI physicists,
neuro-imaging experts, pharmacologists, etc.) waste valuable brain
cycles in fighting programming systems, which could be better
spent on the science itself. One could thus say that current state
of programming tools are “brakes on the mind” for this group of
users.

In remainder of this essay, we first look at a specific case in the
domain of neuro-imaging. Although we do not want to stress or
promote any essential difference between “real programmers” and
knowledge workers who happen to have a need for programming
(let alone provide any value judgment on either category), we will
refer to professional software developers as “programmers” and
the latter category as “end-users”. The distinction then serves as a
tool to contrast how programmers might think about programming
and programming systems, with how end-users are experiencing
programming and its tools. Given this polarized spectrum of precon-
ceptions and experiences, we look at some (recent) developments
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Figure 1: Typical neuro-imaging pipeline (simplified).

to bridge the distance between them, and provide tentative direc-
tions for further research and design of more lovable programming
systems.

2 THE PROGRAMMING THAT
NEUROSCIENTISTS DO

Figure 1 shows a simplified example of a magnetic resonance spec-
troscopy (MRS) work flow commonly used to examine neurochem-
ical mechanisms and drug efficacy in neuropsychiatric and neuro-
logical disorders (e.g., [2, 11]). Dealing with multi-vendor data is
common due to use of historical data, multi-site scanning, consor-
tium data, vendor switching within hospitals, research dedicated
versus clinical scanners, PET-MRI combined machines, and level of
investment from vendors to advance new sequences. In line with
other fields there is an impetus in medical imaging to acquire and
analyse larger data sets to improve statistical power and generalis-
ability.

Workflows unfortunately are sequence specific, which means that
the data processing pipeline that needs to be implemented depends
on the sequence of steps the MRI scanner was programmed to per-
form. An MRS workflow can not be applied to diffusion imaging
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(microstructural changes), echo-planar imaging (regional activa-
tion), or positron/single photon emission tomography (drug binding
to receptors).

In other words, for such tasks, there are markedly different
pipelines like the one displayed in the figure. Sometimes these
processes are even more involved, because different tasks require
additional steps in the pipeline to, for instance, deal with temporal
dimension, to apply motion correction and corrections for changes
in field inhomogeneity.

The figure shows different stages of the process (image acqui-
sition, pre-processing, post-processing, and statistical analysis).
Each of these stages requires a variety of technologies: conversion
tools, scripts, MATLAB libraries, Linux-based imaging processing
libraries, R programs, and variety of file formats. Depending on
varying expertise of the scientists involved, different stages may
have to be performed by different persons. In the context of the
figure, we can already distinguish the following technologies and
tools:

e File formats: vendor-specific image formats (SPAR, DAT,
RDA), generic file formats (DICOM, NIfTI), CSV.

e MATLAB: most of image processing in the pre-processing
phase is done in MATLAB, combining the SPAR/DAT and/or
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RDA files to obtain a model that is ready for statistical anal-
ysis

e R: most statistical analysis is performed in the R environ-
ment.

o Bash scripting: although implicit in the figure, various stages

of the pipeline are meticulously glued together using command-

line scripts, for instance to iterate over sets of patient data
and aggregate results.

e Third-party tools: e.g., dem2niix!, QDECZ, Anatomical Pro-
cessing Script?, etc.

In addition, the figure does not show the hardware and vendor
specific programming needed to instruct a physical MRI scanner to
perform an imaging sequence. This highly specialised form of pro-
gramming is called pulse programming. Pulse programs are specific
for machine models, machine vendors, versions of the hardware
etc. These factors can influence their execution. Unfortunately this
only becomes readily apparent while scanning. This leads to data
loss and can affect the reproducibility of the outcome measure.

The software components (tools, scripts, libraries, etc.) exist in
multiple versions, and have specific or outdated dependencies or
platform requirements. The MATLAB functions used in the pre-
processing stage of Figure 1 are being replaced by Python scripts.
In different hospitals or research institutes, SPSS is preferred over
R. More generally, Julia [4] is gradually becoming more popular in
the domain. Nevertheless, many of the components are third-party
black-boxes, of which the actual quality and/or reliability is hard
to estimate; they are simply often “the tools that everybody uses”.

In the end, programmers might object, “but, but, you could solve
these problems if you would use (insert favorite programming lan-
guage here)..”, but, professional software developers, end-user pro-
grammers typically do not care about programming languages, and
experience them as a nuisance that distracts them from their goals.
Compared to what programmers may think then, what could be
the end-user experience in the domain of neuroscience?

3 WHAT PROGRAMMERS THINK VERSUS
WHAT WE’VE SEEN

In the previous section we have shown a typical example of the
programming, scripting, glueing tasks that neuroscientists typi-
cally have to perform. Specifically, we have characterised how this
situation involves a complex product along various dimenions of
goals, technologies, and machines. How does this compare to what
programmers, and in particular, designers of programming systems,
think are solutions to such problems?

Table 1 presents an exaggerated and polarized comparison be-
tween preconceptions of programmers and what end-users may
experience. For effect, the contrast in the table is exaggerated to
drive home the point that perhaps “we” as programmers might
have it all wrong in terms of how to solve the problems sketched
earlier. The rows in the tables are not the result concrete research,
but mainly serve as a rhetorical device to raise the stakes of the
discussion. Let’s briefly discuss each of them in turn.

!https://github.com/rordenlab/dem2niix
Zhttps://surfernmr.mgh harvard.edu/fswiki/Fs Tutorial/QdecGroupAnalysis_
freeview

Shttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
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Table 1: Programmer preconceptions versus end-user expe-

rience (a hyperbole)

Programmer preconception End-user experience

Early correctness
Consistency
Abstractions
Graph-structured
Control-flow-oriented

Human checking

Repair

Invocations

Linear processing
Transformation-oriented

Data structures Files

Long-term One-off
Homogeneous Multifarious
Hierarchy Rhizome
Creative design Menial chores
Epic/Homer Dystopian/Kafka
Mastery Subjection

Programmers love early correctness: correct-by-construction,
type safety, and code that is “obviously without deficiencies” [7] are
important tenets of programming and programming language de-
sign. End-users, however, are more inclined to rely on human check-
ing: inspecting intermediate results, error diagnosis performed
during the processing. Related is the programmer’s focus on con-
sistency (data validity, well-formedness etc.) versus a focus on data
repair if something happens to be broken.

At the heart of programming is the notion of abstraction: reusable
pieces of encapsulated functionality. A carefully designed abstrac-
tion can be instantiated and reused many times over. End-users
however, do not seem to be interested in this at all. As highlighted
in Figure 1 the main meat of the programming tasks consists of in-
voking pre-packaged utilities or abstractions, designed by someone
else (a “real programmer”?).

Whereas most programs and software systems resulting from
traditional software development are complex graph-structured
artifacts, with many dependencies, hierarchies, links and references
(factoring for non-functionals), such complexity is mostly outside
of the end-user’s interest, instead desiring much simpler (linear)
pipelines, where the only notions of complexity are control-flow and
input/output relations. However, even though there is some control-
flow involved, most tasks are transformation-oriented: data in one
form or shape is transformed into another form or shape, either
to convert its structure or shape, project out subsets, aggregate
multiple sources, or cleanse it etc. Furthermore, programmers think
in terms of data as shaped by data structures, whereas end-users
tend to think at the level of files with coarse-grained semantics, like
images, tables, or lines.

Programmers develop for the long-term: a product that is re-
leased, deployed many times, maintained for some period of time,
etc. In contrast, work-flows as depicted in Figure 1 tend to be one-
off. After the “science has been done”, or “the drug has been tested”,
the “code” that was instrumental to obtain the result becomes often
stale and irrelevant. It is code to be thrown away, a ladder to climb,
but one that one would rather not think about anymore.

Programmers think in terms of clean hierarchies (directories,
packages, subsystems, etc.) and explicit dependencies. End-users,


https://github.com/rordenlab/dcm2niix
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unfortunately, cannot afford this luxury; their world is a like the
rhizome, it goes in all directions, without hierarchy, without a clear
distinction between purposeful or accidental, whether an aspect of
software is relevant or irrelevant, and where valid combinations
can only be tested by trial-and-error.

The programming world is still under the influence of the notion
of “personal computing”, where the individual controls and mas-
ters the world of computing by theirself. One aspect of this is the
illusion of a homegeneous computing environment. The strongest
manifestation of this idea is still Smalltalk [6] where “everything
is an object”, and the IDE, the program, and the OS are one and
the same thing. This pipe dream is absent in the world of end-user
programming sketched in the previous section. Instead, the end-
user is confronted with a multifarious set of tools, components,
libraries, languages, systems, machines, platforms, OSes, scripts,
file formats etc. which somehow all have to be connected to obtain
a meaningful result.

Programming is a creative activity, at least according to pro-
grammers. End-users dread the programming tasks they have to do,
menial chores that take up too much time. Related to this is the hero
narrative that many programmers submit to: it is a quest of mastery,
of achieving a high goal: working, reliable, performant software
realised with beautiful code. On the other hand, end-users may
experience programming as being subjected to a Kafkaesque ruler
in a dark, sadistic universe, designed to annoy instead of support.

The consequences of this split between how programmers think
and what end-users experience, is that it reinforces the already exist-
ing “otherness” of the dominant way programming systems expect
to be operated, in their formal, unforgiving, and non-cooperative
ways. Above and beyond this, it has an effect on science itself. Scien-
tific processes are time consuming, their realisation is error-prone,
and hard to reproduce. A lot of time and brain cycles are wasted
on menial tasks at the cost of scientific progress.

4 DEVELOPMENTS

Programming and computational support in the science domain is
not new, and many developments have taken place to increase pro-
ductivity, reproducibility, and scalability of the scientific endeavor.
Scientific workflow systems have been one of the most influential
concepts in dealing with this complexity [3, 5]. They allow groups
of scientists to coordinate diverse data sources and processing algo-
rithms using (often graphical) workflow languages. Such systems
have focused on the increased volume and diversity of data, global-
isation and decentralisation of scientific collaboration, while at the
same time aiming to increase productivity, experimentation, and
reproducibility. Research into the programmer experience side of
these systems, however, is understudied. This is corroborated by
a recent editorial [1], which highlights usability as a key criterion
for advancement needed in the 10 years following its publication
in 2017.

Notebook interfaces (such as supported by Jupyter or Rstudio)
are another recent trend that is becoming popular in scientific
programming, data journalism, machine learning etc. A supposed
benefit of notebooks is that they support a kind of literate pro-
gramming where input, output, code, and prose documentation
are interleaved in a single, linear narrative. It is, however, as of
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Table 2: Features of relevant programming system styles

Style Wiring  End-user Input Output Live Diversity
Spreadsheets O [ [ [ J [ O
Notebooks @) @) © () [)) O
Scripting [ O @] O @) [ ]
Workflows [ [ O O O [ ]

yet unclear how notebooks will scale up to scientific workflows
involving multiple decentralised parties (cf. [13], however), and
whether they in fact increase reproducibility [12].

Another development could be called “best-of-breed configura-
tions”, where experts in some area of computation (e.g., statistics)
package the best libraries or tools in an easy to deploy and use bun-
dle. One example is Tidyverse?, which combines a carefully chosen
selection of R libraries that are known to work well and work well
together. Another example is the online service QMenta®, which
provides tailored solutions to customize certain automated imaging
pipelines. An extreme example of such packaging is Julia®, which
aims to provide a whole best-of-breed language for the scientific
domain.

Such efforts, however, either only partially address the situation
(e.g., Tidyverse), or assume all participants in a scientific project
use all the same language (e.g., Julia). However, scientific workflow
solutions need to support at least four categories of experts [1]:
domain scientists (e.g., neuro-scientists), research developers (e.g.,
MRI pulse programmers), data scientists (e.g., statistical analysts),
and system engineers (e.g., dealing with deployment, clusters, etc.).

One way to see why a system like Julia might not be the solution
is to frame it as a policy versus mechanism distinction. The domain
scientists are the ones who decide what should be done, whereas re-
search developers, data scientists, and system engineers determine
how this can be realised. Julia addresses the latter category, but
what about the programmer experience of the domain scientists?

In a sense the situation is similar to the separation of roles in
domain-specific language-based software engineering, where there
is a distinction between domain engineers and application engi-
neers: domain engineers develop the (technical) building blocks
from which application engineers assemble end-products using a
custom, tailor-made notation [10].

5 INSTEAD OF A CONCLUSION

We end this short paper with a number of observations based on
the neuroimaging case of Section 2 and the preconceptions versus
experience analysis of Section 3, and hypothetical design directions
for a better programming system that could improve the experience
of scientists in the field.

First, we acknowledge the link to what Turkle and Papert call
“bricolage” [14]: a style of engaging with programming that favors
direct manipulation, concrete material, and soft-skilled negotation,
over the hard and formal, systematic, abstraction-oriented style
promoted by programmers. Failure to acknowledge this different
style, causes users of programming systems to see their tools “just as

4https://www.tidyverse.org/
Shttps://www.qmenta.com/whitepapers/
Shttps://julialang.org/
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tools”, rather than as a creative medium to augment one’s intellect.
Many of the points that Turkle and Papert raise are apropos of this
essay: the experience of computing as a chore, the desillusionment
with technology, wasted time and talent, etc.

In line of the bricolage style of programming, we make the fol-
lowing further observations based on the case of Section 2:

o The pipeline of Figure 1 shows a high variety in technologies,
but is itself low on domain content. The domain knowledge
is encapsulated in libraries and third-party tools. In other
words technical knowledge required for implementing the
pipeline is disproportional to the user’s goals.

e The “programming content” is limited to mainly glueing
together of coarse-grained imperative steps, with the occa-
sional conditional, or loop to iterate over elements of data
sets. This is further acknowledged in the fact that scientific
workflow systems often use visual languages.

o In line with the previous item, there seems to be little employ
for abstraction mechanisms in implementing such pipe-lines.
Scripts are written, but they are one-off, and not meant for
reuse outside the current case.

e The lowest common denominator for data is the file (image
file, CSV file, ...). The structure of these files is largely implicit;
formal meta definition (e.g., a schema, data type, ontology)
of their structure is often missing, and if it is present, it is
weakly enforced.

o The high variability in technology and lack of unified data
represents prevents a uniform way to inspect and repair
input and (intermediate) output results. Checking the result
of computation involves context switching and disparate
technical knowledge.

To lead out this essay, let us lay down the observations from
above along-side different styles of programming systems that have
received attention recently to address the end-user programming
problem in the context of practicing scientist.

Table 2 summarises how such systems support (1) wiring (as in
“glueing components together”, (2) end-user notation (distinct from
“code”), inspection of (3) input and (4) output, (4) live inspection, and
(5) heterogeneous forms of data. A full circle means that a certain
system supports the feature fully, whereas a half-circle indicates
partial support (or only in specific instances of the style).

Informed by these observations, here are provisional research di-
rections that could provide a better experience for the programming
scientist.

o Integrate data visualisation (a la notebooks) and editing (a la
spreadsheets), but keep code and data strictly separated un-
der the hood (to avoid the Smalltalk image trap and promote
reproducibility).

e Keep the single notebook/document metaphor as a personal
computing environment to avoid context- and language
switching.

e Present the illusion of a single document (a la notebooks), but
allow plugins for heterogeneous third-party domain-specific

101

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

components (e.g., importers, visualisers, editors) to create

an environment for “scientific mashups”.
e Live inspection of all intermediate results in any relevant

form (e.g., as a plot, image, diagram, table, or text), especially
in the case of inconsistencies or dynamic errors.

e Downplay syntax and abstraction, promote the wiring and
glueing metaphor in the user interface.

We might not ever be able to design a programming system that
will love its users, but let’s at least strive for systems that do not
give the cold shoulder, for a more productive and enjoyable science.
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