
O N I M P L E M E N T I N G T H E O S I M O D E L IN A D A V I A T A S K I N G

Norman R. Howes
Department of Computer Science

George Mason University
4400 University Drive

Fairfax, Virginia

Alfred C. Weaver
Department of Computer Science

University of Virginia
Charlottesville, Virginia

The purpose of this paper is to investigate the performance
limitations imposed by the overhead associated with the use of the Ada
language when implementing the OSI Reference Model as proposed in
Buhr [1]. The investigation was conducted on both sequential and
parallel Ada implementations. This study led to the introduction of a
new proposal that introduces concurrency in a fundamentally different
way than that introduced in the Buhr proposal. This new architecture
incurs significantly less overhead than the Buhr proposal.

ADA, COMMUNICATIONS, AND CONCURRENCY

There have been recent proposals for implementing the
International Standards Organization's Open Systems Interconnect (OSI)
Model in Ada using the Ada language feature for concurrency called a
task, as for instance [1] and [2]. Also, there have been a number of recent
articles detailing the performance of Ada tasking that show the
performance of this feature of the language is highly implementation
dependent, as for instance [3] and [2].

The purpose of this paper is to investigate the performance
limitations imposed by the overhead associated with the use of the Ada
language when implementing the OSI Model as proposed in [1]. Buhr's
proposed architecture can take advantage of a multiprocessor Ada
implementation but, as will be shown, the associated overhead is
significant. Also, a new proposal will be advanced for implementing the
OSI Model via tasking that introduces concurrency in a fundamentally
different way than in Buhr's proposal. This new implementation can also
take full advantage of a multiprocessor Ada implementation while
incurring significantly less overhead than the Buhr proposal.

The investigation documented in this paper took place in two
phases. The first phase took place at the NASA--Johnson Space Center
where the authors were engaged in the development of a prototype
version of the network operating system for the Space Station program.
During this phase the authors had no access to a parallel architecture Ada
implementation. Consequently, the first phase consisted of investigating
the Ada overhead associated with the Buhr proposal in a sequential
processing environment. Comparisons were made between the overhead
on a Digital Equipment Corporation VAX 11/785 and a Rational 1000.
This led to the introduction of a new architecture that is considerably
more efficient than the Buhr model and it was conjectured that the new
model would continue to be more efficient in a parallel environment.
This phase concluded with an investigation of the performance
implications of abandoning concurrency; i.e., of using only procedures to
implement the OSI Model in Ada for single processor machines and the
construction of a linear mathematical model that could predict the Ada
overhead for various architectures on single processor machines.

During the second phase, the authors investigated the problem in a
parallel environment using a Sequent 821 with eight processors. It was
possible to configure the Sequent environment to use a variable number

COPYRIGHT 1988 BY THE ASSOCIATION FOR COMPUTING MACHINERY, INC.
Permission to copy without fee all or part of this matedal is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

of processors ranging between one and seven. This enabled the
benchmarks to be run in a variety of parallel environments. This study
verified the above conjecture for the Sequent implementation.
Furthermore, the proposed new architecture is of the dispatcher/server
type so the ability to reconfigure the Sequent environment permitted the
study of the relationship between the number of processors and the
number of servers. The investigation of the proposed new architecture
thus becomes a two dimensional problem that is somewhat more
complex than the single processor investigation. For that reason the
results are organized in two sections, the first being the sequential case
and the second the parallel case.

THE BUHR MODELS

In his book "System Design with Ada", R. J. A. Buhr [1],
proposes several "models" for designing layered communications
software using Ada tasking to decouple the layers. All of these models
are similar in that they introduce concurrency in essentially the same
way. Each layer is implemented as an active package (one that contains
tasks) and the tasks in a given layer rendezvous with tasks in the layer
packages above and below it. The first model that Buhr introduces on
page 187 is the simplest and also introduces the least overhead. For this
reason, it will be the only one dealt with in this paper since is can be
considered the "best case" for Buhr's approach.

The presentation of what will be referred to as "Buhr's first
model" will be in terms of an icon-oriented diagraming technique
introduced by Buhr that is both elegant and efficient, and which is a
fundamental part of his design methodology. In the discussions that
follow, these "Buhrgrams" will be used to illustrate the concepts.
Buhr's first model is illustrated in Figure 1.

In this diagram, the large rectangles denote Ada packages whereas
the small rectangles inside the large ones represent procedures. Those
procedure rectangles that touch the outer package rectangles are the
procedures that are visible from outside the package (i.e., included in the
package specification). The parallelograms inside the package rectangles
represent tasks. The big arrows indicate calls to either procedures or
tasks. The direction of these arrows indicate which program unit is
calling which other program unit. The head of the arrow indicates the
program unit that is being called whereas the tail indicates the calling
unit. The smaller arrows with little circles at the tail indicate the
parameters that are being passed. The dots at the head of some of the
calling arrows indicate the presence of guards; i.e., the task entry is
conditional.

In Buhr's first model, all calls between layers originate from the
higher layer. The advantages of this model according to Buhr are (1) it is
intuitively simple, (2) requires no more rendezvous than his other models
and (3) is structurally free from constructs that could lead to deadlock in
one form or another.

Each OSI layer in this model is implemented as a package. The
task labeled M in the middle of each package rectangle is the main task
for that layer whereas the tasks labeled T are transport tasks as defined
by chapter three of Buhr or in Nielsen [6]. From Figure 1 it can be seen
that it requires a minimum of two rendezvous to "pass" a message from
a higher layer to a lower one or vise-versa. It also requires at least one

t03

http://crossmark.crossref.org/dialog/?doi=10.1145%2F339938.339972&domain=pdf&date_stamp=1988-07-01

procedure call. The procedures in this model are labeled P in Figure 1.

The main task does whatever processing is required at the layer in
which it resides and thus could conceivably have subtasks or procedures.
The transporter tasks are merely the decoupling mechanism that allows
the main task to work asynchronously from tasks in adjacent layers
without having to periodically poll them or be polled by them to see if a
message is ready to be passed between layers. In practice, an
implementation would probably only pass the protocol header associated
with the layer rather than the entire message.

Buhr's First Model

APPLICATION
LAYER PACKAGE

PRESENTATION
LAYER PACKAGE

SESSION
LAYER PACKAGE

TRANSPORT
LAYER PACKAGE

NETWORK
LAYER PACKAGE

DATA LINK
LAYER PACKAGE

PHYSICAL
NETWORK MEDIA

SEND RECV

Figure 1.

THE SEQUENTIAL CASE

The benchmarks to determine the Ada overhead for implementing
the OSI seven layer stack were run on a Digital Equipment Corporation
(DEC) VAX 11/785 and a Rational 1000. It was determined that a
procedure call took approximately 19.2 Ixsec on the VAX 11/785 and 4
Ixsec on the Rational 1000. The overhead associated with a simple
producer-consumer rendezvous where the only parameter passed is an
integer proved to be 835 ktsec on the VAX 11/785 and 51 Ixsec on the
Rational 1000. As pointed out in [2], for tasking paradigms that employ
multiple tasks in various roles (e.g., transporters, buffers, relays, etc.) the
Aria overhead associated with the entire paradigm is not necessarily the
sum of the number of rendezvous multiplied by the overhead associated
with a simple producer-consumer rendezvous.

'104

Consequently, to measure the Ada overhead associated with the
Buhr models, it was necessary to construct benchmarks that simulated
the entire model. To simulate Buhr's first model, it was decided to pass
integers from one layer to another using the architecture depicted in
Figure 1. The main task (M) in each layer package merely passed the
integer on to the main task in the next layer via a transporter task (T). In
effect, this made each layer a null layer since the main task did nothing
but pass the message (integer) on. By passing an integer, it prevented the
compiler from optimizing the rendezvous away and also provided a
convenient mechanism for determining which message was being
handled by which layer package at any given point in time.

Extensive tracing was done by identifying consecutive messages
with consecutive integers and dumping a map of which message was
being serviced by which layer package at any given time. This was done
to try to gain an understanding of the impact of the task scheduling
algorithms employed on the different single processor machines on
which the benchmarks were being conducted. The authors were in
possession of a DEC Ada compiler evaluation that indicated that
rendezvous times would increase substantially as the number of
concurrent rendezvous were simulated on the underlying single processor
machine and expected that this tracing would shed some light on the
phenomenon. However, the authors were unable to duplicate these
reported observations. It was observed that the DEC Ada default task
scheduling algorithm (run until blocked) ran a little faster than when
using pragma TIME_SLICE. It is these default algorithm times that are
reported in this paper.

It should be clear that this method of simulating Buhr's first model
only simulates the Ada overhead associated with it. The times reported in
this paper should therefore be understood to be lower bounds on the
actual messaging rates that could be expected if this model were to be
implemented on one of the machines on which the benchmarks were run.
The Ada overhead associated with an implementation of Buhr's first
model on a VAX 11/785 proved to be 11.2 msec per message whereas
the overhead associated with a Rational 1000 implementation was 650
~ e c per message.

Expected Message Delay Times for Buhr's First Model

In what follows the expected length of time E(t) between the arrival
of a message at the seven layer OSI stack and its departure will be
investigated. Specifically, that component of the expected delay time
attributable to the Ada overhead will be calculated for both the VAX
11/785 and the Rational 1000. For these calculations, the customary
assumption of Poisson arrivals is made. The equation for E(t) is given
by:

E(t) = 1 / LE(n) (1)

where Z, is the mean message arrival rate and E(n) is the expected length
of the incoming message queue. A simple derivation of (1) can be found
in l-;7. The formula forE(n) is:

E(n) = P 1 - p (2)

where p is the traffic intensity given by the ratio ~l.t where I.t is the mean
service rate. The mean service rate is defined as the inverse of the time it
takes to service a single message. For the VAX 11/785 the time to
service a single message attributable to the Ada overhead was found to
be 11.2 msec. For the Rational 1000 it was 650 I.tsec. Consequently, for
the VAX 11/785, if the Aria overhead was the only thing contributing to
a message's delay time then ~t would be approximately 89 messages per
second and for the Rational 1000 it would be approximately 1,518
messages per second. With these values for Ix it is possible to plot the
following graphs of lower bounds of E(t) with respect to mean message
arrival rate for both the VAX 11/785 and the Rational 1000.

A New Model
As depicted in Figure 2, the message handling rate for Buhr's first

model is going to be fairly slow on the VAX 11/785 just based on the
overhead associated with concurrency management in Ada. On the other
hand, Figure 2 indicates the feasibility of implementing a message
handling system based on Buhr's first model on the Rational 1000 with
quite respectable performance. This, of course, is due to the fact that the
rendezvous times on the Rational 1000 are an order of magnitude faster
than on the VAX 11/785.

Lower Bounds on Expected Message Delay Times Attributable to
Ada Overhead for Buhr's First Model

1 0 0 -

80-

Expected 6 0 - -
D e l a y

(i n m s e c ,) -
4 0 -

2 0 -

I I

Rational 1000

I ~ I I ~ I I I I I t I
5 0 0 1 0 0 0 1 5 0 0

Mean Message Arrival Rate (m s g . / s e c .)

Figure 2.

The Rational 1000 is a very specialized machine whose hardware
architecture was designed expressly for exploiting the Ada language
features. It was designed to be a system to host an Ada Programming
Support Environment (APSE) for developing Ada code for a variety of
other target machines. At the time, the cost of a Rational 1000 was
considerably greater than the cost of a VAX machine that could
accommodate a similar number of general purpose users. For these
reasons, it is unlikely that the Rational 1000 would be used as the basis
for a message handling system. The benchmarks were conducted on this
machine merely to show that the overhead associated with implementing
a message handling system based on Buhr's first model is highly
dependent on how the Ada language system is implemented rather than
any intrinsic deficiency of the language itself.

At the time of the writing of this paper, there are over 120 Ada
compilers that have been validated. Probably more of these compilers
have been validated on VAX machines than on any other. Consequently,
they represent a class of machines that are likely candidates for
implementing message handling systems in Ada given the DOD's
mandate for the use of Ada and the large number of VAX networks
currently in service. The question naturally arises: Is it possible to
implement a respectable OSI Model-based message handling system in
Ada on a VAX?

There are two approaches to be investigated here and both will be
dealt with in this and the following sections. First, concurrency could be
abandoned; i.e., the message handling service could be designed in such
a way that procedures are used in place of tasks. This is a natural
approach since the processing of message headers in the OSI Model is
intrinsically a sequential process. There is no reason to require a
simulated parallel processing of the six layer headers (on a single
processor machine) as in Buhr's models when the header for layer six
cannot be constructed until the header for layer seven has been
completed and so on down the layer stack.

But there are some disadvantages to abandoning concurrency.
First, by abandoning concurrency, there will be no way of exploiting
concurrency in the event the message handling system could be run in a
multi-processing environment at a later date without redesigning the
system. This is worthwhile considering, given the current trend in
computer architectures. Secondly, it is conceptually easier to express
certain useful design features such as the ability of higher priority

messages being able to bypass lower priority messages in the message
processing stream by having concurrent streams for different priorities.

The trick is to design a message handling system that exploits
concurrency but does not suffer such a high overhead as the Buhr
models. Such a model will now be proposed. Using the above
observation that the processing of message headers in the OSI Model is
an inherently sequential process, it can be seen that Buhr's models are
not very suitable for modeling this process. They are too rendezvous
laden because they introduce concurrency at too low a level. It takes at
least 14 rendezvous to get a message "through" the OSI stack.

Consider instead the architecture depicted in Figure 3. Here, a
package is depicted for handling the process of sending messages in an
OSI Model message handling system. This package provides the
capability for building the OSI Model message headers and transmitting
them. The package consists of a dispatcher task, a family of server tasks
and a transmitter task. The dispatcher task receives all outgoing
messages. Figure 3 depicts a situation where all the server tasks do
exactly the same thing; i.e., the dispatcher task merely provides a
buffering function and all the server tasks call the same entry to get the
next available message for processing. This diagram could be changed a
little to depict the situation where the server tasks represent different
message processing streams for different priority level messages. In this
case, the different server tasks would call different entries in the
dispatcher task. One can easily imagine other scenarios where the server
tasks could provide other distinct capabilities.

Each of the server tasks would then deposit their messages
(complete with the various OSI Model layer headers) in a buffering
transmitter task that would be asynchronously emptying the transmit
buffer onto the network. Each server task would process an entire
message as opposed to the philosophy of the Buhr models where
different tasks are required to process the different layer headers.

It can be argued that the Buhr model is more modular and therefore
more in the spirit of the OSI Model. Since each layer of the OSI stack is
implemented as a package, any one of the layers could be replace with
one that employed a different protocol simply by replacing the
corresponding package. But the modularity of the Buhr design can
readily by transferred to the new model. For this, one need only
implement a header processing package that contains an inactive package
(no tasks) for each layer. This package can then be imported into each
server task.

The New Model

I I

"105

Figure 3.

The Ada overhead associated with the implementation of the new
model on the VAX 11/785 proved to be 2.6 msec per message while the
overhead associated with the Rational 1000 implementation was 139
Ixsec per message. Again, if we assume that the Ada overhead is the only
thing contributing to a message's delay time then for the VAX 11/785,
the mean service rate IX will be 384 messages per second while for the
Rational 1000 the mean service rate will be 7,194 messages per second.
With these values of IX we can plot the following graphs of lower bounds
of the expected message delay times attributable to Ada overhead with
respect to mean message arrival rate for both the VAX 11/785 and the
Rational 1000. These graphs are shown in Figure 4.

From these plots, it can be seen that this new model has much more
respectable message delay times attributable to Ada overhead than the
Buhr models. At least theoretically, the possibility exists of developing
(via the new model) a 200 message per second (2,000 byte message)
system with delay times of under 50 msec including transmission delays.
A message handling system of this performance is about the minimum
that could be considered "real-time" for a broad class of military and
industrial applications.

It should also be noticed that if a machine like the VAX 8800 were
used, or a better optimized Ada compiler on the VAX 11/785, the
expected delay times should be reduced to the very respectable range for
the implementation (via the new model) of a real-time message handling
system based on the OSI Model. Of course, the total delay times in any
implementation are going to be very dependent on the functionality of
the various layers no matter what the implementation language.

Also, it should be noticed that with the Rational 1000 machine, the
Ada overhead associated with the new model is almost negligible. This
shows the potential of the language for real-time message handling
systems when the Ada rendezvous is highly optimized. There exists at
least one flight qualified computer with an Ada implementation that
claims rendezvous times under 100 lasec. If this is the case, similar
performance to that observed on the Rational 1000 could be expected.
Such an architecture with very small computers and fast rendezvous
should make feasible very high performance distributed systems based
on an OSI Model message handling system as are being investigated for
the Space Station [4].

Lower Bounds on Expected Message Delay Times Attributable to
Afla Overhead for the New Model

The Ada overhead associated with implementing a totally
sequential (no tasks) message handling model as shown in Figure 5 on
the VAX 11/785 is 165 IXsec per message, while on the Rational 1000 it
measured 51 IXsec per message. In other words, the non-tasking model on
the VAX would have about the same Ada overhead as the new model
implemented on the Rational 1000 which is essentially negligible.
Although this approach drastically reduces overhead on the VAX 11/785,
it is clear from the previous section that it should not be necessary for
most applications.

Ada Package with One Procedure per Layer

I I
LAYER 7

LAYER 6

LAYER 5

LAYER 4

LAYER 3

LAYER 2

I I

I
PHYSICAL NETWORK

100 -

8 0 -

E x p e c t e d 6 0 -
Delay

(in msec .) -
4 0 -

2 0 -

VAX 11/785

Rational iooo

I I I I [I I I I I I I I
500 1000 1500

M e a n M e s s a g e Ar r iva l Ra te (msg . / sec .)

Figure 4.

ABANDONING CONCURRENCY

It is also interesting to consider to what degree the Ada overhead
can be reduced by not using the Ada language feature of tasking. If it is
desired to optimize the throughput of a message handling system to be
implemented on a single processor machine then one must consider
processing the messages sequentially as fast as possible. If the package
for processing OSI message headers consisted of one procedure for each
layer, the architecture of such as system might look something like that
shown in Figure 5.

Figure 5.

MATHEMATICAL MODELS

An elementary mathematical model can be stated for all of the OSI
Model implementations that have been discussed in this paper. It is often
useful to have a simple mathematical model that can be used to evaluate
a number of preliminary models before constructing benchmarks for
each one of them. This enables one to narrow the field to the more
promising ones. Notice that from the benchmarking results of the
previous sections that the time z to process a single message is
approximately:

x = M.R + N.P (3)

where M is the number of rendezvous needed to pass a message from
layer seven to the physical network, R is the overhead associated with a
simple producer-consumer rendezvous, N is the number of procedure
calls needed to pass the message from layer seven to the network and P is
the overhead associated with a procedure call. Since IX = 1/x we have
from (1) and (3) that:

M . R + N . P
E (t) - (4)

1 - ~.(M.R + N . P)

for a single processor machine. This mathematical model of an OSI
Model implementation gives close approximations for plotting E(t) with
respect to ~. for all of those investigated in this paper. Equation (4)
should also be valid for Ada implementations where the rendezvous
times for all the rendezvous needed to get a message from layer seven
onto the network are similar to the time required for a simple producer-
consumer rendezvous.

t06

THE PARA L L E L CASE

The Buhr model behaves in a rather curious fashion on the Sequent,
or perhaps it would be more nearly correct to state that the Sequent
handles the Buhr model in a curious way. At first glance the results for
the Buhr model appear to be predictable. The Aria overhead for a single
message is approximately 29.5 msec for the single processor
configuration. This reduces to about 19 msec for the seven processor
configuration. Although considerably higher than the overhead on the
VAX 11/785 and the Rational 1000, the overhead goes down as the
number of processors increases. A graph of the overhead per message
plotted against the number of processors is shown in Figure 6.

Overhead Associated with the Buhr Model
for a Single Message on the Sequent

30

25-

20-

Ada
Overhead 15-

(in msee./msg.)
1 0 -

5-

I I I I I
2 3 4 5 6

N u m b e r o f P r o c e s s o r s

Figure 6.

But, a little reflection should convince one that as the number of
processors increases, the overhead should go up. This is because as the
number of processors increases, concurrency management becomes more
complex. Total processing time may decrease if the application is
compute bound, but the overhead should increase. That this is the case is
confirmed by a number of benchmarks that will be discussed below.

The new model behaves quite differently than Buhr's model on the
Sequent. There is a variable present in the new model that is not present
in the Buhr model, and the Sequent Ada implementation is somewhat
sensitive to this variable. The variable is the number of servers in the
new model. In the Buhr model, the Ada overhead varies with respect to
the number of processors, whereas in the new model it varies with
respect to both the number of processors and the number of servers.
Since the computation of the overhead for the new model on the Sequent
is a two dimensional problem, a large number of benchmarks had to be
run to determine the overhead associated with the new model and a
family of curves were generated, one for each server configuration. This
family of curves is shown in Figure 7.

Overhead Associated with the New Model
for a Single Message on the Sequent

10

• I server

A d a 6 - ~ _ ~ _ _ _ _,_..77,7,7.T,7, ._,. 7
O v e r h e a d 7 Servers

"'4; - "'" " ~ - - " : ' ' :
(ill . / m s g msec " ' . . - - - " ~ . T . v T . . 7 . 7 2 Servers

2 -

I I I I I
2 3 4 5 6

Number o f P r o c e s s o r s

Figure 7.

107

As predicted, the Ada overhead for the new model proved to be
significantly less than the Ada overhead for the Buhr model on the
Sequent. In fact, the difference is even more pronounced on the Sequent
than on the two sequential architecture machines tested. As can be seen
from Figure 7, the best results were obtained with precisely two
processors and two servers. Every other combination exhibited greater
overhead. Another rule that can be observed from Figure 7 is that the
best result for a given processor configuration is always achieved when
the number of servers is less than or equal to the number of processors.

Finally, the procedures-only model yielded a result that was only
fifty percent better than the best result obtained with the new model on
the Sequent. In summary, the best result obtained for the Buhr model on
the Sequent was about 19 msec, the best result for the new model was
approximately 4 msec, and the best result for the procedures-only version
was 2 msec. The corresponding lower bounds on the expected message
delay times attributable to Ada overhead for these models are shown in
Figure 8.

Lower Bounds on Expected Message Delay Times Attributable to
Aria Overhead for All Three Models

100-

8 0 -

E x p e c t e d 6 0 -
Delay

(in msec.) 4 0 -

2 0 -

Procedures Only Model

I I I I I I I I I I I I I
500 1000

M e a n M e s s a g e A r r i v a l R a t e (msg./sec.)

Figure 8.

I I
1500

It may be of interest to note the overhead associated with an Ada
procedure call and with a simple producer/consumer rendezvous on the
Sequent. The overhead associated with a procedure call was 51 gsee and
did not vary with respect to the number of processors utilized. The
overhead associated with a simple producer/consumer rendezvous
increased with the number of processors. It was 1.55 msec for a single
processor configuration and increased to 2.22 msec for the seven
processor configuration. This result makes the timings for the Buhr
model on the sequent even more curious. With so many rendezvous and
with the rendezvous times increasing with the number of processors, one
would think that the overhead associated with the Buhr model would
increase rather than decrease as the number of processors increased.

CONCLUSIONS

From the foregoing discussions, it can be seen that the performance
of a communication system based upon the OSI model is dependent upon
a number of factors and that the range of performance is very broad over
each of these factors. Unless careful consideration is paid to these
factors and the sensitivity of the performance to these factors on a given
implementation is quantified as part of the preliminary design of the
system, a performance envelope could be entered that would render the
performance goals of the system impossible.

In spite o f the extensive differences in performance on these three
fundamentally different machine architectures, there are some
similarities that are worth noting. The most obvious is that on all of the
architectures, the new model always performed considerably better than
the Buhr Model and that the procedures-only model performed at least
twice a well as the new model. This fact has significant implication for
the the design of communication systems and probably for their first
cousins, real-time systems.

The important design lesson to learn here has to do with the
purpose of concurrency. Concurrency in a design is often advocated for
the wrong reason. There are various situations in which concurrency can
be an advantage, but in each of these situations, how concurrency is
introduced makes a big difference. Concurrency that may enhance one
situation may well degrade another, even though the other situation may
benefit from a different kind of concurrency. This is probably best
illustrated by three examples. For a compute bound algorithm on a
parallel architecture machine, concurrency may well be a goal in itself.
Design goals like minimal overhead (efficiency) and simplicity of the
algorithm may be sacrificed to achieve minimal total execution time.

Next consider a situation in which concurrency is introduced to
conceptually simplify a design that would be more complex otherwise,
For instance, a priority messaging system might be expressed in a
conceptually simple manner by using parallel tasks to model the
handling of messages of different priority classes. As the third example,
consider a concurrent design that is based strictly on real world
concurrency; i.e., concurrency is only introduced to handle physically
concurrent processes. An example of this might be a message handling
system where messages are coming from multiple physically distinct
terminals.

It is sometimes mistakenly thought that one and the same method
of decomposing a system into concurrent tasks can be used for all of the
above goals. While this may be true from a functional point of view, it is
manifestly untrue when performance is taken into consideration. Any
concurrency paradigm for the first two examples will probably produce a
design that is far too rendezvous laden if applied to the situation of the
third example. In the second example, concurrency is introduced for
conceptual clarity. In Ada, this will usually lead to "unnecessary" tasks
such as guardian tasks to guarantee exclusive access to critical resources
or transporter tasks to allow asynchronous processing. These
"unnecessary" tasks do not correspond to physical concurrency in the
real world.

Similarly, in the first example tasks are introduced wherever
concurrency can bring more processors to bear on the computation
simultaneously which is a step even further away from physical
concurrency. In the design of communications systems where
performance is usually a primary consideration, concurrency needs to be
introduced into the design only where it is used to model physical
concurrency in the problem domain.

It can be seen that the New Model adheres to this principle.
Individual messages exist concurrently in the real world. At any instant
in a message's life, its form may differ from its form at another instant.
For example, the message may begin as a simple string of characters.
Thereafter, the layer seven header is added, then the layer six header, and
so on. After the message has been transmitted, it may exist at another
node, but all through this process it still maintains a physical identity;
i.e., it is still the same message. The New Model assigns an Ada task to
each of these physically concurrent objects.

The Buhr Model violates this principle. It assigns tasks to the
processing of pieces of physically concurrent objects, namely, the
headers associated with the messages. As a result numerous
"unnecessary" transporter tasks are introduced into the architecture that
do not correspond to physical concurrency. This results in significant
additional overhead without contributing to the ability to bring multiple
processors to bear on physically concurrent processes.

REFERENCES

5. Maki, D. P. and Thompson. M., Mathematical Models and
Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

6. Nielsen, K. W., Task Coupling and Cohesion in Ada, Ada Letters,
Volume VI, No. 4, 1986.

7. Schultz, W. L., Bae, I. D., Chandna, A. and Khatibi, F., Implementing
a Factory MAP Network Simulation Tool Using the Ada Programming
Language, Workshop on Factory Communications, March 1987.

1. Buhr, R. J. A., System Design with Ada, Prentice-Hail, Englewood
Cliffs, New Jersey, 1984.

2. Burger, T. M. and Nielsen, K. W., An assessment of the Overhead
Associated with Tasking Facilities and Task Paradigms in Ada, Ada
Letters, Volume VII, No. 1, 1987.

3. Bums, A., Lister, A. M. and Wellings, A. J., A Review of Ada
Tasking, University of Bradford, Computer Science Report, PR. 12,
1986.

4. Howes, N. R. and Raines, G. K., A Simulation of the Space Station
Computer Network, ACM & IEEE Symposium on the Simulation of
Computer Networks, Colorado Spring, August 1987.

108

