
O N  I M P L E M E N T I N G  T H E  O S I  M O D E L  IN A D A  V I A  T A S K I N G  

Norman R. Howes 
Department of Computer Science 

George Mason University 
4400 University Drive 

Fairfax, Virginia 

Alfred C. Weaver 
Department of Computer Science 

University of Virginia 
Charlottesville, Virginia 

The purpose of this paper is to investigate the performance 
limitations imposed by the overhead associated with the use of the Ada 
language when implementing the OSI Reference Model as proposed in 
Buhr [1]. The investigation was conducted on both sequential and 
parallel Ada implementations. This study led to the introduction of a 
new proposal that introduces concurrency in a fundamentally different 
way than that introduced in the Buhr proposal. This new architecture 
incurs significantly less overhead than the Buhr proposal. 

ADA, COMMUNICATIONS, AND CONCURRENCY 

There have been recent proposals for implementing the 
International Standards Organization's Open Systems Interconnect (OSI) 
Model in Ada using the Ada language feature for concurrency called a 
task, as for instance [1] and [2]. Also, there have been a number of recent 
articles detailing the performance of Ada tasking that show the 
performance of this feature of the language is highly implementation 
dependent, as for instance [3] and [2]. 

The purpose of this paper is to investigate the performance 
limitations imposed by the overhead associated with the use of the Ada 
language when implementing the OSI Model as proposed in [1]. Buhr's 
proposed architecture can take advantage of a multiprocessor Ada 
implementation but, as will be shown, the associated overhead is 
significant. Also, a new proposal will be advanced for implementing the 
OSI Model via tasking that introduces concurrency in a fundamentally 
different way than in Buhr's proposal. This new implementation can also 
take full advantage of a multiprocessor Ada implementation while 
incurring significantly less overhead than the Buhr proposal. 

The investigation documented in this paper took place in two 
phases. The first phase took place at the NASA--Johnson Space Center 
where the authors were engaged in the development of a prototype 
version of the network operating system for the Space Station program. 
During this phase the authors had no access to a parallel architecture Ada 
implementation. Consequently, the first phase consisted of investigating 
the Ada overhead associated with the Buhr proposal in a sequential 
processing environment. Comparisons were made between the overhead 
on a Digital Equipment Corporation VAX 11/785 and a Rational 1000. 
This led to the introduction of a new architecture that is considerably 
more efficient than the Buhr model and it was conjectured that the new 
model would continue to be more efficient in a parallel environment. 
This phase concluded with an investigation of the performance 
implications of abandoning concurrency; i.e., of using only procedures to 
implement the OSI Model in Ada for single processor machines and the 
construction of a linear mathematical model that could predict the Ada 
overhead for various architectures on single processor machines. 

During the second phase, the authors investigated the problem in a 
parallel environment using a Sequent 821 with eight processors. It was 
possible to configure the Sequent environment to use a variable number 
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of processors ranging between one and seven. This enabled the 
benchmarks to be run in a variety of parallel environments. This study 
verified the above conjecture for the Sequent implementation. 
Furthermore, the proposed new architecture is of the dispatcher/server 
type so the ability to reconfigure the Sequent environment permitted the 
study of the relationship between the number of processors and the 
number of servers. The investigation of the proposed new architecture 
thus becomes a two dimensional problem that is somewhat more 
complex than the single processor investigation. For that reason the 
results are organized in two sections, the first being the sequential case 
and the second the parallel case. 

THE BUHR MODELS 

In his book "System Design with Ada", R. J. A. Buhr [1], 
proposes several "models" for designing layered communications 
software using Ada tasking to decouple the layers. All of these models 
are similar in that they introduce concurrency in essentially the same 
way. Each layer is implemented as an active package (one that contains 
tasks) and the tasks in a given layer rendezvous with tasks in the layer 
packages above and below it. The first model that Buhr introduces on 
page 187 is the simplest and also introduces the least overhead. For this 
reason, it will be the only one dealt with in this paper since is can be 
considered the "best case" for Buhr's approach. 

The presentation of what will be referred to as "Buhr's first 
model" will be in terms of an icon-oriented diagraming technique 
introduced by Buhr that is both elegant and efficient, and which is a 
fundamental part of his design methodology. In the discussions that 
follow, these "Buhrgrams" will be used to illustrate the concepts. 
Buhr's first model is illustrated in Figure 1. 

In this diagram, the large rectangles denote Ada packages whereas 
the small rectangles inside the large ones represent procedures. Those 
procedure rectangles that touch the outer package rectangles are the 
procedures that are visible from outside the package (i.e., included in the 
package specification). The parallelograms inside the package rectangles 
represent tasks. The big arrows indicate calls to either procedures or 
tasks. The direction of these arrows indicate which program unit is 
calling which other program unit. The head of the arrow indicates the 
program unit that is being called whereas the tail indicates the calling 
unit. The smaller arrows with little circles at the tail indicate the 
parameters that are being passed. The dots at the head of some of the 
calling arrows indicate the presence of guards; i.e., the task entry is 
conditional. 

In Buhr's first model, all calls between layers originate from the 
higher layer. The advantages of this model according to Buhr are (1) it is 
intuitively simple, (2) requires no more rendezvous than his other models 
and (3) is structurally free from constructs that could lead to deadlock in 
one form or another. 

Each OSI layer in this model is implemented as a package. The 
task labeled M in the middle of each package rectangle is the main task 
for that layer whereas the tasks labeled T are transport tasks as defined 
by chapter three of Buhr or in Nielsen [6]. From Figure 1 it can be seen 
that it requires a minimum of two rendezvous to "pass" a message from 
a higher layer to a lower one or vise-versa. It also requires at least one 
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procedure call. The procedures in this model are labeled P in Figure 1. 

The main task does whatever processing is required at the layer in 
which it resides and thus could conceivably have subtasks or procedures. 
The transporter tasks are merely the decoupling mechanism that allows 
the main task to work asynchronously from tasks in adjacent layers 
without having to periodically poll them or be polled by them to see if a 
message is ready to be passed between layers. In practice, an 
implementation would probably only pass the protocol header associated 
with the layer rather than the entire message. 

Buhr's First Model 
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LAYER PACKAGE 
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Figure 1. 

THE SEQUENTIAL CASE 

The benchmarks to determine the Ada overhead for implementing 
the OSI seven layer stack were run on a Digital Equipment Corporation 
(DEC) VAX 11/785 and a Rational 1000. It was determined that a 
procedure call took approximately 19.2 Ixsec on the VAX 11/785 and 4 
Ixsec on the Rational 1000. The overhead associated with a simple 
producer-consumer rendezvous where the only parameter passed is an 
integer proved to be 835 ktsec on the VAX 11/785 and 51 Ixsec on the 
Rational 1000. As pointed out in [2], for tasking paradigms that employ 
multiple tasks in various roles (e.g., transporters, buffers, relays, etc.) the 
Aria overhead associated with the entire paradigm is not necessarily the 
sum of the number of rendezvous multiplied by the overhead associated 
with a simple producer-consumer rendezvous. 
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Consequently, to measure the Ada overhead associated with the 
Buhr models, it was necessary to construct benchmarks that simulated 
the entire model. To simulate Buhr's first model, it was decided to pass 
integers from one layer to another using the architecture depicted in 
Figure 1. The main task (M) in each layer package merely passed the 
integer on to the main task in the next layer via a transporter task (T). In 
effect, this made each layer a null layer since the main task did nothing 
but pass the message (integer) on. By passing an integer, it prevented the 
compiler from optimizing the rendezvous away and also provided a 
convenient mechanism for determining which message was being 
handled by which layer package at any given point in time. 

Extensive tracing was done by identifying consecutive messages 
with consecutive integers and dumping a map of which message was 
being serviced by which layer package at any given time. This was done 
to try to gain an understanding of the impact of the task scheduling 
algorithms employed on the different single processor machines on 
which the benchmarks were being conducted. The authors were in 
possession of a DEC Ada compiler evaluation that indicated that 
rendezvous times would increase substantially as the number of 
concurrent rendezvous were simulated on the underlying single processor 
machine and expected that this tracing would shed some light on the 
phenomenon. However, the authors were unable to duplicate these 
reported observations. It was observed that the DEC Ada default task 
scheduling algorithm (run until blocked) ran a little faster than when 
using pragma TIME_SLICE. It is these default algorithm times that are 
reported in this paper. 

It should be clear that this method of simulating Buhr's first model 
only simulates the Ada overhead associated with it. The times reported in 
this paper should therefore be understood to be lower bounds on the 
actual messaging rates that could be expected if this model were to be 
implemented on one of the machines on which the benchmarks were run. 
The Ada overhead associated with an implementation of Buhr's first 
model on a VAX 11/785 proved to be 11.2 msec per message whereas 
the overhead associated with a Rational 1000 implementation was 650 
~ e c  per message. 

Expected Message Delay Times for Buhr's First Model 

In what follows the expected length of time E(t) between the arrival 
of a message at the seven layer OSI stack and its departure will be 
investigated. Specifically, that component of the expected delay time 
attributable to the Ada overhead will be calculated for both the VAX 
11/785 and the Rational 1000. For these calculations, the customary 
assumption of Poisson arrivals is made. The equation for E(t) is given 
by: 

E(t) = 1 / LE(n) (1) 

where Z, is the mean message arrival rate and E(n) is the expected length 
of the incoming message queue. A simple derivation of (1) can be found 
in l-;7. The formula forE(n) is: 

E(n) = P 1 - p (2) 

where p is the traffic intensity given by the ratio ~l.t where I.t is the mean 
service rate. The mean service rate is defined as the inverse of the time it 
takes to service a single message. For the VAX 11/785 the time to 
service a single message attributable to the Ada overhead was found to 
be 11.2 msec. For the Rational 1000 it was 650 I.tsec. Consequently, for 
the VAX 11/785, if the Aria overhead was the only thing contributing to 
a message's delay time then ~t would be approximately 89 messages per 
second and for the Rational 1000 it would be approximately 1,518 
messages per second. With these values for Ix it is possible to plot the 
following graphs of lower bounds of E(t) with respect to mean message 
arrival rate for both the VAX 11/785 and the Rational 1000. 



A New Model 
As depicted in Figure 2, the message handling rate for Buhr's first 

model is going to be fairly slow on the VAX 11/785 just based on the 
overhead associated with concurrency management in Ada. On the other 
hand, Figure 2 indicates the feasibility of implementing a message 
handling system based on Buhr's first model on the Rational 1000 with 
quite respectable performance. This, of course, is due to the fact that the 
rendezvous times on the Rational 1000 are an order of magnitude faster 
than on the VAX 11/785. 

Lower Bounds on Expected Message Delay Times Attributable to 
Ada Overhead for Buhr's First Model 
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Figure 2. 

The Rational 1000 is a very specialized machine whose hardware 
architecture was designed expressly for exploiting the Ada language 
features. It was designed to be a system to host an Ada Programming 
Support Environment (APSE) for developing Ada code for a variety of 
other target machines. At the time, the cost of a Rational 1000 was 
considerably greater than the cost of a VAX machine that could 
accommodate a similar number of general purpose users. For these 
reasons, it is unlikely that the Rational 1000 would be used as the basis 
for a message handling system. The benchmarks were conducted on this 
machine merely to show that the overhead associated with implementing 
a message handling system based on Buhr's first model is highly 
dependent on how the Ada language system is implemented rather than 
any intrinsic deficiency of the language itself. 

At the time of the writing of this paper, there are over 120 Ada 
compilers that have been validated. Probably more of these compilers 
have been validated on VAX machines than on any other. Consequently, 
they represent a class of machines that are likely candidates for 
implementing message handling systems in Ada given the DOD's 
mandate for the use of Ada and the large number of VAX networks 
currently in service. The question naturally arises: Is it possible to 
implement a respectable OSI Model-based message handling system in 
Ada on a VAX? 

There are two approaches to be investigated here and both will be 
dealt with in this and the following sections. First, concurrency could be 
abandoned; i.e., the message handling service could be designed in such 
a way that procedures are used in place of tasks. This is a natural 
approach since the processing of message headers in the OSI Model is 
intrinsically a sequential process. There is no reason to require a 
simulated parallel processing of the six layer headers (on a single 
processor machine) as in Buhr's models when the header for layer six 
cannot be constructed until the header for layer seven has been 
completed and so on down the layer stack. 

But there are some disadvantages to abandoning concurrency. 
First, by abandoning concurrency, there will be no way of exploiting 
concurrency in the event the message handling system could be run in a 
multi-processing environment at a later date without redesigning the 
system. This is worthwhile considering, given the current trend in 
computer architectures. Secondly, it is conceptually easier to express 
certain useful design features such as the ability of higher priority 

messages being able to bypass lower priority messages in the message 
processing stream by having concurrent streams for different priorities. 

The trick is to design a message handling system that exploits 
concurrency but does not suffer such a high overhead as the Buhr 
models. Such a model will now be proposed. Using the above 
observation that the processing of message headers in the OSI Model is 
an inherently sequential process, it can be seen that Buhr's models are 
not very suitable for modeling this process. They are too rendezvous 
laden because they introduce concurrency at too low a level. It takes at 
least 14 rendezvous to get a message "through" the OSI stack. 

Consider instead the architecture depicted in Figure 3. Here, a 
package is depicted for handling the process of sending messages in an 
OSI Model message handling system. This package provides the 
capability for building the OSI Model message headers and transmitting 
them. The package consists of a dispatcher task, a family of server tasks 
and a transmitter task. The dispatcher task receives all outgoing 
messages. Figure 3 depicts a situation where all the server tasks do 
exactly the same thing; i.e., the dispatcher task merely provides a 
buffering function and all the server tasks call the same entry to get the 
next available message for processing. This diagram could be changed a 
little to depict the situation where the server tasks represent different 
message processing streams for different priority level messages. In this 
case, the different server tasks would call different entries in the 
dispatcher task. One can easily imagine other scenarios where the server 
tasks could provide other distinct capabilities. 

Each of the server tasks would then deposit their messages 
(complete with the various OSI Model layer headers) in a buffering 
transmitter task that would be asynchronously emptying the transmit 
buffer onto the network. Each server task would process an entire 
message as opposed to the philosophy of the Buhr models where 
different tasks are required to process the different layer headers. 

It can be argued that the Buhr model is more modular and therefore 
more in the spirit of the OSI Model. Since each layer of the OSI stack is 
implemented as a package, any one of the layers could be replace with 
one that employed a different protocol simply by replacing the 
corresponding package. But the modularity of the Buhr design can 
readily by transferred to the new model. For this, one need only 
implement a header processing package that contains an inactive package 
(no tasks) for each layer. This package can then be imported into each 
server task. 

The New Model 

I I 
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Figure 3. 



The Ada overhead associated with the implementation of the new 
model on the VAX 11/785 proved to be 2.6 msec per message while the 
overhead associated with the Rational 1000 implementation was 139 
Ixsec per message. Again, if we assume that the Ada overhead is the only 
thing contributing to a message's delay time then for the VAX 11/785, 
the mean service rate IX will be 384 messages per second while for the 
Rational 1000 the mean service rate will be 7,194 messages per second. 
With these values of IX we can plot the following graphs of lower bounds 
of the expected message delay times attributable to Ada overhead with 
respect to mean message arrival rate for both the VAX 11/785 and the 
Rational 1000. These graphs are shown in Figure 4. 

From these plots, it can be seen that this new model has much more 
respectable message delay times attributable to Ada overhead than the 
Buhr models. At least theoretically, the possibility exists of developing 
(via the new model) a 200 message per second (2,000 byte message) 
system with delay times of under 50 msec including transmission delays. 
A message handling system of this performance is about the minimum 
that could be considered "real-time" for a broad class of military and 
industrial applications. 

It should also be noticed that if a machine like the VAX 8800 were 
used, or a better optimized Ada compiler on the VAX 11/785, the 
expected delay times should be reduced to the very respectable range for 
the implementation (via the new model) of a real-time message handling 
system based on the OSI Model. Of course, the total delay times in any 
implementation are going to be very dependent on the functionality of 
the various layers no matter what the implementation language. 

Also, it should be noticed that with the Rational 1000 machine, the 
Ada overhead associated with the new model is almost negligible. This 
shows the potential of the language for real-time message handling 
systems when the Ada rendezvous is highly optimized. There exists at 
least one flight qualified computer with an Ada implementation that 
claims rendezvous times under 100 lasec. If this is the case, similar 
performance to that observed on the Rational 1000 could be expected. 
Such an architecture with very small computers and fast rendezvous 
should make feasible very high performance distributed systems based 
on an OSI Model message handling system as are being investigated for 
the Space Station [4]. 

Lower Bounds on Expected Message Delay Times Attributable to 
Afla Overhead for the New Model 

The Ada overhead associated with implementing a totally 
sequential (no tasks) message handling model as shown in Figure 5 on 
the VAX 11/785 is 165 IXsec per message, while on the Rational 1000 it 
measured 51 IXsec per message. In other words, the non-tasking model on 
the VAX would have about the same Ada overhead as the new model 
implemented on the Rational 1000 which is essentially negligible. 
Although this approach drastically reduces overhead on the VAX 11/785, 
it is clear from the previous section that it should not be necessary for 
most applications. 

Ada Package with One Procedure per Layer 
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Figure 4. 

ABANDONING CONCURRENCY 

It is also interesting to consider to what degree the Ada overhead 
can be reduced by not using the Ada language feature of tasking. If it is 
desired to optimize the throughput of a message handling system to be 
implemented on a single processor machine then one must consider 
processing the messages sequentially as fast as possible. If the package 
for processing OSI message headers consisted of one procedure for each 
layer, the architecture of such as system might look something like that 
shown in Figure 5. 

Figure 5. 

MATHEMATICAL MODELS 

An elementary mathematical model can be stated for all of the OSI 
Model implementations that have been discussed in this paper. It is often 
useful to have a simple mathematical model that can be used to evaluate 
a number of preliminary models before constructing benchmarks for 
each one of them. This enables one to narrow the field to the more 
promising ones. Notice that from the benchmarking results of the 
previous sections that the time z to process a single message is 
approximately: 

x = M.R + N.P (3) 

where M is the number of rendezvous needed to pass a message from 
layer seven to the physical network, R is the overhead associated with a 
simple producer-consumer rendezvous, N is the number of procedure 
calls needed to pass the message from layer seven to the network and P is 
the overhead associated with a procedure call. Since IX = 1/x we have 
from (1) and (3) that: 

M . R  + N . P  
E ( t )  - (4) 

1 - ~.(M.R + N . P )  

for a single processor machine. This mathematical model of an OSI 
Model implementation gives close approximations for plotting E(t) with 
respect to ~. for all of those investigated in this paper. Equation (4) 
should also be valid for Ada implementations where the rendezvous 
times for all the rendezvous needed to get a message from layer seven 
onto the network are similar to the time required for a simple producer- 
consumer rendezvous. 
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THE PARA L L E L  CASE 

The Buhr model behaves in a rather curious fashion on the Sequent, 
or perhaps it would be more nearly correct to state that the Sequent 
handles the Buhr model in a curious way. At first glance the results for 
the Buhr model appear to be predictable. The Aria overhead for a single 
message is approximately 29.5 msec for the single processor 
configuration. This reduces to about 19 msec for the seven processor 
configuration. Although considerably higher than the overhead on the 
VAX 11/785 and the Rational 1000, the overhead goes down as the 
number of  processors increases. A graph of  the overhead per message 
plotted against the number of  processors is shown in Figure 6. 

Overhead Associated with the Buhr Model 
for a Single Message on the Sequent 
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Figure 6. 

But, a little reflection should convince one that as the number of  
processors increases, the overhead should go up. This is because as the 
number of  processors increases, concurrency management becomes more 
complex. Total processing time may decrease if the application is 
compute bound, but the overhead should increase. That this is the case is 
confirmed by a number of  benchmarks that will be discussed below. 

The new model behaves quite differently than Buhr's model on the 
Sequent. There is a variable present in the new model that is not present 
in the Buhr model, and the Sequent Ada implementation is somewhat 
sensitive to this variable. The variable is the number of  servers in the 
new model. In the Buhr model, the Ada overhead varies with respect to 
the number of  processors, whereas in the new model it varies with 
respect to both the number of  processors and the number of  servers. 
Since the computation of  the overhead for the new model on the Sequent 
is a two dimensional problem, a large number of  benchmarks had to be 
run to determine the overhead associated with the new model and a 
family of  curves were generated, one for each server configuration. This 
family of  curves is shown in Figure 7. 

Overhead Associated with the New Model 
for a Single Message on the Sequent 
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As predicted, the Ada overhead for the new model proved to be 
significantly less than the Ada overhead for the Buhr model on the 
Sequent. In fact, the difference is even more pronounced on the Sequent 
than on the two sequential architecture machines tested. As can be seen 
from Figure 7, the best results were obtained with precisely two 
processors and two servers. Every other combination exhibited greater 
overhead. Another rule that can be observed from Figure 7 is that the 
best result for a given processor configuration is always achieved when 
the number of  servers is less than or equal to the number of  processors. 

Finally, the procedures-only model yielded a result that was only 
fifty percent better than the best result obtained with the new model on 
the Sequent. In summary, the best result obtained for the Buhr model on 
the Sequent was about 19 msec, the best result for the new model was 
approximately 4 msec, and the best result for the procedures-only version 
was 2 msec. The corresponding lower bounds on the expected message 
delay times attributable to Ada overhead for these models are shown in 
Figure 8. 

Lower Bounds on Expected Message Delay Times Attributable to 
Aria Overhead for All Three Models 
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It may be of  interest to note the overhead associated with an Ada 
procedure call and with a simple producer/consumer rendezvous on the 
Sequent. The overhead associated with a procedure call was 51 gsee and 
did not vary with respect to the number of  processors utilized. The 
overhead associated with a simple producer/consumer rendezvous 
increased with the number of  processors. It was 1.55 msec for a single 
processor configuration and increased to 2.22 msec for the seven 
processor configuration. This result makes the timings for the Buhr 
model on the sequent even more curious. With so many rendezvous and 
with the rendezvous times increasing with the number of  processors, one 
would think that the overhead associated with the Buhr model would 
increase rather than decrease as the number of  processors increased. 

CONCLUSIONS 

From the foregoing discussions, it can be seen that the performance 
of  a communication system based upon the OSI model is dependent upon 
a number of  factors and that the range of  performance is very broad over 
each of  these factors. Unless careful consideration is paid to these 
factors and the sensitivity of  the performance to these factors on a given 
implementation is quantified as part of  the preliminary design of  the 
system, a performance envelope could be entered that would render the 
performance goals of  the system impossible. 

In spite o f  the extensive differences in performance on these three 
fundamentally different machine architectures, there are some 
similarities that are worth noting. The most obvious is that on all of  the 
architectures, the new model always performed considerably better than 
the Buhr Model and that the procedures-only model performed at least 
twice a well as the new model. This fact has significant implication for 
the the design of communication systems and probably for their first 
cousins, real-time systems. 



The important design lesson to learn here has to do with the 
purpose of concurrency. Concurrency in a design is often advocated for 
the wrong reason. There are various situations in which concurrency can 
be an advantage, but in each of these situations, how concurrency is 
introduced makes a big difference. Concurrency that may enhance one 
situation may well degrade another, even though the other situation may 
benefit from a different kind of concurrency. This is probably best 
illustrated by three examples. For a compute bound algorithm on a 
parallel architecture machine, concurrency may well be a goal in itself. 
Design goals like minimal overhead (efficiency) and simplicity of the 
algorithm may be sacrificed to achieve minimal total execution time. 

Next consider a situation in which concurrency is introduced to 
conceptually simplify a design that would be more complex otherwise, 
For instance, a priority messaging system might be expressed in a 
conceptually simple manner by using parallel tasks to model the 
handling of messages of different priority classes. As the third example, 
consider a concurrent design that is based strictly on real world 
concurrency; i.e., concurrency is only introduced to handle physically 
concurrent processes. An example of this might be a message handling 
system where messages are coming from multiple physically distinct 
terminals. 

It is sometimes mistakenly thought that one and the same method 
of decomposing a system into concurrent tasks can be used for all of the 
above goals. While this may be true from a functional point of view, it is 
manifestly untrue when performance is taken into consideration. Any 
concurrency paradigm for the first two examples will probably produce a 
design that is far too rendezvous laden if applied to the situation of the 
third example. In the second example, concurrency is introduced for 
conceptual clarity. In Ada, this will usually lead to "unnecessary" tasks 
such as guardian tasks to guarantee exclusive access to critical resources 
or transporter tasks to allow asynchronous processing. These 
"unnecessary" tasks do not correspond to physical concurrency in the 
real world. 

Similarly, in the first example tasks are introduced wherever 
concurrency can bring more processors to bear on the computation 
simultaneously which is a step even further away from physical 
concurrency. In the design of communications systems where 
performance is usually a primary consideration, concurrency needs to be 
introduced into the design only where it is used to model physical 
concurrency in the problem domain. 

It can be seen that the New Model adheres to this principle. 
Individual messages exist concurrently in the real world. At any instant 
in a message's life, its form may differ from its form at another instant. 
For example, the message may begin as a simple string of characters. 
Thereafter, the layer seven header is added, then the layer six header, and 
so on. After the message has been transmitted, it may exist at another 
node, but all through this process it still maintains a physical identity; 
i.e., it is still the same message. The New Model assigns an Ada task to 
each of these physically concurrent objects. 

The Buhr Model violates this principle. It assigns tasks to the 
processing of pieces of physically concurrent objects, namely, the 
headers associated with the messages. As a result numerous 
"unnecessary" transporter tasks are introduced into the architecture that 
do not correspond to physical concurrency. This results in significant 
additional overhead without contributing to the ability to bring multiple 
processors to bear on physically concurrent processes. 
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