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1. INTRODUCTION AND OUTLINE OF THE PAPER 

Since the advent of Ada, many papers have been pub- 
lished which deal with Ada's pros and contros. Few of them 
present comparative advantages, drawbacks and practical 
experiences based on a real development effort. The aim of 
this paper is to report on our conclusions using Ada in a 
complex development project which concerns both the 
development of a CAD tool and the simulation of a VLSI 
circuit dedicated to speech analysis-synthesis. The CAD tool 
consists in a timing analysis program which makes it possi- 
ble to schedule hardware component models according to 
their activation times. Specification and verification of tim- 
ing constraints such as propagation delays are thus possible. 
Therefore, the CAD tool may be referred to as, either the 
scheduling tool, or the timing analysis tool and acts as a 
simulation environment. Ada is both a hardware description 
language and centralized simulation environment since the 
hardware components have been entirely described in Ada as 
well as the simulation environment (i.e., scheduling tool). 
Our approch is thus uniform, unlike the ones followed by 
other authors (e.g., Hill [12]) where the hardware description 
language is ADLIB while the simulation environment is 
PASCAL. An overview of our CAD tool can be found in 
[11]. Accordingly, our discussion will focus on the use of 
Ada in the hardware simulation field. The timing con- 
straints which can be expressed thanks to the CAD tool con- 
stitute a timing model; the latter can "stick" to a purely 
functional description to perform the logical and temporal 
behaviors of a set of components over a given period (i.e., 
specified by a designer). In particular, timing errors which 
are common in VLSI design can be detected and eliminated. 

The remainder of this paper is organized as follows. In 
section 2, we present the goals of our study along with the 
application case chosen here. In section 3, we explain the 
reasons why we have chosen Ada. The main aspects of the 
Ada language used in our experience are illustrated in sec- 
tion 4 using a few examples. Consequently, these examples 
will show us the real contribution of Ada. Section 5 deals 
with our experience with the use of Ada for tasking. Some 
of the problems faced will be outlined and the differences 
compared to some other languages will be mentioned. In 
section 6, comparisons between our present experience and 
previous Ada related work in the hardware descritgtion field 
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will be made. Section 7 gives some simulation experiments. 
Lastly, conclusions and final recommendations based on our 
experience will be stated in section 8. 

2. CASE STUDY 

The framework of our study is the design of a VLSI 
circuit dedicated to speech analysis-synthesis. Therefore, this 
circuit belongs to the ASIC (Application Specific Integrated 
Circuits) family. The need for this circuit family is continu- 
ally increasing (*). The main potential advantage of the 
ASIC over the universal (i.e., not specific) circuits is a better 
performance-cost ratio. The production of ASIC is usually 
lower than universal circuits's. In order to reduce the total 
cost (i.e., production plus design costs) associated with 
ASIC, it is imperative to decrease their design cost. To 
achieve this goal, a designer must have not only a set of 
efficient CAD tools and coherent design methodology but 
also appropriate design and implementation languages. As 
we shall see in this paper, the impact of the implementation 
languages on software cost, productivity and quality is 
important especially when it comes to hardware descripnons. 
Indeed, simulation is a common tool for analyzing circuits 
prior to prototyping. Software representations of hardware 
design which usually consists in several thousands lines of 
code must thus be built in an appropriate language. 

For the clarity of this paper, we will focus our discus- 
sion on the analysis part of the speech analysis-synthesis cir- 
cuit and more particularly on some of its hardware com- 
ponents. The aim of the analysis part is to provide the syn- 
thetic part with the information necessary to generate the 
synthetic speech. 
The principle of the analysis phase is the following. A 
model representing the real mechanism responsible for the 
sound generation (i.e., vocal tract) is defined at first. The 
most widely used model is a linear filter whose spectral and 
parametric characteristics are assumed to change only 
slightly over short observation ranges (i.e., over signal 
frames varying from 10 to 40 milliseconds). This filter, in 

(*) we expect that the European ASIC market should reach 2 billions 
dollars in 1990, i.e., 20% of the whole integrated circuits market 
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turn, is represented by a mathematical model. The output of 
the filter is obtained by applying the principle of the Linear 
Prediction Coding (LPC) which states that one can approxi- 
matively predict the actual speech sample as a linear combi- 
nation of the p past samples (e.g., see Markel and Gray 
[14]): 

P 
(Spredicted)n = - - ~ ,  a i  * Sn - i (1) 

i=l 

where (Spredicted) n is the predicted speech sample, p the order 
of the l~redictbr (typically between 8 and 16) and ai the  
predictor coefficients. 

To measure the model's accuracy (i.e., its ability to 
faithfully represent the real mechanism responsible for 
sounds generation), we compare the speech signal to be 
analyzed (i.e., original or reference signal) with the filter 
output (Spreaictea), given by the above equation. We therefore 
consider the following difference given by: 

~.n = sn - (Spredicted)n (2) 

where en is called the predictor (or residual) error and 
represents the difference between the actual value and the 
predicted value. 

To determine the model parameters ai,  we minimize a 
squared criterion (least squared criterion of the prediction 
elTor): 

0.  : E (en) 2 (3) 
rt 

where On is the mean-squared error. 

The choice of the summation range depends on the 
method selected (Markel and Gray [14]): auto-correlation 
method; covariance method. The main advantage of the 
LPC method over other coding techniques lies in the fact 
that it represents a good compromise between the model's 
accuracy (its ability to represent the real phenomenon) and 
simplicity (small number of parameters). Practical con- 
siderations have led us to slightly modify the series of calcu- 
lations given by the classical auto-correlation method. 
Indeed, we have decided to calculate a sequence of p coeffi- 
cients called PARCOR (for PARtial CORrelation) instead of 
the p predictor parameters ai.  The main advantage of our 
choice is that the PARCOR coefficients are well suited for 
VLSI and microprocessors implementations (e.g., their 
dynamic can be known with accuracy and the calculating 
algorithm is robust). Choices are made in order to select 
those algorithms whose structures are more amenable to 
VLSI implementations. 

Figure 1 shows the different phases of the LPC analysis 
based on the choices we have made. In fact, the complete 
process of the LPC analysis consists in : 

- the pre-emphasis of the input speech signal which is 
sampled beforehand. 

- the appropriate windowing of this signal (e.g., use of 
a Hamming window). 

- the correlation computation of the speech samples. 

- the PARCOR coefficients calculation. 

the inverse filtering of the input speech signal to 
obtain residual error. 

The analysis part of our circuit is therefore made up of three 
main functional blocks: correlator, PARCOR extractor and 
lattice filter. Each block has its own sequencer driven by a 
global sequencer. 

3 .  W H Y  A D A  ? 

Roughly speaking, our study has consisted in two main 
phases. The first one may be referred to as the software 
phase. Its target is double : 

- to determine the algorithms class which will serve to 
perform the calculations (e.g., LPC analysis). 

- to test these algorithms on the basis of a set of 
selected criteria such as robustness and sensitivity of 
the speech synthetic quality to the data accuracy. 

The second phase really concerns the hardware design. In 
this phase, we describe the hardware which performs the cal- 
culations specified by the algorithms selected in the first 
phase. A hardware specification consists of a list of 
hardware components along with the description of their 
interconnection and of a controller that will sequence the 
flow of data through the hardware network. 
For both phases, a specification and simulation language is 
needed. Two main alternatives are possible: either we 
choose a general purpose programming language or a 
specific simulation language. 

To opt for a general purpose programming language is 
useful especially for the first phase of our study (i.e., 
software phase). As for the hardware phase, one can think of 
extending a given general purpose programming language to 
provide it with some simulation facilities as has been form- 
erly done with other languages such as Pascal (e.g., ADLIB 
is a suoerset of Pascal: see Hill [121). Nevertheless, the 
extension of a language has some main drawbacks. It 
requires the development of a new compiler along with its 
associated debugging support environment. Besides, the rela- 
tively important investment required by such a task can 
divert people from their real problem (e.g., design of a 
VLSI circuit in our case) or at least put them out of touch 
with it when this development effort is carried out by a spe- 
cialized team. The question arises even less as whether we 
extend Ada or not: Ada has been standardized and the DoD 
(Department of Defense) is reluctant to any extension. 

Despite the fact that in theory there is no reason why 
we should prefer a language to another, practical considera- 
tions prevail. In our case, we have decided to use Ada 
throughout our work (i.e., software and hardware phases) for 
the reasons mentioned below. Obviously, only the main Ada 
advantages will be given because of the limited length of 
this paper. 

At first, with regard to the potential advantages of Ada 
compared with other general purpose programming 
languages (e.g., Fortran or Pascal), Ada has some sophisti- 
cated s u u c t u : z ~  such as packages and separate compilation 
facilities which enable modularity and hierarchization useful 
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to develop large software models. These facilties are there- 
fore especially interesting in our case since the description 
of a VLSI circuit like ours contains many thousands of lines 
of code. Moreover, the tasking model is provided in Ada. 
Within the hardware description framework, this facility is 
appealing since tasks allow one to elegantly model a set of 
hardware elements whose activities evolve in parallel. 
Nevertheless, we will outline in section 5 some problems we 
have come accross with when using Ada task-based models. 
Furthermore as we shall see Ada generics make it possible 
to develop flexible software components. Advantages of the 
generics concept within the the VLSI design framework will 
be explained in next section. 

The other main alternative which we have mentioned is 
to select a specific simulation language. Here again, several 
choices are possible. Indeed, at a high level of abstraction 
(i.e., behavioral level), our circuit can be viewed as a syn- 
chronous system driven by a global (i.e., master) clock. 
One can therefore think of using either a synchronous pro- 
gramming language (e.g., ESTEREL [4], LUSTRE [5]) or a 
discrete simulation language (e.g., SIMULA [7], GPSS 
[21]). Indeed, both kinds of languages are appropriate for 
synchronous system simulation. As for the hardware phase, 
one can think of using a hardware description language. In 
fact, there is no use of a specialized simulation language in 
our experience because of the reasons explained below. 

As for the discrete event simulation languages, their 
deficiencies are now well recognized: a discrete simulation 
language on the one hand often implements only one tech- 
nique among the three main ones and on the other hand 
these languages suffer from poor control structures and por- 
tability. Furthermore, Ada makes it possible to achieve 
modularity and hierarchy to tackle complex problems such 
as the description of a VLSI circuit. 

The drawbacks of the synchronous programming 
languages are mainly due to the fact that they are relatively 
new. Therefore, they are not very operational yet and some 
deficiencies have to be overcome (e.g., lack of an efficient 
debugging support environment and separate compilation 
facilities). 

Finally, even though Ada was not designed with 
hardware in mind, there are several features in Ada which 
are appealing for hardware modeling and which will be 
shown by using a few examples in next section. However, 
we can already mention some of the advantages found in 
Ada: 

Ada fits different level of descriptions (e.g., 
behavioral, logical and switch levels), unlike other 
Hardware Description Languages (HDL's) which are 
limited by a particular level of abstraction (e.g., the 
LSL-LOCAL language in the LAMP system [6] is dedi- 
cated mainly to the gate level). 

- Ada has a better portability than most commonly used 
HDL and it is standardized. 

- Ada is not specific either to a particular type of archi- 
tectures or to a particular level of simulation. 

The advantages above are based on a comparison with "con- 
ventional" HDL. But, for some years, languages such as Pro- 
log and Lisp have been used for hardware simulation. Thus 

Batali [3] at the MIT University has used Lisp to describe a 
circuit at various levels and notably for the functional 
specification. Mouly [16] gives an example of the use of 
Prolog to resolve a routing problem. 

Despite the fact that Artificial Intelligence (AI) 
languages such as Prolog and Lisp are interesting to use in 
hardware descriptions and simulation (e.g., to select a best 
solution if some already exist) their drawbacks cannot be 
overlooked. According to Mouly's paper, for instance, Pro- 
log is too slow (e.g., it cannot be compiled efficiently) and 
several attempts have to be made before a solution can be 
found even when faced with a simple problem. When 
several solutions can be found, these arise mainly from the 
backtracking feature of Prolog. To reduce the number of 
possible solutions, rules must be introduced. As these rules 
depend on the application case, one cannot give a general 
method to specify them. 

4. SOFTWARE TECHNIQUES IN ADA FOR HIGH 
LEVEL HARDWARE DESCRIPTIONS 

The aim of this section is to present comparative 
advantages and disadvantages of Ada based on our practical 
experience. For the clarity of this discussion, we will focus 
on the main characteristics of Ada which have been very 
helpful in our development effort. The examples selected to 
illustrate these characteristics wilt be taken in the hardware 
description field (i.e., in the second phase of our work). We 
will take, on purpose, simple examples to avoid the unneces- 
sary details relevant to the design of some complex digital 
systems, 

4.1. Hierarchical Descriptions 

The goal is to build high level complex hardware com- 
ponents from lower level elements in a hierarchical manner. 
However, this cannot always be done since some languages 
do not provide any facilities to use low level hardware 
models to build more complex ones. Therefore, a program- 
ming language which does enable hierarchy is appealing. In 
this respect, Ada reveals to have been a good choice since 
Ada packages allow high level hardware models to be built 
from lower models. For example, the correlator block shown 
in figure 1 is composed of a bit serial multiplier/accumulator 
and of a set of registers and multiplexers. 

The principle of our implementation methodology is 
the following. The behavior of a given hardware component 
is described as a subprogram (in the Ada sense) encapsu- 
lated in a package. We therefore have, whatever the level, a 
package which manages a particular kind of hardware com- 
ponent. For instance, we have a package for the accumulator 
(referred to as the bit serial adder in figure 2), another one 
for the multiplier and-so on_ In order to build a higher ele- 
ment (e.g., correlator) we use the services provided by the 
packages implementing the low level components (e.g., mul- 
tiplier and accumulator). Moreover, to design complex ele- 
ments, we begin by designing, implementing and testing the 
components of lower level (subcomponents). 

The notion of packages combined with the separate 
compilation facilities make it possible to reduce the sensi- 
tivity to changes of software representations of hardware 
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components. Indeed, it is possible to replace an algorithm 
which implements the behavior of a given hardware com- 
ponent by another one as long as we keep the interface 
unchanged. This interface corresponds to the package specif- 
ication part which models this hardware component. On the 
other hand, as the behavior of a same component can be 
implemented in different manners, circuit design and conse- 
quently, circuit simulation, is a repetitive process: a designer 
has to reconsider the choices he had made. In particular, the 
implementation choices already made have to be revised. 
Thus it is desirable that the programming language selected 
should enable a switch between a given algorithm imple- 
mentation and any other provided that the interface does not 
change. With Ada, the hierarchization and the reduction of 
sensitivity of programs to changes are possible thanks to the 
packages notion and separate compilation facilities. 

4.2. Generic Models 

One of the main advantages of software over hardware 
is that it is more supple: it is more difficult to change 
hardware components or connections than to change some 
lines of code corresponding to software representations of 
these hardware components. However, this flexibility 
inherent in software is not sufficient once one knows that 
complex models such as the ones associated with VLS1 cir- 
cuits may consist in several thousands lines of code. This 
flexibility must therefore be enhanced. One of the most 
interesting methods in this respect is the one which consists 
in parametring programs. In our case, this mainly implies 
that the code does not change but the internal or/and exter- 
nal data handled by the software representations can have 
their formats or/and values changed. Ada thanks to the gen- 
etics notion makes it possible to achieve this goal. For 
example, through our design process, we have often been 
induced to replace a m bit serial multiplier by a n bit one (n 
different from m). The behavior of the multiplier being the 
same in both cases, we have implemented "the package 
managing the multiplier (see figure 2) as a generic package 
(in the Ada sense). Whatever the number of operand bits, we 
have only to instantiate this generic package by the appropri- 
ate bits number. Moreover, one of the hardware design con- 
cerns is to reduce the silicon area necessary to implement a 
given processing. In a bit serial architecture, the variables 
formats have a direct influence on the silicon area. For 
instance, the size of the memory shown in figure 1 depends 
on the number of bits upon which the speech sample is 
coded. On the other hand, the variables formats heavily 
influence the sequencing. Therefore, the latter changes 
whenever the formats change. In order to determine the 
optimal bits number of a given data (e.g., the minimal 
number of bits giving a sufficient accuracy and thus minim- 
izing the required silicon area) several simulations have to 
be made. We cannot afford to re-write (i.e., each time we 
change a variable format or/and the sequencing) the software 
representations. This is why the data upon which the 

sequencing depends has been implemented as generic param- 
eters. For example, in figure 2 showing the multiplier imple- 
mentation, the variable WORD SIZE has been implemented 
as a generic parameter (more p~-ecisely, it depends on a gen- 
etic parameter). More generally, in our experience, we have 
benefited from the ability of generics in Ada to have flexible 
programs that can accomodate a varied range of needs. 

4.3. Strong typing 

Earlier detection of design errors is a crucial necessity 
in VLSI design. Ada being a strong typed language, the 
compiler will act as a simulator in the sense that it will 
enable the detection of coherence and compatibility errors. 
What is more, this error detection is possible at a low cost 
(them is no needs to write specific software packages) and 
whatever the design process stage can be. For instance, in 
the bit serial architecture case, the communications and con- 
nections between components are done via simple wires. If 
therefore one defines a type -let us say- BIT, all the com- 
munications and interconnections must be defined in this 
term. Any violation will be automatically indicated by the 
compiler. 

4.4. Ada and Design Methodology Interaction 

When faced with a given problem, a programmer first 
begins to analyze the problem, then suggests one or more 
solutions and finally proceeds to the implementation of these 
solutions. Ideally, the implementation language should make 
it possible to faithfully reflect and to express in a direct 
manner the design methodology. A lot of languages do not 
allow the easy expression of the conventions and methodol- 
ogy followed by the solutions design. It is now well recog- 
nized that high level languages reduce this difficulty since 
they reflect more easily the definition of problems. This may 
explain the increasing interest for the A1 languages such as 
Prolog and Lisp. High level general purpose programming 
languages are also interesting in this respect. 

Our design approach can be referred to as the refine- 
ment methodology. It consists in starting from the algo- 
rithms chosen (in the first phase of our design process) and 
refining the descriptions progressively. The aim of this 
refinement is to describe more and more accurately the 
hardware which performs the circuit functionality specified 
by the algorithms selected in the first phase (software 
phase). In particular, some constraints associated with 
hardware such as the propagation delays will be included in 
our descriptions with more refinement. As already men- 
tioned, the specification (and verification) of these timing 
constraints are made by using the CAD timing analysis tool 
[11]. Therefore, the design methodology we have followed is 
to start firstly with a top-down methodology and consists in 
refining the descriptions in order to gradually get closer to 
the real behavior of the circuit. At each stage, components 
models are split into more detailled lower subcomponents 
models. For example, a user in the speech analysis field, 
deals with LPC analysis shown in figure 1 frame by frame 
(i.e., a serie of consecutive speech samples) without making 
any reference to time although it is implicit in the LPC 
algorithm formulation. But in the real behaviour of the 
analysis part of the speech analysis-synthesis circuit, the sig- 
nal samples arrive bit by bit at the block inputs (we have 
chosen a bit serial architecture). If we wish to express this 
fact, we must not deal any longer with the frame level but 
with the bit level. Therefore, we have to refine our original 
description (i.e., the frame level description) gradually to 
arrive at the bit level. To achieve this, we start by describing 
and simulating the LPC analysis part at the frame level 
without making any reference to time as usual. Then we 
add the timing constraints (e.g., propagation delays) by using 
the CAD timing analysis tool. Next, we go down to the 
sample level. This means that the correlator block, for 
instance, uses the speech samples values as they arrive to 
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compute the correlation coefficients. The same applies to the 
other blocks (e.g., lattice filter). The sampling frequency is 8 
khz. We dispose therefore of  125 microseconds to do the 
correlation. Should this treatment need more time -consider- 
ing the hardware resources available- a memorization would 
be needed. The size of  the memory required depends on the 
number of bits upon which the speech sample is coded. 

The next step was to describe and simulate the LPC 
analysis part at the bit level. We do not consider any longer 
that the correlation computations, for instance, are made 
sample by sample. Up to this stage, we have not made any 
reference to the hardware (target architecture) which exe- 
cutes the treatments. Therefore, all the steps mentioned 
above belong to the what we called the "software phase." 
When this phase is finished, we shall describe the low level 
hardware components (primitive elements) which perform 
the above treatment (i.e., LPC analysis at the bit level). We 
then build higher hardware components (e.g., correlator) 
from the low level ones (i.e., accumulator, multiplier). 

As one can remark, our design work (seen as a whole) 
follows both a top-down approach (during the software 
phase) and a bottom-up approach (during the hardware 
phase). The latter approach is easier to implement in Ada 
than the former. Indeed, once the low level hardware com- 
ponents (i.e., primitive elements) are identified, we imple- 
ment them as packages according to our implementation 
methodology. These packages behave as component libraries 
and constitute compilation units. The high level hardware 
components can then be built from the low level ones in a 
hierarchical manner as we have already explained. The 
"with" and "use" clauses make it possible to use the facili- 
ties provided by the low level (compilation) units. Such 
clauses are therefore well appropriate for a bottom-up 
development. On the contrary, the implementation of  the 
top-down design methodology is more difficult since it 
requires that one must know beforehand the various entities 
he needs (e.g., subprograms and types). The first difficulty 
comes from the fact that often one does not know in 
advance in which compilation unit the entities must be 
defined. Therefore, the contents of the "with" and "use" 
clauses cannot be determined until the whole program, or at 
least its major parts have been designed. To conclude we 
can say that the "with" (and "use") clauses which determine 
the compilation order are helpful in a bottom-up develop- 
ment but are not well adapted to a top-down development. 
This is expressed by the fact that the information flow goes 
mainly from the called unit to the calling unit (the direction 
of this flow is determined by the order in which the various 
units must be compiled and therefore by the "with" clause). 

The difficulties related to the implementation of the 
top-down approach in Ada have been outlined by Rajlich 
[18] who has suggested a methodology to overcome them. 
This methodology centers around two axes: a refinement by 
successive steps (a stepwise refinement) and the hiding of 
the useless informations at each level. According to Rajlich, 
this methodology makes it possible to follow more easily a 
top-down development. However, it suffers from the fact 
that the control flow (e.g., intializations and control flow 
direction) becomes difficult to see because of the above- 
mentioned hiding policy. Indeed, as long as one refines 
(decomposes) his design in several parts, the concern to hide 
useless details lead to implement the major part of  subpro- 
grams and variables as local entities. Therefore, the interac- 
tion (control flow) between different design parts is difficult 

to see. Within the VLSI description framework, it is essen- 
tial to be able to trace the flow control at each level of  
description in order to detect and eleminate potential timing 
errors. 

5. T A S K I N G  ISSUES AND E X P E R I E N C E S  

Two reasons have encouraged us to develop simulation 
models based on the Ada tasking concept. The f'n'st one, and 
the most important one, is that we wanted our behavioral 
model to describe as faithfully as possible the real behavior 
of  the circuit considered. Indeed, the real behavior of a 
hardware system consists in several entities which evolve in 
parallel with cooperation phases. The Ada tasking model 
allows one to represent both the activities performed by the 
hardware components and the cooperation mechanism 
between these activities. Each hardware component may be 
modeled as a task (in the Ada sense). The activity of a given 
hardware element is thus represented by the body of the task 
associated with it. As for the communications between 
hardware components, they can be modeled as task entries. 
The occurrence of a Rendezvous between two given tasks 
means that the communications are established. Each task is 
assumed to be executed on its own processor even though it 
is not what happens when the simulations are made on a 
monoprocessor machine. 

The second reason which has led us to develop Ada 
task-based simulation models is to gain experience with the 
use of  Ada tasks in order to see their advantages (possibili- 
ties) and potential problems associated with their use. 

As already mentioned, Ada makes it possible to model 
the parallelism inherent in the many problems faced in prac- 
tice. This fact is well known but the kind of parallelism 
which can be expressed by Ada tasks is not as well known. 
One of the possible classifications of parallelism concerns 
the level of granularity at which it operates: 

- microscopic level: the parallelism is extracted (e.g., 
by the compiler) only at the level of instructions. 

- macroscopic level: there is an explicit decomposition 
(by the programmer) of a program in "big" pieces of  
code which procede (often virtually) in parallel. 

These definitions having been made, it is clear that the 
parallelism expressed by the Ada tasks belongs to the 
second category (i.e., macroscopic parallelism). A program- 
mer decomposes its model into a set of processes (i.e., 
tasks) evolving in parallel. This kind of parallelism makes it 
possible to develop complex task-based models. It is usually 
found in Artificial Intelligence systems. On the contrary, 
pattern recognition machines often exhibit a microscopic 
parallelism. 

The experience we have gained with the use of Ada 
tasks may be divided into two main phases. In the first 
phase, we have not made reference to (physical) time when 
using tasks (e.g., no use of the delay or select statements). 
The results of this (first) experience have been encouraging: 

- the Ada tasks provide a good means to model com- 
ponents evolving in parallel (e.g., hardware com- 
ponents). 
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-Ada  tasks can be used with ease. 

- the difference in executing time between the programs 
using tasks and the others which do not use tasks is not 
significant. 

As for the second phase of our experience, we thought that 
the use of statements such as "delay" should make it possi- 
ble to specify the timing constraints (e.g., propagation 
delays) in order to analyze the timing behavior of our cir- 
cuit. However, we quickly realized that such statements are 
not well adapted to our problem. Indeed, Ada has been 
designed with real-time applications in mind. These kinds of 
applications involve a physical time notion. The Ada 
mechanisms involving time (e.g., delay and selective walt 
statements) are therefore intented to real-time applications. 
On the contrary, the time concept found in the simulation 
models is usually a virtual time concept (e.g., advance of the 
simulation clock by a unit step). Furthermore, the delay 
statement provides a delay for at least the length of time 
given by an argument of type DURATION. A task is there- 
fore reactivated (i.e., resumes its execution) at the earliest 
after the duration given by this expression. But, in many 
simulation problems, such as the simulation of a VLSI cir- 
cuit, one needs to know not only what process is to be per- 
formed but also at what moment? The original mechanism 
of Ada Rendezvous is not directly applicable to implement 
simulation models such as ours which involve a virtual time 
concept. Moreover, in order to debug simulation models 
based on tasks, we need to know, at each simulation time, 
the processes which are active. At a given simulation step 
(in the virtual time scale) we may have several hardware 
components which are active. We need to know at which 
moment in the virtual scale time the processes which are 
resumed and the current running process. But in Ada, the 
task execution model is a pseudo-parallel one, i.e., the pro- 
cessor is automatically attributed to various processes 
without any interference of the programmer, unlike the case 
of Modula-2 [22] in which we have a quasi-parallel execu- 
tion model (there is no procesor sharing mechanism). This is 
expressed by the fact that in Modula-2, the programmer 
must specify the process (referred to as co-routine) which is 
to be resumed: Transfer(p l, P2), in which p 1 designates the 
process to be suspended and P2 is the process to be 
resumed. 

For problems like ours (i.e., hardware components 
descriptions), we thus need a low level tasking scheduling 
mechanism which looks like the one in Modula-2. On the 
one hand, one must implement the virtual time concept and 
on the other hand, one must know the order in which the 
tasks modeling the hardware components are managed 
(scheduled). To achieve this goal, we have used the discrete 
event simulation technique known in the literature as the 
process interaction approach [8]. This approach relies on a 
set of processes which performs the calculations (operative 
part) and on a scheduler (control part) which will schedule 
tasks according to their activation times (i.e., awakening 
instants). The implementation of this approach in Ada has 
consisted in identifying both the scheduler and software 
representations of the hardware components as Ada tasks. 

In order to schedule a given task in the appropriate 
order, we let it wait for a Rendezvous. At the appropriate 
moment (in the virtual time scale), tasks can be unblocked 
because their entries are ready for a Rendezvous with other 
tasks (i.e., their awakening instants become equal to the 
current value of the simulation clock). The scheduling 

mechanism we have developed therefore uses the original 
Ada mechanism. But unlike the Ada original mechanism, the 
order of tasks scheduling is known by the user in our 
scheduling mechanism. The scheduling mechanism is "no 
longer transparent to the programmer." 

The simulations which have been made with these Ada 
task-based models have raised the following problems: 

- it is difficult to determine the exact causes of the 
deadlocks which have been observed since our simula- 
tion models involve a great number of tasks, mainly at 
the bit level description. Consequently, the debugging 
of programs is a time-consuming task. 

- we have observed an important overhead at the bit 
level description compared to the approach in which the 
scheduler and the software representations have been 
identified as Ada subprograms. This overhead is mainly 
due to the communication times and to the sequential 
task access to hardware resources (we have used a 
monprocessor machine). The switching time depends on 
the underlying (i.e., host) machine and seems to be 
poor on a VAX 11/'/50 under VMS version 4.6 and 
with a DEC compiler version 1.4 (arround hundred of 
microseconds) while it seems to be about 60 
nanoseconds on current machines. In the version 1.4 of 
the Ada DEC compiler, some components (e.g., debug 
and trace) have been included with the VMS operating 
system and changes in the return mechanism along with 
an input caching mechanism have been introduced to 
enhance performances. VMS version 4.4 has included 
run-time tasking performance improvements; in particu- 
lar Rendezvous time has been sped up. However, the 
problems mentioned above (and in particular, that of 
poor switching time context) still remains. 

In the particular case of a target architecture description 
which involves a slow traltement like the bit serial architec- 
ture we have chosen, one can conclude that the overhead 
relevant to the use of tasks is important. Indeed, in this case, 
a tasking-based simulation model would imply a large 
number of Rendezvous and thus a big number of commuta- 
tions. The approach which uses Ada task-based models have 
been therefore given up. We then adopted the other main 
discrete simulation technique, i.e., the event schedulin~ 
approach [11]. The Ada implementation of this technique 
rests on Ada subprograms-based models. To be more pre- 
cise, the scheduler has been implemented as a procedure (in 
the Ada sense). As for the software representations of 
hardware components, they have been identified as subpro- 
grams, as shown in figure 2 relevant to the bit serial multi- 
plier. In other words, the scheduler and the operative part 
(i.e, software representations) have been implemented as 
Ada subprograms, unlike the previous approach in which 
they have been identified as Ada tasks. In the former 
approach, the procedures behave as passive tasks and they 
can carried out simultaneously [11]. The choice of discrete 
event simulations techniques in our experience has several 
advantages, as argued in [11]. 

Distributed scheduling is more appropriate for the task- 
ing model. Indeed, simulation models can be executed faster 
on a multiprocessor architecture. But in fact, many problems 
arise. These problems are linked partly with parallelism 
semantics and management. We hasten to add that most of 
these problems are not directly related to Ada but mainly 
with parallelism. For instance, it is difficult to define and to 
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implement a consistent notion of time across a distributed 
system. Generally, in such an environment, the notion of a 
global clock does not exist. With Ada, it is difficult to 
define the delay statement semantically. Performance is 
another problem. Indeed, the cost associated with parallelism 
management can be significant. Most of present runtime 
environments associated with compilation systems do not 
support distributed configurations efficiently. This could 
explain why some users try to change the runtime libraries 
in order to obtain the functionality and the performances 
desired. Nevertheless, such work is complicated and long- 
lasting. Even more serious is the fact that the obtained 
compilation system can become invalid. On the other hand, 
different kinds of problems can appear, like the ones raised 
by test and checking (e.g., determination of the task state 
and of  the state of calculations). Furthermore, the problem 
of distributed termination arises (the termination information 
is distributed among processors). So, each processor must be 
able to know that the program is over. 

The problem of tasks management with timing and 
resources scheduling constraints is another kind of problem. 
A lot of algorithms suggested are NP-Complete algorithms. 
We also lack quantitative and qualitative criteria for the 
evaluation of parallel algorithms. Finally, with this kind of 
problems associated with the use of  tasks on a distributed 
systems, we can mention the problem which arises when 
two tasks are already engaged in a Rendezvous if processor 
failures have to be tolerated. Indeed, the select and exception 
clauses do not allow one to solve this problem [13]. 

As for the user, the inefficiency of support tools may 
cause debugging and performance problems. Likewise, the 
tracing of control flow may be difficult. Finally, we could 
mention that Ada does not have syntaxic or semantic struc- 
tures available to enable it to assign a physical processor to 
the data structures which represent a process (task) ready for 
execution. Consequently, one can expect that Ada tasks 
management in a distributed environment can be transparent 
to the programmer or will be achieved with synchronization 
primitives outside the language. The drawbacks of the 
second alternative are obvious. As for the first one, we have 
seen that when task management is transparent in a central- 
ized environment (i.e., in principle the programmer is 
unaware of its existence), some problems arose at which a 
user needs to know the order in which tasks are scheduled 
and the time when these tasks are scheduled. One might 
expect that we could face the same problem in a distributed 
environment. 

6. RELATED WORK IN HARDWARE 
D E S C R I P T I O N  

Since the advent of Ada, several studies have been 
made regarding its use in hardware description. These can 
be classified in two main categories. The first one consists 
in translating hardware descriptions written in Ada to silicon 
(e.g., Girczyc [10], Organick [17]). The second one only 
uses Ada as a hardware description language (i.e., Barbacci 
[2], Ghosh [9]). The following comparisons will be based on 
the second type of approach. 

Ghosh's approach is based on the Ada tasking model. 
Each type of  component is modeled as an Ada task type. 
Task types constitute generic models (not in the Ada sense). 
The component type instances correspond to the task 
instances. The Ada model for a signal path consists in a a 

(record) message between instances. The timing characteris- 
tics of hardware elements such as propagation delays are 
modeled as a field of  the record message. A large degree of 
scheduling is distributed among the model instances. A task 
schedules itself for execution when all necessary inputs are 
asserted at its input ports. The underlying scheduling of the 
tasks is a part of the Ada runtime support. On completing 
execution, the output generated are communicated directly to 
all other tasks that are connected to its output ports. Connec- 
tivity is modeled as an interconnection data base. Neverthe- 
less, this kind of approach based on Ada tasks has draw- 
backs as we have explained (e.g., simulation models involv- 
ing a large number of tasks are difficult to develop and to 
debug and may result in a execution overhead). Moreover, 
unlike our approach, there is no genuine timing analysis 
tool. This last drawback also applies to the Barbacci's 
approach since time is modeled the same way as any other 
procedure parameter and there is no explicit synchronization 
core (no scheduling mechanism). We can therefore expect 
that a designer in the VLSI design framework would find it 
difficult to detect timing errors since no timing analysis tool 
is provided to follow the time flow throught his design. 

7. S I M U L A T I O N  E X P E R I M E N T  

Our modeling approach (i.e., each package manages a 
particular kind of hardware component) and our timing 
analysis tool [11] based on the discrete event simulaton 
technique known in the literature as the event scheduling 
technique [8] have been successfully used to describe and to 
simulate the analysis part of the speech analysis-synthesis 
circuit. Moreover, they have been used from the top level 
description (i.e., description of  the LPC analysis at the frame 
level) down to bit level. The simulations have been made on 
a Vax 11/750 under VMS version 4.6 machine using a DEC 
compiler version 1.4. 

Because of  the limited space in this paper, we gives 
only two CPU times (see figure 3). The first one is related 
to the LPC analysis at the frame level. This example 
belongs therefore to what we referred to as the software 
phase (simulations models are executed on a predefined 
hardware without specifying the target architecture). The 
second CPU time is related to the example of a hardware 
component (i.e., the correlator). The software representation 
of the correlator specifies an execution process different 
from the predefined one, i.e., based on the choices we have 
made (e.g, a bit serial multiplier). 

Straight away we can notice that the hardware model 
consumes more time than the software model. Indeed, the 
software model includes the correlator block as well as two 
other blocks (i.e., the lattice filter and the PARCOR extrac- 
tor blocks). This difference in CPU times is not surprising 
since the hardware model describes a target architecture and 
it is constrained both by the algorithms and the hardware 
while the software model is executed on a predefined 
hardware and is contrained only by the algorithms. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

An important contribution of our study was to provide 
an evaluation of the use of Ada in the simulation field. Our 
experience has demonstrated the interest of using Ada in a 
complex development project and in tlae hardware simulation 
domain in particular. Unlike other papers which deal with 
this topic on the basis of Ada's ootential advantages and 
drawbacks, the ideas and results presented in this paper are 
based on the lessons learned from a real development effort. 

As mentioned earlier, there is no use of a specialized 
simulation language. It is Ada that is used instead. There 
are many advantages associated with this choice: 

1- advantages resulting from the choice of a high level 
language. 

2- advantages due to the choice of Ada. 

3- advantages due to the choice of one single language 
during the whole design process. 

Regarding the first point, the need for a high level language 
can be justified by the fact that users in the signal process- 
ing field usually use high order languages like Fortran to 
implement their algorithms which are quite simple (set of 
multiplications, additions and divisions). Two main parts can 
be seen in these algorithms: repetitive data calculations and 
control. The choice of a low level language involves not 
only some difficulties when learning it, but also would make 
it unavoidable for these users to handle low level data they 
are not used to. More generally, at the first stages of design, 
the circuit designer must concentrate on a high level of 
abstraction for the description and simulation (e.g, 
behavioral level). The data and control handled, at this level 
are abstract objects. So the description and simulation 
language must be able to implement easily such objects. A 
low level language does not have either such high data 
structures or such sophisticated control structures to do it. 
Moreover, only high level languages provide structures 
powerful enough to tackle complex problems. As far as we 
are concerned, we have adopted Ada as a high level 
language for the development of our CAD tool as well as 
for the software and hardware description and simulation. 
This choice is vindicated by the advantages of Ada over 
other high level languages. 

The choice of Ada instead of other high order program- 
ming languages as our high level language has proved to be 
a good choice. Indeed, Ada makes the modeling and simula- 
tion particularly easy: powerful data typing, generics, sophis- 
ticated mechanisms for data abstraction and control abstrac- 
tion, modularity, improved portability, availability of a sup- 
port environment, etc. 

On the other hand, the use of the same language during 
the whole design process makes the testing of programs and 
the detecting of potential errors in the descriptions particu- 
larly easy since the same language is used both for hardware 
and software simulations. We can then benefit from existing 
development and debugging tools (there is no need to 
develop another compiler or another debugger). In the case 
of Ada, the code is reliable and the testing is easy since the 
debugging environment is powerful. There is also no need 
for the designer to learn another language. Moreover, the 
decision to implement the components in software or in 

hardware can be postponed to the very last moment. How- 
ever, the use of a general purpose programming language 
like Ada for hardware description may have some draw- 
backs. Indeed, this type of languages lacks appropriate tim- 
ing primitives (a virtual time concept) and predefined struc- 
tures (e.g., register, bus). Our approach for the hardware 
description and simulation presents several advantages over 
the existing ones, especially when it comes to the time 
modeling and specification. Indeed, the approaches using 
Ada as a language for hardware description and simulation 
found in the literature (e.g., Barbacci [2]) do not present any 
methodology for the specificatio~a of temporal constraints for 
hardware components. For instance, the approach adopted 
by Barbacci [2] at Carnegie-Mellon University specifies 
temporal constraints (e.g, propagation delays) as parameters 
to the procedures implementing the hardware components. 
On the contrary, we have shown that the specification of 
these temporal constraints has been achieved by means of a 
well defined and elegant technique (i.e., event scheduling 
technique). On the other hand, our approach for hardware 
description is also different from the one taken by Shahdad. 
Indeed, we have stuck to the Ada language whereas Shahdad 
[20] has developed a new language based on Ada called 
VHDL (a part of the VHSIC program) dedicated to 
hardware description and simulation. Moreover, we have 
used the same language (i.e., Ada) for hardware and 
software simulations whereas the VHDL language is used 
for hardware descriptions only. This has several drawbacks 
since it sets up a border between a software designer and a 
circuit designer. It cannot benefit from the advantages con- 
nected with the use of a single language during the whole 
design process (e.g., use of the existing development and 
debugging support tools). 

On the other hand, our experience has proved it neces- 
sary to use high level descriptions (i.e., functional descrip- 
tions) along with a high level language in order to design 
and simulate an architecture quickly and reliably. The choice 
of Ada and of a functional level of description have proved 
to be good. As for this later point, the choice of a func- 
tional or behavioral level in opposition to the structural level 
(logic, gate, circuit and switch levels) can be justified by the 
fact that the model size of the circuit increases as the design 
progresses (i.e., when we the descriptions are refined). The 
complexity of the evaluations increases therefore in an 
unlinear way. To overcome this difficulty, one solution is to 
use functional descriptions implemented in an appropriate 
language. A high order language is then desired. A func- 
tional descriotion does not consider the underlying logic. It 
only takes into account the input-output dependence relation- 
ships and the propagation delays implied in this dependence. 
Moreover, the verification is faster. This explains why our 
CAD tool enables one to specif.v in particular the propaga- 
tion delays which are implemented as fields of the records 
associated with events. 

The question is whether the use of Ada for hardware 
(and discrete event) simulations results in an overhead with 
respect to the specialized languages. In particular, compile- 
time and runtime checking may lengthen the execution 
times. It seems that no exhaustive study have been made on 
this topic. This could be explained by the fact that the 
potential overhead of Ada compared to other languages 
depends on the compilers efficiency, on the application case 
and on the host machine. It is not sure that the use of some 
pragmas such as inline or optimize enable to reduce the exe- 
cution times. On the contrary, one might fear that the use of 
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such pragmas may cause CPU times to increase. Our experi- 
ence corroborates this fear. Indeed, we have observed on 
the lattice filter example that the CPU time increases when 
we use the pragma optimize: 5 seconds instead of 4 seconds 
(no use of pragma). This could be explained by the fact that 
when this pragma is accepted by the compiler, the compiler 
has to adopt choices which are not "optimal" compared to 
the choices it would have made (choices which take partly 
into account the host machine). The use of the suppress all 
pragma has not decreased significantly the CPU tiffles 
observed. 

One of the main points discussed in this papier con- 
cerns our experience in using Ada tasks. In particular, the 
use of Ada tasks to model complex systems such as an 
integrated circuit has arised the need for efficient compilers 
and support environments. To achieve such efficiency, one 
can think of designing machines based on an architecture, 
part of which would take into account a few Ada semantics 
and especially the ones relevant to tasks. Indeed, Ada task- 
based simulation models can be potentially executed faster 
on a distributed system. Nevertheless, we have stressed the 
problems raised by the verification, testing and debugging of 
Ada tasking programs in such an environment. Advanced 
tools for the testing and debugging of concurrent Ada pro- 
grams are therefore needed (both in a centralized and distri- 
buted environments). However we do not claim that the use 
of Ada tasks on a rnonoprocessor machine should be 
avoided in the case where memory size and execution times 
are significant factors, provided that powerful support tools 
are available. Many papers have been published which deal 
with the implementation issues and with the use of Ada on a 
distributed system [13], [23]. 

Another main characteristic of Ada we have mentioned 
concerns eenerics. In this respect, we have shown how the 
use of this facility makes it possible to have flexible pro- 
grams and to reduce their sensitivity to changes. This flexi- 
bility is all the more interesting as the design and simulation 
are repetitive processes. Furthermore, the description of a 
complex system such as an integrated circuit involves 
several thousands lines of code. However, it is clear that in 
the case where efficiency have to be achieved, simulation 
models must take into account the hardware types supported 
by the host machine. The code is consequently non generic 
("dedicated" to the host machine). 

Besides, our design methodology has several advan- 
tages. It looks like the structured design methodology sug- 
gested by Mead and Conway [15] at Caltech University. 
This methodology is consistent with Ada philosophy since it 
is based on two main characteristics: hierarchy and regular- 
ity. The hierarchy can be achieved through nested Ada 
packages which represent the split up of the design into 
more refined components. In our application, it consists in 
the gradual refining of the description. This structured 
design methodology is similar in concept to structured pro- 
gramming [10]. It enables one to implement design more 
quickly and more reliably and to prove the correctness 
easily. However, we have seen that the implementation in 
Ada of our design methodology corresponds to a top-down 
development and brings about some problems, since the 
information flow goes mainly from the called unit to the cal- 
ling unit. 

To summarize, from our exprience, we feel that Ada 
provides valuable constructs and mechanisms for modular 
design of complex software and hardware components. Ada 
presents several advantages over both specific simulation 
languages and general purpose programming languages even 
though its use for some simulations problems may have 
some drawbacks (e.g., lack of a virtual time concept and of 
a few structures appropriate to hardware design). However, 
these deficiencies seem to be minor compared to the gains 
related to the use of Ada. Indeed, our experience has 
thrown into relief several advantages resulting from the use 
of Ada. After an investment in the phase of learning Ada (3 
months), we observed that our productivity increased day 
after day. 

We cannot conclude this paper without mentioning an 
interesting contribution to the study of the Ada impact on 
software cost, quality and productivity made by Reifer [19]. 
His study concerns 41 projects which delivered over 15 mil- 
lion lines of Ada code for a variety of applications, mostly 
real time. The results of his data analysis show the follow- 
ing: 

- effort distribution was different. 

- productivity was better. 

- error rates were lower. 

- required development resources were less. 

Regarding the first point, Reifer'study has demonstrated that 
Ada developments tend to observe a 50:15:35 distribution 
(i.e., 50% of the software effort is allocated to requirements 
and design, 15% to development and 35% to testing). This 
is to be compared with the distribution of traditional projects 
(i.e., 40:20:20). Another main fact is that 30 among the 41 
projects surveyed use object-oriented design as their detailed 
design methodology. This is close to the methodology fol- 
lowed for the Colombus project. Moreover, 36 among the 
41 projects also used Ada as a design language. This 
emphazises the idea that high order languages in general and 
Ada in particular narrow the gap between conception and 
implementation methodologies. 

As to the productivity merely defined as being the 
number of Ada source lines of code (ASLOC's) per person- 
month of effort made, Reifer's study has shown that average 
productivity during software development was 310 lines Ada 
source lines of code per person-month (i.e., 310 
ASLOC's/person-month). This compares nicely with an 
industry average of about 200 SLOC's/person-month of 
effort. However, on the average, productivity improvements 
were not achieved until the third project was completed by 
the project team. As to the third point (i.e., error rates), the 
average error densities observed was 3 to 5 errors per 
KASLOC. This compares quite favorably to the Air Force's 
experience of 4 to 13 errors per thousand lines of code. 

Lastly, for the fourth point, Reifer'study can demon- 
strate that as Ada projects get bigger, they get cheaper. This 
phenomenon challenged the power laws that most of the 
popular software cost models were based upon which say 
that as a size gets bigger, time and effort increase according 
to a log-log relationship because of the management burden 
associated with inter-group communications. More precisely, 
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the basic equation used by most code models [1] for estima- 
tion effort is the following: 

effort =A (size )P (4) 

where A is a constant technology and p the power law 
(describes the relationship that exists between size and 
effort). 

While most cost models assume that this power is 
greater than one, the Reifer's study indicated that for Ada 
projects, this power law stabilizes at 0.95. This can be inter- 
preted to mean that as projects get bigger, the opportunity 
for reuse is so great that it damps out the management 
bfi-rden to make larger projects cheaper. Reifer's study also 
proved that current compilers really cannot adequately han- 
die real-time tasking and Rendezvous. As for the question 
of Ada cost model development, Reifer's paper shows that 
the use of object-oriented methodologies and the perfor- 
mance of the Ada compilation system have much greater 
effects on productivity than in classical systems. Equally, 
the degree of real-time and system architecture tend to be 
more important factors driving Ada costs because of the dif- 
ficulties in designing and mechanizing Ada tasking. 

Despite the fact that the model validation used by 
Reifer to issue his statistics is not a mathematical validation 
(the approach taken by Reifer to validate the accuracy of the 
prediction of Ada software cost consisted in comparing the 
model's estimates against actuals taken from completed pro- 
jects given to him by customers), his study seems to be the 
most exhaustive one on the Ada impact on software cost, 
productivity and quality. Reifer gives several recommenda- 
tions for development expriences. In particular, it seems that 
productivity can be improved by at least 25%. 

References 

1. Bailey, E. K., Frazier, P. and Bailey, J. W. A 
Descriptive Evaluation of Software Cost-Estimation Models. 
Institute for Defense Analyses, Paper No. P-1979, October 
1986. 
2. Barbacci, M. et al. Ada as a Hardware Description 
Language : An Initial Report. Proceedings of the IFIP 7th 
International Symposium on Hardware Description 
Languages and their applications, Tokyo, August 1985. 
North-Holland Publications. 
3. Batali, J. The DPL/Daelus Design Environment. 
Proceedings of the VLSI 81 Conference, Academic Press, 
1981. 
4. Berry G., Moisan, S. and Rigault, J .P .  ESTEREL: 
Towards a Synchronous and Semantically Sound High Level 
Language for Real-Time Applications. Proc. IEEE Real- 
Time Symposium, 1983. 
5. Caspi, P., Halbwachs, N., Pilaud D. and Plaice, J .A .  
LUSTRE: A Declarative Language for Programming Syn- 
chronous Systems. 14th ACM Symposium on Principles of 
Programming Languages, Munich, Janvier 1987. 
6. ChappeU, S. G., Menon, P. R., Pellegrin, J. F. and 
Schowe, A . M .  Functional Simulation in the LAMP Sys- 
tem. Journal of the Design Automation and Fault Tolerant 
Computing, Vol I, No 3, MAY 1979. 
7. Dahl, O., Myhrhaug and Nygaard, K. Simula 67 
Common Base Language. Publ. NO. 5-22, Norwegian 
Computing Center, 1970. 

8. l~ishman, G. S. Concepts and Methods in Discrete 
Event Digital Simulation. A Wiley-Interscience Publica- 
tion, John Wiley and Sons, 1973. 
9. Ghosh, S. RDV • A Rule-Based Generalized Design 
Verifier. Ph.D Thesis, Department of Electrical Engineer- 
ing, Stanford University, Stanford, CA, 1984. 
10. Girczyc, E . M .  Automatic Generation of Microse- 
quenced Data Paths to Realize Ada Circuit Descriptions. 
Ph.D Thesis, Department of Engineering, Carleton Univer- 
sity, July 1984. 
11. Guennouni, J. Simulation and Temporal Verification 
of a VLSI Circuit Using Ada: A Case Study. To appear ifi 
the Summer Computer Simulation Conference proceedings, 
25-28 July, Seattle 1988. 
12. Hill, D. Multi Level Simulator for Computer Aided 
Design. Ph.D. Thesis, Center for Integrated Systems, Com- 
puter Systems Laboratory, Stanford University, CA, 1980 
13. Knight, J. C. and Urquhart, J. I. A On the Imple- 
mentation and Use of Ada Fault-Tolerant Distributed Sys- 
tems. IEEE Transactions on Software Engineering, Vol. 
SE-13, No. 5, May 1987. 
14. Markel, J.D. and Gray, AH. Linear Prediction of 
Speech. Communications Cybernetics 12, Springer-Verlag, 
1976. 
15. Mead, C. A. and Conway, L . A .  Introduction to 
VLSI Systems. Adison Wesley 1980. 
16. Mouly, J. C, Neirynck, J. and Tarpin, F. Prolog 
Based CAD tools for VLSI. Proceedings of the 1987 Euro- 
pean Conference on Circuit Theory and Design, Ecole 
Nationale Suprrieure des Trlrcommunications, Paris, France, 
Sept. 1-4, 1987, 639-644. 
17. Organick, E., Ogilvie, J. W. L. and Henderson, T. C. 
Signal Processing-to-Silicon using ADA as a Hardware 
Specification Language: An initial Investigation. Report of 
the Department of Computer Science, University of Utah, 
SALT LAKE CITY. 
18. Rajlich, V. Refinement Methodology for ADA. 
IEEE Trans. on Software Engineering, Vol. SE-13, No-4, 
April 1987. 
19. Reifer, D . J .  Ada's Impact: A Quantitative Assess- 
ment. Proceedings of the 1987 ACM SIGAda International 
Conference on the Ada programming language, Boston, 
December 9-11, 1987, 1-13, ACM SIGAda publications. 
20. Shahdad, M., Lipsett, R., Marschner, E., Sheehan, K. 
and Cohen, H. VHSIC Hardware Description Language. 
Special issue on Computer Hardware Languages, IEEE-CS 
Computer, Volume 18, No. 2, February 1985, 94-102. 
21. Schriber, T.J. Simulation using GPSS, Wiley, New 
York, 1974. 
22. Thalmann, D. Modula-2: An Introduction. Springer 
Verlag, 1985. 
23. Volz, R. A. and Mudge, T .N.  Timing Issues in the 
Distributed Execution of Ada Programs. IEEE Transactions 

94 



S n corre la t ion 

computation 

PARCOR 
coefficients 
calculation 

corre lator  block PARCOR extractor  
block 

I :::::::::::::::::::::::::::::::::::::::::: ii~ii 

figure 1: LPC analysis 

with BITS HANDLER ; use BITS HANDLER ; 

with BIT SERIAL ADDER ; use BIT SERIAL ADDER ; 

generic 
NUMBER BITS OF THE FIRST OPERAND : natural ; 
NUMBER--BITS OF THE SECOND OPERAND natural ; 

package BIT SERIAL MULTIPLIER is 

subtype PRODUCTBIT is natural range 0 .. 1 ; 

procedure MULTIPLY BIT SERIAL( ....... ) ; 

end BIT SERIAL MULTIPLIER ; 

package body BIT SERIAL MULTIPLIER is 

procedure MULTIPLY BIT SERIAL( ....... ) is 

begin 
LOAD FIRST OPERAND ; 
EXTEND MULTPLICAND BY ONE BIT ; 
MULTIPLY BIT BY FIRST OPERAND ; 
SHIFT PRODUCT; -- 
ACCUMULATE SHIFTED PRODUCT AND PARTIAL_SUMS; 
EXTEND PARTIAL SUMS BY ONE BIT; 

end MULTIPLY BIT SERIAL ; 

end BIT SERIAL MULTIPLIER ; 

t 
inverse f i l t red 

signal 
fil tering 

latt ice f i l te r  
black 

95 

mode l  CPU times 

software model 9 seconds 
of the LPC analysis 

hardware model 11 seconds 
of the correlator block 

figure 3. CPU times for the LPC analysis 
and the correlator block 

these measures are made on a VAX/VMS version 4.6 

wi th  a DEC compiler version 1.4 

and concern 800 speech samples 

formats 

0 speech sample represented by a word of length 12 bits 

0 correlations coeeficients represented by word of 
length 25 bits 


