
Modeling Techniques for Logic Locking
Joseph Sweeney

joesweeney@cmu.edu
Department of Electrical and

Computer Engineering,
Carnegie Mellon University

Pittsburgh, PA

Marijn J. H. Heule
marijn@cmu.edu

Department of Computer Science,
Carnegie Mellon University

Pittsburgh, PA

Lawrence Pileggi
pileggi@cmu.edu

Department of Electrical and
Computer Engineering,

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT
Logic locking is amethod to prevent intellectual property (IP) piracy.
However, under a reasonable attack model, SAT-based methods
have proven to be powerful in obtaining the secret key. In response,
many locking techniques have been developed to specifically resist
this form of attack. In this paper, we demonstrate two SAT model-
ing techniques that can provide many orders of magnitude speed
up in discovering the correct key. Specifically, we consider relaxed
encodings and symmetry breaking. To demonstrate their impact,
we model and attack a state-of-the-art logic locking technique, Full-
Lock. We show that circuits previously unbreakable within 15 days
of run time can be solved in seconds. Consequently, in assessing
the strength of any given locking, it is imperative that these model-
ing techniques be considered. To remedy this vulnerability in the
considered locking technique, we demonstrate an extended version,
logic-enhanced Banyan locking, that is resistant to our proposed
modeling techniques.

CCS CONCEPTS
• Security andprivacy→Hardware reverse engineering;Hard-
ware security implementation; Hardware attacks and countermea-
sures.

KEYWORDS
logic locking, IP piracy, satisfiability, miter-based SAT attack

1 INTRODUCTION
Due to prohibitively high research and development costs, only
a few foundries are manufacturing integrated circuits (ICs) in ad-
vanced technology nodes. Consequently, many IC companies tend
to operate fabless, relying on untrusted foundries to manufacture
their designs. Once a circuit is sent for fabrication, the foundry
gains full visibility of the design in netlist form with minimal effort,
allowing IP theft. This threat undermines the significant cost asso-
ciated with developing digital circuits and is a growing concern in
the IC industry [9].

To combat IP theft, a variety of logic locking techniques have
been developed. These techniques add programmable elements
to the logic of a digital IC. When programmed incorrectly, the

ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8026-3/20/11.
https://doi.org/10.1145/3400302.3415668

elements disrupt the circuit, obfuscating the true functionality. The
key, which correctly programs the elements, is stored in an on-chip,
tamper-proof memory. This key is set post-manufacture, so the
correct functionality is never revealed to the untrusted foundry.

Early examples of logic locking techniques inserted keyed exclusive-
or (XOR) and multiplexer (MUX) gates to corrupt the next-state
logic [12, 17]. Unfortunately, these methods have been largely bro-
ken using a variety of attacks, the most successful of which are
miter-based SAT attacks [21]. Researchers have attempted to in-
crease the difficulty of the miter-based attack by inserting resistant
logic blocks into the locked circuit.

These resistant locking techniques generally fall into two cate-
gories based on how they resist the miter-based SAT attack. The
first group [24, 25, 28, 29] focuses on reducing the number of keys
ruled out per attack iteration, significantly increasing the expected
number of iterations. In practice however, these techniques are sus-
ceptible to removal attacks since the circuitry is typically traceable
through properties such as signal probability or Boolean sensitivity
[22, 26].

The second group [13, 18] tries to extend the time per iteration.
This is done by adding SAT-hard instances into the circuit. These
instances typically have many interdependent keys; a prototypi-
cal example is the lookup table (LUT) combined with configurable
routing. The resulting locks resemble field-programmable gate ar-
rays (FPGAs) embedded into the circuit and have been shown to be
highly resistant to the current miter-based SAT attacks.

In this paper, we explore the use of two modeling techniques
targeting locked circuits from this second group. These techniques
are shown to be powerful tools in revealing the key, dramatically
reducing attack run time. Specifically, the contributions of this work
are the following:

• Proposal of relaxed encoding and symmetry breaking as
modeling techniques for attacking locked circuits

• Demonstration of impact of the modeling techniques in at-
tacking a state-of-the-art scheme, Full-Lock

• Logic-enhanced Banyan locking, an improved version of
Full-Lock, not susceptible to these new attack techniques

2 BACKGROUND
2.1 Attack Model
In the characterization of the security of a locking technique, an
attack model is used to specify assumptions regarding the adver-
sary’s ability. In this paper, as in all the aforementioned locking
techniques, it is assumed that the adversary has access to two ar-
tifacts: the locked circuit’s netlist and an unlocked version of the

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3400302.3415668&domain=pdf&date_stamp=2020-12-17

circuit. The unlocked circuit has the correct key set in its tamper-
proof memory, affording the attacker black-box access, commonly
referred to as an oracle. These artifacts correspond to the access a
foundry is likely to have when manufacturing a commercial design.
The netlist can be easily reversed engineered from the design data
and the unlocked circuit can be obtained on the open market. It
is also assumed that the adversary has access to the unlocked de-
sign’s scan chains. While additional side-channel techniques may
augment an attacker, they are considered outside the scope of the
paper.

In general, the problem being solved by the attacker is as follows.
The attacker has access to an unlocked circuit containing a set of
Boolean functions. Each function, 𝑓 : {0, 1}𝑛+𝑘 → {0, 1}, has 𝑛
normal inputs and 𝑘 unknown, fixed key inputs. The attacker also
has knowledge of the structure of 𝑓 . Using the unlocked circuit and
knowledge of the structure, the goal of the attacker is to obtain a
functionally equivalent version of the circuit.

2.2 Propositional Satisfiability
A common approach to deal with hard combinatorial problems,
such as finding the key of locked circuits, is to encode them into
propositional logic and to solve the resulting propositional formulas
with a satisfiability (SAT) solver. The performance of SAT solvers
improved significantly in the last two decades and they are used
for many applications in hardware and software verification [4, 11].
In recent years, SAT solvers have also been successfully applied
to various attacks, such as hash collisions [20] and mathematical
challenges [14].

The typical encoding of the SAT problem is in the conjunctive
normal form (CNF). This form consists of a set of clauses that must
all be satisfied. Each clause is a disjunction of literals. A circuit can
be encoded into propositional logic via the Tseitin transformation
[23]. This transformation can take a circuit netlist and produce a
set of clauses which, when collectively satisfied, will correspond to
the original circuit’s behavior.

The most successful class of SAT solvers are based on the conflict-
driven clause learning (CDCL) algorithm [2, 16]. Briefly, CDCL
solvers work by repeatedly selecting a variable through heuris-
tics and assigning a value. Implications from the assignments are
determined using a highly optimized process called unit propaga-
tion. If a conflict is found, a clause is added to the formula that
rules out assignments causing the conflict. Then the solver non-
chronologically backtracks based on the conflict and continues,
repeating this process until a solution is found or the problem is
found to be unsatisfiable.

2.3 Miter-Based SAT Attack
The above attack model enables the mounting of a more targeted,
miter-based SAT attack. This attack uses the netlist and unlocked
circuit to iteratively produce input-output (IO) relationships [21].
These relationships are used to rule out all keys that do not pro-
duce the same behavior, narrowing the space of possible circuit
functionalities. The IO relationships are efficiently learned through
a three-step procedure: I. First, a miter circuit [6] is used to deter-
mine an input that is guaranteed to rule out at least a single key. A
miter circuit consists of two copies of the original circuit with the

Figure 1: Miter-based SAT attack steps: (a) Miter circuit con-
struction, (b) Unlocked (oracle) circuit produces correct IO
functionality (c) Addition of learned IO constraint to miter
circuit

inputs tied together, the key inputs kept separate, and the outputs
connected to comparators. A diagram of the connections is shown
in Fig. 1a. Additional key constraints, such as timing and loop break-
ing, can be conjuncted with the miter output. A SAT solver is used
to find a setting of the shared input (I) and key inputs (K0,K1) such
that the output of the miter circuit is logic 1. By construction, the
solution to the SAT problem will have two different keys that, at
that input value, disagree on the output value. The shared input
value found by the solver is termed a differentiating input (DI). II.
Next, as depicted in Fig. 1b, the learned DI is applied to the oracle
circuit to determine the differentiating output (DO), forming an
input-output (IO) pair which the correct key must respect; any key
that does not conform to this IO pair is incorrect. III. Finally, as
shown in Fig. 1c, the IO pair is added as a constraint to the miter
circuit for the next iteration. Now, any keys that satisfy the miter
circuit will also satisfy the learned IO relationship. While each re-
lationship is guaranteed to rule out at least one key, in practice, a
larger portion of the key space is ruled out due to overlapping key
functionalities at a given input. These steps repeat, adding more
constraints until the miter circuit is unsatisfiable. At this point, any
key that respects all learned IO relationships will be a functionally
correct key.

2.4 Full-Lock
Full-Lock is a logic locking technique specifically developed to be
resistant to the miter-based SAT attack [13] via increasing the exe-
cution time of each iteration. This is done by integrating SAT-hard
logic into the circuit using a combination of routing obfuscation
and look-up tables (LUT). The added logic is highly symmetric with
many keys mapping to the same functionality. Symmetry is known
to be difficult for SAT solvers, trapping the algorithm by spending
time exploring solutions that are isomorphic [7]. Furthermore, unit
propagation of the circuit is hindered as each configuration depends
on many keys: in order to determine the output of the Full-Lock
circuitry, most keys must be assigned. Finally, the obfuscation is

Figure 2: Full-Lock diagram. Each LUT replaces a gate from
the original circuit; the switch boxes permute and invert
their input signals.

parameterized such that locking scheme’s clauses to variables ratio
is close to 4.26, the phase-transition density for uniform random
3-SAT (SAT instances with exactly 3 variables per clause) [8]. Intu-
itively, instances with a higher ratio are over-constrained making
contradictions easier to find and those with a lower ratio are under-
constrained with potentially many satisfying solutions. While the
instances produced by Full-Lock are not uniform random 3-SAT,
and therefore likely have a different optimal ratio, the locking still
produces hard SAT instances.

Full-Lock utilizes configurable routing and LUTs to obfuscate a
set of gates and their corresponding input connections. The con-
figurable routing is implemented with Banyan networks, a class
of logarithmic networks, that permutes connections based on a
key [13]. The network is made up of a series of 2-input switch
boxes which connect the inputs to the outputs, either directly pass-
ing through or switched. Additionally, Full-Lock adds the ability
to invert the polarity of the signals in each switch box. Diagrams
of the switch boxes and overall network are shown in Fig. 2. The
specific Banyan network configuration used has 2 ∗ 𝑙𝑜𝑔2 (𝑁) − 2
stages where 𝑁 is the network’s input width (equal to the number
of permuted lines). The Banyan network is almost non-blocking,
meaning that almost all input to output connection permutations
are possible.

The locking procedure is as follows. A set of gates with the de-
sired number of total inputs is randomly selected from the circuit.
A Banyan network is inserted into the circuit. The nets fanning
into the selected gates are randomly inverted and connected to
the network’s inputs. The selected gates are replaced with LUTs of
appropriate input size. The outputs of the network are connected
the LUT inputs such that under the correct key, each LUT will
receive the original inputs with proper polarity. The key to the
circuit is thus the concatenation of the LUT and network config-
uration bits. The random selection of gates opens the possibility
for combinational loops to be formed in the circuit. This has no
impact on the circuit when the correct key is applied as all feedback
paths will be broken. However, if not ruled out, these loops will
corrupt the miter-based SAT attack. Several methods of building
loop-breaking key constraints have been developed to re-enable
the attack [19, 32].

As is, this locking method appears resistant to the miter-based
SAT attack. The authors of the original work ran the attack for
15 days without termination on instances with 32 circuit lines

permuted. Additionally, the authors considered a removal attack.
The added circuitry is easily identifiable, even after synthesis due
to the key lines and regular structure. Despite this, Full Lock is
also resistant to a removal attack as the selected gates have been
replaced with LUTs and the correct interconnections and polarities
of their inputs are unknown.

3 MODELING TECHNIQUES
Critical to the performance of SAT solvers is the encoding of the
problem. Many problems become hard for SAT due to a poor encod-
ing. Often the best encoding is found after trying several different
strategies [5]. Thus, when assessing the security of a locking tech-
nique, the encoding used can drastically influence the results. In
this section, we describe two modeling techniques that are widely
applicable to logic locking. We demonstrate the application of each
technique to the example locking method, Full-Lock.

3.1 Relaxed Models
Each iteration of the miter-based SAT attack satisfies the miter cir-
cuit while respecting the system model. The system model captures
the potential behaviors of the locked circuit under different keys
and is encoded into propositional logic allowing the SAT solver to
generate meaningful inputs. However, the exact system model can
be difficult to specify or too complex for SAT solvers to efficiently
handle. Often, a close analog to the original behavior can be cap-
tured with a much simpler encoding. Substituting the system model
can allow significant decreases in attack time, sacrificing precision
for reduced complexity.

Several factors must be considered when building a relaxed
model for a locked circuit. First, the model’s variables do not all need
to directly map to system’s logic. In fact, the only requirement on
the variable mapping is that the inputs and outputs remain directly
mapped between the encoding and original system model so that
the produced DIs can be run on the oracle and the resulting DI-DO
pair can be added to the miter. Next, the relaxed model must be
able to produce a super-set of the input-output relationships under
all key values. Perhaps counter intuitively, specifying a super-set
of behaviors can be easier than the exact set. Finally, while the
key variables do not need to be directly encoded, there must be a
mapping from the relaxed model back to a valid key configuration
of the original system.

An example of relaxed modeling is seen in TimingSAT [15], an at-
tack methodology for TimingCamouflage [31]. TimingCamouflage
substitutes flip-flops with combinational logic delays. This disrupts
a naive attack strategy because a reverse engineered netlist will
be missing flip-flops that correspond to the correct functionality.
It is assumed that to obtain the system functionality, an attacker
must meticulously time the circuit and check all possible paths for
potential combination logic delays replacing a flip-flop. However,
TimingSAT simply substitutes a relaxed model, overestimating the
possible locations where a combinational delay may be used as
a flip-flop. In each potential flip-flop location, a MUX is inserted
selecting between a flip-flop or wire. The functionality is then de-
termined using the standard miter-based SAT attack, solving for
the proper MUX settings.

Figure 3: Relaxed models for Banyan network

Figure 4: Edge-based and MUX-based encoding schemes for
the all-to-all model

A relaxed encoding can also be used to remove key interdepen-
dence. Often the functionality of a locked circuit will depend on
a large portion of the keys. To determine the output for a given
input, the SAT solver must branch on many of the key variables.
However, in some cases the functionality can be separated from
the key variables. This allows the functionality to be selected with-
out assigning all keys. An analogous example is encoding integers.
The typical circuit for handling integers is representing them with
binary numbers, however, to select an integer value all variables
representing the binary number’s bits must be assigned. For SAT
solvers, an often more efficient strategy is one-hot encoding. Here,
a value can be directly assigned by setting a single variable true
(and unit propagating the others to false). In a similar sense a circuit
functionality can be decoupled from the key bits, directly selecting
the functionality rather than assigning all key bits.

Using this relaxed encoding strategy, we consider our example
technique, Full-Lock. As previously established, the Banyan net-
work is a SAT-hard circuit due to its large amounts of symmetry,
key interdependence, and poor unit propagation behavior. Despite
its complexity, the functionality is very simple: the outputs of the
network are a permutation of the inputs. Due to the structure of
the network, some permutations are prohibited, and others can be
selected by multiple key settings. If we relax the encoding of the
network, allowing the prohibited permutations in our model, we
can significantly reduce the complexity.

We consider two relaxed models in place of the Banyan network:
all-to-all, wherein every input can be routed to every output, and all-
to-all exclusive, which additionally restricts an input to be routed to
only a single output. A diagram of these functionalities is shown in
Fig. 3. The correct key is in the set of functionalities that the Banyan

network allows, which is a subset of the all-to-all exclusive model
functionalities, and in turn, the all-to-all model functionalities.

From a circuit designer’s perspective, the natural way to encode
all-to-all functionality uses an N-to-1 MUX for each output, similar
to the structure depicted in Fig. 4a. This can be easily specified in
a high-level language such as verilog, then synthesized to a gate-
level representation. The Banyan network in Full-Lock can then
be substituted for these gates. Just as in the typical miter-based
SAT attack, the circuit can then be encoded into SAT via the Tseitin
transformation. The all-to-all exclusive encoding can be formed in
the same fashion, adding circuitry to ensure that the select bits of
each MUX are different.

We also consider an edge-based strategy in which a key variable,
𝑘𝑖𝑜 , is created for each possible input to output connection. A dia-
gram of this encoding is depicted in 4b. The CNF of the encoding is
shown below where 𝑥 𝑗 is a variable representing a net 𝑗 , 𝐼 is the set
of nets fanning into the Banyan network, and 𝑂 is the set of nets
in its fanout. ∧

𝑖∈𝐼 ,𝑜∈𝑂
𝑘𝑖𝑜 → (𝑥𝑖 ↔ 𝑥𝑜) (1)

To ensure proper functional behavior we must also enforce that
each network output is only connected to one input. This can be
done using a cardinality encoding over the same variables as below:∧

𝑜∈𝑂
𝐸𝑥𝑎𝑐𝑡𝑙𝑦𝑂𝑛𝑒 ({𝑘𝑖𝑜 : 𝑖 ∈ 𝐼 }) (2)

The edge-based all-to-all exclusive encoding is created with the
additional clauses:∧

𝑖∈𝐼
𝐸𝑥𝑎𝑐𝑡𝑙𝑦𝑂𝑛𝑒 ({𝑘𝑖𝑜 : 𝑜 ∈ 𝑂}) (3)

Running the miter-based SAT attack on these encodings will
produce the correct mapping from the network inputs to outputs.
Obtaining the corresponding key for the original system model can
be done by finding a key that propagates the same paths in the
Banyan network. Our models allow a greater function space, but
with an encoding much more amenable to SAT solvers as we will
see in section 5.1.

3.2 Symmetry Breaking
Another modeling technique that is not entirely exclusive from
relaxed encodings, but can be applied on its own, is symmetry
breaking. In the context of SAT, a symmetry is defined as a per-
mutation of variable assignments which maps one solution onto
another [1]. In the miter-based SAT attack, symmetry results from
classes of keys producing the same circuit functionality. All equiva-
lent keys will be equisatisifiable with respect to the miter circuit
inputs. If symmetry exists in the locked circuit, the attack will waste
time exploring isomorphic parts of the search space.

Symmetry breaking in the miter-based SAT attack context entails
ruling out all but one key from each equivalence class. Ideally, this
is done with minimal additional clauses being added to the prob-
lem, otherwise the additional problem complexity may outweigh
any benefit. While not specifically labeled as symmetry breaking,
this strategy has been utilized in the key-sensitization attack on
Strong Logic Locking [27], wherein back-to-back key XOR gates
are converted into a single XOR.

Table 1: 2-Input LUT Symmetries Under Permuted Inputs

𝐾0 (𝐼1, 𝐼0 = 0, 0) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
𝐾1 (𝐼1, 𝐼0 = 0, 1) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
𝐾2 (𝐼1, 𝐼0 = 1, 0) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
𝐾3 (𝐼1, 𝐼0 = 1, 1) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Several examples of symmetry are seen in Full-Lock. In the
Banyan network, multiple keys produce the same permutations of
the inputs on the outputs. Additionally, the keys which optionally
invert the switch box outputs are highly symmetric: all configura-
tions of these keys can be reduced to a single bit for each output
specifying whether it is inverted. Our relaxedmodels of the network
already remove these two symmetries. However, there remains a
significant amount of symmetry in Full-Lock’s LUTs.

By themselves, LUTs have no symmetric assignments, but when
coupled with external circuitry, they can become highly symmetric.
This property is good for Field Programmable Gate Arrays (FPGAs)
wherein flexible configurations can help meet timing, power, and
area constraints, however, this flexibility hinders the miter-based
SAT attack as the same logical functionality can be specified many
ways.

Full-Lock allows the LUT-inputs to be permuted which creates
LUT configuration, input permutation pairs that are symmetric. In
Table 1, we show all the symmetric configurations of a 2-Input
LUT with the inputs permuted. Each group with more than one
equivalence is highlighted in a different shade of blue. Within the
highlighted groups, permuting the inputs allows a single LUT con-
figuration to function equivalently to the others. Thus, only one
LUT configuration per group is needed. In the 2-input LUT case,
only 4 out of 16 configurations are eliminated, however, as the in-
put width increases the number of symmetric configurations grows
significantly. For a 4-input LUT, there is over an order of magnitude
reduction in the number of remaining configurations.

Full-Lock’s input permutation symmetry can be broken by en-
forcing an ordering on the inputs connected to each LUT. This
ensures that for every combination of inputs routed to a LUT, only
a single permutation is allowed, ruling out all unnecessary config-
urations. To create this ordering, we add a unary mapping of the
key variables of our edge-based encoding. For each LUT, where 𝑠𝑖𝑜
is an auxiliary variable representing the unary mapping for a key
𝑘𝑖𝑜 and 𝑂𝐿 is the ordered set of network outputs that connect the
LUT, we add the clauses in Eq. 4 to our solver.∧

𝑖∈𝐼 ,𝑜∈𝑂𝐿

(𝑘𝑖𝑜 → 𝑠𝑖𝑜) ∧ (𝑘𝑖𝑜 → ¬𝑠𝑖𝑜+1)

∧ (𝑘𝑖𝑜 → 𝑠𝑖+1𝑜) ∧ (𝑠𝑖𝑜 → ¬𝑠𝑖+1𝑜)
(4)

4 LOGIC-ENHANCED BANYAN LOCKING
4.1 Overview
Based on our attack data in Section 5.1 and the results from the
original Full-Lock work, it is clear the Banyan network structure
creates an instance that is difficult for the miter-based SAT attack.
The strengths of the network are the large number of cycles it
can potentially create, the interdependence of keys, and the lack
of intermediate outputs. However, with the proposed modeling

Figure 5: Diagram of circuit mapped to logic-enhanced
Banyan network. The original circuit is shown top-left, the
locked version bottom-right. The correct switch box func-
tion is highlighted in black, the decoy logic in gray.

techniques, we have exposed holes in the original formulation.
Here, we describe a remedy based on breaking the assumptions of
the modeling techniques through the addition of logic internal to
the network.

Our locking technique, logic-enhanced Banyan locking, uses the
same Banyan structure as Full-Lock, however, the functionality is
extended beyond the simple invert and permute. This is achieved
by moving logic from the locked circuit into the switch boxes of
the Banyan network. In the original Full-Lock switch box, two key
bits are used to optionally invert the lines passing through. Now,
we use these two key bits to select one of four possible functions
for each switch box output. One configuration produces the correct
function, the others are randomly generated decoy functions of the
switch box inputs.

A diagram of the new technique is depicted in Fig. 5. In this
small example, a 4-input Banyan network is inserted. Using the
switchbox outputs as reference points, gates from the original cir-
cuit are mapped to the Banyan network. Switch box outputs 𝑠0,
𝑠1, and 𝑠2 respectively map to gates 𝑔0, 𝑔2, and 𝑔3. We show the
internal logic of two of the switch boxes; the logic corresponding
to the original circuit highlighted in black whereas the decoy logic
is in gray. Input, 𝑖4 feeds through the top-left switch box and gate
𝑔4 is mapped to the upper output of the bottom-right switch box.
The network’s un-mapped inputs and outputs are connected to the
surrounding circuitry

As the network size is increased, it incorporates a larger por-
tion of the design. Since there is already a significant amount of
reconfiguration, we forgo the use of LUTs. The intra-network logic
prohibits the use of a simplified model for the network. The correct
functionality is no longer just a permutation of the inputs to the
network, but rather one of a very large space of functionalities
dependent on nearly all the key bits. Additionally, the large amount
of symmetry has been removed; while some corner case symmetry

may remain, it will be highly complex to find and probably of little
value to rule out.

4.2 Insertion Algorithm
While resistant to the modeling techniques, the insertion of the
Banyan network is more complex than in Full-Lock. Now, gates
from the original circuit must be mapped onto the structure of
the Banyan network, instead of just being randomly selected. We
automate this process to enable scalable exploration of the mapping
solution space. To augment the ability to map onto the Banyan
structure, we split all gates from the original circuit with three or
more inputs into two input gates. We start with a Banyan network
of the desired input width,𝑊 and encode the problem of finding
a mapping as a SAT instance through constraints that we specify
below.

The encoding uses a set of variables representing a mapping
between an original gate 𝑔 and a banyan switch box output 𝑠 . The
switch box outputs provide a reference point within the Banyan
network that naturally correspond to gate outputs in the original
circuit. For all pairs of gates in the original circuit and switch box
outputs in the Banyan network, (𝑔, 𝑠) ∈ 𝐶 ×𝐵, we create a mapping
variable𝑚𝑔𝑠 . The variable is true if gate 𝑔 is mapped to switch box
output 𝑠 . Over these variables, we encode constraints that ensure
the amount of mapping is sufficient. First we ensure at least W
gates are mapped to the network.

𝐴𝑡𝐿𝑒𝑎𝑠𝑡𝑊 ({
∨
𝑠∈𝐵

𝑚𝑔𝑠 : 𝑔 ∈ 𝐶}) (5)

Then we encode that at most one gate is mapped per switch box
output. ∧

𝑠∈𝐵
𝐴𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒 ({𝑚𝑔𝑠 : 𝑔 ∈ 𝐶}) (6)

We allow multiple switch box outputs to map to the same gate
enabling the mapping of gates with fanout. Finally, we prohibit any
path directly feeding through from the network inputs to outputs,
avoiding the simplest mappings. This is done by prohibiting a gate
to be mapped to both the first and last layer of the Banyan network.
We show the encoding below where 𝐵𝑖 and 𝐵𝑜 are respectively the
sets of switch box outputs in the first and last layers of the network.∧

𝑔∈𝐶

∧
𝑠𝑖 ∈𝐵𝑖

∧
𝑠𝑜 ∈𝐵𝑜

𝐴𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒 (𝑚𝑔𝑠𝑜 ,𝑚𝑔𝑠𝑖) (7)

To maintain the structure of the circuit, we add constraints that
enforce a correspondence between the connectivity of the mapped
gates and the switch box outputs. If a gate is mapped to a switch
box output, the fanin of the gate in the original circuit must be
mapped to the fanin of the switch box (i.e. the switch box outputs
from the preceeding network layer). Similarly, we also ensure that
at least one of the gate’s fanout is mapped to the fanout of the
switch box. We allow an exception to this rule if the gate is simply
fed through the switch box, which adds flexibility to the circuit
structures which can be mapped. Note that here we are allowing
feed through for a switch box, but prohibit it through the entire
network. More formally,𝑚𝑔𝑠 implies that every fanin of𝑔 is mapped
to the fanin of 𝑠 or, in the case of a feedthrough, 𝑔 itself is mapped

to the fanin of 𝑠 . This encoding is shown below.∧
𝑠∈𝐵

∧
𝑔∈𝐶

∧
𝑔𝑓 ∈𝑓 𝑎𝑛𝑖𝑛 (𝑔)

𝑚𝑔𝑠 →
∨

𝑠𝑓 ∈𝑓 𝑎𝑛𝑖𝑛 (𝑠)
𝑚𝑔𝑓 𝑠𝑓 ∨𝑚𝑔𝑠𝑓 (8)

Additionally,𝑚𝑔𝑠 implies that at least one fanout of 𝑔 is mapped to
the fanout of 𝑠 or, in the case of a feedthrough, 𝑔 is in the fanout of
𝑠 . This encoding is shown below.∧

𝑠∈𝐵

∧
𝑔∈𝐶

𝑚𝑔𝑠 →
∨

𝑠𝑓 ∈𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑠)

∨
𝑔𝑓 ∈𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑔)∪{𝑔 }

𝑚𝑔𝑓 𝑠𝑓 (9)

This system of constraints is solved and the gates in the result-
ing mapping are inserted into their corresponding switch boxes
and removed from the original circuit. The other MUX inputs are
connected to randomly selected decoy functions of the switch box
inputs. The network inputs and outputs are connected depending
on which gates have been mapped to the first and last layer of
switch boxes. It’s important to emphasize that no intermediate
connections are made to or from the network. Outputs with no
mapping are randomly connected to remaining gates such that they
have no impact on the logic of the system under the correct key.

5 ATTACK RESULTS
In this section, we provide experimental data to show the effect of
using the proposed modeling techniques. We step through each part
of our modeling process, showing the incremental results from each.
We then demonstrate the resistance of our proposed technique to
the miter-based SAT attack.

All attacks are run using a Python implementation of the miter-
based SAT attack. The implementation uses PySAT’s wrapper for
the CDCL-based SAT solver CaDiCaL [3, 10]. Additionally, the
attack implementation uses incremental addition of constraints as
proposed in [30]. Although Python is not as efficient as c or other
low-level languages, most attack time is spent inside the SAT solver
and thus the difference is negligible. The logic-enhanced Banyan
locking implementation can be found in our repository1

Each attack has a timeout 4 of hours, an iteration count of 10,
and is executed on a machine with 756GB RAM and 16 2.1GHz
cores. The attacks are conducted in parallel while ensuring minimal
contention for resources by allotting memory greater than the
maximum usage of the largest instances to each run.

5.1 Relaxed Model Comparison
We assess the impact of the model and encoding on attack run
time for the standalone Banyan networks. We compare five model,
encoding schemes as described in Section 3.1, namely the original
Banyan networkmodel and encoding, and all combinations of MUX-
based and edge-based encodings with the all-to-all and all-to-all
exclusive models. We also compare our logic-enhanced Banyan
locking. For each iteration we randomly select a new key. The data
is shown in Fig. 6. We report several dimensions: overall attack
time, number of attack iterations, number of key variables, number
of total variables, and number of clauses.

Immediately obvious is the grouping of attack times. The original
and logic-enhanced Banyan networks respectively timeout at input

1https://github.com/jpsety/logic_enhanced_banyan_locking

100 200
Input Width

0

2000

4000

6000

8000

10000

12000

14000

Ti
m
e

Model Type
banyan
mux
mux+excl
edge
edge+excl
logic_enhanced

100 200
Input Width

0

50

100

150

200

250

Ite
ra
tio

ns
100 200
Input Width

0

10000

20000

30000

40000

50000

60000

Ke
y
Va

ria
bl
es

100 200
Input Width

0

1

2

3

4

Va
ria

bl
es

1e5

100 200
Input Width

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
au
se
s

1e6

Figure 6: Comparison of encoding schemes for standalone Banyan network, n=10

50 100 150 200 250
Input Width

0

2000

4000

6000

8000

10000

12000

14000

Ti
m
e

Model Type
banyan+lut
mux+lut
mux+excl+lut
edge+lut
edge+excl+lut
logic_enhanced

Figure 7: Attack time comparison of encoding schemes for
Banyan network with 2-input LUTs connected to the out-
puts, n=10

widths of 64 and 16. Whereas the attack time of all proposed model-
encoding pairs is significantly less, highlighting the impact of the
improved models. The number of iterations completed for the orig-
inal and logic-enhanced Banyan models remain low, a testament
to the hardness of the problems. While the edge-based encoding
has significantly more key variables, the overall variable and clause
counts remain close to the MUX-based encoding’s values. Both
encoding schemes result in larger formulations than the original
Banyan network, however are significantly easier to solve. The
MUX-based all-to-all exclusive encoding stands out as by far the
largest relaxed encoding.

We then add the output LUTs to the Full-Lock network models
and repeat the attacks, reporting just the execution time in Fig.
7. Again, for comparison we show our proposed logic-enhanced
Banyan locking scheme. Here we can clearly discern that the edge-
based all-to-all encoding performs the best, quickly terminating
even with an input width of 256. For reference, this scenario would
require the original Banyan network 5,889 keys to implement (two
thirds of which are dedicated to inversions as in Fig. 2).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
LUT Width

100

101

102

Ti
m
e

Model Type
edge+excl
edge+excl+sym

Figure 8: Comparison of attack time at network input width
of 32 between encodings with and without LUT symmetry
breaking, n=10

5.2 Effect of Symmetry Breaking
Next, we demonstrate the impact of the LUT symmetry breaking
on attack time. Since the amount of symmetry scales with LUT
input size, we sweep this parameter and hold the network width
fixed at 32. The resulting attack times with and without symmetry
are shown in Fig. 8. As the LUT width increases, the advantage
of symmetry breaking grows exponentially. At a LUT input width
of 5, the difference in attack time about an order of magnitude.
This result is consistent with the difference in potential solutions
reported in section 3.2.

5.3 Full-Lock and Logic-Enhanced Banyan
Attack Results

Finally, the proposed techniques are together applied to Full-Lock.
We use the best encoding from the previous results: an edge-based,
all-to-all exclusive with symmetry breaking along with the Cyc-
SAT acyclic constraints [32]. This is compared to the attack model
outlined by the Full-Lock authors: the full Banyan network model
alongside the CycSAT acyclic constraints. We also demonstrate our

0

50

100
Input Width = 8, Keys ≈ 64 Input Width = 16, Keys ≈ 176 Input Width = 32, Keys ≈ 448 Input Width = 64, Keys ≈ 1088

0

50

100

0 2500 5000 7500 10000 12500 15000
Time

0

50

100

0 2500 5000 7500 10000 12500 15000
Time

0 2500 5000 7500 10000 12500 15000
Time

0 2500 5000 7500 10000 12500 15000
Time

Model Type
Full-Loc +CycSAT
edge+excl+CycSAT
logic_enhanced+CycSAT

Figure 9: SAT-based attack time for ISCAS85 circuits locked with Full-Lock and logic-enhanced Banyan locking schemes

proposed solution, logic-enhanced Banyan locking. All techniques
are run on the ISCAS85 benchmark circuits, sweeping the network
input width from 8 to 64. The corresponding key widths range is
around 64 to 1088. The results are shown in Fig. 9.

The Full-Lock run times show a trend that mostly agrees with
the original results with the exception that some circuits at 32-
input width are deobfuscated. These improved results are likely
due to the use of a different SAT solver. Our relaxed model shows
run times several orders of lower than the original paper. Most
circuits at 32-input width (around 448 key bits) are deobfuscated in
seconds, with some outliers taking minutes, clearly demonstrating
the effectiveness of these techniques. As the input width scales to
64, many circuits are still deobfuscated, but the majority take longer
than our 4-hour timeout.

The logic-enhanced Banyan scheme provides a significantly bet-
ter ratio of key bits to attack time than the Full-lock predecessor.
At an input width of 16, the attack times out for all circuits. While
this is good, we do not suggest that such small input widths are
viable locking techniques as simple enumeration attack schemes
may easily deobfuscate them.

6 DISCUSSION
Our experiments show that these modeling techniques are highly
effective. The actual attack times for the original Full-Lock imple-
mentation are unknown, we just have a lower bound. With this,
we can claim that the techniques have decreased attack times by at
least several orders of magnitude. Important to the success of our
strategy was trying different models of the system.

Several concerns remain unexplored. First, the amount of cor-
ruption produced by the remaining keys after the miter-based SAT
attack has been run for some time. It is common to only report
attack run times, however, the keys that can be obtained at timeout
may be very close to a correct solution. Understanding the trend
in remaining corruption is critical information for a given locking
scheme. Also, an attacker can often specify constraints on the keys
that the correct solution must respect. One applicable example is
timing constraints, wherein every valid key must produce a cir-
cuit with a critical path less than the period. Just like the acyclic
constraints that are necessary for the attack to complete, timing
constraints could rule out significant portions of the key space.

Importantly, like our modeling techniques, encoding has a large
impact on effectiveness of a constraint.

More specific to our proposed technique, an overhead analysis
has not been conducted. It is likely that more must be done to
make this a viable solution for high speed designs. Towards that
end, a parameter exploration of similar structures may produce
increased attack resistance. Our initial implementation maintained
the amount of keys from Full-Lock. Varying the amount of keys,
connectivity of the network, or decoy logic selection may produce
significantly overhead and attack resistance results.

7 CONCLUSION
We have proposed two widely-applicable modeling techniques that
can substantially decrease the attack time for logic locking schemes.
Any locking scheme that has human-comprehensible regularities is
potentially vulnerable to these techniques. We have demonstrated
the application of these techniques on a state-of-the-art locking
scheme, Full-Lock. The experiments show many orders of mag-
nitude decrease in attack time compared to previously reported
results. In general, these modeling techniques are essential consid-
erations in any logic locking technique.

Additionally, we have described logic-enhanced Banyan locking,
an extension to the Full-Lock method, that appears to be resistant
to these modeling techniques. We demonstrated promising initial
attack results, showing that structure of the Banyan network com-
bined with randomly selected decoy logic is not only a mechanism
of resisting these techniques, but also harder for the CDCL-based
SAT solver used. Of course, this resistance may change with some
additional insight or varied attack strategies.

ACKNOWLEDGMENTS
This work was supported in part by the Defense Advanced Re-
search Projects Agency under contract FA8750-17-1-0059 “Obfus-
cated Manufacturing for GPS (OMG)”, Honeywell Federal Manu-
facturing & Technologies, LLC under contract A023646, and NSF
grant CCF-1618574.

REFERENCES
[1] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. 2003. Shatter: Efficient

Symmetry-Breaking for Boolean Satisfiability. In Proceedings of the 40th Annual
Design Automation Conference (Anaheim, CA, USA) (DAC ’03). Association for

Computing Machinery, New York, NY, USA, 836–839. https://doi.org/10.1145/
775832.776042

[2] Roberto J Bayardo Jr and Robert Schrag. 1997. Using CSP look-back techniques
to solve real-world SAT instances. In Aaai/iaai. Providence, RI, 203–208.

[3] Armin Biere. 2018. Cadical, Lingeling, Plingeling, Treengeling and YalSAT enter-
ing the sat competition 2018. In Proceedings of SAT Competition 2018. 13–14.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999.
Symbolic Model Checking without BDDs. In TACAS ’99: Proceedings of the 5th
International Conference on Tools and Algorithms for Construction and Analysis of
Systems. Springer-Verlag, London, UK, 193–207.

[5] Armin Biere, Marijn Heule, and Hans vanMaaren. 2009. Handbook of satisfiability.
Vol. 185. IOS press.

[6] D. Brand. 1993. Verification of large synthesized designs. In Proceedings of 1993
International Conference on Computer Aided Design (ICCAD). 534–537.

[7] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. 1996.
Symmetry-breaking predicates for search problems. KR 96 (1996), 148–159.

[8] Jian Ding, Allan Sly, and Nike Sun. 2015. Proof of the satisfiability conjecture for
large k. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing. 59–68.

[9] Ujjwal Guin, Ziqi Zhou, and Adit Singh. 2017. A novel design-for-security (DFS)
architecture to prevent unauthorized IC overproduction. In Proceedings of the
IEEE VLSI Test Symposium. https://doi.org/10.1109/VTS.2017.7928946

[10] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2018. PySAT: A
Python Toolkit for Prototyping with SAT Oracles. In SAT. 428–437. https:
//doi.org/10.1007/978-3-319-94144-8_26

[11] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar.
2008. Efficient SAT-based bounded model checking for software verification.
Theoretical Computer Science 404, 3 (2008), 256 – 274. International Symposium
on Leveraging Applications of Formal Methods (ISoLA 2004).

[12] F. Koushanfar J. A. Roy and I. L. Markov. 2008. EPIC: Ending Piracy of Integrated
Circuits. 2008 Design, Automation and Test in Europe (2008). https://doi.org/10.
1109

[13] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
2019. Full-Lock. Association for Computing Machinery (ACM), 1–6. https:
//doi.org/10.1145/3316781.3317831

[14] Boris Konev and Alexei Lisitsa. 2014. A SAT Attack on the Erdős Discrepancy
Conjecture. In Theory and Applications of Satisfiability Testing – SAT 2014, Carsten
Sinz and Uwe Egly (Eds.). Springer International Publishing, Cham, 219–226.

[15] Meng Li, Kaveh Shamsi, Yier Jin, and David Z. Pan. 2019. TimingSAT: Decam-
ouflaging Timing-based Logic Obfuscation. In Proceedings - International Test
Conference, Vol. 2018-October. Institute of Electrical and Electronics Engineers
Inc. https://doi.org/10.1109/TEST.2018.8624671

[16] João P Marques-Silva and Karem A Sakallah. 1999. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. Comput. 48, 5 (1999), 506–521.

[17] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S. Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri. 2015. Fault Analysis-Based Logic Encryption.
IEEE Trans. Comput. 64, 2 (2015), 410–424. https://doi.org/10.1109/TC.2013.193

[18] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin. 2018. Cross-Lock: Dense
Layout-Level Interconnect Locking using Cross-bar Architectures. (2018). https:
//doi.org/10.1145/3194554

[19] Kaveh Shamsi, David Z Pan, and Yier Jin. 2019. IcySAT: Improved SAT-based
Attacks on Cyclic Locked Circuits. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–7.

[20] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The First Collision for Full SHA-1. In Advances in Cryptology – CRYPTO
2017, Jonathan Katz and Hovav Shacham (Eds.). Springer International Publishing,
Cham, 570–596.

[21] Pramod Subramanyan, Sayak Ray, and Sharad Malik. 2015. Evaluating the se-
curity of logic encryption algorithms. Proceedings of the 2015 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2015 (2015), 137–143.
https://doi.org/10.1109/HST.2015.7140252

[22] Joseph Sweeney, Marijn J. H. Heule, and Lawrence Pileggi. 2020. Sensitivity
Analysis of Locked Circuits. In LPAR23. LPAR-23: 23rd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (EPiC Series in
Computing, Vol. 73), Elvira Albert and Laura Kovacs (Eds.). EasyChair, 483–497.
https://doi.org/10.29007/7tpd

[23] Grigori S Tseitin. 1983. On the complexity of derivation in propositional calculus.
In Automation of reasoning. Springer, 466–483.

[24] Yang Xie and Ankur Srivastava. 2019. Anti-SAT: Mitigating SAT Attack on Logic
Locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 2 (2 2019), 199–207. https://doi.org/10.1109/TCAD.2018.2801220

[25] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J V Rajendran, and Ozgur
Sinanoglu. 2016. SARLock: SAT attack resistant logic locking. Proceedings of
the 2016 IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2016 (2016), 236–241. https://doi.org/10.1109/HST.2016.7495588

[26] M Yasin, B Mazumdar, and O Sinanoglu. 2017. Security analysis of anti-sat. (Asp-
Dac), 2017 . . . (2017), 342–347. http://ieeexplore.ieee.org/abstract/document/
7858346/

[27] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri. 2016. On Improving the Secu-
rity of Logic Locking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 9 (2016), 1411–1424.

[28] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris,
Ozgur Sinanoglu, and Jeyavijayan Rajendran. [n.d.]. What to Lock? Functional
and Parametric Locking. ([n. d.]). https://doi.org/10.1145/3060403.3060492

[29] Muhammad Yasin, Abhrajit Sengupta, Mohammed dari Nabeel, Mohammed
Ashraf, Jeyavijayan Rajendran, and Ozgur Sinanoglu. [n.d.]. Provably-Secure
Logic Locking: From Theory To Practice. Technical Report.

[30] Cunxi Yu, Xiangyu Zhang, Duo Liu, Maciej Ciesielski, and Daniel Holcomb. 2017.
Incremental SAT-Based Reverse Engineering of Camouflaged Logic Circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 36, 10
(2017), 1647–1659.

[31] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann. 2018. TimingCamouflage:
Improving circuit security against counterfeiting by unconventional timing. In
2018 Design, Automation Test in Europe Conference Exhibition (DATE). 91–96.

[32] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. 2017. CycSAT: SAT-based attack
on cyclic logic encryptions. In IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, ICCAD. https://doi.org/10.1109/ICCAD.
2017.8203759

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 30.60 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 790
 326
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryList_V1
 qi2base

