
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Actes de conférence 2020 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

An Annotation System for Specifying Aliasing Invariants on Object Fields.

Proceedings of the 4th International Conference on the Art, Science and

Engineering of Programming

Coet, Aurélien

How to cite

COET, Aurélien. An Annotation System for Specifying Aliasing Invariants on Object Fields. Proceedings

of the 4th International Conference on the Art, Science and Engineering of Programming. New York :

ACM, 2020. doi: 10.1145/3397537.3398480

This publication URL: https://archive-ouverte.unige.ch//unige:135933

Publication DOI: 10.1145/3397537.3398480

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:135933
https://doi.org/10.1145/3397537.3398480

An Annotation System for Specifying Aliasing Invariants on
Object Fields

Aurélien Coet
aurelien.coet@unige.ch

Computer Science Department
University of Geneva
Geneva, Switzerland

ABSTRACT
Aliasing is an essential concept in programming languages, used to
represent self-referential structures and share data between com-
ponents. Unfortunately, it is also a common source of software
bugs that are often hard to find and fix. In response, a plethora of
methods have been proposed to tame aliasing. They usually rely
on uniqueness and/or immutability to establish strong safety guar-
antees, but are often too restrictive to write common idioms, as
they generally enforce a single-writer policy. This paper suggests
to relax this constraint by focusing on the specific parts of an object
representation for which aliasing should be controlled, otherwise
allowing unrestricted mutations of its fields.

CCS CONCEPTS
• Theory of computation → Invariants; Program specifica-
tions; Program verification; • Software and its engineering
→ Constraints; Formal software verification; Compilers.

KEYWORDS
Aliasing, invariants, contract-based programming

ACM Reference Format:
Aurélien Coet. 2020. An Annotation System for Specifying Aliasing Invari-
ants on Object Fields. In Companion Proceedings of the 4th International
Conference on the Art, Science, and Engineering of Programming (<Program-
ming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3397537.3398480

1 INTRODUCTION
Aliasing refers to the situation where a computer program uses
two different names, a.k.a. references, to designate the same value
in memory. Though useful, the construct is a recurrent source of
pernicious bugs in programs. Numerous approaches have therefore
been studied to alleviate issues associated with it [1, 9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3398480

Rust1 and Pony2 are notorious examples of languages that suc-
cessfully implement elaborate type systems [2, 5] to ensure memory
safety guarantees. They are however known for having steep learn-
ing curves and to be too restrictive in their treatment of aliasing
[6]. Rust, for example, enforces the single writer constraint to im-
plement uniqueness [3]. Although this provides memory safety, it
also makes implementing common structures like mutable graphs
challenging. While the language allows the unsafe manipulation
of references, this feature effectively transfers the burden of ensur-
ing memory safety from the compiler to the programmer, hence
weakening the guarantees that can be made about a program’s
correctness.

This work introduces a more permissive annotation system to ex-
press uniqueness and immutability properties [8] on aliases. Scope-
based invariants can be defined on object fields, making them tem-
porarily immutable. These invariants can then be checked either
dynamically or statically to guarantee various functional properties.
The approach is defined as an opt-in feature for existing languages,
which can make its adoption more gradual and easier than alterna-
tives.

2 MOTIVATION

Listing 1: Loop invariant violation (Swift)
1 func rmEven(nums: inout [Int], i: Int) {

2 if nums[i] % 2 == 0 {

3 nums.remove(at: i)

4 }

5 }

6

7 var numbers = Array(0 ... 10)

8

9 for idx in 0 ..< numbers.count {

10 numbers[idx] *= numbers[idx]

11 rmEven(nums: &numbers, i: idx)

12 }

Consider Listing 1. The function rmEven takes a reference to an
array of integers and an index as inputs, and removes the value at
the given index if it is even. The program instantiates a mutable
array numbers, creates a range from 0 to its size, and iterates over its
elements, calling rmEven after each one of them has been squared.

1https://www.rust-lang.org/
2https://www.ponylang.io/

https://doi.org/10.1145/3397537.3398480
https://doi.org/10.1145/3397537.3398480

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Aurélien Coet

The execution fails during the 7𝑡ℎ iteration of the loop, because the
mutation of numbers through its alias in rmEven (line 11) causes
0 ..< numbers.count to no longer match the indices of the array.
In other words, the error is due to the violation of a loop invariant.

3 PROPOSED APPROACH
A large body of work exists on the use of annotations to express
invariants for the specification of functional properties in programs.
Seminal work byMeyer introduced the concept of design by contract
(DbC) [7] and later led to behavioural interface specifications [4].
This paper borrows concepts from these areas and extends them to
the specification and verification of aliasing properties.

In Listing 1, one way to make sure that idx never refers to an
index outside of bounds is to define the size of numbers as a loop
invariant. This can be done with an explicit annotation delineat-
ing a scope in which the numbers.count property must remain
immutable (Listing 2). Only operations that modify the locked field
are forbidden in the invariant’s scope, and mutating accesses to
numbers[idx] hence remain possible in the loop.

Listing 2: Invariant annotation (Swift)
1 ...

2 @invariant(numbers.count) {

3 for i in 0 ..< numbers.count {

4 numbers[idx] *= numbers[idx] // Still legal

5 rmEven(nums: &numbers, i: idx) // Illegal

6 }

7 }

The use of invariants differs from existing approaches in two
ways. Firstly, immutability is only defined for a limited scope, in-
stead of the whole program or lifetime of some alias. Secondly, and
most importantly, only the path to the count field of numbers is
protected by the invariant, rather than the entire object.

Checking for mutating operations on a path is difficult, in partic-
ular when function calls are involved (since the called code must be
analysed). In the presence of higher-order functions, determining
what implementation is called even becomes statically undecidable.
Two complementary methods of verifying aliasing invariants are
therefore proposed. The first checks for path mutations at runtime,
effectively bypassing the issue of higher-order. In the second, static
analysis is made possible by annotations on functions’ signatures
indicating what fields they modify, in a way reminiscent of contracts
in DbC and behavioural interface specifications. Listing 3 illustrates
how the rmEven function is annotated to reflect that it mutates the
count field of its input array, effectively making it illegal in the
invariant’s scope of Listing 2.

While annotations on functions help solve the issue of statically
checking invariants, annotating large programs may quickly turn
into an intractable task. A potential way of alleviating program-
mers from such a burden could therefore be to automatically infer
annotations wherever possible, similarly to what is proposed for
types in most modern, statically typed languages.

Listing 3: Mutation annotation on a function (Swift)
1 @mutates(nums.count)

2 func rmEven(nums: inout [Int], i: Int){
3 if nums[i] % 2 == 0 {

4 nums.remove(at: i)

5 }

6 }

4 CONCLUSION
This paper introduces a new way to check invariants on object
fields, both dynamically and statically, with the help of annotations
on functions. The proposed approach is currently being formalised
in an operational semantics, and a proof-of-concept being imple-
mented for the Swift programming language.

REFERENCES
[1] David G Clarke, John M Potter, and James Noble. 1998. Ownership types for

flexible alias protection. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications. 48–64.

[2] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. 2015.
Deny Capabilities for Safe, Fast Actors. In Proceedings of the 5th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
(AGERE! 2015). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2824815.2824816

[3] Philipp Haller and Martin Odersky. 2010. Capabilities for Uniqueness and Bor-
rowing. In ECOOP 2010 – Object-Oriented Programming. Vol. 6183. Springer Berlin
Heidelberg, Berlin, Heidelberg, 354–378. https://doi.org/10.1007/978-3-642-14107-
2_17

[4] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew
Parkinson. 2012. Behavioral interface specification languages. Comput. Surveys
44, 3 (June 2012), 1–58. https://doi.org/10.1145/2187671.2187678

[5] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the Foundations of the Rust Programming Language. Proc.
ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages. https://doi.org/10.
1145/3158154

[6] Amit Levy, Michael P. Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. 2015. Ownership is theft: expe-
riences building an embedded OS in rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems - PLOS ’15. ACM Press, Monterey,
California, 21–26. https://doi.org/10.1145/2818302.2818306

[7] B. Meyer. 1992. Applying ’design by contract’. Computer 25, 10 (Oct. 1992), 40–51.
https://doi.org/10.1109/2.161279

[8] Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D Ernst. 2013. Immutabil-
ity. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification.
Springer, 233–269.

[9] Ayesha Sadiq, Yuan Fang Li, and Sea Ling. 2019. A survey on the use of access
permission-based specifications for program verification. Journal of Systems and
Software 159 (21 10 2019). https://doi.org/10.1016/j.jss.2019.110450

https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1109/2.161279
https://doi.org/10.1016/j.jss.2019.110450

	Abstract
	1 Introduction
	2 Motivation
	3 Proposed Approach
	4 Conclusion
	References

