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ABSTRACT

Analog layout synthesis requires some elements in the circuit netlist
to be matched and placed symmetrically. However, the set of sym-
metries is very circuit-specific and a versatile algorithm, applicable
to a broad variety of circuits, has been elusive. This paper presents
a general methodology for the automated generation of symmetry
constraints, and applies these constraints to guide automated layout
synthesis. While prior approaches were restricted to identifying
simple symmetries, the proposed method operates hierarchically
and uses graph-based algorithms to extract multiple axes of sym-
metry within a circuit. An important ingredient of the algorithm is
its ability to identify arrays of repeated structures. In some circuits,
the repeated structures are not perfect replicas and can only be
found through approximate graph matching. A fast graph neural
network based methodology is developed for this purpose, based
on evaluating the graph edit distance. The utility of this algorithm
is demonstrated on a variety of circuits, including operational am-
plifiers, data converters, equalizers, and low-noise amplifiers.
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1 INTRODUCTION

Specialized layout techniques involving forms of symmetry, such as
symmetry about an axis, common-centroid layout, and matching,
have long been used by analog layout engineers to achieve high
performance and high yield in analog designs. Matching techniques
are important for both active and passive elements [1], which are
subject to perturbations due to random and systematic variations
as well as changing operating conditions. Analog circuits convert
the less controllable problem of reducing absolute variations into
one of bounding relative variations, or mismatch. One approach to
reduce mismatch is to rely on fixed ratios between devices (e.g., in a
current mirror), as the mismatch in ratios is more controllable when
nearby devices experience similar variations (e.g., due to systematic
or spatially correlated effects). A second approach involves the
use of differential structures (e.g., differential pairs) for mismatch
reduction. In a typical CMOS process, the absolute value of device
parameters for transistors, capacitors, and resistors can vary by 20%,
while the requirements on ratio mismatch may be within 0.1% [2].

Traditionally, these constraints are extracted manually by cir-
cuit designers, relying on expert knowledge. Automated constraint
extraction is one of the chief bottlenecks [3] to full automation,
despite recent progress in analog automation [4]. Manual constraint
extraction methods, which rely on “designer intent” and years of
experience, are difficult to translate to an algorithmic methodology.

One class of prior methods is based on sensitivity analysis:
Malavasi et al. [5] identify matching requirements between nodes
with similar sensitivities. However, sensitivity analysis is compu-
tationally intensive, especially for nonlinear circuits that require
large-change sensitivities. A second class of methods is topology-
based: Eick et al. [6] uses a building block based approach using
a signal flow graph method to extract the symmetries. While this
method is computationally tractable and is effective on simpler
symmetries, it is noted in [6] that it does not handle more complex
symmetries such as those that are hierarchically nested. A third
class of recent methods is spectrally based: Kunal et al. [7] employ
graph convolutional networks to identify structures within graphs
and then identify symmetries only using traversal methods similar
to [6]; Liu et al. [8] use spectral methods to solve a related problem
of identifying symmetric circuits at the system level.

No spectral method addresses the full problem of hierarchical
constraint generation in analog circuits with multiple symmetry
lines. Moreover, prior approaches have only been applied to designs
with a small number of blocks, with relatively simpler symmetries.
To illustrate the complexity that must be addressed to solve the full
problem, we consider the schematic of the FIR equalizer shown in
Fig. 1, in which any mismatch between differential pair transistors


https://doi.org/10.1145/3400302.3415685
https://doi.org/10.1145/3400302.3415685
https://doi.org/10.1145/3400302.3415685

ICCAD ’20, November 2-5, 2020, Virtual Event, USA

OUTPUT

N
L @ ..
C\_{l‘( Clkb

Figure 1: Schematic of an FIR equalizer [9].

{M1-M2}{M3-M4}, - - -, {M19-M20} associated with the taps can
result in a gain error. Moreover, the V; across current sources CO,
.-+, C9 should be the same to maintain similar overdrive current.
A set of symmetry constraints, along multiple axes of symmetry,
must be detected between the transistors in the differential pairs;
the current sources must be self symmetric; each tap and its outputs
must be symmetrically laid out with respect to resistors R1 and R2.
The differential pairs also have symmetry requirements, and the
current driver (shown in the inset for C9) requires ratioed structures
with common-centroid layout for mismatch reduction.

A complicating factor is that the variable current sources, C0,
-+, C9 may not be identical: in [9], the first 4 taps use 7-bit current-
steering DACs, while the rest employ 5-bit DACs. The bias voltage
is the same for all taps: thus, despite the small difference in topology,
the placement and routing must be matched. To the best of our
knowledge, no existing technique addresses this problem of detect-
ing symmetries between approximately identical analog blocks.

The requirements for a methodology that identifies symmetries
in a netlist are: (1) Speed and scalability to large circuits; (2) Ability
to identify constraints hierarchically; (3) Generality and applicabil-
ity to a wide range of circuits; (4) Capability of identifying multiple
axes of symmetry; (5) Capacity to identify symmetries between
blocks that are approximately similar and need matching. Our work
all requirements and has the following key features:

o It hierarchically handles multiple symmetry levels using a
graph-based framework, and identifies array structures.

o It invokes a matching algorithm based on exact or approx-
imate matching: the latter is based on finding graph edit
distances, and employs a graph neural network (GNN) to
detect matching in structures such as Fig. 1.

o It demonstrates solutions on a range of design types, ranging
from low-frequency analog to wireless designs.

Open-source software for this algorithm is available at [10].

2 OUR HIERARCHICAL APPROACH

2.1 Graph representation and preprocessing

Inspired by [11], we represent a circuit netlist as an undirected bipar-
tite graph G(V, E). The set of vertices V can be partitioned into two
subsets, V,, corresponding to the elements (transistors/passives/
hierarchical blocks) in the netlist, and V;;, the set of nets. For each
element e corresponding to vertex ve € V, if net n is incident on
e, then the net vertex v, € V, is connected to v, by an edge in
E. There are no edges between two elements in V,, or two nets
in V,,, and therefore the graph is bipartite. Edges to multiterminal
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elements are labeled to indicate which terminal connects to a net
vertex, e.g., each edge from a transistor node is assigned a three-
bit label (l4ls1;7) marking a gate, source, or drain connection. We
traverse this graph to hierarchically identify structural symmetries.

Initially, the graph is preprocessed using a traversal to identify
the lowest level of building blocks, similar to library building blocks
in [6] or primitives in [7]. Primitives are composed from a few ele-
ments that form the basic building blocks of an analog circuit, and
are specified by the user in a library. These are typically simple
structures, e.g., passives or collections of a small number of transis-
tors such as differential pairs, current mirrors, cascoded structures,
or level shifters. For example, in the circuit in Fig. 2, four current
mirrors — a current mirror bank (CMB1) and three single current
mirrors (SCM2-SCM4), and a differential pair (DP) are mapped to
library primitives. The elements in a primitive are collapsed into
supernode vertices with labeled ports (net vertices) so that like
ports of like vertices can be recognized for symmetry. For example,
in a DP, the two transistor drain nodes are marked as symmetric
and the source node is labeled so that it can be used in higher-level
symmetry detection. Such primitive-level symmetry constraints
are passed to the next level of hierarchy.

net9

N8

Figure 2: An OTA circuit used to illustrate our approach.
2.2 Symmetry detection algorithm

We propose a bottom-up approach that hierarchically detects sym-
metry constraints. At each level of hierarchy, symmetrical net in-
formation is passed to higher levels using ports whose information
is used to identify matching at those levels.

After primitive blocks are identified using graph-based tech-
niques [6, 7] and primitive-level symmetries are identified, a search
begins from all potentially symmetric pairs of node vertices (s1, s2),
e.g., transistor drain nodes in a DP, or corresponding nodes of an
SCM and CMB. For primitives CMB1 and SCM2 in Fig. 2, outl
could match with out2, and net4 could match with {net3, net7,
net9}. Therefore, the candidate choices for (s1, s2) are: (outl, out2),
(net3, net4), (net7, net4) and (net9, net4). Similarly, DP1 leads to the
candidate (out1,out2), also identified by CMB1/SCM2.

The overall algorithm for graph-based symmetry detection op-
erates recursively and is described in Algorithm 1. It is initially
invoked with set (s1, s2) corresponding to all potential symmetry
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Algorithm 1 Hierarchical symmetry detection algorithm

: Function FindSymmetricPairs (G, (s1, s2), P)
: Input: simplified circuit graph (G), start points (s1,52)
: Output: list of match pairs (P)
: Nj = Neighbors(s;) ; N2 = Neighbors(sz)
if Ni == N; == NULL then // End of recursion
Return
: end if
: group_of_pairs = MatchPair(Ny, N2)
9: if length(group_of pairs) == 1 then // Single axis of symmetry
10:  pairs = group_of_pairs[0]
11:  for (p1, p2) € pairs do
12: P.add(p1, p2)

0 N QU W

13: if p; == p, then // Self-symmetric nodes; New axis of symmetry
14: FindSymmetricPairs(G, (p1, p1), P.copy())

15: else// Symmetric node pairs

16: FindSymmetricPairs(G, (p1, p2), P)

17: end if

18:  end for

19: else if length(group_of pairs) > 1 then // Multiple possible axes of symmetry
20:  valid_groups = NULL
21:  for pairs € group_of_pairs do

22: for (p1, p2) € pairs do

23: Ppew = (Pls Pz)

24: FindSymmetricPairs (G, (p1, p2), Pnew)
25: if Ppeyw then valid_groups.add(Pjeqy)
26: end if

27: end for

28:  end for

29:  if length(valid_groups) == 1 then

30: P.add(valid_groups[0])

31: FindSymmetricPairs(G, valid_groups[0], P)

32:  else if length(valid_groups) > 1 then // Multiple parallel symmetrical paths
33: A; = CreateArray(G, s1)

34: A, = CreateArray(G, s3)

35: P.add(A;, Az)

36: FindSymmetricPairs(G, (A1, Az), P)
37:  else

38: P =NULL

39:  endif

40: else

41: P =NULL

42: end if

points from the primitive set. All vertices in the graph are marked as
unexplored, except for supply and ground; the algorithm continues
traversing the circuit graph and terminates when no unexplored
node can be reached. The algorithm proceeds as follows:
Neighbor list For each pair of candidate points (s1, s2) provided
as an input to the algorithm, we invoke Neighbors(N), which re-
turns the unvisited neighbors of node A (line 4). For transistors,
these neighbors correspond to source/drain-connected vertices. For
example, in Fig. 2, starting from the ports of DP1 (and so DP1 is
marked as visited), for (s1,s2) = (outl, out2), the neighbor sets
are N1 = {R1, C1, D1, D2, CMB1/out1} and N, = {R2, C2, D3, D4,
SCM2/out2}. (Note that for CMB1 and SCM2, we annotate the node
vertices with the matching port.)
End case detection A recursive search is then carried out from
the above list of neighbors, with the end case occurring when s;
and s have no unexplored neighbors, (line 5).
Finding groups of pairs Next, MatchPair detects matches be-
tween the vertices of N7 and N, returning “group_of_pairs,” a set
of all matching vertex pairs. For example, in Fig. 2, starting from
DP1, for (s1,s2) = (outl, out2),

group_of_pairs = {(D1, D3), (D1, D4), (D2, D3), (D2, D4),

(R1, R2), (C1, C2), (CMB1/out1, SCM2/out2)}

Thus, from the cross-product of N and No, this list eliminates pairs
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that do not match, e.g., (R1,C1). When FindSymmetricPairs is re-
cursively called, it traverses unvisited neighbors of these elements,
e.g., when (s1,s2) = (CMB1/outl, SCM2/out2), there are further
recursive calls to match (net3, net4), (net7, net4), and (net9, net4).

The MatchPair function can detect two types of matches:

e An exact match, e.g., a two-terminal element such as a resistor,
represented by Ny, matches a resistor of identical value, repre-
sented by Ng. For a multiterminal element such as transistors, edge
labels are also considered in pronouncing a match.

o An approximate match, i.e., nonidentical structures to be matched.
In Section 3, we show how a neural network is used to find the
graph edit distance (GED) to predict matches. If the GED is zero,
the match is exact, and if it is small, the match is approximate.
Processing matches Lines 9 — 18 consider the case where a single
pair (p1, p2) is detected. This means there is a single axis of symme-
try for the pair. If p; and p; are identical, there is a self-symmetry
that begins a new axis of symmetry. Otherwise we have a sym-
metric node pair that continues the previous axis; any matching
constraints propagated from inside the block are added to P.

For example, starting from CMB1 and SCM2, searching from cor-
responding ports (s, s2) = (net3, net4), a unique pair (SCM3/out1,
SCM3/out2) is found. Since these ports are symmetric, p; = p2, and
the new axis of symmetry lies at the center of SCM3. In the next
recursive call, since the only unvisited neighbor of SCM3 is ground,
the symmetric axis involving DP1, CMB1, SCM2, SCM3 is complete.

Lines 19 - 39 consider cases where more than one pair is matched:
this may lead to > 1 axis of symmetry if multiple elements of
the same type are matched, e.g., in Fig. 1. In lines 20 - 28, the
exploration continues recursively from the matched pair until no
further neighbors match. The valid matching paths, eliminating the
nonconverging paths, are stored in valid_groups.

If valid_groups is a singleton, it is added to P; else, the multiple
matches correspond to an array of matching elements, rooted at
s1 and sy. Each array is recognized as a hierarchical block, and
the matched arrays are added to P. Array generation is performed
by CreateArray(G, s) (lines 33-34) by collecting a set of repeated
structures connected to a node s of a graph G. For the matches for
(s1,s2) = (outl, out2) listed above, D1 and D2 each match with D3
and D4; therefore, D1+D2 are grouped into array Dummy1, and
D3+D4 into Dummy2. Matching constraints are created between

(Dummy1, Dummy?2), (R1, R2), (C1, C2)
(CMB1/out1, SCM2/0ut2)

A key contribution of this algorithm is its ability to build sym-
metry hierarchies, as shown in the case with (Dummy1, Dummy2)
above. It could be argued that this simple illustrative case could be
solved by defining a group of two dummy transistors as a primitive;
however, the algorithm is general enough to handle more complex
scenarios that other existing approaches cannot process. As an ex-
ample, consider the FIR equalizer in Fig. 1 with multiple symmetries
and array structures, as described in Section 1. If (s, s2) = (01,02),
the two nodes from the differential output, MatchPair would first
detect the multiple matches corresponding to the DP. This would
then be extended to a larger structure in valid_groups by also in-
cluding the current source and XOR, where the current source is
considered a match based on the approximate matching scheme to
be described in Section 3. This combined structure, (DP + current
source + XOR), is assembled into an array.
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Finally, Line 41 discards P if no match is found, and the search
from (s1, s2) terminates.

3 ERROR TOLERANT MATCHING

3.1 Problem formulation

Fig. 1 had shown an example of the need for approximate matching,
with a different numbers of bits being used in different taps of an
equalizer: despite difference in the topology of the tap control bits,
the circuit requires matching between taps for optimal performance.
Fig. 3 illustrates another example that shows the matching require-
ment between a common-gate low-noise amplifier (CG-LNA) and
a common-source LNA (CS-LNA) in a noise cancellation LNA. The
two sides have a small difference in topology: the transistor source
is connected to the capacitor terminal at left, but to ground at right.

These examples show that matching requirements are more
complex than the simpler test cases typically handled in academic
papers, and that matching is frequently required between parts
that are similar but not identical. In fact, production analog designs
use multiple techniques such as asymmetric dummy transistors in
performance-critical parts [12], noise cancellation circuits [13, 14],
trim bits to handle noise and testing [15, 16], and different device
sizes for handling multiple bands in phased array systems [17].

This implies that the MatchPair function that detects symme-
tries must allow for minor changes in circuit topology. This is the
inexact graph matching problem, and we map this to the Graph
Edit Distance (GED) problem. The GED a measure of similarity
between two graphs G; and G»: given a set of graph edit operations
(insertion, deletion, vertex/edge relabeling), the GED is a metric of
the number of edit operations required to translate G; to Gs.

Let graphs G; and Gy represent, respectively, the CS-LNA and
the CG-LNA, as shown in Fig. 3, with element vertices at left and
net vertices at right. To transform G; to Gz, four edits are needed
(i.e., GED = 4): (1) Deletion of two edges in Gi: (capacitor element,
ground net) and (transistor element (source label), Vi n net), and
(2) Addition of two edges in Gi: (capacitor element, V7 net) and
(transistor element (source label), ground net).

We calculate the similarity between two subblocks by comparing
graph embedding of the two graphs. If the similarity is within a
bound, the MatchPair function in Algorithm 1 returns a match.

3.2 Graph neural network formulation

The GED problem is NP-hard [18], implying that an exact solution
is computationally expensive. This work uses a neural network that
transforms the original NP-hard problem to a learning problem [19]
for computing graph similarity.

The method works in four steps: first, each node in the graph
is converted to a node-level embedding vector; next, these em-
bedding vectors are used to create a graph-level embedding of
dimension d. The lower half of Fig. 3 illustrates these two steps
for the graphs for the CG-LNA and CS-LNA. For each subblock in
the circuit, these steps need to be carried out once, and the graph
embeddings are stored for matching any two pairs of subblocks
in later stages. The computational complexity of these two steps
is linear in the number of nodes in the graph. The last two steps
are shown in Fig. 4. In the third step, the graph-level embeddings
from the second step for two candidate graphs are fed to a trained
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Figure 3: Example showing graph embedding for common
gate low noise amplifier (CG LNA) and common source LNA
(CS LNA) in noise cancellation LNA.
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Figure 4: GED prediction based on graph embeddings [19].

neural tensor network that generates a similarity matrix between
the graphs. The fourth step then processes this matrix using a fully
connected neural network to yield a single score. This matching
method for two subblocks uses the previously stored graph em-
beddings instead of the full subblock graphs. The complexity of
these two steps is quadratic in d, where d is bounded by a small
constant in practice, the procedure is computationally inexpensive
as compared to an exact GED computational complexity which is
exponential in the number of nodes of the graphs involved.

Node embedding stage: This stage transforms each node of a

graph into a vector, encoding d node features and neighborhood
information in a manner that is representation-invariant. We use
neighbor feature aggregation based on a three-layer graph convo-
lutional network (GCN) [20] to obtain the node embedding. The
output Xy, ; € RN xd jn layer I + 1 from the value in layer [ as:

XMV = ReLU(DY2AD 12X W) 1)

where ReLU(x) = max(0, x) is the activation function, A = A+Iy €

RNXN s the adjacency matrix of an undirected graph with added

connections for each vertex to itself, D € RNXN s the diagonal

matrix of A, and Wll e RY*d"" are trainable weights for layer /.
The GCN output, X 3 is the node embedding matrix, X. The nth

row of X, XZ € Rd, is the embedding of node n.

Graph embedding stage: For each graph to be compared, we now

produce an embedding using the attention-based aggregation of
node embeddings generated in the previous stage.
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We first compute a global context, el e Rd, for the graph, com-
puted as weighted sum of node mbedding vector averages, followed
by a nonlinear transformation, using trainable weights W5 € RAxd;

Z%:l Xm
N

¢ = tanh Wa (2

Here, N is the number of nodes in the graph. Next, we use an atten-
tion mechanism to allow the model weights to focus on important
parts of circuit, guided by the GED similarity metric. We empir-
ically observe that nodes with high degree, and nodes forming
special structures such as loops, get higher attention weights: this
is because high-degree nodes receive contributions from a larger
number of neighbors. The graph embedding h € R is given by:

h= Zf:]:l U(XnCT)Xn (3

where o(x) = 1/(1 + exp(—x)) is the sigmoid function.
Neural Tensor Network stage: Next, the relationship between

two graph embeddings, h;,h; € RY, is measured using Neural
Tensor Networks (NTNs) [21] as:

g(hi, ;) = ReLU! Wb + Vibihj)” +b) )

where K is a hyperparameter related to number of slices in the
tensor, which controls the number of similarity scores produced
by the model, WS[I:K] € RXAXK s 5 weight tensor, V € REX2d 5 o
weight vector, and b € RK is a bias vector.

Graph similarity score computation stage: The final step re-
duces the similarity scores in previous stage using a two-layer
fully-connected neural network to provide a predicted similarity
score PS. To train this network, the final score is compared against
the ground truth GED score GS using the mean square error loss:

L= 751 (i, jyes (PSij — GSij) (5)

where S is the set of training graph pairs.

3.3 Training and hyperparameter tuning

We have trained our network on 79 pairs of analog designs, where
each pair has a small difference in topologies. Examples in our
training set include single-ended vs. differential OTAs, multiple
common-gate vs. common-source LNAs, OTAs with dummies, and
arrays of current mirrors of different sizes. For each pair, the ground
truth GED was computed using the algorithm in [22], and a simi-
larity metric between graphs G; and G2 was defined as:

GED(Gy, G2)

dist(G1, Gy) =
(G1.G2) = (G T+ Grel + G20l + 1G2e)

O

where |Gjy| (|Giel) is the number of vertices (edges) in G;. The
denominator normalizes the GED to the size of the graph. Next,
recognizing that the GED score is more qualitative than quantitative
(i.e., accuracy of multiple decimal places does not matter), we divide
these distance scores into bins that define the level of similarity, as
illustrated in Fig. 5. This score is used in Eq. (5) both for training
and inference, to quantify the match between candidate pairs.

For a train:test ration of 51:28 among the 79 pairs, Fig. 7 shows
the computation time for calculating correct GED: it can be seen to
increase exponentially with the graph size.
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Figure 7: Computational cost of the GED algorithm in [22].

We have experimented with several options in training with
regard to the use of edge labels: recall that edge labels are used for
vertices in the graph that represent multiterminal elements. The
simplest version ignored the edge labels and performed matching
without labels, while a more complex version required us to mod-
ify the graph embeddings at the GCN stage to enable the use of
edge labels. We verified during training our model that the use of
edge labels is important for improved accuracy as it provides more
information about the presence of a drain/gate/source connection
to a transistor.

Fig. 7 illustrates the reduction of the loss metric in successive
epochs during training. For both training and test phases, a steady
reduction in loss is noted. Fig. 8 compares the GED predicted by our
approach with the slower GED calculation from [22], and shows a
good match. The relatively small, but noticeable, magnitude of the
difference is reflective of the fact that shows that many elements of
the training set do not exercise a topology difference that involves
a multiterminal element with labels.
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Our optimized model is a three-layer GCN with 128 input chan-
nels (the number of channels is halved in each layer), with 8 slices
in the NTN, and a fully connected network with one hidden layer
after the NTN. The trained net uses dy = 64,d, = 32,d3 = d = 16.

r————

Vrer R |R

R-2R Array

M

Figure 9: (top) Schematic of an R2R DAC with an R2R ladder
recognized using our algorithm. (bottom) R2R DAC layout.

4 EXPERIMENTAL RESULTS

We first present results on three designs that exercise hierarchical
symmetries: the OTA of Fig. 2, an R-2R DAC shown in Fig. 9(top),
and the FIR equalizer of Fig. 1. The characteristics of the graphs
of these circuits are summarized in Table 1. These circuits contain
sufficient complexity to exercise our method and demonstrate its
validity and effectiveness. Our symmetry detection algorithm is
integrated into the public-domain open-source analog layout tool,
ALIGN [4], to generate layouts for these circuits. For clarity and
to demonstrate the ability of our approach to identify symmetries,
only the placement is shown, without routing.

R-2R DAC (Fig. 9(top)): The main source of nonlinearity is mis-
match between the array resistors. The area of the resistors in this
circuit is significant as compared to the CMOS devices, and the
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Table 1: Statistics of the graphs for three test designs

Method #nodes | #Edges
OTA 27 34
R2R ladder 116 144
FIR equalizer 640 1099

resistors must be placed close to each other in a symmetric common-
centroid configuration for matching. Our algorithm detects an array
of the repeating R-2R module (shown using the dashed rectangle
in the figure) and uses multiple instantiations of this to create an
R-2R array. The OTA is also hierarchically recognized and extracted
into a module. The switches b7 — by and b7 — by are part of a digi-
tal block, and may be placed outside the resistor array. The result
of the ALIGN-generated layout using our constraint generation
methodology is shown in Fig. 9(bottom).

Axis of| Symmetry
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Figure 10: Layout of the OTA in Fig. 2.

OTA circuit (Fig. 2): Our algorithm detects the symmetrical axis
of the circuit, and the layout about the symmetric line is shown
in Fig. 10. The dummy blocks, Dummy1 and Dummy2, that were
detected (as described in Section 2.2) must be placed symmetrically
with respect to the differential pair (DP1). Similarly, resistors R1 and
R2 share the same symmetry axis with DP1, as do capacitors C1 and
C2, the current mirrors SCM3 and SCM4. Transistors P1 and P2 are
symmetric, and the transistors in CMB1 are in common-centroid.

FIR Equalizer (Fig. 1): This circuit has ten taps for equalization,
each containing an differential pair, a current mirror DAC, and CML
XOR gate. All blocks in each tap share a common symmetry axis
for matching. The first four taps use a 7-bit current mirror DAC,
and the remaining taps have 5-bit current mirror DAC. To achieve
better matching, the first four taps are placed in the center and the
remaining taps are placed around these four, sharing a common
symmetry axis. The layout of equalizer, shown in Fig. 11, meets all
these requirements. This design demonstrates the detection and
use of multiple lines of symmetry in a hierarchical way within
primitives, within each tap, and globally at the block level.
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Figure 11: Layout of the FIR equalizer of Fig,. 1.
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Figure 12: Prediction accuracy of our algorithm, compared with manual verification.

The algorithm presented in this paper has been tested on a wide
range of over a variety of circuits, including OTAs, buffers compara-
tors, VCOs, analog-to-digital and digital-to-analog converters, and
filters. The circuits are preprocessed to remove dummy transistors
for which all terminals are connected to supply/ground lines.

Beyond the three circuits discussed earlier, we were able to ver-
ify the correctness of the constraints through manual inspection
on 36 circuits. The results of this verification, showing true/false
positives and true/false negatives, are summarized in Fig. 12. For
each hierarchical instance (e.g., device, passive, detected array) in
the circuit, a true positive implies that the instance has a symmetry
constraint that is correctly identified; a negative implies no sym-
metry constraint. Symmetrical instances must be connected using
symmetrical nets. For the circuit names highlighted on the x-axis,
our algorithm created a new hierarchy for arrays in these designs
by grouping like elements. For the smallest circuits, it can be seen
that no symmetries are identified. From C5 onwards, most circuits
have some symmetry constraints (with the exception of C28, a DC-
DC converter, and C32, an inverter-based VCO); a few circuits (C13,
a fully differential telescopic OTA, and C23, a switched-capacitor
filter) have symmetry constraints involving most/all devices. Most
of the constraints detected by our algorithm are true positives or
true negatives. No false negatives were detected.

Four circuits have false positives, related to (a) level-shifter struc-
tures connected to the output stages of amplifiers, and (b) dummy

structures. The former is not harmful because it is connected sym-
metric current mirror units, and therefore it is logical to place these
symmetrically even though matching is not required. The latter is a
nonintuitive use of a dummy structure: since dummies are used for
corrections subsequent to first silicon, it is recommended that any
symmetries involving them should be annotated by the designer.

5 CONCLUSION

This paper has proposed an approach to handle multiple levels
of symmetry hierarchies, including nested hierarchies, in analog
circuits. The core algorithm is based on graph traversal through the
network graph, and includes both exact graph-based matching and
a novel machine learning based approximate matching technique
using a GCN and a neural tensor network based GNN. We validate
our results on a variety of designs, demonstrating the detection of
multiple lines of symmetry, hierarchical symmetries, and common-
centroid structure detection. We show how these guidelines are
transferred for implementation to a layout generation tool that
provides high layout quality.
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