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ABSTRACT
This paper describes the field research, design and comparative de-
ployment of a multimodal medical imaging user interface for breast
screening. The main contributions described here are threefold: 1)
The design of an advanced visual interface formultimodal diagnosis
of breast cancer (BreastScreening); 2) Insights from the field com-
parison of Single-Modality vs Multi-Modality screening of breast
cancer diagnosis with 31 clinicians and 566 images; and 3) The vi-
sualization of the two main types of breast lesions in the following
image modalities: (i) MammoGraphy (MG) in both Craniocaudal
(CC) and Mediolateral oblique (MLO) views; (ii) UltraSound (US);
and (iii) Magnetic Resonance Imaging (MRI). We summarize our
work with recommendations from the radiologists for guiding the
future design of medical imaging interfaces.

CCS CONCEPTS
• Human-centered computing → User studies; Usability

testing; Interaction techniques; User centered design; User inter-
face design.
KEYWORDS

human-computer interaction, user-centered design, multimodal-
ity, healthcare systems, medical imaging, breast cancer, annotations
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1 INTRODUCTION
Breast cancer is the most common cancer in women worldwide [12].
Screening plays a fundamental role in the reduction of patient
mortality rate. Themost widely employed imagemodality for breast
screening is MammoGraphy (MG). However, high-risk or dense
breast patients require UltraSound (US) or Magnetic Resonance
Imaging1 (MRI) for proper examination [18]. Therefore, it is quite
rare to conduct screening using a Single-Modality.
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In this paper, we describe the design and comparative testing
of BreastScreening integrating information from several and dif-
ferent image modalities. We tested the design of BreastScreening
with 31 clinicians noting that the time spent per each image on a
Multi-Modality strategy is reduced when compared with the Single-
Modality scenario. In addition, the lesion classification (e.g., Breast
Imaging Reporting and Data System - BIRADS [29]) is also reduced
from our Multi-Modality proposed approach.

1.1 BreastScreening Challenges
Overall the system involves the following functionalities: (1) an
interface for identifying (and annotating ground truth) of two types
of lesions (i.e., masses and calcifications) across image modalities;
(2) support for categorization of the breast tissues (dense vs non-
dense); (3) a classification (and recommendation) schema for lesion
severity using BIRADS [1, 29]; (4) prompt access to clinical co-
variables, such as personal and familiar records; and (5) proper
visualizations for a follow-up diagnosis of the patients.

1.2 Design Process
The following topics summarize the process we conducted: (1)
findings from a formative study with 31 clinicians, comprising Ra-
diology Room (RR) observations and interviews, which are relevant
for both Health Informatics (HI) and Human-Computer Interac-
tion (HCI) fields of research. This leads us to explore the design
goals (see Section 3); (2) findings from an evaluation study [6] of
BreastScreening, a prototype we developed for the generation of
a breast dataset with expert annotations (see Section 4); and (3)
design recommendations for the use of visualizations to support
medical imaging diagnosis (see Sections 4 and 5).

1.3 Contributions
In BreastScreening we provide several new insights, following novel
interaction and visualization paradigms [23] in the context of breast
cancer screening: (i) multimodal interaction; (ii) indistinct visu-
alization of cluttered lesions; (iii) big data management platform;
and (iv) clinicians’ multi-screen, multi-environment interaction.

2 RELATEDWORK
This section addresses related work in the HCI field, describing
several medical imaging applications. Our approach covers the lim-
itations of the works following described. More specifically, we are
able to deal with non-homogeneous data. Comprising multimodal
images [38], classification (i.e., BIRADS scores) and annotations
(i.e., delineation of the lesion contours).
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2.1 Data Visualization
To our knowledge, few papers [15, 16, 24] have focused purely
on supporting the image search user experience through novel
UIs. These authors described several techniques for presenting all
images within a collection in a short time. Moreover, authors asked
users to think and perform browsing an image gallery and selecting
an image from the gallery. These studies, showed us refinement
techniques as complements in image systems with relevant user
feedback. However, the presented works are limited to non-clinical
users, making it impossible to do a generalization to our research.

2.2 Clinical Workflow
In medical imaging, diagnostic tools enable clinicians to manage
patient data, better attend to ongoing tasks and view critical infor-
mation. For the diagnostic, understanding the clinical workflow is
of chief importance while introducing novel tools and interaction
techniques. Other authors [11, 30] present many considerations for
collaborative healthcare technology design and discuss the impli-
cations of their findings on the current clinical workflow for the
development of more effective care interventions. Supported by the
above literature, our goal is to introduce a new tool with several
novel interaction techniques, which will improve the final medical
imaging diagnosis.

2.3 Medical Imaging
From current medical imaging technologies, several issues were
identified in the HCI design [5, 7, 13]. Some works [2, 25] show the
current medical imaging identification techniques for other clinical
domains, where most of available systems fail to address the visual
nature of the task. In these two works [2, 25], the authors create a
visual approach to support the Mental Model development of the
user. Medical imaging technologies are used to support physicians
on the examination, diagnosis, and (in some cases) report [37]. Oth-
ers [10, 28, 33], study the effectiveness and performance of medical
imaging systems, demonstrating how to design a user study for
medical imaging experts. Further, van Schooten et al. [33] measured
user performance in terms of time taken and error rate, while inter-
acting with the provided system. Executing it with several medical
users, in this work, the authors show an experiment where their
users have similar characteristics as ours.

2.4 Diagnostic Systems
Medical imaging has also been extensively studied under the topic
of Computer-Aided Diagnosis (CADx), which refers to systems that
assist radiologists in image interpretation [4, 22]. Wilcox et al. [35]
propose a design for in-room, patient-centric information displays,
based on iterative design with clinicians. However, these systems
are not contemplating the design of an advanced visual interface for
multimodal diagnosis on breast cancer disease. In the above works,
we still lack on empirical studies regarding how clinicians can
contribute with information contextualization about their clinical
workflow, and general medical imaging diagnosis. Having said that,
we also want to add contribution with a study of how medical
imaging technologies can play a role in this contextualization.
1This is the common/current practice in the radiologist services applied in the Hospital Fernando
Fonseca (HFF), Portugal.

3 DESIGN OF BREASTSCREENING
The design of BreastScreening started with a qualitative study to
understand radiology practices and workflow in the context of
breast screening. Our study involved 31 clinicians, recruited on a
volunteer basis from a large range of clinical scenarios (distinct
health institutions in Portugal): 8 clinicians from Hospital Fernando
Fonseca; 12 clinicians from IPO-Lisboa; 1 clinician from Hospital
de Santa Maria; 8 clinicians from IPO-Coimbra; 1 clinician from
Madeira Medical Center; and 1 clinician from SAMS. Clinicians’ ex-
perience ranged from 5 - 30 years of medical practice. The recruited
specialists are in advanced career positions and were observed
and interviewed in a semi-structured fashion. Each session took
approximately 30 minutes.

3.1 Standard Clinical Environments
BreastScreening works with the standard formats supported by
medical imaging [21], including the MG, US and MRI modalities.
These modalities are available in a standard Digital Imaging and
Communications in Medicine (DICOM) format and supported in
Single-Modality by existing systems [12]. Moreover, most systems
are general purpose and do not adapt to specific clinical domains
(e.g., breast screening). Therefore they do not provide adequate
support to the different clinical workflows [7].

3.2 Design Goals
Combining the clinical context and the technical design challenges
lead to a set of design issues, including: medical imaging structure
trade-offs, RR temporal awareness, image segmentation [20], and
radiologists system trust. Based on these, we define five design
goals:

Design around and for Medical Imaging (DMI): by taking into ac-
count the heterogeneous nature of medical imaging to lever-
age its contextual richness;

Temporal Awareness Support (TAS): by observing how the radiol-
ogy workflow events, treatments, and problems progressed
over time;

Image Segmentation Support (ISS): the overview of image details
allowing a more accurate diagnostic. Namely, reducing the
number of false-positives classification (BIRADS) of the le-
sion, as well as improving the number of clicks (Section 5)
when performing the lesion delineation, i.e., segmentation;

Several Modalities Support (SMS): to enable the view and the pro-
cess of diagnostic imaging studies, including MG, US and
MRI medical imaging modalities;

Growing Trust Overview (GTO): by allowing an efficient triangula-
tion via visualizations, image processing between medical
images and available features, i.e., annotations of masses and
calcifications;

4 BREASTSCREENING
To validate the proposed design goals, we created BreastScreening,
as a Medical Imaging visualization proof-of-concept to be evaluated
in a realistic clinical scenario. In our design explorations, we sought
to integrate several image modalities and visualization to support
insight.
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Figure 1: Single-Modality (left) and Multi-Modality (right) Views. The UI components are as follows: 4. List of Patient Views; and 4.5. Study List Tabs; as well as 5. Medical Imaging
Diagnosis Views; 5.1. Viewports; 5.2. Toolbars; and 5.3. Modality Selection.

4.1 User Interface
The User Interface (UI) consists of two main components: 4. List of
Patient Views; and 5. Medical Imaging Diagnosis Views. These two
main components (Figure 1) are also divided into several sections:
4.5. Study List Tabs; 5.1. Viewports; 5.2. Toolbars; and 5.3. Modality Se-
lection. Concerning 5. Medical Imaging Diagnosis Views (Viewports,
Toolbars and Modality Selection) this contributes for the temporal
awareness (TAS). More specifically, the clinician can probe for le-
sion patterns [17] via the 5.1. Viewports, processing the image by
using the 5.2. Toolbars features (GTO). The system 5.2. Toolbars are
supporting our image segmentation (ISS). The 5.1. Viewports are
displayed right after the 5.2. Toolbars, designing around and for
medical images (DMI ) what also improves the temporal awareness
(TAS) of the task. On the same time, this design is supporting the
way how to interact with several modalities (SMS). Regarding 5.3.
Modality Selection, this allows to the clinician to find more different
views (SMS) of the same lesion, allowing to perform a better sever-
ity classification (Section 5). Finally, the clinician may look for the
lesion shape and contour irregularities (Figure 1) to focus on the
segments of the image (ISS). After interacting with the system at
the first time, the clinician is able to efficiently process (ISS) several
images at a same time and use the various given modalities (SMS).

4.2 Implementation
BreastScreening was implemented using CornerstoneJS [32] with a
NodeJS server. To populate the system, we selected image sets from
HFF patients and upload them into an Orthanc server [14]. Each
patient has three modalities (MG, US and MRI).

The images were pre-processed and anonymized on the Or-
thanc server and then consumed by the BreastScreening system.
The BreastScreening core is developed in JavaScript with jQuery for
HTML document manipulation, event handling and dicomParser for
parsing DICOM files. The DICOM files can be loaded by drag-and-
drop files into the browser window on the Orthanc view.

5 RESULTS
We conducted an evaluation of BreastScreening in real-world con-
ditions. Our goal was to quantitatively and qualitatively assess
the proposed design principles and to understand how these prin-
ciples will play in practice [3]. We are particularly interested in
understanding how the design goals and challenges (Section 3) are
addressed [34]. Ultimately, we are focused on clinicians’ opinions
how to improve diagnostic reliability. To accomplish this, the clini-
cians will have first to deal with: i) new mechanisms of multi-modal
data visualization; ii) identification and delineation of lesions; and
iii) classification of severity (i.e. BIRADS). The experimental setup
aimed at testing two conditions: Cond. C1 - Single-Modality, and
Cond. C2 - Multi-Modality. For each condition (i.e., Single-Modality
or Multi-Modality) we collected complete imaging exams for three
patients (P1, P2 and P3) on all possible modalities (MG, US and MRI).
The MG and US comprise a single 2D image (i.e., static modality),
whilst the MRI [19, 27] comprises a volume with N slices (i.e., dy-
namic modality [26]). The exams were previously annotated and
classified with a BIRADS severity from an expert doctor who leads
the HFF radiology department.
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5.1 Participants
Our study involved 31 clinicians, recruited on a volunteer basis from
a broad range of clinical scenarios, including six different health
institutions (two public hospitals, two cancer institutes and two pri-
vate clinics). From the demographic questionnaires: 16.10% of the
clinicians have between 31 and 40 years of practical experience (Se-
niors), 45.20% have between 11 and 30 years of experience (Middles),
9.70% have between 6 and 10 years of experience (Juniors), and 29%
have limited experience (Interns). Interviews were conducted in a
semi-structured fashion taking about 30 minutes. Overall, 17 days
were spent on the clinical institutions for the observation process
and six months for the classification.

5.2 Quantitative Analysis
Four relations2 emerged from our analysis: a) differences between
SUS Scores and SUS Questions [31] among clinical experience (i.e.,
Intern, Junior, Middle, and Senior); b) the workload measurements
of both Single-Modality and Multi-Modality views; c) the relation
between Time and Number of Clicks, clustering by Patient (i.e., P1,
P2 and P3). The expert classification for the patients used in this
study are BIRADS(P1) = 2, BIRADS(P2) = 5 and BIRADS(P3) = 3
respectively, for both Single-Modality and Multi-Modality views;
and, d) the distributions of the BIRADS variation (Figure 2).

5.2.1 SUS Scores vs SUSQuestions. The ANOVA test3 [36] yields
a significant difference in both Single-Modality (FSM = 11.79, pSM
= 0.001 < 0.05) and Multi-Modality (FMM = 23.31, pMM = 0.001 <
0.05) conditions among the various clinical experience of Clinicians.
Participants adopting the Multi-Modality (MMM = 2.9, SDMM =
0.90) condition obtained higher SUS scores than those using the
Single-Modality (MSM = 2.7, SDSM = 1.01) condition.

5.2.2 Workload. The results generated from the NASA-TLX [9]
yields a significant main effect for the Physical Demand (FSM =
5.81, pSM = 0.003 < 0.05) and Temporal Demand (FSM = 4.86, pSM
= 0.009 < 0.05). On the other hand, the Multi-Modality condition
indicates that there exists a significant difference among Mental
Demand (FMM = 3.13, pMM = 0.04 < 0.05), Physical Demand (FMM
= 4.61, pMM = 0.009 < 0.05), and Temporal Demand (FMM = 9.17,
pMM = 0.001 < 0.05). The NASA-TLX yields significant difference
among groups for both Effort (FMM = 3.74, pMM = 0.02 < 0.05) and
Frustration (FMM = 3.93, pMM = 0.01 < 0.05).

5.2.3 Time vs Number of Clicks. Results showing the amount of
Time and Number of Clicks in each of the 566 images among the
three patients are following described. The ANOVA test shows a
non-significant interaction effect over the total Time from both
Single-Modality (FSM = 0.68, pSM = 0.56 > 0.05) and Multi-Modality
(FMM = 0.28, pMM = 0.83 > 0.05) regarding the clinical experience
groups. In addition, our results show a non-significant interaction
effect for the total amount of Number of Clicks from both Single-
Modality (FSM = 1.76, pSM = 0.17 > 0.05) and Multi-Modality (FMM
= 0.57, pMM = 0.63 > 0.05).
2Available datasets: usability (mimbcd-ui.github.io/dataset-uta4-sus), workload (mimbcd-
ui.github.io/dataset-uta4-nasa-tlx), time (mimbcd-ui.github.io/dataset-uta4-time), severity rates
(mimbcd-ui.github.io/dataset-uta4-rates), and images (mimbcd-ui.github.io/dataset-uta4-dicom).
3N : the number of users (Clinicians); F var : the F-test used for comparing the factors of the total de-
viation per each variable (var) categorized by clinical experience;Mvar : Mean value of the variable
(var); SDvar : the Standard Deviation (SD) per each variable (var).

5.2.4 BIRADS Classification. The first and second order statistics
of the BIRADS classification is shown in Figure 2. The mean values
are referenced to the patient BIRADS (previously performed by
the expert), that is, we have (from left to right) the patients P1, P2
and P3, with BIRADSreal = 2, BIRADSreal = 5 and BIRADSreal = 3,
respectively. From this figure, it is clear that the Multi-Modality
performs better, since the most severe BIRADS exhibits the smaller
mean and variance (|BIRADSreal - BIRADSprovided |) in the most
of the cases. Also note that for the most problematic patient (in
this case P2 scored with BIRADS = 5) the multi-modal largely
outperforms the Single-Modality setting.

Figure 2: BIRADS variations distribution among the 31 clinicians. We subtract the ex-
pert classification from the classification performed by each clinician (the closer to zero
the graph is, the greater the classification is). The ordinate axis represent the BIRADS Val-
ues of a scale between 1 to 5. The abscissas axis represents each Patient (i.e., P1, P2 and P3)
with both Single-Modality (SM) andMulti-Modality (MM). The rhombus represents the SD.

5.3 Qualitative Analysis
Clinicians were invited to give some feedback about the UI dur-
ing the open interviews. We received several positive comments
regarding our BreastScreening system. At the end, several clinicians
(19/31) answered that the assistant will be an asset of an immense
importance for the current RR situation: “The system will be a great
asset for us” (C6). Another positive answer was the one related to
the frequency of use (28/31) for this new assistant regarding the
current system used by the clinicians on the daily practice: “I would
like to frequently use your system on my daily practice” (C1).

6 CONCLUSION
Medical imaging systems provide a promising but challenging prob-
lem for HCI research. In this paper, we presented field research,
design and comparative deployment of a multimodal user interface
for breast screening, BreastScreening is a proof-of-concept proto-
type developed to embody the emerging design goals from the
underlying clinical context. Our work and contributions included:
a) identifying the main clinical workflow issues, the interaction
cognitive load challenges [8] and the opportunities; b) establishing
a set of design goals for medical imaging design; c) the design, re-
flections and in-situ evaluation of BreastScreening supporting the
clinical translation; and d) the impact evidence of Multi-Modality
in diagnosing and severity classification of breast lesions with 31
radiologists in six different clinical institutions. Our results4 show
that the system can lead to more efficient and accurate clinical
diagnosis.
4We provide our statistical analysis (mimbcd-ui.github.io/statistical-analysis) supporting this study
with evidence. Several charts are plotted to help on the visualization of our results.
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