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Abstract

Given a text T of length n, we propose a deterministic online algorithm computing the sparse suffix
array and the sparse longest common prefix array of T in O(cy/Ign + mlgmlgnlg* n) time with O(m)
words of space under the premise that the space of T is rewritable, where m < n is the number of suffixes
to be sorted (provided online and arbitrarily), and c is the number of characters with m < ¢ < n that
must be compared for distinguishing the designated suffixes.

1 Introduction

Sorting suffixes of a long text lexicographically is an important first step for many text processing algo-
rithms [36]. The complexity of the problem is quite well understood, as for integer alphabets suffix sorting
can be done in optimal linear time and in-place [29, [18]. In this article, we consider a variant of the problem:
instead of computing the order of every suffix, we address the sparse suffix sorting problem. Given a text
T[1..n] of length n and a set P C [1..n] of m arbitrary positions in 7', the problem asks for the (lexicographic)
order of the suffixes starting at the positions in P. The answer is encoded by a permutation of P, which is
called the sparse suffix array (SSA) of T (with respect to P) and denoted by SSA(T, P).

Applications are found in external memory LCP-array construction algorithms [23], and in the search of
maximal exact matches [26] 44], i.e., substrings found in two given strings that can be extended neither to
their left nor to their right without getting a mismatch.

Like the “full” suffix arrays, we can enhance SSA(T,P) with the lengths of the longest common prefixes
(LCPs) between adjacent suffixes in SSA(T, P). These lengths are stored in the sparse longest common
prefiz array (SLCP), which we denote by SLCP(T, P). In combination, SSA(T, P) and SLCP(T, P) store
the same information as the sparse suffix tree, i.e., they implicitly represent a compacted trie over all
suffixes starting at the positions in P. The sparse suffix tree is an efficient index for pattern matching [28].

Based on classic suffix array construction algorithms [25] [33], sparse suffix sorting is easily conducted in
O(n) time if O(n) words of additional working space is available. For m = o(n), however, the working space
may be too large, compared to the final space requirement of SSA(T,P). Although some special choices
of P admit space-optimal O(m)-words construction algorithms (e.g. [24], see also the related work listed
in [7]), the problem of sorting arbitrary suffixes in small space seems to be much harder. We are aware of the
following results: As a deterministic algorithm, Kéarkkéinen et al. [25] gave a trade-off using O(mm + n/7)
time and O(m + n/+/7) words of working space with a parameter 7 € [1..y/n]. If randomization is allowed,
there is a technique based on Karp-Rabin fingerprints, first proposed by Bille et al. [7] and later improved
by I et al. [20]. Gawrychowski and Kociumaka [I6] presented an algorithm running with O(m) words of
additional space in either O(n+/Igm) expected time, or in O(n) time as a Monte Carlo algorithm (i.e., the
output is correct only with high probability). Most recently, Prezza [35] presented a Monte Carlo algorithm
in the restore model [8] that runs with O(m) words of space in O(n + mlg®n) expected time.

*Parts of this work have already been presented at the 12th Latin American Symposium [12].



1.1 Computational Model

Let lg and log, denote the logarithm to the base two and to the base z for a real number z, respectively.
Our computational model is the word RAM model with word size 2(lgn). Here, characters use [lg o] bits,
where o is the alphabet size; hence, |log, n| characters can be packed into one word. Comparing two strings
X and Y therefore takes O(lep(X,Y)/log, n) time, where lep(X,Y) denotes the length of the LCP of X
and Y.

We assume that the text T' of length n is loaded into RAM. We work with the restore model [§], where
algorithms are allowed to overwrite parts of T', as long as they can restore 7" to its original form at termination.
Apart from this space, we are only allowed to use O(m) words. The positions in P are assumed to arrive
on-line, implying in particular that they need not be sorted. We aim at worst-case efficient deterministic
algorithms.

1.2 Algorithm Outline and Our Results

Our main algorithmic idea is to insert the suffixes starting at the positions of P into a self-balancing binary
search tree [21I]; since each insertion invokes O(lgm) suffix-to-suffix comparisons, the time complexity is
O(tsmlgm), where tg is the cost for a suffix-to-suffix comparison. If all suffix-to-suffix comparisons are
conducted naively by comparing the characters (ts = O(n/log, n)), the resulting worst case time complexity
is O(nmlgm/log, n). In order to speed this up, our algorithm identifies large identical substrings at different
positions during different suffix-to-suffix comparisons. Instead of performing naive comparisons on identical
parts over and over again, we build a data structure (stored in redundant text space) to accelerate subsequent
suffix-to-suffix comparisons. Informally, when two (possibly overlapping) substrings in the text are detected
to be the same, one of them can be overwritten.

To accelerate suffix-to-suffix comparisons, we devise a new data structure called hierarchical sta-
ble parsing (HSP) tree that is based on edit semsitive parsing (ESP) [11]. The HSP tree sup-
ports longest common extension (LCE) queries. An LCE query lce(7,j) on an HSP tree asks for the
length lep(T'[i..], T'[j..]) of the LCP of two suffixes starting at the respective positions ¢ and j of the text T
on which the tree is built. Besides answering LCE queries, HSP trees are mergeable, allowing us to build a
dynamically growing LCE index on substrings read in the process of the sparse suffix sorting. Consequently,
comparing two already indexed substrings is done by a single LCE query.

In their plain form, HSP trees need more space than the text itself; to overcome this space problem, we
devise a truncated version of the HSP tree, yielding a trade-off parameter between space consumption and
LCE query time. By choosing this parameter appropriately, the truncated HSP tree fits into the text space.
With a text space management specialized on the properties of the HSP, we achieve the result of Thm. [I]
below.

We make the following definition that allows us to analyze the running time more accurately. Define
C:= Upp’E'P,p#p’ [p..p+1lep(Tp..], T[p'..])] as the set of positions that must be compared for distinguishing the
suffixes starting at the positions of P. Then sparse suffix sorting is trivially lower bounded by Q(|C| / log, n)
time. With the definition of C, we now can state the main result of this article as follows:

Theorem 1. Given a text T of length n that is loaded into RAM, the SSA and SLCP of T for a set
of m arbitrary positions can be computed deterministically in O(|C| (vIgo + lglgn) + mlgmlgnlg* n) =
O(ClV1gn +mlgmlgnlg® n) time, using O(m) words of additional working space.

Excluding the loading cost for the text, the running time can be sublinear (when |C| = o(n/+/Ign) and
mlgm = o(n/lgnlg*n)). To the best of our knowledge, this is the first algorithm that refines the worst-case
performance guarantee. All previously mentioned (deterministic and randomized) algorithms take 2(n) time
even if we exclude the loading cost for the text. Also, general string sorters (e.g., forward radix sort [2] or
multikey quicksort [4]), which do not take advantage of the overlapping of suffixes, suffer from the lower
bound of Q(¢/log, n) time, where ¢ is the sum of all LCP values in the SLCP, which is always at least |C|,
but can in fact be ©(nm).
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Figure 1: Deterministic LCE data structures with trade-off parameters. The length returned by an LCE
query is denoted by ¢. € and 7 with € > 0 and 1 < 7 < n are constants. Space is measured in words. The
column Working Space lists the working space needed to construct a data structure, whereas the column
Space lists the final space needed by a data structure.

1.3 Relationship Between Suffix Sorting and LCE Queries

The LCE-problem is to preprocess a text T such that subsequent LCE queries can be answered efficiently.
Data structures for LCE and sparse suffix sorting are closely related, as shown in the following observation:

Observation 2. Given a data structure that answers LCE queries in O(7) time for 7 > 0, we can compute
sparse suffix sorting for m positions in O(7mlgm) time by inserting suffixes into a balanced binary search
tree [2I]. Conversely, given an algorithm computing the SSA and the SLCP of a text T of length n for m
positions in O(f(n,m)) time with O(m) words of space for a function f, we can construct a data structure
in O(max(f(n,m),n/m)) time with O(m) words of space, answering LCE queries on T in O(n?/m?) time.

Proof. The first claim is trivial. For the second claim, we use the data structure of [5, Theorem 1la] that
answers LCE queries in O(7) time. The data structure uses the SSA and SLCP values of those suffixes whose
starting positions are in a difference cover sampling modulo 7. This difference cover consists of O(n//7)
text positions, and can be computed in O(y/7) time [9]. We obtain the claimed bounds on time and space
by setting 7 := n?/m?. O

There has been a great interest in devising deterministic LCE data structures with trade-off parame-
ters (see Fig. , or in compressed space [43] 32, [19]. One of the currently best data structures with a
trade-off parameter is due to Tanimura et al. [42], using O(n/7) words of space and answering LCE queries
in O(rlgmin(7,n/7)) time, for a trade-off parameter 7 with 1 < 7 < n. However, this data structure has
a preprocessing time of O(n7), and is thus not helpful for sparse suffix sorting. We develop a new data
structure for LCE with the following properties.

Theorem 3. There is a deterministic data structure using O(n/7) words of space that answers an LCE
query £ :=lce(i, j) for two text positions ¢ and j with 1 < 7,7 < n on a text of length n in O(Ig" n(lg(¢/7) +
7182 /log, n)) time, where 1 < 7 < n. We can build the data structure in O(n(lg* n+(Ign)/7+(1g 7)/ log, n))
time with additional O(max(n/lgn,7'831g* n)) words during construction.

The construction time of our data structure is upper bounded by O(nlgn), and hence it can be con-
structed faster than the deterministic data structures in [42] when 7 = Q(lgn).

1.4 Outline of this Article

We start with Sect. [2] introducing the edit sensitive parsing, and giving a motivation for our hierarchical
stable parsing whose description follows in Sect. |3] Section shows the general techniques for answering
LCE queries with the HSP tree. Subsequently, Sect. [ introduces our algorithm for the sparse suffix sorting
problem with an abstract data type dynLCE that supports LCE queries and a merging operation. The
remainder of that section shows that the HSP tree from Sect. [3] fulfills all properties of a dynLCE; in
particular, HSP trees support the merging operation. The last part of this article is dedicated to the study



on how the text space can be exploited with the HSP technique to improve the memory footprint. This leads
us to truncated HSP trees with a merging operation that is tailored to working in text space (Sect. . With
the truncated HSP trees we finally solve the sparse suffix sorting problem in the time and space as claimed
in Thm. [l

1.5 Preliminaries

Let ¥ be an ordered alphabet of size o whose characters are represented by integers. For a string X € ¥*,
let | X | denote the length of X. For a position 1 <7 < |X|in X, let X[i] denote the i-th character of X. For
positions ¢ and j with 1 <4,j <|X|, let X[i..j] = X[{|X[¢+1]--- X[j]. Given T = XY Z with X,Y,Z € ©*,
X, Y and Z are called a prefix, substring, suffix of T, respectively. In particular, the suffix beginning at
position i is denoted by T'[i..]. A period of a string Y is a positive integer p < |Y| such that Y[i] = Y[i + p]
for all integers ¢ with 1 < ¢ < |Y|—p.

For a binary string 7' € {0,1}" we are interested in the operation T.rank;(j) that counts the number
of ‘U’s in T'[1..j]. This operation can be performed in constant time by a data structure [22] that takes o(|T)
extra bits of space, and can be constructed in time linear in |T].

An interval T = [b..€] is the set of consecutive integers from b to e, for b < e. For an interval Z, we use
the notations b(Z) and e(Z) to denote the beginning and the end of Z; i.e., T = [b(Z)..e(Z)]. We write |Z| to
denote the length of Z; i.e., |Z| = e(Z) — b(Z) + 1.

2 Edit Sensitive Parsing

The crucial technique used in this article is the so-called alphabet reduction. The alphabet reduction is
used to partition a string deterministically into blocks. The first work introducing the alphabet reduction
technique to the string context was done by Mehlhorn et al. [31]. They presented the so-called signature
encoding. The signature encoding is derived from a tree coloring approach [I7]. Tt supports string equality
checks in the scenario where strings can be dynamically concatenated or split. In the same context, Sahinalp
and Vishkin [38] studied the maximal number of characters to the left and to the right of a substring Z of Y’
such that changing one of these characters to the left or to the right of Z can affect how Z is parsed by
the signature encoding of Y. In a later work, Alstrup et al. [I] enhanced signature encoding with additional
queries like LCE. Recently, an LCE data structure using signature encoding in compressed space was shown
by Nishimoto et al. [32]. A slightly modified version of signature encoding is proposed by Sakamoto et al. [39],
showing that alphabet reduction can be used to build a grammar compressor whose approximation ratio to
the size of the smallest grammar is O(Ig* nlgn).

A modified parsing was introduced by Cormode and Muthukrishnan [IT]. They modified the parsing
by restricting the block size from two up to three characters, and named their technique edit sensitive
parsing (ESP). Initially used for approximating the edit distance with moves, the ESP technique has been
found to be applicable to building self-indexes [41]. We stick to the ESP technique, because the size of the
subtree of a node in the ESP tree is bounded. In this section, we first introduce the ESP technique, and then
give a motivation for a modification of the ESP technique, which we call hierarchical stable parsing (HSP).
Before that, we recall the alphabet reduction and the ESP trees.

2.1 Alphabet Reduction

Given a string Y in which no two adjacent characters are the same, i.e., Y[i — 1] # Y[i] for every integer ¢
with 2 <4 < |Y], we can partition Y (except at most the first lg* o positions) into blocks of size two or three
with a technique called alphabet reduction [11, Section 2.1.1]. It consists of three steps (see also Fig. |2)):
First, it reduces the alphabet size to at most eight, in which every character has a rank from zero to seven.
Subsequently, it substitutes characters with ranks four to seven with characters having a rank between zero
and two. By doing so, it shrink the alphabet size to three. Finally, it identifies certain text positions as
landmarks that determine the block boundaries.



For reducing the alphabet size, we assume that ¢ > 9, otherwise we skip this step. The task is to
generate a surrogate string Z on the alphabet {0, 1, 2} such that the entry Z[i] depends only on the substring
Y[i.i+1g"c], for 1 < i < |Y] —lg*o. To this end, we regard Y as an array of binary numbers, i.e.,
Yi][¢] € {0,1} for an integer ¢ with 1 < ¢ < [lgo]. We create an array Z of length |Y| — 1 storing integers
of the domain [0..2 [lgo| — 1]. For each text position ¢ with 2 < i < |Y|, we compare Y[i] with Y[i — 1]: We
compute £ :=lcp(Y[i — 1], Y[é]), and write 2¢ + Y[i][¢ + 1] to Z[i] (remember that we treat Y[i] as a binary
stringED. By doing so, no two adjacent integers are the same in Z [I1, Lemma 1]. Having computed Z, we
recurse on Z until Z stores integers of the domain {0,...,5}. Note that the alphabet cannot be reduced
further with this technique, since 2 [lgx| > x for every integer x with 2 < & < 6. To obtain the final Z, we
recurse at most lg* o times. Let r be the number of recursions. Then we have |Y| = |Z| + r.

If we skipped this step because of a small alphabet size (¢ < 8), then we set Z[i] to the rank of Yi|
induced by the linear order of ¥ (e.g., Z[i] = 0 if Y[¢] is the smallest character). Since |Y| = |Z|, we set r to
Zero.

To reduce the domain further, we iterate over the values 7 = 3,...,8 in ascending order, substituting
each Z[i] = j with the lowest value of {0, 1,2} that does not occur in its neighboring entries (Z[i — 1] and
Z[i + 1], if they exist). Finally, Z contains only numbers between zero and two.

In the final step we create the landmarks that determine the block boundaries. The landmarks obey the
property that the distance between two subsequent landmarks is greater than one, but at most three. They
are determined by local maxima and minima: First, each number Z[¢] that is a local maximum is made into
a landmark. Second, each local minimum that is not yet neighbored by a landmark is made into a landmark.

Finally, we create blocks by associating each position in Z with its closest landmark. Positions associated
with the same landmark are put into the same block. As a tie breaking rule we favor the right landmark
in case that there are two closest landmarks. The last thing to do is to map each block covering Z[i..j] to
Y[i+r.j+r].

The tie breaking rule can cause a problem when Z[1] and Z[3] are landmarks, i.e., the leftmost block
contains only one character. We circumvent this problem by fusing the blocks of the first and second
landmark to a single block. If this block covers four characters, we split it evenly.

Altogether, the alphabet reduction needs O(]Y|1g* o) time, since we perform r < lg* o reduction steps,
while determining the landmarks and computing the blocks take O(|Y]) time. The steps are summarized in
the following lemma:

Lemma 4. Given a string Y in which no two adjacent characters are the same, the alphabet reduction
applied on Y partitions Y into blocks, except at most [lg” o] positions at the left. It runs in O(]Y|lg" o)
time.

The main motivation of introducing the alphabet reduction is the following lemma that shows that
applying the alphabet reduction on a text Y and on a pattern X generates the same blocks in X as in all
occurrences of X in Y, except at the left and right borders of a specific length:

Lemma 5 ([II, Lemma 4]). Given a substring X of a string YV’

in which no two adjacent characters are the same, the alphabet A

reduction applied to X alone creates the same blocks as the blocks Y = ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
representing the substring X in Y, except for at most Ay := 41, : : : : AR

[lg* o] + 5 characters at the left border, and Ag := 5 characters X — T){ ‘ ‘ ‘ ‘ 1“—’

at the right border.

Given a block 3, we call the substring Y[b(8) — Ar..e(8) + Ag] the local surrounding of S, if it exists
(i.e.,, b(8)— AL > 1 and e(8)+ Ar < |Y|). Blocks whose local surroundings exist are also called surrounded.
A consequence of Lemma [5]is the following: Given that X is the local surrounding of a surrounded block £,
then the blocking of every occurrence of X in Y is the same, except at most A, and Agr characters at
the left and right borders, respectively. We conclude that the blocking of every occurrence of X has a
block X[1 + Ap..Ar, + |8]] that is equal to Y'[b(8)..e(8)] (see Fig. [3).

LFix an arbitrary rule whether Y[i][1] is the least significant or most significant bit.
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Figure 2: Alphabet reduction applied on the string Y = tsukumogami. We represent the characters with the
five lowest bits of the ASCII encoding. Left: A single step of the alphabet reduction. The bit representation
of each character Y[i] is shown vertically in the left figure (the most significant bit is on the top). The
alphabet reduction matches the least significant bits of two adjacent entries, and returns twice the number
of matched bits plus the mismatched bit of the right character (highest shaded bit). The resulting integer
array Z is the last row. Middle: A second step of the alphabet reduction, where the result of the first
alphabet reduction stored in Z is put into Y. Right: Computation of the blocks. Two steps of the alphabet
reduction (seen in the left and in the middle image) yield a sequence consisting only of integers within the
domain {0, ...,4}. Subsequently, all ‘4’s are replaced (in this case by ‘2’ since the neighboring values are ‘0’
and ‘1’ in both cases), and the maxima and certain minima are made into landmarks (shaded). Finally, the
boxes in the last row are the computed blocks.
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Figure 3: Left: Surrounded block § with local surrounding X contained in a string Y. Right: Occurrences
of the local surrounding X of a surrounded block § in the string Y, which is partitioned into blocks (gray
rectangles) by the edit sensitive parsing. Although the occurrences of X can be differently blocked at their
borders, they all have a block equal to 8 in common.

2.2 Edit Sensitive Parsing

Whenever a string Y contains a repetition of a character at two adjacent positions, we cannot parse Y with
the alphabet reduction. A solution is to additionally use an auxiliary parsing specialized on repetitions of
the same character. With this auxiliary parsing, we can partition Y into substrings, where each substring is
either parsed with the alphabet reduction, or with the auxiliary parsing. It is this auxiliary parsing where
the aforementioned signature encoding and the ESP technique differ. The main difference is that the ESP
technique restricts the lengths of the blocks: It first identifies so-called meta-blocks in Y, and then further
refines these meta-blocks into blocks of length 2 or 3. The meta-blocks are created in the following 3-stage
process (see also Fig. [4] for an example):

(1) Identify maximal regions of repeated characters (i.e., maximal substrings of the form ¢’ for ¢ € ¥ and
£ > 2). Such substrings form the type 1 meta-blocks.

(2) Identify remaining substrings of length at least 2 (which must lie between two type 1 meta-blocks).
Such substrings form the type 2 meta-blocks.

(3) Every substring not yet covered by a meta-block consists of a single character and cannot have type 2
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Figure 4: ESP of the string ¥ = ababaaaaaaabaaaaabababaaaaab. The string is divided into blocks
represented by the rectangular boxes at the bottom. Each block gets assigned a new character represented
by the capital letters in the rounded boxes. The white rectangular boxes on the top level represent the meta-
blocks that group the blocks. The blocks are connected with horizontal lines if they belong to a repeating
meta-block, or by diagonal lines if they belong to a type 2 meta-block.

meta-blocks as its neighbors. Such characters are fused with a neighboring meta-block. The meta-
blocks emerging from this fusing are called type M (mixed).

Meta-blocks of type 1l and typeM are collectively called repeating meta-blocks. For |(3)] we are free to
choose whether a remaining character should be fused with its preceding or succeeding meta-block (both
meta-blocks are repeating). We stick to the following tie breaking ruleﬂ

Rule M: Fuse a remaining character Y[i] with its succeeding meta-block, or, if ¢ = |Y|, with its
preceding meta-block.

Meta-blocks are further partitioned into blocks, each containing two or three characters from . Blocks
inherit the type of the meta-block they are contained in. How the blocks are partitioned depends on the
type of the meta-block:

Repeating meta-blocks. A repeating meta-block is partitioned greedily: create blocks of length three
until there are at most four, but at least two characters left. If possible, create a single block of length
two or three; otherwise (there are four characters remaining) create two blocks, each containing two
characters.

Type-2 meta-blocks. A type 2 meta-block p is partitioned into blocks in O(|u|1g™ o) time by the alphabet
reduction (Lemma . A block 8 generated by the alphabet reduction is determined by the characters
Y [max(b(8)— Ar, b(y)).. min(e(B8) + Ar, e(n))] due to Lemmal[5] Given the number of reduction steps
in Sect. 2.1} the alphabet reduction does not create blocks for the first » characters of each meta-block.
The ESP technique blocks the first r characters in the same way as a repeating meta-block. The border
case r = 1 (one character remaining) is treated by fusing the remaining character with the first block
created by the alphabet reduction, possibly splitting this block in the case that its size is four.

A block is called repetitive if it contains the same characters. All blocks of a type 1 meta-block and all
blocks except at most the left- or rightmost block (these blocks can contain a fused character) in a typeM
meta-block are repetitive.

Let esp: ©* — (X2 UX3)* denote the function that parses a string by the ESP technique. We regard the
output of esp as a string of blocks.

2.3 Edit Sensitive Parsing Trees

Applying esp recursively on its output generates a context free grammar (CFG) as follows. Let (Y)g :=Y be
a string on an alphabet ¥y := ¥. The output of (Y) := esp™ (Y') = esp(esp* 1) (Y)) is a sequence of blocks,
which belong to a new alphabet X; with h > 1. We call the elements of ¥;, with h > 1 names, and use
the term symbol for an element that is a name or a character. A block 5 € ¥} contains a string of symbols
with length two or three (€ X7 ; UX3 ;). We maintain an injective dictionary @ : X5 — X7, UX3 |

2The original version [I1] prefers the left meta-block.
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Figure 5: Names of the ESP (Sect. and HSP (Sect. nodes stored in the global dictionary of our
examples. The common dictionary contains all names that are used by both ESP and HSP. Each name
occurs on the left side only once across all dictionaries.
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Figure 6: The ESP tree of the string Y = aaaaaaaaaaaaaaaababa. Like in Fig. [l nodes belonging to the
same meta-block are connected by horizontal (repeating meta-block) or diagonal (type 2 meta-block) lines.

to map a block to its symbols. The dictionary entries are of the form § — zy or 8 — xyz, where 8 € X,
and z,y,z € ¥j—1. We write D(X) := D(X[1])---D(X][|X]]) € ¥} _, for X € 7. Each block on height h
is contained in a meta-block p on height h — 1, which is equal to a substring (Y),_1[i..5] € ¥5_;. We call
(Y)n—1[i..j] € Xj_, the symbols of p. Since each application of esp reduces the string length by at least
one half, there is an integer k with k < lg|Y| such that (V) = esp({Y)x—1) is a single block 7 € X;. We
write V := |J; <)< 2n for the set of names in (Y)1,(Y)2,...,(Y)r. The CFG for Y is represented by the
non-terminals (i.e., the names) V, the terminals X, the dictionary ©, and the start symbol 7. This grammar
exactly derives Y.

Throughout this article, we comply with the convention to write symbols, i.e., characters (€ ¥y) and
names (€ Xp, h > 1), in typewriter font; characters and names are written in lower and upper cases,
respectively. All examples use the same dictionary such that reappearing names are identical (see Fig. [5| for
the used dictionary). Names restricted to a particular figure can be written with Greek letters (a necessity
due to the limitation of having only 26 letters in the English alphabet).

The ESP tree ET(Y) of a string Y is the derivation tree of the CFG defined above. Its root node is the
start symbol 7. The nodes on height h are (Y');, for each height & > 1. In particular, the leaves are (Y');.
Each leaf refers to a substring in X2 or 3. The generated substring of a node (Y)[i] is the substring
of Y generated by the symbol (Y),[i] (applying the h-th iterate of © to (Y),[i], yields a substring of Y,
ie., DM ((Y),[i]) € £*). We denote the generated substring of (Y),[i] by string({(Y)4[i]). For instance,
in Fig. [6] string(M) = aaaababa. A node v on height & is said to be built on (Y),_1[b..e] iff (Y),_1[b..€]
contains the children of v. Like with blocks, nodes inherit the type of the meta-block on which they are
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Figure 7: (Y),, with a highlighted node v. The subtree rooted at v is depicted by the white, rounded boxes.
The generated substring string(v) of v is the concatenation of the white rectangular blocks on the lowest
level in the picture. The meta-block p, on which v is built, is the rounded rectangle covering the children
of v and all nodes connected by a horizontal hatching on height h — 1.
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Figure 8: Excerpts of ET(X ---) (left) and ET(--- X) (right) with X := resliced. Under the assumption
that lg* o = 8, the common substring X can be blocked differently in both trees (depending on the characters
preceding X in the right figure).

built. An overview of the definitions is given in Fig. [7]

In what follows, we present two shortcomings of the ESP trees. The first is that nodes with different
names can have the same generated substring, i.e., @™ : %, — 3§ is not injective for h > 2 in general.
The second is that it is not straight-forward to see which nodes of ET(Y") and ET(Z) are equal when Y is a
substring of Z. Both cause problems when comparing subtrees of two nodes, which we later do for answering
LCE queries.

Given two nodes u and v, it holds that string(u) = string(v) if their names are equal. However, the other
way around is not true in general. With string(u) = string(v), it is not even assured that u and v are nodes
on the same height. Suppose that ¥ is a large alphabet with Ig* o = 8, and that X := resliced occurs in
the text that we parse with ESP (see Fig. [8). We parse an occurrence of X either (a) with the alphabet
reduction if it is within a type 2 meta-block, or (b) greedily if it is at the beginning of a type 2 meta-block.
In the former case (a), we apply the alphabet reduction and end at a reduced alphabet with the characters
{0,1,2}. Suppose that this occurrence of X is reduced to the string in superscript of resliced. Then ESP
creates the four blocks re|sl|ic|ed, whose boundaries are determined by the alphabet reduction. Further
suppose that an application of esp creates two nodes of these blocks, which are put into a node u by an
additional parse such that string(u) = X. In the latter case (b), ESP creates the three blocks res|lic|ed
greedy. Suppose that an additional parse puts these blocks in a node v such that string(v) = X. Although
string(v) = string(u), the children of both nodes have different names, and therefore, both nodes cannot
have the same name.

The second shortcoming is that it is not clear how to transfer the property of the alphabet reduction
described in Lemmal[5] from blocks to nodes. Given a substring Y of a string Z, the task is to analyze whether
anode (Y)[i] is also present in the tree ET(Z), i.e., we analyze changes of a node (Y');[i] when prepending or
appending (pre-/appending) characters to Y. For the sake of analysis, we distinguish the two terminologies
block and node, although a node is represented by a block: When we analyze a block in esp(X) € X}
for a string X € X5 _;, we let X to be subject to pre-/appending characters of ¥j_1, whereas when we
analyze a node (Y),[i] on a height h of ET(Y") of a string Y € ¥*, we let Y to be subject to pre-/appending
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Figure 9: Excerpt of ET(Y) and ET(aY) (higher nodes omitted), where Y = a%**4(ba)3*~! = a?2(ba)® for
k = 2. For all k > 2, there is a unique node in (Y')3 with the name C. This name does not appear in ET(aY’).

characters of X. In this terminology, a block in esp(X) is only determined by X, whereas (Y )[i] is not only
determined by esp(h_l)(Y) € X;_4, but also by Y itself. The difference is that a surrounded type 2 block
of esp(X) cannot be changed by pre-/appending characters to X due to Lemma |5, whereas we fail to find
integers Ay, j, and Ag_p, such that a type 2 node on height /& built on (Y'),_1[Ap p..Ar »] cannot be changed by
pre-/appending characters to Y. That is because the names inside (Y);,_1 and (aY');_; for h > 2 can differ at
arbitrary positions. This can be seen in the following example: When parsing the string Y := a%*4(ba)3#~1
with the names defined in Fig. [5, we obtain esp(esp(Y)) = esp(B**AAN3*—1) = EFCH*~1G. Let us focus on
the unique occurrence of the name C, which is depicted in Fig. [9]for £ = 2. On the one hand, there is a block
representing the name C on height two. This block is surrounded for a sufficiently large k. Even for & > 1, it
is easy to see that there is no way to change the name of this block by pre-/appending characters to the string
B3 AAN3*~1. On the other hand, there is a unique node in ET(Y") with name C on height two. Regardless of
the value of k, prepending a to Y changes the name of v: esp(esp(aY)) = esp(B3**+1AN3*—1) = EF~1pDOHF 1.
Nevertheless, we introduce the notion of surrounded nodes, since they are helpful to find rules that determine
those nodes that cannot be changed by pre-/appending characters.

Surrounded Nodes. Analogously to blocks we classify nodes as AL AR
surrounded when they are neighbored by sufficiently many nodes: *—*OOBA“R e
A leaf is call iff i ing i . )

eaf is called surrounded iff its generated substring is surrounded 0000000000000000

The local surrounding of a leaf is the local surrounding of the block

represented by the leaf. Given an internal node v on height h + 1

(h > 1) whose children are (Y),[8], the local surrounding of v is the union of the nodes (Y),[b(8) —
Ar,..e(8) + Agr] and the local surrounding of each node in (Y),[b(3) — Ar..e(8) + Agr]. If all nodes in
the local surrounding of v are surrounded, we say that v is surrounded. Otherwise, we say that v is
non-surrounded.

Lemma 6. There are at most Ap, + Ag many non-surrounded nodes on each height, summing up to
O(lg" nlgn) non-surrounded nodes in total.

Proof. We show that a node v on height h is surrounded if it has Ay, preceding and > A

Ag succeeding nodes. This is clear on height one by definition. Under the assumption C“f)” ©)
that the claim holds for height h — 1, v’s preceding (resp. succeeding) nodes have at

least 24y, (resp. 2AR) children in total where at least the Ap, rightmost nodes (resp. 00000000
AR leftmost nodes) are surrounded by the assumption. Hence, v is surrounded. O 2 24y, 224g

OOI;&

N|

The above example contrasting blocks and nodes reveals that the property for surrounded blocks as
shown on the right side of Fig. [3] cannot be transferred to surrounded nodes directly, since a surrounded
node depends not only on its local surrounding, but also on the nodes on which it its built. Despite this
discovery, we show that surrounded nodes can help us to create rules that are similar to Lemma

10
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Figure 10: ET(Y) of Fig. |§| with fragile, semi-stable and stable nodes highlighted. The fragile nodes are
cross-hatched, the semi-stable nodes are dotted, and the stable nodes have stars attached. The leftmost
nodes of the tree change their names when prepending a b. When prepending a’s, we observe that the
children of the node with name C change. Assuming that ¥ = {a,b} (and hence |X| = 2), only the rightmost
node of the meta-block containing nodes with name N is fragile.

2.4 Fragile and Stable Nodes in ESP Trees

We now analyze which nodes of ET(Y") are still present in ET(XY Z) for all strings X and Z. A node (Y)[j]
in ET(Y) at a height h is said to be stable iff, for all strings X and Z, there exists a node (XY Z)[k]
in ET(XY Z) with the same name as (Y),[j] and | X|+ 23;11 |string({(Y)n[i])| = Zf:_ll |string((XY Z)[i])].
We also consider repeating nodes that are present with slight shifts; a non-stable repeating node (Y),[j] in
ET(Y) is said to be semi-stable iff, for all strings X and Z, there exists a node (XY Z)[k] in ET(XY Z)
with the same name as (Y)n[j] and ¥ [string((XY Z)n[i])] — |S| < |X| + SS02) |string((Y)n]i])] <
Zf;ll |string((XY Z)p[i])| + |S|, where S = string({(Y)n[j]) = string((XY Z)[k]).

Nodes that are neither stable nor semi-stable are called fragile. By definition, the children of the
(semi-)stable nodes (resp. fragile nodes) are also (semi-)stable (resp. fragile). Figure [10|shows an example,
where all three types of nodes are highlighted. The rest of this section studies how many fragile nodes exist
in ET(Y).

As a warm-up, we first restrict the ESP tree construction on strings that are square-free. A string Y
is square-free iff there is no substring of Y occurring consecutively twice. Since a name of the ESP tree
is determined by its generating substring, ET(Y) cannot contain two consecutive occurrences of the same
name on any height. We conclude that ET(Y) has no repeating nodes, i.e., it consists only of type 2 nodes.
When studying the stability of type 2 nodes, the following lemma is especially useful:

Lemma 7 ([I1, Lemma 8]). A type2 node is stable if (a) it is surrounded and (b) its local surrounding
does not contain a fragile node.

With Lemma [7] we immediately obtain:
Lemma 8. Given a square-free string Y, a fragile node of ET(Y") is a non-surrounded node.

Proof. According to Lemma [7] we can bound the number of fragile nodes by the number of those nodes that
do not satisfy the conditions in Lemma m Since ET(Y) only contains type 2 nodes, we can show that a
fragile node is non-surrounded inductively for all heights of the ESP tree: Since leaves do not contain any
nodes in their subtrees, surrounded leaves are stable due to Lemma [5| Therefore, the claim holds for h = 1.
By definition, a node v on height h is surrounded if its local surrounding S on height A — 1 is surrounded.
Given that the claim holds for A — 1, a node in S can only be fragile if it is not surrounded. This concludes
that v can be fragile only if it is not surrounded. O

Combining Lemma [8] with Lemma [6] yields:

Corollary 9. The number of fragile nodes of an ESP tree built on a square-free string of length n is
O(lg* nlgn). On each height, it contains O(lg" n) fragile nodes.

In Appendix [A] we show that Cor. 0] cannot be generalized for arbitrary strings. There we show that the
ESP technique changes Q(lg2 n) nodes when changing a single character of a specific example string.
A new upper bound. With the examples in the appendix, we conclude that the O(lg" nlgn)-bound on
the number of fragile nodes for square-free strings (Lemma [8) does not hold for general strings. To obtain a

11
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Figure 11: Division of an ESP tree in surrounded and fragile nodes. The surrounded nodes form an inner
cone. Neighboring fragile blocks can appear in the non-surrounded areas. On each height, the ESP tree can
have a constant number of fragile surrounded nodes that do not have fragile nodes in their subtrees.

general upper bound (we stick again to , we include the repeating meta-blocks in our study of fragile
nodes. Fragile nodes can now be surrounded (trees of square-free strings do not have fragile surrounded
nodes according to Lemma . Remembering that a node is fragile if it has a fragile child, a consequence
is that a fragile type 2 node is not necessarily non-surrounded (e.g., one of its children can be a fragile
surrounded repeating node). Figure [11]|sketches the possible occurrences of fragile surrounded nodes. A first
result on a special case is given in the following lemma:

Lemma 10. A surrounded node v is contained in the local surroundings of O(lg* nlgn) nodes. Given that
all those nodes are of type 2, a change of v causes O(lg" nlgn) name changes.

Proof. We follow [T}, Proof of Lemma 9]: We count the number of nodes that contain v in its local surround-

ing. Given that v is a node on height ¢ and wu is v’s parent, then ( ) ( )( ) ( ) ( )
there are at most Ag /2 < Ag nodes preceding u and Ay, /2 < Ay, AR QDD A4y, .
nodes succeeding u that have v in its local surrounding. We count R0 4 YL

one on height i, and (Ay, + Ag + 1)/2 on height ¢ + 1. Since the counted nodes on height ¢ + 1 are consec-
utive, there are at most (A, + Agr + 1)/2 nodes that are all parents of the counted nodes on height i + 1.
Consequently, there are at most (Ar, + Ar +1)/2+ Ap, + Ar nodes on height ¢ 4+ 2 that have v in their local
surroundings. Iterating over all heights gives an upper bound of (A, +Ag +1) lthnO—l 1/2" <2(Ap+ ARJrlﬁ
nodes on each height.

Second, we narrow down the fragile blocks in repeating meta-blocks. The first block (cf. Fig. and
the two rightmost blocks (cf. Fig. of a repeating meta-block can be fragile. Due to the greedy parsing,
all other blocks of a repeating meta-block are (semi-)stable. A repeating meta-block containing fragile
surrounded blocks needs to start very early or end within the last symbol, as can be seen by the following
lemma:

Lemma 11. A repeating meta-block p of esp(Y') with b() > 4 and e(u) < |Y| — 2 cannot contain a fragile
block.

12
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Figure 12: Prepending the string aab to the text a* character by character. Each step is given as a row,
in which we additionally computed the ESP of the current text. The last row shows an example, where a
former type 1 meta-block changes to typeM, although it is right of a type 2 meta-block. Here, ¥ mod 3 = 2.

Proof. Since b(u) > 4, there are at least three symbols before i that are assigned to one or more other meta-
blocks. When prepending symbols, those meta-blocks can change, absorbing the new symbols or giving the
leftmost symbol away to form a type 2 meta-block. In neither case, they can affect the parsing of u, since
is parsed greedily. Similarly, the succeeding meta-blocks of p keep p’s blocks from changing when appending
symbols. See Fig. [14] for a sketch. O

Corollary 12. The edit sensitive parsing introduces at most two fragile surrounded blocks. These blocks
are the two rightmost blocks of a repeating meta-block whose leftmost block is not surrounded.

Lemma 13. Changing the symbol in a substring of (Y),_; on which a repeating node on height h is built
changes O(1) names on height h.

Proof. Let u be a repeating node on height h. Since it is repeating, it is built on a substring X :=
(YYp—1[b(X)..e(X)] of a repeating meta-block u = (Y)n_1[b(p)..e(u)] with ©(u) = X. Now change a
symbol in X, say (Y)n_1[i,] with b(X) < i, < e(X). This causes the name of u to change. Addition-
ally, it causes the meta-block p to split into a repeating meta-block (Y)n_1[b(p)..i,, — 1] and a typeM
meta-block (Y)},_1[iy..e(1)], causing the names of the two rightmost nodes built on the new meta-blocks to
change. Altogether, there are O(1) name changes on height h. O

An easy generalization of Lemma [I3] is that changing k consecutive nodes on height A — 1 that are
children of repeating nodes on height h changes O(k) names on height h. With Lemma the following
lemma translates the result of Cor. [I2] for blocks to nodes:

Lemma 14. The ESP tree ET(Y) of a string Y of length n has O(Ig® nlg* n) fragile nodes, and O(hlg* n)
fragile nodes on height h.

Proof. While computing (Y )41 from (Y)p, the ESP technique introduces O(1) fragile surrounded blocks
according to Cor. Each fragile surrounded block corresponds to a fragile surrounded node.

13
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Figure 13: Greedy blocking of a type 1 meta-block. The greedy blocking is related to the Euclidean division
by three. The remainder ¥ mod 3 is determined by the number of symbols in the last two blocks (here, k
mod 3 = 0). In this example, the ESP technique creates a single, repeating meta-block on each input.

(rR)(E - )(E)(D)(D](G)heighth+1

Y= JiJ BBB - -+ = BBB = - BB NN height h

b(n) > 4 " e(n) < |Y] -2

Figure 14: Setting of Lemma According to Lemma a meta-block p in esp(Y) of a string Y cannot
contain a surrounded fragile block if b(u) > 4 and e(u) < |Y] — 2.

Similar to the proof of Lemma [§], we count all surrounded nodes as fragile whose local surrounding
contains a fragile node. Lemma [10| shows that each introduced fragile surrounded block makes O(lg* nlgn)
nodes fragile. Although we considered only type 2 nodes in Lemma we can generalize this result for all
fragile nodes with Lemma

To sum up, there are O(hlg" n) fragile nodes on height h. Because ET(X) has a height of at most lgn,
there are O(lg" n Elg" h) = O(lg* nlg?®n) fragile nodes in total. O

Showing that the number of fragile nodes is indeed larger than assumed makes ESP trees a more unfa-
vorable data structure, since fragile nodes are cumbersome when comparing strings with ESP trees as done
n [II]. Fortunately, we can restore the claimed number of O(lgnlg* n) fragile nodes for a string of length n
with a slight modification of the parsing, as shown in the following section.

3 Hierarchical Stable Parsing Trees

Our modification, which we call hierarchical stable parsing or HSP, augments each name with a sur-
name and a surname-length, whose definitions follow: Given a name Z € Xy, let A’ with 0 < A’ < h
be the largest integer such that () (Z) consists of the same symbol, say D7) (z) = Y € X5 4 for a
symbol Y € ¥j_p/ and an integer £ > 1. Then the surname and surname-length of Z are the symbol Y and
the integer 7, respectivelyﬂ For convenience, we define the surname of a character to be the character itself.
Then all symbols in DU )(Z) for every j with 1 < j <}/ share the same surname with Z.

Having the surnames of the nodes at hand, we present the hierarchical stable parsing. It differs to ESP in
how a string of names is partitioned into meta-blocks, whose boundaries now depend on the surnames: When
factorizing a string of names into meta-blocks, we relax the check whether two names are equal; instead of

3By definition, the surname of Z is Z itself if £ = 1.
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Figure 15: Hierarchical stable parsing. The repeating meta-blocks are determined by the surnames.
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Figure 16: Excerpt of HT(Y)) and HT(aY") (higher nodes omitted), where Y = a* (ba)k/ with k = 18 +9¢ + 7
for an integer ¢ > 0 and k' > 2 (cf. Fig. @ The parsing of Y creates a repeating meta-block consisting of
aF, and a type 2 meta-block consisting of (ba)®. For k > 2 it is impossible to modify the latter meta-block
by prepending characters (bottom figure), since the parsing always groups adjacent nodes with the same
surname into one repeating meta-block.

comparing names we compare by surnamesE] This means that we allow meta-blocks of type 1 to contain
different symbols as long as all symbols share the same surname. The other parts of the edit sensitive parsing
defined in Sect. are left untouched; in particular, the alphabet reduction uses the symbols as before. We
write HT(Y") for the resulting parse tree, called HSP tree, when the HSP technique is applied to a string Y.
Figure [15|shows HT (a'!(ba)®). In the rest of this article (and as shown in Fig. , we give a repetitive node
with surname Z and surname-length ¢ the name Z,. We omit the surname-length if it is one (and thus, the
label of a non-repetitive node is equal to its name). For the other nodes, we use the names of Fig. [5| We can
do that because the name of a node can be identified by its surname and surname-length, as can be seen by
the following lemma:

Lemma 15. The name of a node is uniquely determined by its surname and surname-length.

Proof. A node with surname-length one is not repetitive, and therefore, its name is equal to its surname.
Given a repetitive node v with surname Z and surname-length ¢, there is a height h such that ©) (v) =z
For every height h' with 1 < k' < h, ®")(v) consists of the same symbol, and hence ®")(v) is parsed
greedily by HSP. This means that the iterated greedy parsing of the string Z* determines the name of v. [J

3.1 Upper Bound on the Number of Fragile Nodes

The motivation of introducing the HSP technique becomes apparent with the three following facts:

Fact 1: Given that the surnames of the repetitive nodes in a repeating meta-block p are w, the generated
substring of each such repetitive node is a repetition of the form X* with the same X = string(w) €

4The check is relaxed since names with different surnames cannot have the same name.
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Figure 17: Comparison of HT(Y) and HT(abY) = HT(Yab), where Y = (
semi-stable. Its generated substring shifts with a length of |string(J)| = 2.
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Figure 18: Impact of the tie breaking rule (Rule M) on emerging type M nodes. A typeM node is created by

fusing a

single symbol with its sibling meta-block. Remember that prescribes to fuse the symbol with

its right meta-block. To see why this rule is advantageous, the HSP trees on the left (resp. right) use the tie
breaking rule choosing the left (resp. right) meta-block. While on the right side only the fragile nodes of the
leftmost meta-blocks on each height differ after prepending a (e.g., the unique occurrence of a; changes to

a5), the
the two

change is more dramatical on the left side. In the top left tree, which is built on Y = a'%ba’(ba)?,
rightmost nodes ag and J of the type M meta-block on the bottom level are children of the leftmost

node P of the right meta-block on the next level. Prepending the character a to Y (bottom left) changes the
names of the nodes with names J and P to I and Q, respectively.

Fact 2:

Fact 3:

¥* (or X = w in case w € X), but with possibly different surname-lengths k (e.g., string(N3) = (ba)?
and string(No) = (ba)? in Fig. . Due to the greedy parsing of the repeating meta-blocks, the
surname-lengths of the last two nodes in ¢ cannot be larger than the surname-lengths of the generated
substrings of the other nodes (with the same surname) contained in p. See Fig. [16] for an example
when prepending a character to the input.

The shift of a semi-stable node is always a multiple of the length of its surname (recall that semi-
stable nodes are defined like stable nodes, but with slight shifts, cf. Sect. : Let J be the surname
of a semi-stable node v € (Y);, on height k. Given J € % for a height i/ with b’ > 0, =) (v) is
a repetition of the symbol J on height h’. A shift of v can only be caused by adding one or more Js
to (V). In other words, the shift is always a multiple of () (J). Figure shows an example of
a semi-stable node v.

A non-repetitive typeM block can be fragile only if it is non-surrounded. By definition, a repeating
meta-block p contains a non-repetitive block 3 iff u is type M. The block S can only be located at
the beginning or ending of y. Remembering B’s none-repetitiveness is caused by

e fusing a symbol with its succeeding meta-block, or

e fusing the last symbol with its preceding meta-block.
In both cases, it is impossible that 8 is a surrounded block if b(u) < Ayp. If S is surrounded, it

is (semi-)stable due to Lemma Note that with sticking to the choice made in we also
experience a more stable behavior like in Fig.
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Figure 19: Left: ET(Y) (top) and HT(Y) (bottom) of the string Y defined in Fig. [f| Right: ET(aY’) (top)
and HT(aY’). Unlike the two ESP trees on the top, the two HSP trees below share the same tree topology.
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Figure 20: Setting of Cor. According to LemmallI] a meta-block i can contain a surrounded fragile block
if b(u) < 3 (cf. Fig. . In the figure, the node v is fragile, since prepending L changes its name. According
to Cor. there is a non-surrounded node u whose generated substring has the generated substring of v as
a prefix.

These facts make the HSP technique more stable than the ESP technique, as can be seen in Fig. for
instance. In the following, we study the number of fragile surrounded nodes (like in Sect. for the ESP
trees), and show the invariant in Lemma that the generated substring of a fragile surrounded
node is always the prefix of the generated substring of a name that is already stored in ®. On block level,
this is an easy conclusion of Lemma [I1] and Facts [I] and

Corollary 16. Given n > 4 and a repeating meta-block u having a fragile surrounded block 3, p has at
least one block preceding § that contains three symbols with the same surname. In particular, the leftmost
of these preceding blocks is non-surrounded.

Proof. Since ( is surrounded, the condition |u| > Ay, — 2 holds. By the definition of Aj, in Lemma
Ap — 2 > 5 for n > 4. Assuming that the repetitive blocks in g have the surname Z, this means that there
is at least one repetitive block v with surname Z preceding § that contains three symbols of u. But the
fragile surrounded block S is also a repetitive block according to Fact[3] This means that the surname-length
of B is at most as long as the surname-length of v due to Fact [1} i.e., the generated substring of the node
corresponding to [ is a prefix of the generated substring of the node corresponding to . Let v be the
leftmost such block. Remembering that p can start with a non-repetitive node in case that p is of typeM, it
is not obvious that v is non-surrounded. However, according to Lemma b(r) < 2 must hold. This means
that b(y) <5 < Ap, so v is non-surrounded. See Fig. for a sketch (with Z = a). O

In general, the aforementioned invariant does not hold for ESP trees, but is essential for the sparse
suffix sorting in text space. There, our idea is to create an HSP or ESP tree on a newly found re-occurring
substring. We would like to store the ESP tree in the space of one of those substrings, which we can do
by truncating the tree at a certain height (removing the lower nodes), and changing the pointer of each
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Figure 21: Problem with dynamic updates of ESP trees stored in text space. Truncated nodes are grayed
out. Each leaf of the truncated trees is assigned a pointer to its generated substring, which are substrings
of the text T (left). Suppose that we have built ET(Y) (top right) on a substring Y of T' (Y defined as in
Fig. , and that the names D, C and G are already present in the dictionary (hence, they have different
generated substrings). Further suppose that the space of Y in T has been overwritten. When prepending
an a to ET(Y) to form ET(aY) (bottom right), the node G changes to 0, for which we need to search its
generated substring (assuming that 0 is not yet stored in the dictionary). The example can be elaborated
such that G and 0 become surrounded nodes (prepend a’* and append b“* for a sufficiently large k > 1).

(new) leaf such that the name of a leaf refers to its generated substring that is found in the remaining
text. Unfortunately, there is a problem when pre-/appending characters to enlarge the ESP tree, since a leaf
could change its name such that its generated substring needs to be updated - which can be non-trivial if
its generated substring refers to an already overwritten part of the text that is not present in the remaining
text as a (complete) substring. Figure [21{ demonstrates the problem when truncating ESP trees at height 2.
Fortunately, the following lemmas restrict the problem of updating the generated substring when an HSP
node is surrounded and fragile. We start with appending characters:

Lemma 17. There is no surrounded HSP node v whose name changes when appending characters.

Proof. Assume that v’s name changes on appending characters. Moreover, assume that v’s local surrounding
does not contain a fragile node (otherwise swap v with this node). First, since there is no fragile node in v’s
local surrounding, it has to be a repeating node according to Lemma[7] Second, according to Cor. it has
to be one of the last two nodes built on a repeating meta-block u. But there is no way to change the names
of the last two blocks of u by appending characters unless these blocks are non-surrounded. So a surrounded
node cannot have a node in its surrounding whose name changes when appending characters. O

Lemma 18. Let v be a fragile surrounded node of an HSP tree. Then
Claim 1: v is a repetitive node,
Claim 2: pre-/appending characters cannot change v’s surname, and

Claim 3: the generated substring of v is always a prefix of the generated substring of an already existing
node belonging to the same meta-block as v.

Proof. To show the lemma, let n > Ap + AR, otherwise there are no surrounded nodes. There are two
(non-exclusive) possibilities for a node to be fragile and surrounded:

e it belongs to the last two nodes built on a repeating meta-block (due to Cor. [12)), or
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Figure 22: Sketch of the HSP tree used to show Lemma In the sketch, we give the repetitive nodes
of the meta-block v the surname Y. Repetitive nodes are labeled with their surnames, which are put into
parentheses.

e its subtree contains a fragile surrounded node, since by definition,

— a node is fragile if it contains a fragile node in its subtree, and

— all nodes in the subtree of a surrounded node are surrounded.

We iteratively show the claim for all heights, starting at the bottom: Let v be one of the lowest fragile
surrounded nodes in HT(Y') (lowest meaning that there is no fragile node in v’s subtree). Suppose that v
is a node on height h + 1 with A > 0. Since there is no fragile surrounded node in v’s subtree, v is one of
the last two nodes built on a repeating meta-block (Y)[p] (i-e., Y[u] for h = 0). Due to Fact
holds for v; let Z be its surname. Since v is fragile, b(x) < 3 must hold (otherwise we get a contradiction to
Lemma . But since v is surrounded, there is a repetitive node u with surname Z preceding v that is built
on three symbols (D(u) € 3) of u due to Cor. In particular, the leftmost repetitive node s of u is not
surrounded.

We only consider prepending a character (appending is already considered in Lemma . Assume that
v’s name changes when prepending a specific character. By Fact [T} the HSP technique assigns a new name
to v, but it does not change its surname (so holds for v). Additionally, string(v) is a substring of
string(u), where u is one of v’s preceding nodes having the surname Z, and therefore holds for v.
For example, let v be the node with name a; in HT(Y) of Fig. then string(v) = a”, which is a prefix of
string(ag) = a°. After prepending the character a, v’s name becomes ag with string(v) = a8. Still, string(v)
is a prefix of string(ag).

Due to this behavior, the node v is always assigned to p, regardless of what character is prepended. This
means that it is only possible to extend or shorten p on its left side, or equivalently, u’s right end is fized;
the parsing of a meta-block succeeding p cannot change. This means that the parsing assures that every
surrounded node located to the right of (Y),[u] is (semi-)stable. We conclude that the claim holds for the
heights 1,...,h + 1.
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Next, we show that the claim holds for all height h + 2,...,h’, where h’ + 1 is the height of the lowest
common ancestor w of s and v. Figure [22| gives a visual representation of the following observations: When
following the nodes from v up to w, there is a path of ancestor nodes with surname Z. Except for w, each
such ancestor node ' has a neighbor with surname Z. On changing the name of v, all nodes on the height
of u/ are unaffected, except u’. That is because the ancestor of s on the same height as v’ is put with «/ in the
same repeating meta-block, which comprises all neighboring nodes with surname Z. By the analysis above,
changing the name of u’ cannot change the parsing of the other nodes on the same height. We conclude that
the claim holds for the heights h +2,...,h/.

Let us focus on the nodes on height A’ + 1: The node w is not surrounded, because it contains the
non-surrounded node s in its subtree. Having neighbors with different surnames, w is either blocked in a
type 2 or type M meta-block.

e In the former case (type2), the analysis of Lemma shows that w only affects the parsing of the
non-surrounded nodes. There can be a non-surrounded meta-block on a height A” > h’ 4+ 1 having a
fragile surrounded node v'. But then v’ cannot contain a fragile node (the descendants of w are the last
fragile surrounded nodes, and w is non-surrounded). This means that we can apply the same analysis
to v’ as for v.

e In the latter case (typeM), w is fused with a repeating meta-block to form a typeM meta-block v,
changing the names of the leftmost and two rightmost nodes of v, where the leftmost node is w.
Assume that the two rightmost nodes of v are fragile and surrounded (otherwise we conclude with the
previous case that there are no fragile surrounded nodes on height A" + 1). Under this assumption,
the rightmost nodes of v are repeating nodes due to Fact [3] Hence, we can apply the same analysis as
for v, and conclude the claim for all heights above h/'. O

A direct consequence is that there are O(1) fragile surrounded nodes on each height. With Lemma
we get the following theorem:

Theorem 19. The HSP tree HT(Y) of a string Y of length n contains at most O(lg* n) fragile nodes on
each height.

Having a bound on the number of fragile nodes, we start to study the algorithmic operations of an
HSP tree. The first operation is how to actually build an HSP tree. For that, we have to think about its
representation:

3.2 Tree Representation

Unlike Cormode and Muthukrishnan, who use hash tables to represent the dictionary ©, we follow a deter-
ministic approach. In our approach, we represent © by storing the HSP tree as a CFG. A name (i.e., a
non-terminal of the CFG) is represented by a pointer to a data field (an allocated memory area), which is
composed differently for leaves and internal nodes:

Leaves. A leaf stores a position ¢ and a length ¢ € {2,3} such that Y[i..i + ¢ — 1] is the generated substring.

Internal nodes. An internal node stores the length of its generated substring, and the names of its children.
If it has only two children, we use a special, invalid name L for the non-existing third child such that
all data fields are of the same length.

This information helps us to navigate from a node to its children or its generated substring in constant time,
and to navigate top-down in the HSP tree by traversing the tree from the root in time linear in the height
of the tree.

To accelerate substring comparisons, we want to give nodes with the same children (with respect to their
order and names) the same name, such that the dictionary © is injective. To keep the dictionary injective,
we do the following: Before creating a new name for the rule b — zyz (we set z = L if the rule is b — xy),
we check whether there already exists a name for xyz. To perform this lookup efficiently, we need also the
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Figure 23: Conception of the proof of Lemma To compute the longest common prefix of X[ix..] and
Yiy..] (arrow in the center), we walk down the trees HT(X) and HT(Y") (depicted by the upper and the
lower triangle, respectively) on the paths towards the leaves containing X[ix] and YTiy], respectively, by
simultaneously visiting two nodes on the same height of both trees. The nodes u and v in the figure are
on these paths. Suppose that they are on the same height and have the same surname. On visiting both
nodes, we know that the longest common prefix is at least min(|string(u)|, |string(v)|) long. We update the
destination of our traversal accordingly, such that we follow the paths from u and v to the leaves covering
the not-yet checked parts of the longest common prefix that we want to compute.

reverse dictionary of ©, with the right hand side of the rules as search keys. We want the reverse dictionary
to be of size O(|Y]), supporting lookup and insert in O(tjook) (deterministic) time for a tioox = tiook ()
depending on n. For instance, a balanced binary search tree has tj,ox = O(lgn).

With this tree representation, we can build HSP trees within the following time and space bounds:

Lemma 20. The HSP tree HT(Y) of a string Y of length n can be built in O(n(lg* n+tio0x)) time. It takes
O(n) words of space.

Proof. A name is inserted or looked-up in tj,0x time. Due to the alphabet reduction technique (see Lemma[4)),
applying esp on a substring of length ¢ takes O(£1lg* n) time, returning a sequence of blocks of length at
most £/2. O

3.3 LCE Queries in HSP Trees

Like the trees [1I.[32] based on signature encoding, we show that HSP trees are good at answering LCE queries.
The idea is to compare the names of two nodes to test whether the generated substrings of both nodes are the
same. Remembering that two nodes with the same generated substring can have different names (cf. the end
of Sect. , we want to have a rule at hand saying when two nodes with different names must have different
generated substrings. It is easy to provide such a rule when the input string is square-free: In this case, all
fragile nodes are non-surrounded according to Lemma [8] and thus we know that the surrounded nodes are
stable. Since each height consists of exactly one type 2 meta-block, the equality of two substrings X and
Y can be checked by comparing the names of two surrounded nodes whose generated substrings are X and
Y, respectively. For general strings, we need additional information about the generated substring of each
repeating node. That is because the names of two repeating nodes at the same height already differ when the
generated substring of one node is a proper prefix of the generated substring of the other node. Fortunately,
this additional information is given by the surnames and surname-lengths (see Fact [2|in Sect. :

Having a common dictionary @ for all HSP trees that stores the length of the string ®(™ (z) for each
name Z € ¥p, we explain how HSP trees can answer LCE queries efficiently.

Lemma 21. Given HT(X) and HT(Y) built on two strings X and Y with |X| < |Y| < n and two text
positions 1 <ix <|X|,1 <iy <|[Y], we can compute lep(X[ix..], Y[iy..]) in O(lgnlg" n) time.
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Proof. We use the following property: If two nodes have the same surname Z, then the generated substrings
of both nodes are Z% and Z7, respectively, with the respective surname-lengths i and j, where Z = string(Z).
This means that the generated substring of one node is a prefix of the generated substring of the other. In
the particular case ¢ = j, both nodes share the same subtree and consequently have the same name according
to Lemma [I5] In summary, this property allows us to omit the comparison of the subtrees of two nodes
with the same surname, and thus speeds up the LCE computation, which is done in the following way (cf.

Fig. :

(1) We start with traversing the two paths from the roots of HT(X) and HT(Y") to the leaves Ax and Ay
whose generated substrings contain (X)g[ix]| and (Y)o[iy], respectively:

(2) We traverse the two paths leading to the leaves Ax and Ay, respectively, in a simultaneous manner
such that we always visit a pair (u,v) of nodes on the same height belonging to HT(X) and HT(Y),
respectively.

(3) Given that u and v share the same surname Z € 3, we know the lengths of their generated substrings
(|©(h)(z)’h and |D(")(z) K”) by having their surname-lengths ¢, and £, at hand. As a consequence,

we know that X[ix..] and Y[iy..] have a common prefix of at least min(|©<h)(2)|e" , |©(h)(Z)|Z”).

We update the variables Ax and Ay to be the leaves whose generated substrings contain (X)o[ix +
Zu . Z’U . .

DM (2)| ] and (Y)oliy + | (Z)| "], respectively. Subsequently, we continue our tree traversals

from u and v to the updated destinations ¢x and fy, respectively. Since A\x and Ay are not in the

respective subtrees of u and v, we climb up the tree to the lowest common ancestor of u (resp. v)

and Ax (resp. Ay), and recurse on [(2)]

(4) If we end up at a pair of leaves (i.e., u = Ax and v = Ay), we compare their generated substrings
naively. If we find a mismatching character in both generated substrings, we can determine the value
of ¢ and terminate. We also terminate if there is no mismatch, but Ax or Ay is the rightmost leaf of
HT(X) or HT(Y), respectively. In all other cases, we set Ax and Ay to their respectively succeeding
leaves, climb up to the parents of u and v, and recurse on

During the traversals of both trees, we spend constant time for each navigation operation, i.e., (a) selecting a
child, and (b) climbing up to the parent of a node: On the one hand, we select a child of a node v in constant
time by following the pointer of the name of v (defined in Sect. . On the other hand, we maintain, for
each tree, a stack storing all ancestors of the currently visited node during the traversal of the respective
tree: Each stack uses O(lgn) words, and can return the parent of the currently visited node in constant
time.

To upper bound the running time of the traversals, we examine the nodes visited during the traversals.
Starting at both root nodes, we follow the path from the root of HT(X) (resp. HT(Y")) down to the roots of
the minimal subtree Tx of HT(X) (resp. Ty of HT(Y)) covering X|[ix..ix + £] (vesp. Y|iy..iy + E])E| After
entering the subtrees Tx and Ty, we will never visit nodes outside of Tx and Ty. The question is how
many nodes of Tx and Ty differ. This can be answered by studying the tree HT(Z) built with the same
dictionary ®, where Z := X[ix..ix +{—1] = Y[iy..iy +£—1]: On the one hand, HT(Z) has O(lg" n) fragile
nodes on each height according to Thm. On the other hand, each (semi-)stable node in HT(Z) is found
in both Tx and 7y with the same name and surname. This means that when traversing HT(X) and HT(Y)
within their respective subtrees Tx and Ty, we only visit O(Ig* n) pairs of nodes per height (remember that
we follow the two paths to the leaves Ax and Ay, respectively, up to the point where the surnames of the
visited pair of nodes match).

To sum up, we (a) compute paths from the roots to (X)o[ix] and (Y)o[iy], respectively, in O(lg|Y])
time, and (b) compare the children of at most O(lg" n) nodes per height. Since both trees have a height of
O(g|Y]), we obtain our claimed running time. O

5We assume that ix + £ < |X| and iy + £ < |Y|. Otherwise, let Tx and Ty cover X[ix..ix + £ — 1] and Y[iy..iy +£— 1],
respectively.
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The following corollary is a small refinement of Lemma [21] that already shows the result of Thm. [3] for
T=1

Corollary 22. Given HT(X) and HT(Y) built on two strings X and Y with |X| < |Y| < n and two text
positions 1 <ix <|X|,1 <iy <|[Y], we can compute ¢ := lep(X[ix..],Y[iy..]) in O(lgflg" n) time.

Proof. Our idea is to enhance an HSP tree with a data structure such that climbing up from a child to its
parent can be performed in constant time. This can be achieved when we represent the tree topology of
an HSP tree with a pointer based tree, in which each node stores its name and the pointer to its parent.
The leaves are stored sequentially in a list. A bit vector with the same length as the input string is used to
mark the borders of the generated substrings of the leaves. Given a text position 7, we can access the leaf
whose generated substring contains ¢ in constant time with a rank-support on the bit vector. The bit vector
with rank-support takes n + o(n) bits. The pointer based tree can be built with the HSP tree without an
additional time overhead, and takes O(n) words of space. O

In the next section, we describe a preliminary version of our sparse suffix sorting algorithm that does not
exploit the text space yet.

4 Sparse Suffix Sorting

The sparse suffix sorting problem asks for the order of suffixes starting at certain positions in a text 7. In
our case, these positions need only be given online, i.e., sequentially and in an arbitrary order. We collect
them conceptually in a dynamic set P with m := |P|. The online sparse suffix sorting problem is to keep
the suffixes starting at the positions stored in the incrementally growing set P in sorted order. Due to the
online setting, we represent the order of Suf(P) by a dynamic, self-balancing binary search tree (e.g., an
AVL tree). Each node of the tree is associated with a distinct suffix in Suf(P); the lexicographic order is
used as the sorting criterion.

The technique of Irving and Love [21] augments an AVL tree on a set of strings S with LCP values so
that £y := max{lep(X,Y) | X € S} can be computed in O(¢y /log, n+1g|S|) time for a string Y. Inserting
a new string Y into the tree is supported in the same time complexity (¢y is defined as before). Irving and
Love called this data structure the suffix AVL tree on S; we denote it by SAVL(S).

Remembering Sect. our goal is to build SAVL(Suf(P)) efficiently. However, inserting m suffixes
naively takes Q(|C| m/log, n+mlgm) time. How to speed up the comparisons by exploiting a data structure
for LCE queries is the topic of this section.

4.1 Abstract Algorithm

Starting with an empty set of positions P = (), our algorithm updates SAVL(Suf(P)) on the input of
every new text position, involving LCE computations between the new suffix and suffixes already stored in
SAVL(Suf(P)). A crucial part of the algorithm is performed by these LCE computations, for which an LCE
data structure is advantageous to have. In particular, we are interested in a mergeable LCE data structure
that is mergeable in such a way that the merged instance answers queries faster than performing a query
on both former instances separately. We call this a dynamic LCE data type (dynLCE); it supports the
following operations:

e dynLCE(Z) constructs a dynLCE data structure M on the substring T[Z]. Let M.ival denote the
interval Z.

e LCE(M;, M, p1,p2) computes lce(p1, p2), where p; € M;.ival for i = 1,2.

e merge(M, M) merges two dynLCEs M; and M, such that the output is a dynLCE built on the string
concatenation of T'[M;.ival] and T[Ms.ivall.
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We use the expression t¢(|Z|) to denote the construction time of such a data structure on the substring T'[Z].
We assume that the construction of dynLCE(Z) takes at least as long as scanning all characters on Y, i.e.,

Property 1: tc(|Z]) = Q(|Z| / log, n).

We use the expressions t1,(|X| 4 |Y]) and tp (] X | 4 |Y]) to denote the time for querying and the time for
merging two such data structures built on two given strings X and Y, respectively. Querying two dynL.CEs
for a length ¢ is faster than the word-packed character comparison iff £ = Q(¢r,(¢)lgn/lgo). Hence, we
obtain the following property:

Property 2: A dynLCE on a text smaller than g := O(t1.(g)lgn/lgo) is always slower than the
word-packed character comparison.

In the following, we build dynL.CEs on substrings of the text. Each interval of the text that is covered by
a dynLCE is called an LCE interval. The LCE intervals are maintained in a self-balancing binary search
tree L of size O(m). The tree L stores the starting and the ending positions of each LCE interval, and uses
the starting positions as keys to answer the queries

e whether a position is covered by a dynLLCE, and
e where the next text position starts that is covered by a dynLCE,

in O(lgm) time. Additionally, each LCE interval is assigned to one dynL.CE data structure (a dynL.CE can be
assigned to multiple LCE intervals) such that £ can not only retrieve the next position covered by a dynLCE,
but actually return a dynLCE that covers that position. The dynL.CE is retrieved by augmenting an LCE
interval Z with a pointer to its dynLCE data structure M, and with an integer ¢ such that T[M.ival N[i..i+
|Z| — 1]] = T[Z] (since M could be built on a text interval M.ival # Z that contains an occurrence of T[Z]).

Given a new position p € P with 1 < p < |T|, updating SAVL(Suf(P)) to SAVL(Suf(P U {p})) involves
two parts: first locating the insertion node for p in SAVL(Suf(P)), and then updating the set of LCE intervals.
Locating. The insertion operation performs an LCE computation for each node encountered in SAVL(Suf(P))
while locating the insertion point of p. Suppose that the task is to compare the suffixes T[i..] and T'[j..] for
two text positions ¢ and j with 1 <4, j < |T|. We perform the following steps to compute lce(, j):

(1) Check whether the positions ¢ and j are contained in an LCE interval, in O(lgm) time with the search
tree L.

e If both positions are covered by LCE intervals, then query the respective dynL.LCEs for the length ¢
of the LCE starting at ¢ and j. Increment ¢ and j by £. Return the number of compared characters
on finding a mismatch while computing the LCE.

e Otherwise (if 7 or j are not contained in an LCE interval), find the ; LCE
smallest length ¢ such that i 4+ ¢ and j + ¢ are covered by LCE —— —
intervals. Increment ¢ and j by ¢, and naively compare ¢ characters. — 0
Return the number of compared characters on a mismatch. J é

(2) Return the total number of matched positions if a mismatch is found in (1). Otherwise, repeat the
above check again (with the incremented values of 7 and j).

After locating the insertion point of p in SAVL(Suf(P)), we obtain p := mlcparg(p) and £ := mlcp(p) as a

byproduct, where mlcparg(p) := argmax,, cp .,y lep(T[p..], T[p’..]) and mlep(p) := lep(T'[p..], T[mlcparg(p)..])
for each text position p with 1 < p < |T|. We insert p into SAVL(Suf(P)), and use the position p and the

length ¢ to update the LCE intervals.

Updating. The LCE intervals are updated dynamically, subject to the following properties (see Fig. :
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Figure 25: Application of Rules [I| to [4] for preserving the properties. The interval Z := [p + i..p + j] is
not yet covered by an LCE interval, but is contained in [p..p + £ — 1] — a conflict with Property The
conflict is resolved based on the LCE intervals covering the positions of J := [p + i..p + j|. The intervals
with the horizontal lines are the LCE intervals, and the intervals with the diagonal lines are the intervals of
[p..p+ ¢ — 1]\ U. Here, J intersects with an LCE interval K. This case is treated in Rule

Property 3: The length of each LCE interval is at least ¢ (defined in Property .

Property 4: For every p € P, the interval [p..p+mlcp(p) — 1] is covered by an LCE interval, except
at most g positions at its left and right ends.

Property 5: There is a gap of at least g positions between every pair of LCE intervals.

After adding p to P, we perform the following instructions to satisfy the properties. If ¢ < 2g, we do
nothing, because all properties are still valid (in particular, Property [4] still holds). Otherwise, we need to
restore Property [l There are at most two positions in P that possibly invalidate Property [4 after adding p,
and these are p and p (otherwise, by transitivity, we would have created a longer LCE interval previously).

We introduce an algorithm that does not restore Property [ directly, but first ensures that

Property 4’: the intervals [p..p + £ — 1] and [p..p + £ — 1] are covered by one or multiple LCE
intervals.

In a later step, we restore Property [4] by merging LCE intervals that are in conflict with Property [5], and
thus restore all properties: Let U C [1..n] be the set of all positions that belong to an LCE interval. The
set [p..p + € — 1] \ U can be represented as a set of disjoint intervals of maximal length. For each interval
Z:=[p+i.p+7j] C[p..p+{—1] of that set, apply the following rules with 7 := [p+i..p+ j] (for integers i, j
with 0 <¢ < j </¢—1, see Fig. sequentially:

Rule 1: If 7 is a sub-interval of an LCE interval K, then declare Z as an LCE interval and let it
refer to the dynLCE of /.

Rule 2: If J intersects with an LCE interval K, enlarge the dynLCE on T[K] to cover T[K U J]
(create a dynLCE on T[J \ K] and merge it with the dynLCE on T[K]). Apply Rule

Rule 3: Otherwise (there is no LCE interval K with J N K # 0), create dynLCE(J), and make Z
and J to LCE intervals referring to dynLCE(J).
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We satisfy Property 4’ on [p..p+{—1] by updating U, computing the set of disjoint intervals [p..p+{—1]\U,
and applying the same rules on it. However, Rule [1| or Rule [3| can create LCE intervals shorter than g,
violating Property [3| By construction, such a short LCE interval is adjacent to another LCE interval (the
rules compute a cover of [p..p+ ¢ —1] and [p..p+ ¢ — 1] with LCE intervals). This means that we can restore
Property [3] by restoring Property 5] We do that by applying the following rule subsequently to Rule [3}

Rule 4: Merge a newly created or extended LCE interval violating Property [5] with its nearest LCE
interval (ties can be broken arbitrarily). Merge those LCE intervals and their dynLCEs.

Rule [4] also restores Property [4| (since Property 4’ and Property 5| hold). After applying all rules, we have
introduced at most twoﬂ new LCE intervals that cover the intervals [p+g..p+¢—1—g] and [p+g..p+¢—1—g],
respectively, to satisfy Properties[3]to[5} The running time of this algorithm is analyzed in the following
lemma:

Lemma 23. Given a text T of length n and a set of m arbitrary positions P in T, the suffix AVL
tree SAVL(Suf(P)) with the suffixes of T' starting at the positions P can be computed deterministically
in O(tc(|C) + tL(|IC])mlgm + tym(|C])m) time.

Proof. The analysis is split into managing the dynLCEs, and the LCE queries:

e We build dynLCEs on substrings covering at most |C| characters of the text, taking at most ¢t (|C|) time
for constructing all dynLCEs. During the construction of the dynLCEs we spend O(|C|/log, n) =
O(tc(|C])) time on naive searches due to Property

e The number of merge operations on the LCE intervals is upper bounded by 2m in total, since we create
at most two new LCE intervals for every position in P. In total, we spend at most 2ty (|C|)m time for
the merging in total.

e The algorithm performs O(mlgm) LCE queries. LCE queries involve either (a) naive character com-
parisons or (b) querying a dynLCE. Given that we have ¢ < 2m LCE intervals, we switch between
both techniques at most 46 + 1 times for an LCE query.

(a) On the one hand, the overall time for the naive character comparisons is bounded by O(tc(|C|) +
tL(|IC])m1gm):

— By Property [3] all substrings T'[p..p 4+ mlep(p) — 1] are covered by an LCE interval, except at
most at 2g positions. This means that all substrings that are not covered by an LCE interval,
but have been subject to a naive character comparison, are shorter than 2g. For a naive
character comparison with one of those substrings, we spend at most O(gmlgm/log, n) =
O(tL(g)mlgm) = O(tL(|C|)m1gm) time. In the case that g > |C|, we do not create any
LCE interval, and spend O(|C| /log, n +mlgm) = O(tc(|C|) + mlgm) overall time due to
Property

— If we compare more than g characters for an LCE query, we create at most two LCE intervals,
possibly involving the construction of dynLLCEs on the compared substrings. The construction
of a dynLCE on an interval Z takes tc(|Z]) = Q(|Z] /log, n) time due to Property

(b) On the other hand, querying the dynLCEs take at most O(¢1,(|C|)mlgm) overall time. Suppose
that we look up d < § LCE intervals for an LCE query. Since we look up an LCE interval in
O(lgm) time with £, we spend O(dlgm) time on the lookups during this LCE query. However,
we subsequently merge all d looked-up LCE intervals, reducing the number of LCE intervals § by
d — 1. Consequently, we perform a look-up of an LCE interval at most 2m times in total. O

6The number of new LCE intervals could be indeed two: Although p € P, we would not have created an LCE interval
covering [p+ g..p + £ — 1 — g] if mlep(p) was smaller than g at the time when we inserted p in P with £ := mlcp(p).
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The last step is to compute SSA:= SSA(T, P) and SLCP:= SLCP(T,P) from SAVL(Suf(P)) by travers-
ing SAVL(Suf(P)) and performing LCE queries on the already computed dynLCEs: The SAVL(Suf(P))
is a binary search tree storing all elements of Suf(P) in lexicographically sorted order. This means that
we can compute SSA with an in-order traversal of SAVL(Suf(P)). Afterwards, we compute SLCP[i] =
lce(SSA[i], SSAJi — 1]). Given that the text positions [SSA[¢].. SSA[i] + SLCP[i] — 1]] and [SSA[i — 1].. SSA[i —
1] + SLCP[i] — 1]] are not covered by an LCE interval, SLCP[i] = O(g) due to Property [3| and we spend
at most O(g/log, n) time on computing SLCP[:] by naive character comparisons. Otherwise, we spend
O(g/log, n+1tL(SLCP[i])) = O(t(SLCP[i])) time by querying a single dynLCE due to Property [l Querying
whether both text intervals are covered by an dynL.CE costs O(lgm) time with £. In total, we can compute
SLCPJi] for each integer ¢ with 2 < i <m in O(tL(|C|) + mlgm) time, since O(g/log, n) = O(tL(g)) due to
Property [2l The following corollary of Lemma [23] summarizes the achievements of this section:

Corollary 24. Given a text T of length n that is loaded into RAM, the SSA and SLCP of T for a set of
m arbitrary positions can be computed deterministically in O(tc(|C|) + tL(|C|)m1gm + tm(|C])m) time. We
need O(m) words of space, and space to store dynLCE on |C| positions.

4.2 Sparse Suffix Sorting with HSP Trees

We show that the HSP tree is a dynLCE data structure.
Remembering that the algorithm from Sect. [£.1] depends on
the merging operation of dynLCE, we now introduce the
merging of HSP trees. A naive way to merge two HSP trees
HT(X) and HT(Y) is to build HT(XY) completely from
scratch. Since only the fragile nodes of HT(X) and HT(Y)
can change when merging both trees, a more sophisticated
approach would reparse only the fragile nodes of both trees. i L
Remembering the properties studied in Sect. we show '

such an approach in the following lemma:

Lemma 25. Merging HT(X) and HT(Y") of two strings X,Y € ¥* into HT(XY") takes O(tjoox(Ar 1g | X| +
A lg|Y])) time.

Proof. First assume that HT(X) and HT(Y) only contain type2 nodes. In this case, we examine the
rightmost nodes of HT(X) and the leftmost nodes of HT(Y") from the bottom up to the root: At each height
h, we merge the nodes (X);, and (V) to (XY, by reparsing the Ag rightmost nodes of (X), and the Ay,
leftmost nodes of (Y');,. By doing so, we reparse all nodes of HT (X)) (resp. HT(Y')) whose local surrounding
on the right (resp. left) side does not exist. Nodes of HT(X) (resp. HT(Y")) that have a local surrounding on
the right (resp. left) side are not changed by the parsing. In total, we spend O(tjoox(Ar 1g | X |+ AL lg|Y]))
time on merging two trees consisting of type 2 nodes.

Next, we allow repeating nodes. Lemma [17| shows that there are no fragile surrounded nodes in HT(X)

that need to be fixed. The remaining problem is to find and recompute the £
surrounded nodes in HT(Y") whose names change on merging both trees. The
lowest of these nodes belong to a repeating meta-block due to Lemma [7|and

Cor. To find this meta-block, we adapt the strategy of the first paragraph e
considering only type 2 meta-blocks. On each height h, we reparse the A, P L
leftmost nodes of (Y). If the rightmost of these A, nodes are contained in A
a repeating meta-block u that does not end within those Ay, leftmost nodes, ¢ =
chances are that the names of some nodes in p change. Due to Cor. [[2] it is sufficient to reparse the two
rightmost nodes of u. This is done as follows:

= L
L

1. Take the leftmost repetitive node s of v (which exists due to Cor. and is one of the Ar, +1 leftmost
nodes on height h).
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2. Given that s has the surname Z, climb up the tree to find the highest ancestor u with surname Z. The
ancestor u is the lowest common ancestor of s and the rightmost repetitive node of .

3. Walk down from u to the rightmost nodes of u.
4. Reparse p’s two rightmost nodes.
5. Reparse all ancestors of these two nodes that are surrounded.

6. Check whether the reparsed ancestors invalidate the parsing of their meta-blocks; fix the parsing for
those meta-blocks recursively.

Climbing up to find u and walking down to the rightmost nodes of y takes O(took 1g |12]) = O(tiook Ig(n/2"))
time, reparsing the surrounded ancestor nodes of the two rightmost nodes of 1 takes O(t100k Ig(n/2")) time.
Given that the highest nodes of this reparsing are on a height A’ > h, Lemma states that up to the
height h' 4 1, there is no need to reparse a fragile surrounded node (we follow the paths of fragile nodes as
depicted in Fig. . Given that there are uq, ..., g such meta-blocks (for which we apply Steps 1 to 6), we
have O(tio0k Zle lg |1i]) = O(tio0k lgn) due to Zle lg p1; < lgn. Hence, we spend O((Ar + Ar)tiook 1g|Y])
time overall. O

The following theorem combines the results of Cor. [24] and Lemma

Theorem 26. Given a text T of length n and a set of m text positions P, SSA(T,P) and SLCP(T,P) can
be computed in O(|C| (Ig" n + tioox) + mlgmlgnlg™ n) time. We need O(n + m) words of space.

Proof. We have
e tc(|C]) = O(IC| (Ig" 7 + tioex)) due to Lemma [20]
e t.(|C|]) = O(lg" nlgn) due to Lemma 1] and
e t:m(|C]) = O(tiook g n1g* n) due to Lemma 25|

Actually, the time cost for merging is already upper bounded by the cost for the tree creation. To see
this, let 6 < m be the number of LCE intervals. Since each HSP tree covers at least g characters, dg
is at most |C|, and we obtain d &y (|C]) = O(IC|tm(IC])/g9) = O(C| tioox) overall time for merging, where
g =0(tL(|c])lgn/lgo) = ©(g* nlg*n/lg o). Plugging the times tc(|C|), t1.(|C|), and the refined analysis of
the merging time cost in Cor. 24] yields the claimed time bounds. O

5 Sparse Suffix Sorting in Text Space

Remembering the outline in the introduction, the key idea to solve the limited space problem is storing
dynLCEs in text space. Taking two LCE intervals of the text containing the same substring, we free up the
space of one part while marking the other part as a reference. The freed space could be used to store an
HSP tree whose leaves refer to substrings of the other LCE interval. By doing so, we would use the text
space for storing the HSP trees, while using only O(m) additional words for storing SAVL(Suf(P)) and the
search tree £ of the LCE intervals. However, an HSP tree built on a string of length n takes O(nlgn) bits,
while the string itself provides only nlgo bits. Our solution is to truncate the HSP tree at a fixed height 7,
discarding the nodes in the lower part. The truncated version tHT, (Y") stores just the upper part, while
its new leaves refer to (possibly long) substrings of Y. The resulting tree is called the n-truncated HSP
tree (tHT,), whose definition follows:
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Figure 26: The n-truncated HSP tree tHT,(Y") of the substring Y defined in Fig. @] with n = 2. Like in
Fig. the lower nodes are grayed out. An n-node is a leaf in tHT, (Y"), and has a generated substring with
a length between four and nine.
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Figure 27: Merging HT((ab)“a®) with HT(a*) (both at the top) to HT((ab)*a®) (bottom tree). Reparsing
the repeating meta-block 1 on height one of the right tree is done by rearranging p’s two rightmost nodes.

5.1 Truncated HSP Trees

We define a height 1 and delete all nodes at height less than 7, which we call lower nodes. A node higher
than 7 is called an upper node. The nodes at height 1 form the new leaves and are called n-nodes. Similar
to the former leaves, their names are pointers to their generated substrings appearing in Y. Remembering
that each internal node has two or three children, an n-node generates a string of length at least 2”7 and
at most 3"7. The maximum number of nodes in an n-truncated HSP tree of a string of length n is n/2".
Figure [26] shows an example with n = 2.

Similar to leaves in untruncated HSP trees, we use the generated substring X of an n-node v for storing
and looking up v: While the leaves of the HSP tree have a generated substring of constant size (two or three
characters), the generated substring of an n-node can be as long as 37. Storing such long strings in a binary
search tree representing the reverse dictionary of @ is inefficient; it would need O(£1g o) time for a lookup or
insertion of a key of length ¢. Instead, we want a dictionary data structure storing O(|Y'|) elements in O(|Y])
words of spaceﬂ supporting lookup and insert in O(to0k + ¢/ log, n) time for a key of length ¢. For instance,
Franceschini and Grossi’s data structure [13] with word-packing supports the desired time and space bounds
with t1oox = O(]g n)

Lemma 27. We can build an 7-truncated HSP tree tHT,(Y) of a string Y of length n in O(n(lg*n +
n/log, n+tiok/2")) time, using O(3"1g™ n) words of working space. The tree takes O(n/2") words of space.

"The data structure is not necessarily stored in consecutive space like an array.
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Proof. Instead of building the HSP tree level by level, we compute the n-nodes one after another, from left
to right. We can split the parsing of the whole string into several parts. Each part computes one n-node.

First assume that tHT,(Y") only contains type 2 nodes. Then the name of an n-node v is determined by
v’s local surrounding (as far as it exists) due to Lemma lﬂ This means that it is sufficient to keep v’s local
surrounding at height 7 — 1, which we denote by X, in memory. X, is a string of lower nodes. To parse a
string of lower nodes by HSP, we have to give each lower node a name. Unfortunately, storing the names
of all lower nodes in a dictionary would take too much space. Instead, we create the name of a lower node
temporarily by setting the name of a lower node to its generated substring. This means that we cannot
retrieve their names later. Luckily, we only need the names of the lower nodes for constructing X,. We
construct X, as follows: Given that we parsed the local surrounding of v at height A (0 < h < n — 3) with
HSP, we store the borders of the blocks on height h+ 1 in an integer array such that we can access the name
(i.e., the generated substring) of the i-th block on height h + 1. With this integer array, we can parse the
blocks on height h + 1 to obtain the blocks on height h 4 2, whose borders are again stored in an integer
array. Having the borders of the blocks on height h + 2, we can remove the integer array on height A + 1.
The blocks on height n — 1 are the nodes of X,.

In the general case (when tHT, (Y") contains repeating nodes), it can happen that the name of a greedily
parsed node (i.e., a repeating node or one of the Ay, leftmost nodes of a type 2 meta-block) depends not
necessarily on its local surrounding, but on the length of its repeating meta-block, its surname and its
children (in case of a typeM node). This means that when computing X, of an n-node v, we additionally
have to consider the case when nodes in the local surrounding of v are contained in a meta-block p on
height h < n that extends over the nodes in v’s surrounding at height h. It is sufficient to use a counting
variable that tracks the position of the last block of x belonging to the subtree of the preceding n-node of v
(remember that the greedy parsing determines the blocks by an arithmetic progression). Another necessity
is to maintain the surnames of the lower nodes. In our approach, each array storing the borders of the blocks
on the heights below 7 is accompanied with two arrays. The first array stores the length of the prefix of the
generated substring of each block S that is equal to 8’s surname; the second array stores the surname-length
of each block.

Working Space. We compute v after computing X,. To compute X,,, we apply the HSP technique (n—1)-
times on the generated substring of the nodes in X,. Since the nodes of X, cover at most 37(Ar, + Ag)
characters, we need O(3"(Ar, + Agr)) words of working space to maintain the integer arrays storing the
borders of the blocks at two consecutive heights. To cope with the meta-blocks extending over the border
of the subtrees of two n-nodes, we store the last position of each such meta-block belonging to the local
surrounding of the previous 7-node. These positions take O(n) words, since such a meta-block can exist on
every height below 7.

Time. The time bound O(nlg* n) for the repeated application of the alphabet reduction is the same as
in Lemma [20] The new part is the construction of an n-node by constructing X,: To construct the lower
nodes X,, we apply the HSP technique (1 — 1)-times on string(v). The HSP technique compares lower
nodes by their generated substrings (instead of comparing by a name stored in ©). It always compares
two adjacent lower nodes during the construction of X,,. To bound the number of comparisons of the lower
nodes, we focus on all lower nodes on a fixed height h with 1 < h < n — 1: Since the sum of the lengths of
the generated substrings of the lower nodes on height h is always n, the comparisons of the lower nodes on
height h take O(n/log, n) time, independent of the number of nodes on height . Summing over all heights,
these comparisons take O(nn/log, n) time in total. By the same argument, maintaining the names of all
n-nodes takes O(n/log, n + tiooxn/2") time.

A name is looked-up in O(tjo0k) time for an upper node. Since the number of upper nodes is at most
n /2", maintaining the names of the upper nodes takes O(tiooxn/2") time. This time is subsumed by the
lookup time for the n-nodes.

Surnames. Augmenting the (remaining) nodes of the n-truncated HSP tree with surnames cannot be
done as trivially as in the standard HSP tree construction, since a repetitive node can have a surname equal
to the name of a lower node (remember that lower nodes are generated only temporarily, and hence are not
maintained in the reverse dictionary). To maintain the surnames pointing to lower nodes, we need to save
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the names of certain lower nodes in a supplementary reverse dictionary ©’ of @. This is only necessary
when one of the remaining nodes (i.e., the upper nodes and the n-nodes) in the n-truncated HSP tree has a
surname that is the name of a lower node. If such a remaining node v is an upper node having a surname
equal to the name of a lower node, the n-nodes in the subtree rooted at v have also the same surname.
Hence, the number of entries in @’ is upper bounded by the number of -nodes. The dictionary @’ is filled
with the surnames of the children of all n-nodes, whose number is at most 3n/2". Filling or querying ®’
takes the same time as maintaining the n-nodes. O

Similar to the standard HSP trees, we can conduct LCE queries on two n-truncated HSP trees in the
following way:

Lemma 28. Let X and Y be two strings with |X|,[Y| < n. Given that tHT,(X) and tHT,(Y’) are built
with the same dictionary, and given two text positions 1 < ix < |X|,1 < iy < [Y|, we can compute
lep(X[ix..], Y[iy..]) in O(g" n(lg(n/2") + 37/log, n)) time using O(lg(n/2")) words of working space.

Proof. Lemma [21] gives the time bounds for computing the longest common prefix with two HSP trees. The
lemma describes an LCE algorithm that uses the surnames to compare the generated substring of two nodes.
By doing so, it accelerates the search for the first pair of mismatching characters in X[ix..] and Y[iy..]. To
find this mismatching pair, it examines the subtrees of the two nodes if both nodes mismatch. Since we
cannot access a child of an n-node in our n-truncated HSP trees without rebuilding its subtree (as we do
not store the lower nodes in ®), we treat the n-nodes as the leaves of the tree. This means that we compare
two n-nodes (given their surnames are different) with a naive comparison of their generated substrings in
O(3"/log, n) time, remembering that the length of the generated substring of an 7-node is at most 3. For
the upper nodes, the algorithm works identically to the original version such that it takes O(lg* n(lg(¢/2"))
time for traversing those. O

Applying the idea of Cor. [22|to Lemma [28] gives the following corollary:

Corollary 29. Let X and Y be two strings with |X|, Y| < n. Given that tHT, (X) and tHT,(Y") are built
with the same dictionary, we can augment both trees with a data structures such that given two text positions
1 <ix <|X[,1 <iy < Y|, we can compute £ := lep(X[ix..], Y[iy..]) in O(lg* n(1g(¢/27) + 37/log, n))
time using O(lg(n/27)) words of working space. The additional data structures can be constructed in O(n)
time with O(n/lgn) words of space. Their space bounds are within the space bounds of the HSP trees.

Proof. To support accessing the parent of a node in constant time, we construct a pointer based tree structure
of the truncated tree during its construction. Since tHT,(Y") contains at most n/2" nodes, the pointer based
tree structure takes O(n/2") words.

Given that n <lglgn, we augment the tree structure with a bit vector to jump from a text position to an
n-node like in Cor. 22} We create a bit vector of length n marking the borders of the generated substrings of
the n-nodes such that a rank-support data structure on this bit vector allows us to jump from a position Y7[i]
to the n-node (Y),[j] with 1+ S37_7 string((Y),[k]) < i < 337_, string((Y),[k]) in constant time. The bit
vector with rank-support takes O(n/lgn) words, which is too much to obtain the space bounds of O(n/27)
words when n = Q(lglgn).

Instead, we compute a sorted list of pairs if n > lg3(lg2 n). During the construction of a truncated tree,
we collect pairs of constructed n-nodes and their starting positions in a list. This list is automatically sorted
by the starting positions as we construct the tree from left to right. The list takes O(n/2") words, and we
can find the n-node whose generated substring covers a given position in O(lg(n/27)) = O(lgn) time by
binary searching the starting positions. This time is bounded by the time O(lg* n 3"/ 1g, n) for scanning the
generated substrings of all -nodes during an LCE query, which is O(lg* nlgnlg o) time when n > 1g;(1g n).

It is left to consider the case that lglgn < n < lg, lgn. Let k be the number of n-nodes such that
n/3" < k < n/27. We build the above bit vector in the representation of Pagh [34]. In this representation,
the rank-support answers rank queries in constant time. The bit vector together with its rank-support takes
O(klg(n/k) + k?/n + k(lglgk)?/1gk) = O(kn) bits (which are O(n/27) words) when k = n/lg’n for a
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Figure 28: Problem with generated substrings when merging tHT,(X) and tHT,(Y). Assume that we want
to merge tHT,(X) and tHT,(Y"), and thus compute the bridging n-nodes (like u) between both trees. On
the one hand, the generated substrings of the non-surrounded 7-nodes (like v) and of the bridging nodes
are marked protected, because we cannot find a surrogate substring in general. Although there is a second
occurrence of string(v) to the right, string(v) can be extended or shortened when prepending characters
(e.g., suppose that string(v) = a¥, and that there is an a to the left of the left occurrence of string(v), but
not to the left of the right occurrence). On the other hand, the space of the recyclable interval can be used
for storing the n-truncated HSP trees, because here we find suitable surrogate substrings for the generated
substrings of the n-nodes (like for w).

constant ¢ > 0 [37, Theorem 4(b)]. The constant ¢ exists, because n/lg?n < n/3" < k < n/2" < n/lgn.
However, the construction needs O(n/lgn) words of space. O

With 7 := 27 we obtain the claim of Thm. Bl

Remark 30. In the following, we stick to the result obtained in Lemma [28] instead of Cor. 29] Although
Lemma 2§ has a slower running time for longest common prefixes that are short, the additional rank-support
data structures of Cor. makes it difficult to achieve our aimed running time for merging two trees (and
therefore would restrain us from achieving our final goal stated in Thm. [1J). To merge two trees, where
each tree is augmented with the bit vector and its rank-support data structure, the task would be to build
a rank-support data structure on the concatenation of the bit vectors (preferably in logarithmic time).
Unfortunately, we are not aware of a rank-support data structure that is efficiently mergeable (a naive way
would be to build the rank-support data structure of the large bit vector from scratch in linear time).

5.2 Sparse Suffix Sorting with tHT's

To use the n-truncated HSP trees as dynLLCEs stored in text space, we have to think about how to merge
them. Like with HSP trees, merging two n-truncated HSP trees involves a reparsing of the nodes at the
facing borders (cf. Fig. [27). However, the reparsing of the n-nodes on that borders is especially problematic,
as can be seen in Fig. uppose that we rename an n-node v from Ny to N3 with |string(Na)| < |string(Ns)].
If the name N3 is not yet maintained in the dictionary, we have to create Ns, i.e., a pointer to a substring X
of the text with X = string(N3). The critical part is to find X in the not-yet overwritten parts of the text:
Although we can create a suitably long string containing X by concatenating the generated substrings of
v’s preceding and succeeding siblings, these n-nodes may point to text intervals that are not consecutive.
Since the name of an 7-node is the representation of a single substring, we would have to search X in the
entire remaining text. In the case that v is surrounded, Lemma [I8]shows that X is a prefix of the generated
substring of a sibling n-node (unlike in Fig. where the generated substring of the ESP node with name 0
cannot be easily determined). With this insight, we finally show an approach that proves Thm. [} For that,
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it remains to implement Rule [3] and Rule [4] from Sect. [4.1]in the context that we maintain n-truncated HSP
trees in text space: We explain

Goal 1: how the parameter 7 has to be chosen such that tHT, (Y) fits into |Y|lgo bits (needed for Rule 3,
and

Goal 2: how to merge two n-truncated HSP trees without the need for extra working space (needed for
Rule .

Our first goal is to store tHT,(T'[Z]) in a text interval Z. Since tHT, (7T[Z]) can contain nodes with
|Z| /27 distinct names, it requires O(|Z| /27) words, i.e., O(|Z|1gn/2") bits of space that might not fit in the
|Z|1g o bits of T[Z]. Declaring a constant « (independent of n and o, but dependent on the size of a single
node), we can solve this space issue by setting 1 := logs(alg® n/lgo):

Lemma 31. The number of nodes of an n-truncated HSP tree on a substring of length ¢ is bounded by
O(¢(go)*7/(1gn)*?) with n = logy(alg®n/lgo).

Proof. To obtain the upper bound on the number of nodes, we first compute a lower bound on the number
of bits taken by the generated substring of an n-node, which is already lower bounded by 27lgo bits. We
begin with changing the base of the logarithm from 3 to 2/3, and reformulate = logs(alg®n/lgo) =
(logs2 —1)logy 3(a lg?n/lgo) = logy /3(cx lg? n/lgo)l°8s 2= 1. This gives

2"Mgo = 37(2/3)"lgo = a(alg®n/lg o) &2 g2 n = (al°%s ) (1gn)?1°8s 2 (Ig o) 71083 2,
With the estimate 0.6 < logs 2 < 0.7 we simplify this to
(Oélog3 2)(lg n)210g3 2(lg 0)1—10g3 2 > aO.G(lg n)l.Q(lg 0_)0.3.

Hence, the generated substring of an n-node takes at least 271go > a%6(1gn)t2(1g0)°3 bits.
Finally, the number of nodes is bounded by

0/27 < g/ (0 (lgn) (15 )°?) = €1g)°7/(®(1gn)2). m

A consequence is that an n-node with n = log?)(cvlg2 n/lgo) generates a substring containing at most
3" = a(lgn)?/(lg o) characters.
Plugging this value of 77 in Lemma [27] and Lemma [28]yields two corollaries for the n-truncated HSP trees:

Corollary 32. We can compute an n-truncated HSP tree on a substring of length ¢ in O(¢1g" n+t100kf/2" +
(lglgn) time. The tree takes O(£/2") words of space. We need a working space of O(lg®nlg*n/lgo)
characters.

Proof. The tree has at most £/27 nodes, and thus takes O(¢/2") words of space. According to Lemma
constructing an n-node uses O(371g* n) = O(lg” nlg* n/lg o) characters as working space. O

Corollary 33. An LCE query on two n-truncated HSP trees can be answered in O(lg* nlgn) time.

Proof. LCE queries are answered as in Lemma [28] where the time bound depends on 7. Since an n-node
generates a substring of at most 37 = alg®n /lg o characters, we can compare the generated substrings of two
n-nodes in O(algn) time. Overall, we compare O(lg* n) many times two n-nodes, such that these additional
costs are bounded by O(lg" nlgn) time overall, and do not slow down the running time O(lg* nlg(n/27) +
lg*nlgn) = O(g* nlgn). O

Our second and final goal is to adapt the merging used in the sparse suffix sorting algorithm (Sect. .
Suppose that our algorithm finds two intervals [i..i+£¢—1] and [j..j +¢—1] with T[i..i+£—1] = T[j..j +¢—1].
Ideally, we want to construct tHT, (T[i..i+¢—1]) in the text space [j..j+£¢—1], leaving T'[i..i+{—1] untouched
so that parts of this substring can be referenced by the n-nodes. Unfortunately, Rules[I]to[4 cannot be applied
directly due to our working space limitation. Since we additionally use the text space as working space, we
have to be careful about what to overwrite. In particular, we focus on how to
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Figure 29: Division of LCE intervals in protected (horizontal lines) and recyclable (vertical lines) parts.

(a) partition the LCE intervals such that the generated substrings of the fragile non-surrounded 7-nodes
are protected from becoming overwritten,

(b) keep enough working space in text space available for merging two trees,

(c) construct tHT, (T[i..i + ¢ — 1]) in the text space [j..j + ¢ — 1] when the intervals [i..i + ¢ — 1] and
[§..5 + ¢ — 1] overlap, and how to

(d) bridge the gap T'[e(Z)+1..b(J) —1] when merging tHT, (T'[Z]) and tHT,(T[J]) to tHT,(T'[b(Z)..e(J)])
for two intervals 7 and J with b(Z) < b(J) and |[e(Z) 4+ 1..b(J) — 1]| < g, as performed in Rule [4]

@ Partitioning of LCE intervals. To merge two n-truncated HSP trees, we have to take special care
of those n-nodes that are fragile, because their names can change due to a merge. If the parsing changes the
name of an n-node v, we first check whether v’s new name is present in the dictionary. If it is not, we have
to create v’s new name consisting of a text position ¢ and a length ¢ such that T'[i..i +¢— 1] = string(v). The
new name of a fragile surrounded n-node v can be created easily: According to Lemma the generated
substring of v is always a prefix of the generated substring of an already existing n-node w, which is found
in the reverse dictionary of the n-nodes. Hence, we can create a new name of v with string(w).

Unfortunately, the same approach does not work with the non-surrounded 7-nodes, because those nodes
have generated substrings that are found at the borders of T'[j..j+£—1] (remember Fig. . If the characters
around the borders are left untouched (meaning that we prohibit overwriting these characters), they can be
used for creating the names of the fragile non-surrounded n-nodes during a reparsing. To prevent overwriting
these characters, we mark both borders of the interval [j..j + £ — 1] as protected. Conceptually, we partition
an LCE interval into (1) recyclable and (2) protected intervals (see Fig. 29)); we free the text of a recyclable
interval for overwriting, while prohibiting write access on a protected interval. The recyclable intervals are
managed in a dynamic, global list. We keep the property that

Property 6: f := [2a lg*nAL/lg o] = ©(g) text positions of the left and right ends of each LCE
interval are protected.

This property solves the problem for the non-surrounded nodes, because a non-surrounded 7-node has a
generated substring that is found in T[j.j+ f —1or T[j+¢—1— f.j+£—1].
@ Reserving Text Space. We can store the upper part of the n-truncated HSP tree in a recyclable
interval, because it needs £/2"lgn < a’5(1g0)%7/(1gn)?? = o(f1lgo) bits. Since f depends on a and g,
we can choose ¢ (the minimum length of a substring on which an n-truncated HSP tree is built) and «
(relative to the number of words taken by a single n-truncated HSP tree node) appropriately to always leave
flgo/lgn = O(lg* nlgn) words on a recyclable interval untouched, sufficiently large for the working space
needed by Cor. Therefore, we precompute « and g based on the input text T', and set both as global
constants dependent on 7. Since the same amount of free space is needed during a subsequent merging when
reparsing an 7-node, we add the following property:

Property 7: Each LCE interval has flgo/lgn words of free space left on a recyclable interval.

In our algorithm for sparse suffix sorting, a special problem emerges when two computed LCE intervals
overlap. For instance, this can happen when the LCE of a position i € P with a position j € P overlaps, i.e.,
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Figure 30: Left: Overlapping LCE intervals Z = [i..i + ¢ — 1] and J = [j..j + £ — 1]. Right: Finding the
generated substring T'[b..e] of an 7n-node in a protected interval. Given that p is the smallest period of
T[Z U J], it is sufficient to make f + p characters on the left protected to find the generated substring of all
n-nodes of tHT, (T'[i..j + ¢ —1]) in T[i.i + p+ f —1].

[i..i + lee(d, 7) — 1] N [j..7 + lce(i,j) — 1] # 0. The algorithm would proceed with merging both overlapping
LCE intervals to satisfy Property [f] However, the merged LCE interval cannot respect Property [6] and [7] in
general (consider that each interval has a length of 3¢, and both intervals overlap with 2g characters). In
the case of overlapping, we exploit the periodicity caused by the overlap to make an n-truncated HSP tree
fit into both intervals (while still assuring that Property [4| and Property [5| hold, and that we can restore the
text).

Interval Overlapping. In a more general setting, suppose that the intervals Z := [i..i + ¢ — 1] and
J = [j..j + ¢ — 1] with T[Z] = T[J] overlap, without loss of generality ¢ < j. Given £ > 2g, our task is
to create tHT, (T[i..j + ¢ — 1]) (e.g., needed to comply with Property ). Since T[Z] = T'[J], the substring
T[i..j + ¢ — 1] has a period p with 1 < p < j — 14, i.e., T[i..j + £ — 1] = X*Y, where |X| = p and Y is a
(proper) prefix of X, for an integer k& with & > 2 (k > 1 since j < i+ £ — 1, otherwise i > j or ZNJ = ).
First, we compute the smallest period p < j — i of T[i..j + £ — 1] in O(¥) time [27]. By definition, each
substring of T'[i + p..j + ¢ — 1] appears also p characters earlier. We treat the substring T'[i..i +p + f — 1]
as a reference and therefore mark it protected. Keeping the original characters in T'[i..i +p + f — 1], we
can restore the generated substrings of every n-node by an arithmetic progression. This can be seen by two
facts: First, the length of the generated substring of an 7-node is at most 37 = a/lg? n/lgo < f/2. Second,
given an n-node with the generated substring T'[b..e] with i + p+ f < e < j+ ¢ — 1, we find an integer k
with k& > 0 such that T'[b..e] = T[b — p*..e — p*] and [b — p*..e — p*] C [i..i +p+ f — 1] (since e — b < f/2).
Hence, we can make the interval [i + p+ f + 1..j + £ — 1 — f] recyclable, which is at least as large as f, since
IZUJ| > j—i+2g9 > p+2gis at least p+ 3f for a sufficiently large g. The partitioning into protected and
recyclable intervals is illustrated in Fig. [30}

For the actual merging operation, we elaborate an approach that respects Properties [6] and [7}

@ Merging with a Gap. We introduce a merge operation that supports the merging of two n-truncated
HSP trees whose LCE intervals have a gap of less than g characters. The difference to Lemma [25] is that
we additionally build new 7-nodes on the gap between both trees. The 1-nodes whose generated substrings
intersect with the gap are called bridging nodes.

Let tHT,(T'[Z]) and tHT,(T[J]) be built on two LCE intervals Z and J with 1 < b(J) —e(Z) < g. Our
task is to compute the merged tree tHT, (T'[b(Z)..e(J)]). We do that by (a) reprocessing O(Ar, + Ar) nodes
at every height of both trees (according to Lemma , and (b) building the bridging nodes connecting both
trees. Like with the non-surrounded nodes, the generated substring of a bridging node can be a unique
substring of the text. This means that overwriting T[e(Z) — f..b(J) + f] would invalidate the generated
substrings of the bridging nodes and of some (formerly) non-surrounded nodes. Therefore, we mark the
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Figure 31: Merging tHT, (T'[Z]) and tHT, (T[J]) with b(J) — g < e(Z) < b(J) — 1. The substring T'[e(Z) —
f-b(T) + f] is marked protected for the sake of the bridging nodes.

interval [e(Z) — f..b(J) + f] as protected. By doing so, we can use the characters of T'[e(Z) — f..b(J) + f] to
e create the bridging n-nodes, and to
e reparse the non-surrounded nodes of both trees (Fig. .

The bridging nodes and their ancestors take o(lgnlg*n) words of additional space since building
tHT,(T[e(Z) + 1..b(J) — 1]) with |b(J) —e(Z)| = O(g) takes (g/2")lgn = o(glgo) = o(lg* nlg®n) bits
(or o(lg" nlgn) words) of space. By choosing g and « sufficiently large, we can store the bridging nodes in
a recyclable interval while maintaining Property [7] for the merged LCE interval. Finally, the time bound for
this merging strategy is given in the following corollary:

Corollary 34. Given two LCE intervals 7 and J with b(Z) < b(J) < e(Z)+g, we can build tHT, (T'[b(Z)..e(J)])
in O(glg™ n + tiookg/2" + gn/log, n + tiook 1g" nlgn) time.

Proof. We adapt the merging of two HSP trees (Lemma for the n-truncated HSP trees. The difference
to Lemma [25]is that we reparse an n-node by rebuilding its local surrounding consisting of O((Ar, + Ar)3")
nodes that take a(Ar,+Ag)1g? n/lgo < f words for a sufficiently large . According to Property there are
at least f words of space left in a recyclable interval to recompute an 7-node, and to create the bridging nodes
in the fashion of Cor. Both creating and recomputing takes overall O(glg* n + tio0kg/2" + gn/log, n)
time. O

There is one problem left before we can prove the main result of the paper: The sparse suffix sorting
algorithm of Sect. creates LCE intervals on substrings smaller than g between two LCE intervals tem-
porarily when applying Rule[3] We cannot afford to build such tiny n-truncated HSP trees, since they cannot
respect Property [6]and Property [7] Due to Rule[d] we eventually merge a temporarily created dynLCE with
a dynLCE on a long LCE interval. Instead of temporarily creating an n-truncated HSP tree covering less
than g characters, we apply the new merge operation of Cor. [34] directly, merging two trees that have a gap
of less than g characters. With this and the other properties stated above, we come to the final proof:

Proof of Thm.[] The analysis is split into suffix comparison, tree generation and tree merging:

e Suffix comparisons are done as in Cor. LCE queries on n-truncated HSP trees and HSP trees are
conducted in the same time bounds (compare Lemma [21| with Cor. .
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e All positions considered for creating the n-truncated HSP trees belong to C. Constructing the 7-
truncated HSP trees costs O(|C|1g" n + tiook |C| /27 4 |C|1glgn) overall time, due to Cor.

e Merging in the fashion of Cor. [34] does not affect the overall time: Since a merge of two trees introduces
less than g new text positions to an LCE interval, we conclude with the same analysis as in Thm. [26]
that the time for merging is upper bounded by the construction time.

Plugging the times for suffix comparisons, tree construction and merging in Cor. 24 yields the overall time

O(IC1g”™ n + tiook [C] /27 + [Cl1g1g 1) = O(IC| (took (I8 0)*7/(lgm) ' +1glgn)) = O(IC| (Vg o +lglgn)),

since tioox = O(lgn). The time for searching and sorting the suffixes is O(mlgmlg* nlgn). The auxiliary
data structures used are SAVL(Suf(P)), the search tree £ for the LCE intervals, and the list of recyclable
intervals, each taking O(m) words of space. O

6 Conclusion

In the first part, we introduced the HSP trees based on the ESP technique as a new data structure that
(a) answers LCE queries, and (b) can merge with another HSP tree to form a larger HSP tree. With these
properties, HSP trees are an eligible choice for the mergeable LCE data structure needed for the sparse suffix
sorting algorithm presented here.

In the second part, we developed a truncated version with a trade-off parameter determining the height
at which to cut off the lower nodes. Setting the trade-off parameter adequately, the truncated HSP tree fits
into text-space. As a result of independent interest, we obtained an LCE data structure with a trade-off
parameter, like other already known solutions. Although not shown here, an ESP tree can similarly (a)
answer LCE queries, (b) be merged, and (c¢) be truncated. However, answering LCE queries or merging two
ESP trees is by a factor of O(lgn) slower than when the operations are performed with HSP trees.

In the appendix, we noted that the maximum number of fragile nodes in an ESP tree of a string of length n
can be at least Q(lg2 n), which invalidates the upper bound of O(Ignlg* n) on the maximal number of fragile
nodes postulated in [II]. This result also invalidates theoretical results that depend on the ESP technique
(e.g., for approximating the edit distance with moves [II] or the LZ77 factorization [I0], or for building
indexes [T, 15} 30, 40]). We could quickly provide a new upper bound of O(lg nlg* n), but it remains an
open problem to refine our bounds. Luckily, our proposed HSP technique can be used as a substitution for
the ESP technique, since HSP trees and ESP trees share the same bounds for construction time and space
usage. By switching to the HSP technique, we regain the promised O(lgnlg” n) number of fragile nodes.
It is easy to see that this result also recovers the postulated O(lgnlg” n) approximation bound on the edit
distance matching problem [I1] 41]: Given ET(T) of a string T of length n, it is assumed by Cormode and
Muthukrishnan [IT, Theorem 7] that changing/deleting a character of T, or inserting a character in T’ changes
O(lg* nlgn) nodes in ET(T'). Although we only provided proofs that pre-/appending characters to T' changes
O(lg" nlgn) nodes of HT(T'), it is easy to generalize this result by applying a merge operation: Given that
we insert a character ¢ € ¥ between T[i] and T'[i 4+ 1], the trees HT(T") and HT(T'[1..i]cT[i + 1..]) differ in
at most O(lg* nlgn) nodes, since appending ¢ to HT(T'[1..4]) and merging HT(T[1..i]c) with HT(T[i + 1..])
changes O(lg* nlgn) nodes. The same can be observed when deleting or changing the i-th character.

In the light of the theoretical improvements of the HSP over the ESP, it is interesting to evaluate how
HSP behaves practically. Especially, we are interested in how well HSP behaves in the context of grammar
compression [3] like the ESP-index [30, [40] on highly repetitive texts, where a more stable behavior of the
repetitive nodes could lead to an improved compression ratio.

From the theoretical point of view, it would be interesting to compute the sparse suffix sorting with a
trade-off parameter adjusting space and query time such that this parameter can be chosen from a continuous
domain like the result we presented for the LCE query data structure.

In the case that we can impose a restriction on the set of suffixes to sort, Kdrkkéinen and Ukkonen [24]
presented a sparse suffix sorting algorithm running in optimal O(n) time while using O(m) words of space,
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given that P is a set of equally spaced text positions. We wonder whether it is also possible to gain a benefit
when only every i-th entry of SA is needed, i.e., the order of each i-th lexicographically smallest suffix for an
arithmetic progression i = ¢, 2¢, 3¢, ... with a constant integer ¢ > 2. Related to this problem is the suffix
selection problem, i.e., to find the i-th lexicographically smallest suffix for a given integer i. Interestingly,
Franceschini and Muthukrishnan [I4] showed that the suffix selection problem can be solved in O(n) time
in the comparison model, whereas suffix sorting is solved in ©(nlgn) time within the same model.
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A A Lower Bound on the Number of Fragile ESP Tree Nodes

Here, we present two examples reveiling that the ESP technique changes Q(lg2 n) nodes when changing a
single character. Each example contains a large number of typeM meta-blocks in a specific constellation.
Remembering how the ESP technique parses its input, a remaining single symbol neighbored by two repeating
meta-blocks is fused with one of them to form a type M meta-block. Regardless of whether we favor to fuse a
remaining symbol with either its preceding or succeeding (cf. repeating meta-block to form a typeM
meta-block, for each of the two tie breaking rules, we give an example string of length at most n whose ESP
tree has Q(lg? n) fragile nodes. These examples contradict Lemma 9 in [IT], where it is claimed that there
are O(lg* nlgn) fragile nodes in the ESP tree of a text of length n.

A.1 Fusing with the Preceding Repeating Meta-Block
Consider a type 1 meta-block 1 whose right-

most node is fragile. If the leftmost node of a ( )( _);););)

1%

rep()ieatitrlllg m:ﬁa—blo}(ljtli v i: bu(ijlt orfl w's righltmost D DD D D D (D ) (3
E(;g?fe' en the rightmost node of v can also be *[OOOOO]OOOOOOOOOOO

Having this idea in mind, we build an example consisting of a chain of repeating meta-blocks, where the
leftmost node of a repeating meta-block is built on the fragile rightmost node of a meta-block of one depth
below (shaded in the right picture). The main idea is the following: Each meta-block of this chain can be of
arbitrary (but sufficiently long) length. Keeping in mind that changing the name of a node means that the
names of its ancestors also have to change, we can create an example string whose ESP tree contains fragile
nodes appearing on each height at arbitrary positions:

3k,72

Example 35. Let a,band ¢ € X be three different characters. The text ¥ := (Xo)3" (X1)3" " (X2) e (Xp)3
with k := |log;(n/logs n)] has a length at most n, and its ESP tree has Q(lg?n) fragile nodes, where

1 Xo = a,
X? b3 if i is odd , Xy = aab,
Xp:=a, and X; := 12 ! gi=1 .o .. " fori=1,...,k. Xz = aagagbcs,
X ¢ if 4 is even, X3 = X317,

To show that the claim in the example is correct, we insert a lemma showing the associativity of esp on
a special class of strings:

Lemma 36. Contrary to assume that we favor fusing a remaining character with its preceding
meta-block to form a typeM meta-block. Given a height & and two strings X,Y that are either empty or
have a length of at least 2 - 3"~1 esp (Xb3'Y) = esp™ (X) esp™ (b%") esp™ (Y') if i > h, b is neither a
suffix of X nor a prefix of Y, and there is no prefix of esp(?) (Y) of the form cd® for some characters c,d € Y
with ¢ # 4, and integers k,j with k >2and 0 < j < h —1.

Proof. The additional requirement for Y is to ensure that the leftmost block of espl?)(Y) is not a non-
repetitive typeM block that has been fused to its succeeding meta-block, only because it has no preceding
meta-block. Regardless of which characters are prepended to esp? ’1)(Y), the first character of such a block
would form with its preceding characters a new block.

For h = 1, esp divides the string Xb® Y into meta-blocks such that there is one type 1 meta-block p that
exactly contains the substring b3". That is because of the following: If X (resp. Y) is not the empty string,
then it contains at least two characters. Since we favor fusing with the preceding meta-block, there is no
chance that characters of X can enter pu. Assume that Y is not the empty string. Since the first block of
esp(Y') is neither a non-repetitive typeM block nor a block starting with b, it is not possible that characters
of this block can enter .

Under the assumption that the claim holds for a given h — 1 > 0, we have

3i+1

esp™ (Xb3i+1Y) = esp(esp(h_l)(Xb?’HlY)) = esp(esp" V(X)) esp" V(B3 ) esph Y (V).
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The strings esp(h)(X ) and esp™ (Y) are either empty or contain at least two characters. Since i > h,

esp(h_l)(b?’i) is the repetition of the same character. This repetition has a length of at least three such that
we can apply the shown associativity for h = 1 to show the claim. O

Proof of Ez.[35 We start with determining the length of Y. Since |Xo| = 3°, under the assumption that
|X;| = 3%, we obtain that |X; 1| = 2|X;| + 3" = 3*+1. Therefore, | X; 71’ =3Fforalli=0,...,k—1. We

conclude that the length of Y is at most n, since |Y| = k3% < nlogs(n/logsn)/logsn < n.

We now show that each substring X; of Y is the generated substring of a node z; of ET(Y") on height ¢
whose subtree is equal to the perfect ternary subtree T; := ET(X;), for ¢ = 1,...,k — 1. This is true for
i = 1,2,3, as can be seen in Fig. For the general case, we adapt the associativity shown for esp in
Lemma [36] to the string X;:

Sub-Claim. For every i with 0 <4 < k — 2 it holds that

) |esp ™D (Xig)| =1,

(1) esp™ (X;41) = esp(h)(Xin-d?i) = esp™ (X; X5) esp(h)(d?i) = esp™(X;) esp™ (X;) esp™) (df’), and
(IT1) esp™ (X; ;1) starts with a repetition of a character,

for every h with 0 < h <i , where d; is a character with d; = b if i is even, otherwise d; = c.
Sub-Proof. For i = 0 we have

) |esp(1)(X1)| = |esp(aab)| = 1 (aab is put in a type M meta-block having exactly one block),
(IT) esp®(X;) = X;, and
(IIT) X; = aab starts with a repetition of the character a.

Under the assumption that the claim holds for an integer 7, we conclude that it holds for 7 4+ 1 due to

git1
esp" (Xiz2) = esp™ (Xip1 Xip1ddy, )

31 31+1

X, X;d3 X, X,d8 a.,)
X, X4 X, X,d¥ Yesp™ (d3,))

"
= esp®(
"

(Lemma B8] or [TM) _ esp (X X;)esp h)(dg )esp( )(X'Xl)esp(h)(d?t)esp(h)(dy“)
(
(

(Lemma B6ld; #di1) _ esp

1+1
(Lemma (D] or [TM) _ esp™ (X, X; d3 )esp(h) (X X; dgl)esp( )( 3_1:11)
1,+1

esp" (Xip1)esp™ (Xis1)esp™ (a7 )

for 1 < h <. The conditions of Lemma [36| hold because d; is neither a prefix nor a suffix of X, d; # d;41,
|X;X;| =23 and esp) (X;X;) starts with a repetition of a character due to

(T11)] for h < 4, or due to
esp® (X; X;) =Dl esp@ (X;)esp® (X;) and [T)] for h = i.

For h = i + 1 we use that |(I)| holds for X,

the same character, to obtain

esp "D (Xiy9) = esp(esp™ (Xit2))

esp(i)(d?i)‘ =1, and esp® (df’:ll) is a repetition of length 3 of

k3

3itl

) F)esp (X;X;)esp® (a3 )esp™ (a2,)))
' XiXi)esp(’)(dfl)esp(’)(X X; )esp(z)(d?’ ))esp(esp'® (derl )
(evaluate and reformulate) __ esp esp(i) X X ) ? ))esp(esp(z) (X X; )esp( )(d3 ))esp(esp( )(d?:rll))’

(Lemma[B6) _ es



where we used that another application of esp puts esp(® (XiXi)esp(i)(dg’i) into a single type M meta-block
of length three, and that d; is neither a prefix nor a suffix of X;. This concludes [(II)] A consequence

is For h < i we have esp™ (X;12) = esp™ (X;11)esp™ (X;41)esp™ (d?fll), and esp™ (X;,,) starts
with a repetition of a character according to our assumption. For h = i + 1 we have esp(i+1)(Xi+2) =
esp(esp(i) (X3) esp(i)(XZ—) esp(i)(d?i) esp® (X3) esp(i)(Xi) esp® (df’) esp(i)(d?rll)). Due to ‘esp(i)(Xi)’ =
esp(i)(dfi)’ = 1; hence the last application of esp creates three blocks, where each of the first two represents

the string esp(‘)(X ) esp(i)(X ) esp® (d31) of length three. Another apphcatlon of esp yields|(I ]

Let b; and ¢; denote the names of the roots of ET(b37) and of ET(c3 ), respectively. Set d; := b; if ¢
is even, otherwise d; := ¢;. Then (X;11)iy1 = x;41 due to Sub-Claim |(I), and (X;41); = x;2;d; due to
Sub-Claim Consequently,

k—i—1 k—i—1 k—i—1 k—i—1
esp(Xi1)a)® ) = esp((wowidy)® ) = (esp(wiid;))? =i - (1)
This means that (X;)3" " = (X3 "), is a repetition
of length 3F=" consisting of the same name, for every ET(Y)

height h =4,..., k. We conclude that T; := ET((X; )3k ) is

********************************* height k
a perfect ternary tree.

T T Th—

-1 AT XL

Finally, we show that esp™ (Y) = esp) (Xf’k) e esp(h)(Xg’l_l) for each height h with 1 < h < k. On the
one hand, we have

k—1 k—i—1 k—i— 1 k—i—1
651’9(h)(Xz3 Xz‘3+1 )= esp(h) X3 Xio1 X 1d de+1 )
3k i—1

(
. . k—i— 1 -
[AD)] with 0<i<h—2 _ esp(h)(X3 X, 1 X 1)esp(h)( )esp(h)(XiH )
(h) 3k i— 1 ( ) Sk i—1 (2)
= esp\" (X; Xi1X,_ 1dZ 1 )esp (X7 )

k—1 k i—1
= esp™ (XF esp™ (XE )
for 1 <h <i—1 due to Lemma[36] On the other hand, we have
3k’ i—1 Sk i—1

esp™ (X3 XYL = e (esp V(T X T)
Eq. @) _ esp(hfz#l)(esp(ifl)(ng—i) esp(z;l)(ngIi_l))

Ba- @ = esp(h_i)(€Sp(($i71$i71di71)3k7i(187;71$¢71di,1$i,1$¢,1di,1<d?i>i,1)3kiiil))
ooty ) = esp D (al" (wirid) ™) (3)
= esp h i— 1 ( (117 - xlxldl)esp((xlxzdl)gk—t—2))
(evaluate and reformulate) __ (h i—1) ( p(x?’k L)@Sp((.’lﬁ‘x'd‘)?’kiiil))
Fo O = esph D (esp(adYesp(adin )

(Cemma B — osp( = (2" )esp" D (ad}y )

for i < h < k. Tt is easy to extend the pairwise associativity X3' X3 """ for each i with 0 <i < k — 2 to

X?k e X,g’l_l. This concludes that the root of T; has the same name as the i-th leftmost node of ET(Y") on
height k. Figure left) shows an excerpt of 7; and T;1,. The crucial step in Eq. is the re-formulation
of the parsing

k—i—2 k—i k—i—1

esp" D (esp(a? miasd;) esp((miwsd;)® ")) = esp" D (esp(ad ) esp((miwadi)®T ) (4)

belongs to T belongs to Tj4+1 =ifli41
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bbb bbb

‘typeM typeM type 1 typeM typeM type 1 typel

aab aab ccc aab aab ccc bbb

Figure 32: ET(X3) as defined in Ex. The subtree of each node with name z; is equal to ET(Xj).

showing that there is a type 1 meta-block p;41 covering all nodes of T;1; and the rightmost node of T;, on
height ¢ + 1. This meta-block is a repetition of the character esp(x;x;d;) = i1 € Lpi1.

Given that g is the first type 1 meta-block of esp(Y') (covering the prefix X3h+2), we now examine what
happens with p; for each ¢ with 0 < ¢ < h — 1 when removing the first a from Y. Let us call the shortened
string Y’ i.e., Y = aY’. On removing the first a from Y, we claim that the meta-block u; contains one
character x; less, for every ¢ with 0 <4 < h — 1 (cf. Fig. [33| showing the difference between (Y); and (Y},
on height i with 0 < i < k —1): For pg, this is trivial. For an i > 0, focus on the substring Xf’kﬂijszl
of Y: We have

k—i k—i—1 k—i k—i—1 k—1 k—i—1
esp((X7 X7 i) =esp(a} (wimidi)® ) =esp( 2} ) esp((mimidi)® )
——
suffix of p; =it
k—i 3k:—i—1

= GSP(“T%)) )xi-&-l

due to Eq. . Under the assumption that removing the first character a from Y causes p; to shrink by one
character x; € X;, we get

gk—i—1 3k—i—171)

esp(xfkii*l(xixidi) )= esp(xf’k_ixidi)esp((xixidi)

gk—i gk—i—1_1
= esp(w;  @id;)wy,

3k71—1 3k71—1

# esp(x; )xi+1

We observe that the length of u; is decremented by one, causing the name of its rightmost block to
change, which is the leftmost node of T;y; on height i + 1, and the first character of u;y1. Due to the tie
breaking rule, this block gets fused with its preceding meta-block at height i + 1, decrementing the length
of its succeeding meta-block f;41 by one (and hence, this process repeats for all ¢ = 0,...,k — 2). This
means that the leftmost node on height 7 of T; changes, for 1 < i < k — 1. Each of these nodes receives
a new name such that it is fused with its preceding type 1 meta-block to form a typeM meta-block. Since
changing a node on height ¢ changes all its ancestors, at least k — 7 nodes are changed in T;. In total, at
least k+ (k— 1)+ (k—2)+---+2 = (k> + k)/2 — 1 nodes are changed. Hence there is a lower bound of
Q(k?) = Q(log3(n/logsn)) = Q(lg? n) fragile nodes. O

Note that the later introduced HSP technique (see Sect. [3]) with the same tie breaking rule also produces

Q(lg® n) fragile nodes in this example.

A.2 Fusing with the Succeeding Repeating Meta-Block

The idea is similar to the previous example. In particular, we introduce a corollary of Lemma [36}

Corollary 37. Given a height h and a string Y that is either empty or has a length of at least 2 - 3h=1,
esp™ (XY) = esp™(X) esp™ (Y) if a is not a prefix of Y, where X = b%'a® with i+ j > h, and a,b € &
with a # b.
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typel typel typeM typel

height i + 1 (yz+1 - Hvin ] (-751+1 Y@ ) (i ) ) height 4 + 1 (yz+1 I )i ) (@i ] ($z+1 ) (- )
height i Ti%i®i= -+ —TTTi-x; zld il id; zlz,dl .. height ¢ ®iTi®i= -+ =TiTiTi= 3;d; i iTid; zlzld, .
‘ typeM typel\ typeM ‘ typeM type t]pe
belongs to T; ) belongs to Tjy1

Figure 33: Differences between ET(Y) (left) and ET(Y’) (right) on the heights i and ¢ + 1, where ¥ =
a?’k(aQb)P’FI((aQb)QCP’)“"F2 -+~ and Y = aY”’ (defined in Ex. }
this figure.

5). The names y; 41 and zj, are only used in

In the following example, we build a text whose ESP tree has a specific type M meta-block on each height
that we want to change. Given a typeM meta-block p that emerged from prepending a character to a
type 1 meta-block, we can create a new meta-block by prepending another character such that it precedes
u and absorbs u’s first character (u then returns to be a type 1 meta-block). We can arrange the typeM
meta-blocks such that prepending a character to the text changes a type M meta-block on each height:

Example 38. Let k = |logs(n/logzn)]| be a natural number, and a,b € . Define Y := XoXj -+ X} with
X; =1 a?’k_g’z7 for 0 <i<k—1. Then |Y| <n, and ET(Y) has Q(lg2 n) fragile nodes.

Proof. Given an integer i with 0 < i < k — 1, we have |X;| = 3% and |Y| = k3¥ < n. Corollary [37] yields
esp™ (X;) = esp™ (63") esp™ (a3"=3") for all heights h with 0 < h < i, since 3% — 31 > 3k — 3k=1 = 2. 3k~1,
Let a; := <a3k>i[1] and b; := (b3k>i[1] be the nodes on height i with 0 < i < k and string(a;) = a® or
respectively string(b;) = b3 (ag = a, by :=b), esp(esp™ D (X;)) partitions its input esp® = (X;) into two
meta-blocks: a type 1 meta-block containing all b;’s, and a subsequent type 1 meta-block containing all a;’s
All blocks of these two meta-blocks contain three characters, since each meta-block has a length that is equal
to a power of three. For the upper heights we get

|-|=ak~
sp T (X;) = esp(h)(esp(i)(b?’i) esp(i)(a‘n’k_?’i)) for0<h+i<k-1 (5)
=b; :ask—i—l

i

Hence, esp(h*?) (X;) consists of exactly one type M meta-block, which has the length 3¥="~% and each block
contains three characters. We conclude that the tree T; := ET(X;) is a perfect ternary tree, for 0 < i < k—1.
Since |esp(h)(Xi)| =3F"P forall i,h with 0 <i < k—1and 0 < h <k, with Cor. it is easy to see that
esp™M(Y) = esp™ (X1 -+ Xp_1) = esp™ (X1) - - - esp™ (Xp_1) for all 0 < h < k. A conclusion is that X; is
the generated substring of the i-th leftmost node ET(Y") on height & whose name is equal to the name of the
root of T;, for 0 <i < k — 1.

For the proof, we prepend an a to Y and call the new string Y, i.e., Y/ = aY. Our analysis of the
difference between ET(Y) and ET(Y”) focuses on the unique meta-block at height i of T;: From Eq. (5) with
h = 0, we observe that there is a single meta-block p; at height i of T}, and this meta-block is a type M meta-
block (cf. Fig.[34{right)). Our claim is that prepending a to Y changes the blocks of the borders of every y;
(0 < i < k—1): The prepended a forms a type 2 meta-block with the first character of Xy by “stealing”
the first character from pg, and this character is a by = b. Assume that p; (0 < i < k — 1) looses its first
character (i.e., b;). By relinquishing this character, u; becomes a type 1 meta-block, consisting only of a;’s
The last two a;’s contained in p are grouped into a block aj_ ; of length two, where aj, , := (a;a;)1[1] is the
name of the root node of ET(a;a;). Every newly appearing node aj, ; gets combined with its right-adjacent
node b;4+1 to form a new type 2 meta-block. The used b; ;1 is stolen from p;y1, and hence we observe an
iterative process of stealing the first character b;41 from p;11 for each height ¢ = 0,...,k — 2. Figure
visualizes this observation on the lowest two heights.

This can be inductively proven for each even integer i with 0 < i < h — 2. By Eq. , we know that
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( )

( root of Ty )( root of T} )

C )E(alHal)(ln)(al)(al)//l

baa aaa bbb aaa aaa

typeM type 1 typel

Figure 34: ET(Y) of the example string Y defined in Ex. [38 with k& = 2 (left) and as a schematic illustration
(right) with the meta-block p; on height 7 (due to space issues the number of nodes/children is incorrect).

<AXvZ>Z = bia?kiiil and <Xi+1>i = b?a?kiii"s. Then

esp(esp({X;)i(Xiv1)i)) = esp(esp(biagk_i*1b3 3)6_1"*3))
(CorBD = esplesp(biaias) esplaf’ —biaadl, )
= esp(esp(bja;a l) ghoiTiog bi_‘_la?i?*lq)
(Cor-BT) esp(esp(biaia;)al, 1) esp(leaf‘ill ' 1
= esp(esp(b; alal) 1) esp(biy1ai41a,41) esp(a Z_T_l’ ! 3)7

k—i-1_g gh—i—2

and esp(a?+1 ) =iy ~1. Adding a/ (set a, := a) to the string (X;);(X;41); yields

esp(esp(al(X:)i(Xit1):)) = esp(esp(aibia’ gt “bhia 3k ' )
(CoBD = esp(esp(ajbs) esplal " birals,” )
= esp(esp(ajb) esp(a!  Paabinial, )
= 651)(@317(@;51) ?il o z+1bz+1a?«t1l 1_1)
(CorBD = esp(esplabi)aly, ") esplafyabin) esplaly, Paiiaii)
= 6517(651’(‘12171) ?-T—ll )6517( z+1bz+1) z-}:-Ql 1 ;+2a

and aj , carries on to the nodes (Xi;2)i42(Xiy3)ir2 on height i + 2 due to Cor.
Overall, the leftmost and rightmost node on height ¢ + 1 of T; changes, for = 0,...,k — 1. In total,
Q(lg? k) nodes are changed. O
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( )( a2 )( )( )( )( o2 )
( ):(al):(al)(al):(al)(bl):(al):(al):(al)i(al)i(al)i(al ) ---Xa1)(a1)(a1)(a1)

aaa - aaa - aaa — aaa

baa - aaa - aaa - aaa - aaa bbb @aaa - aaa - aaa - aaa - aaa _ aaa

} typeM thpelH typel }
} belongs to Tj ! belongs to T }
( ) ) )( o ) b ( o )| G
C ) ) ) e e (e ) O e (e (e ) e (e ) (a)
ab aaa - aaa - aaa - aa bbb aaa - aaa - aaa - aaa - --- - aaa - aaa - aaa - aaa - aaa - aaa
}type QH typel thpe 1H typel }

Figure 35: Excerpt of the ESP trees ET(Y) (top) and ET(Y”) (bottom), where Y = ba3" ~1p3a3 3p9a3 0. ..
and Y = aY”’ (defined in Ex. [38). Due to space issues we contracted T, to ET(ba'?). Note that right of the
rightmost a) (bottom figure, top right node) is the node by (not shown in the figure due to space issues),
and both nodes are combined into a type 2 meta-block.
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