arXiv:2005.11158v2 [cs.DC] 20 Jul 2020

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

Hermes: Enabling Energy-efficient loT Networks
with Generalized Deduplication

Christian Gottel

Lars Nielsen

Niloofar Yazdani

Department of Computer Science DIGIT and Department of DIGIT and Department of
University of Neuchatel, Engineering Engineering
Switzerland Aarhus University, Denmark Aarhus University, Denmark
christian.goettel@unine.ch lani@eng.au.dk n.yazdani@eng.au.dk
Pascal Felber Daniel E. Lucani Valerio Schiavoni

Department of Computer Science
University of Neuchétel,
Switzerland
pascal.felber@unine.ch

ABSTRACT

With the advent of the Internet of Things (IoT), the ever
growing number of connected devices observed in recent
years and foreseen for the next decade suggests that more
and more data will have to be transmitted over a network, be-
fore being processed and stored in data centers. Generalized
deduplication (GD) is a novel technique to effectively reduce
the data storage cost by identifying similar data chunks, and
able to gradually reduce the pressure from the network in-
frastructure by limiting the data that needs to be transmitted.

This paper presents HERMES, an application-level proto-
col for the data-plane that can operate over generalized
deduplication, as well as over classic deduplication. HER-
MES significantly reduces the data transmission traffic while
effectively decreasing the energy footprint, a relevant mat-
ter to consider in the context of IoT deployments. We fully
implemented HERMEs and evaluated its performance using
consumer-grade 10T devices (e.g., Raspberry Pi 4B models).
Our results highlight several trade-offs that must be taken
into account when considering real-world workloads.

KEYWORDS

IoT, generalized deduplication, energy efficiency

1 INTRODUCTION

The increasing adoption and expansion of Internet of Things
(IoT) technologies is leading to an correspondingly growing
number of connected, low-energy yet efficient and powerful
Internet-enabled devices. Predictions [10] indicate 175 ZB of
data being produced by IoT devices already by 2025, with
up to 1.25 Billion units deployed by 2030 [9] and 38% of
the global IP-based traffic generated by mobile devices [8].
Despite the imminent introduction of wider-band wireless

DIGIT and Department of
Engineering
Aarhus University, Denmark
daniel.lucani@eng.au.dk

Department of Computer Science
University of Neuchitel,
Switzerland
valerio.schiavoni@unine.ch

technologies (e.g., 5G and beyond), it is clear that the pressure
on the network will continue to increase.

Data compression [19], deduplication [22] or network cod-
ing (NC) techniques [36] have been proposed to solve these
IoT problems. The latter is particularly interesting given the
unreliable nature of data streams commonly found in real-
world IoT deployments [3]. NC introduces redundancy where
needed to protect against data loss, i.e., efficient protection of
data. On the other hand, compression and deduplication are
interesting given the compression potential of IoT-generated
data (e.g., smart power meters [24], weather stations [13],
bio-medical body sensors [6]).

To validate this hypotesis, we applied different compres-
sion algorithms to a real-world dataset from the domain of
ambient water and energy [1, 4]. Figure 1 shows that there
is a high potential to reduce data transmission (original size
divided by compressed size - higher is better).

The main challenge of standard compression algorithms
in IoT is related to their processing costs [11, 26]. Efficient
compressors are usually too computationally intensive and
memory-eager for IoT devices, while lightweight, memory-
efficient approaches tend to have poorer compression per-
formance [33, 40, 41].

An added challenge is that many IoT applications rely on
small data packets and compress data on a per packet basis due
to memory limitations, which curbs the compression poten-
tial of standard compressors [37]. In fact, Figure 1 shows that
the compression ratio for two standard compression algo-
rithms LZW [34] and DEFLATE [11] decreases dramatically
for smaller chunk lengths.

Network deduplication [31] is a well-known technique to
reduce network traffic. It operates by replacing a repeating
byte sequence with a shorter hash value, which is later used

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

. LZW =23 bD EZ3 GD-reduced
61 0 DEFLATE E3X3 GD-vanilla 93 GD-dual
o
-l
g Al
c 4 o
o
5 5
n
g1 5
-3 7] P9
€ ~ o o
c 27 U
o e)
Y e
11+-—-B - Aw o
e o
w o
04

B3 GD-vanilla, offset removal
= GD-reduced, offset removal -

B GD-dual, offset removal

i

/=

LR
a2
X
0. 0_0_0_0

3
2
P4
°

]

16 64

Chunk length (B)

Figure 1: Compression ratio for the real world data set, water meter measurements, under different algorithms.

to identify the intended content by the receiving side. Sanad-
hya et al. [30] proposed asymmetric caching, where a source
node performs deduplication on the outgoing chunks of data
based on its cache content and the sink node’s feedback, simi-
lar to what was originally done on Web caches in [31]. A sink
node sends timely feedback to the source node containing
selected portion of its cache that is most likely to be useful
to increase the probability of matching. For instance, [39]
describes a deduplication-based file communication system
that leverage manifest feedback. The source node splits each
file into chunks and associated hash values. Then, it checks
locally for duplication based on its cache. In case of misses,
the hash values of missing duplicates are sent to the sink
node for further duplication detection. The feedback packets
from the sink node include the query information and the
manifests of the chunks that have been hit at the sink node.
The manifests are the hash values, addresses and sizes of the
chunks. In [18] a traffic deduplication approach is proposed
to merge independent streams of the same video content on
the Internet using a novel overlay network.

An enabled router can then merge and assign an identifier
to each video. In case of a match of video identifiers, the
router will handle the merge. The described approaches are
typically designed for point-to-point transmission scenarios
and using large data chunks, large hashes, local caching, and
operating on files with data known a priori.

For IoT applications generating smaller data chunks on
the fly (i.e., the nature of data is not known beforehand)
and limited memory/computation, existing state-of-the-art
approaches are not suitable to deliver energy- and memory-
efficient protocols. Furthermore, a large source of compres-
sion potential in IoT comes from the massive amount of data
sources compared to a standard approach, which needs to
be considered in the system’s design.

Another limitation of the state-of-the-art is that compres-
sion is provided by finding only equal data chunks. If two
chunks differ in even one bit value, they will be considered
two different chunks.

Although techniques such as Rabin fingerprinting [29] can
be used to split data in non-uniform chunks (i.e., different
sizes) to detect similarities, these require significant added
computation and memory to hold the computed similarity
hashes. This makes the approach unsuitable for the IoT.

Generalized deduplication (GD) [32] (further detailed in
§2) is a recently introduced scheme reduce the cost of storage
not only by finding equal data chunks, but also by finding sim-
ilar data chunks. As in other lossless compression schemes,
similarities between chunks are identified without the need
to carry out delta compression to a pool of previous chunks
and without relying on similarity hashes for dynamic chunk-
ing. The latter would be impractical for the small amount
of generated data in IoT devices. In [37], a lossless, multi-
source data transmission compression approach inspired by
the concept of GD was proposed to reduce the amount of
data transmission. Figure 1 shows the compression ratio for
data deduplication (DD) and GD, showing that GD has the
potential to outperform DD in IoT scenarios, but also that
GD outperform LZW and DEFLATE for small packet sizes.

This paper introduces HERMES, a protocol and a corre-
sponding complete implementation for data transmission
reduction in sensor networks, especially suited for resource-
limited data nodes. Its design principles are inspired by
the schemes proposed in [37], but also expanding this ap-
proach as well as making judicious adaptations to tackle core
implementation and system aspects. HERMEs allows multi-
ple sources to share a common (and growing) data pool at
the sink node, typically a Cloud- or Edge-based device. All
source transmissions contribute to growing the knowledge
pool. Thus, spatial data correlations across multiple sources
(e.g., similar temperature data at the same time across the
same city, similar smart metering consumption of several
households) as well as temporal correlations across multi-
ple sources (e.g., same electricity readings of house A today
as house B a year ago) can be exploited for reducing data
transmission and allow for better compression at the sink
node. Each device then benefits from contributions from

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

other devices in order to reduce their traffic. HERMES per-
forms this without direct interactions between devices. We
implemented and experimentally evaluated HERMES’ perfor-
mance with micro- and macro-benchmarks on Raspberry
Pi 4B. In the best case scenario, we show reductions of 3
orders of magnitude of GD over DD, but also over per packet
compression using LZW and DEFLATE.

The rest of the paper is organized as follows. In §2, we
introduce a theoretical background on generalized dedupli-
cation. In §3, we study different communication mechanisms
based on GD. The HERMES system and protocol is detailed
in §4. The experimental setup and the results of our exper-
imental evaluation are presented in §5. We survey related
work in §6. Finally, Section 7 concludes and presents future
directions.

2 BACKGROUND

We begin by giving basic definitions and notations that are
used throughout the rest of paper.

2.1 Fingerprints and data deduplication

We define f(.) a function that associates a (nearly) unique
fingerprint to its input, either using standard hash functions,
e.g., SHA-1, SHA-256, or checksums, e.g., CRC32, MD5. A
deployment of HERMES should settle on a specific f(.) based
on the need of low collision probability, i.e., for two different
inputs to match the same fingerprint, but also the size of the
fingerprint in relation to the amount of data transmitted per
packet. We note as well that the resulting compression gains
are partially related (and limited) by the latter. For example,
a payload of 40 bytes using a SHA-1 fingerprint of 20 bytes
will not compress beyond a factor of 2. Our evaluation shows
the trade-offs for different f(.) options.

Data deduplication (DD) eliminates redundant data, re-
moving copies of repeating data chunks.

Classic DD divides each piece of data into multiple data
chunks, C;, and stores each unique data chunk only once, by
distinguishing between repeating data patterns and saving
those only once. A fingerprint is linked to each chunk. Each
file or piece of data would then be represented as a sequence
of fingerprints for each of its chunks. To recover the original
data, one only needs to search for the chunk associated to
each fingerprint and concatenate the data in the right order.

2.2 Generalized deduplication

Generalized deduplication (GD) [32] is a lossless data com-
pression approach. It operates by eliminating equal as well
as similar data chunks. This is achieved without comparing
directly to previous chunks, but rather using a transforma-
tion function to systematically cluster similar data. GD splits
each piece of data into a series of equal-sized smaller chunks

Ci’s and maps each chunk, C;, onto a pair of basis, b;, and
associated deviation, d;, by applying a transformation func-
tion. For the transformation function, an error-correcting
code (ECC) can be used. Each basis b; , which is larger than
d;", is assigned a fingerprint, f(b;). The basis is saved only
once. For simplicity, we use the notation f, instead of f(b;).
Rather than saving C;, GD stores a pair f;, and d;. Note that
DD can be considered as a special case of GD where there is
no deviation, d; = 0, and b; = C;.

GD Example. Consider a chunk as having a shape and a
color. In this case, DD would provide a fingerprint for each
chunk A with color c4 and shape s4. GD can define a trans-
formation that would split the chunk into the pair (sa,c4)
and proceed to deduplicate based on s4 only. That is, GD
deduplicates all fragments that have the same shape s 4, since
shape is bigger and requires more bits to be represented. Each
shape (our basis) will have a unique fingerprint. The color
information is simpler and requires few bits to represent it.
We will keep the color cy4 in the description of the data, next
to the fingerprint pointing to the description of the shape.
Recovering the chunk involves fetching details about the
shape (basis) and then apply the correct color (deviation).
Naturally, this increases the chances of mapping data with
similar information (same shape). In general, these are sim-
ply bit sequences and the matching potential depends on the
transformation that splits into basis-deviation pairs.

2.3 GD for efficient data transmission

GD can also reduce data transmission in a lossless man-
ner [37]. The idea is to apply GD at the source node to send
the basis only if not available at the sink node (e.g., Cloud,
Edge device). At the source node, e.g., a sensor node, each
chunk of data C; is then mapped onto a pair (b;, d;). To re-
duce network overhead, the source node first transmits the
associated basis fingerprint, f,, e.g., a hash common to all
the source nodes, and the deviation d;. The sink node checks
whether it has the basis for the basis fingerprint or not. If the
basis for the basis fingerprint is already available at the sink
node, it saves the data and sends back an acknowledgement.
At this point, the source node erases the associated basis
and deviation from its memory. Otherwise, the sink node
sends a basis request and the source node sends the basis
itself. When receiving the acknowledgement from the sink,
the source erases the basis from its memory.

This process can be generalized to transmit the infor-
mation about more chunks in a single packet. Notice that
all source nodes leverage the same hash function, each of
them exploits all basis fingerprints available at the sink node,
whether they were generated by the same source node or
another source node.

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

We study possible communication mechanisms based on
DD and GD in section 3.

2.4 Transformation functions

A variety of functions exist to create the mapping from C;
to (b;, d;). We rely on error-correcting codes (ECC): C; is the
codeword and, by applying the decoding function of the ECC,
the received message is the basis. The deviation d; carries
the information about the difference between the codeword
and the error-free codeword. The latter is created by encoding
the basis b; using the ECC encoding function.

Hamming codes. Hamming codes [23] are a valid family
of linear ECCs that can be used for the considered map-
ping [25]. Let m be the number of parity bits, then the code-
word and the message are of length n = 2™ — 1 bits and
k = 2™ — m — 1 bits, respectively. We also define ng = [{]
and kg = |'§'| as the byte-length of the codeword and mes-
sage, respectively.

Hamming codes can correct one bit errors. In our con-
text, this means that codewords are at most one bit away
from the error-free codewords. That is, we will systemati-
cally match chunks to others that have one bit difference,
without comparing to previously received data chunks. The
location of the bit is specified in a syndrome vector of length
m bits. Thus, m bits are enough to represent the deviation
for Hamming codes. Since Hamming is a binary code, where
a non-zero value must be a 1, there is no need to save the
content of the one bit error. By applying Hamming codes as
the transformation function, all chunks mapped to a given
basis are at most one bit away from the error-free chunk.

Note that n = 2™ — 1, which would not use at least the last
bit in the last byte. Given the specific structure of Hamming
codes, we consider chunks of length n + 1 bits to represent
data received in bytes. The Hamming transformation is per-
formed in the first n bits. The remaining bit is left untouched
as part of the deviation (concatenated with the m deviation
bits). Thus, the resulting deviation for chunks of size n + 1
bits would be m + 1 bits in total. During recovery, the steps
is undone and the additional bit is appended to the n bits.

Reed-Solomon codes. Reed-Solomon codes [35] are valid
ECCs to use for creating the mapping [32]. Reed-Solomon
codes operate on a block of data treated as a series of sym-
bols from a finite field of size q, Fq. A RSq(np, kp) is a Reed-
Solomon code where g specifies the finite field that sym-
bols are from, Fy, and np and kp are the symbol-size of the
codeword and message, respectively, where ng = ¢ — 1 and
kg < np.t = L%J is the error correction capability of
the code. For q = 256, symbols are 8 bits in length (a byte).
Using a short version of the code [23], np is more flexible,
ie., kB <np<gqg.

Table 1: Covering radius of few Reed-Solomon Codes.

Code R(C)
RS56(16, 14) 2
RSys6(255,253) | 2
RS»56(255,247) | 8
RSz56(64, 56) 11

The deviation can be computed by a bitwise XOR of the
original chunk and the error-free chunk. Then, the deviation
is the location and the content of the non-zero symbols of
the resulting sequence of the XOR. Using these codes, it is
impossible to predict a deviation as in Hamming codes. It
is however possible to specify the maximum length of the
intended deviation. To achieve this, we consider the covering
radius metric of the code, R(C). R(C) is the largest Hamming
distance that any chunk might be from the associated error-
free codeword. Covering radius of a few Reed-Solomon codes
are shown in Table 1.

Thus, we will need a maximum number of bits for repre-
senting the location and content of non-zero symbols given

by R(C).[log, ng] bits and R(C).[log, q] bits, respectively.

2.5 Preprocessing

After splitting each piece of data into a series of equal-sized
(and smaller) chunks C;’s, but before applying a transfor-
mation function for mapping, we can apply an additional
step to enhance the compression. In this context, we think
specifically on time-series and/or sensor data that contains
a number of samples. These samples could be from different
sensors within the device (e.g., speed, vibrations, tempera-
ture) and/or for the same sensor over time.

Delta encoding within a data packet. Considering each
chunk C; as a concatenation of samples, applying delta encod-
ing keeps the first sample unchanged and following samples
will be replaced by the difference between the current sample
and the previous one.

Note that we consider delta encoding to be performed
within each data packet and not across data packets. This
can reduce the range of the data (variance) if samples have
constant or small variation. The reduction in the data range
can increase the matching probability of the bases. On the
other hand, delta encoding can increase by one bit (the sign)
the required number of bits to represent the data samples.
For example, a 3-byte sample 128, 127, 128 would encode to
128,-1, 1.

Offset removal within a data packet. To reduce the
range of data and to keep the number of bits per sample
unchanged, we propose the idea of offset removal. Let us con-
sider each chunk C; as a concatenation of samples. We de-
termine the minimum sample value of each chunk C;. Then,
by applying offset removal, each sample can be represented

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

/ Known fingerprint

Sender Receiver

/ New fingerprint \

Sender Receiver

L S|

< Ack., Req.c >

(2) DD _JE
N Jo_ Id) |

(b)i GD-vanilla <" T
N7l

el Tf’b,

\.— r(d) GD-dua:I j

Figure 2: Communication mechanisms.

as the differential value between the current sample and the
minimum value of the chunk. We save the minimum value
as part of the associated deviation (i.e., we increase the devia-
tion by an additional value). The 3-byte sample 128, 127, 128
would then encode to 1,0, 1 with a minimum value of 127
added to the deviation.

3 COMMUNICATION MECHANISMS

We devise three different communication mechanisms on
top of GD, depicted in Figure 2.

For each of them we describe the trade-offs and advantages
with respect to DD.

Baseline deduplication (DD): Figure 2 (a) presents the
baseline mechanism on top of DD .

Each fingerprint corresponds to a unique chunk value
(with high probability given the fingerprint function).

Baseline gen. deduplication (GD-vanilla):

A similar mechanism can be operated on top of GD, as
shown in Figure 2 (b). Notice that DD and GD-vanilla use
the same fingerprint length. Thus, GD-vanilla may incur a
slightly larger overhead than DD if an exact duplicate chunk
is already in the sink node, since the transmission of the
deviation would be redundant.

Reduced fingerprint gen. deduplication (GD-reduced):

Figure 2 (c) shows a variant that compensates the overhead

of GD-vanilla . Since the bases for GD have fewer bits than
the chunk length, we can consider a slightly smaller finger-
print for GD. In GD-reduced, we design the system such
that the length of the fingerprint plus the deviation is equal
to the length of the fingerprint for DD. This removes the
penalty when transmitting exact duplicates, albeit potentially
compromising the probability of collision of the fingerprint,
i.e., having a larger probability of two different bases being
mapped to the same fingerprint.

Dual fingerprint generalised deduplication (GD-dual):
Finally, we describe a hybrid approach that allows the sink
to identify whether it sees an exact replica or a new chunk
potentially associated to a previously seen basis. As shown
in Figure 2 (d), this approach transmits the fingerprint of
the chunk, f;', and of the basis, f at the same time. We set
each of these as half length of f, of the classic DD approach.
If the chunk is already available in the sink node (receiver),
the sink sends an acknowledgement. Otherwise, it checks
if the basis has been received. If it is already available, the
sink node sends a request for deviation. Else, the sink sends
a request for the chunk. After receiving the deviation or
the chunk, the sink node sends back an acknowledgement.
Notice that the probability of collision is equal for both com-
munication mechanisms DD and GD-dual. This is due to the
fact that the total fingerprint length in bits of DD is the same
as the total length the two fingerprints (e.g., calculated with
the same algorithm and only sending a fraction of the bits).
Notice that if a given chunk is already available at the sink
node, both fb and f; should match. On the other hand, if
a similar chunk matches to the same basis, fy, will match,
but not f. . However, it is possible to calculate the chunk’s
fingerprint locally, due to availability of both basis and devia-
tion to make sure it matches the received f . Thus, GD-dual
provides a lower probability of collision than GD-reduced
and equivalent to DD and GD-vanilla.

3.1 Transmission cost

DD and GDD schemes have different transmission (i.e., net-
work) costs.

The parameter C denotes the total number of chunks trans-
mitted by the source. Let us define Bgp and Bpp as the total
number of different bases generated by a source node out
of C data chunks by using GD and DD, respectively, where
a “basis” for DD is equal to the chunk itself (§2.1). We also
define dg(i) and hp p as the deviation byte length of C; and a
basis fingerprint’s byte length for the scheme P, respectively.
Accordingly, the transmission cost Tp(C) for a source node
depends on the scheme # where,

c
Tpp(C) = Bpp - np + Z hg,pp [bytes], (1)

i=1

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

c
Tep-van.(C) = BGD'kB+Z (hB,GD-van. +dp(i)) [bytes],

i=1
C

T6p-red.(C) = Bgp -kp+ Z (hB,GD-rea. +dp(i)) [bytes],

i=1

c
T6p-dual(C) = BGD'HB+Z dB(i)+Z hB.Gp-dual [bytes],
i€Q i=1
and Q is the set of chunks for which there is no exact chunk
at the sink, but for which there is a basis, i.e., where GD could
find a match that is not an exact one. The total number of
elements in Q is Bpp — Bgp. We consider 3, (hp,Gp-red. +
dg(i)) = X5, kg pp and hg pp = hp,Gp-van. = hB.GD-duals
where hp Gp-dual is the addition length of fb’,- and f; . Con-
sidering C - np as the original size of data, we calculate the
compression ratio as CfZB.
Notice that

ng — hg pp
ng

TDD(C)<C~nB :>BDD < -C.

We can now calculate the conditions for which GD will
outperform DD for the different schemes as follows.

GD-vanilla: For GD-vanilla to outperform DD, we as-
sume:

T6p-van.(C) < Tpp(C) =
- Bpp - np — Y, dp(i) (2)
kg ’
We consider Mgp = C — Bgp and Mpp = C — Bpp as
the total number of matches for GD and DD, respectively,

out of C data chunks. Using Equation 2, we can determine
that GD-vanilla outperforms DD if:

Bsp

c
(C—-Mgp) - kg + ZdB(i) <(C-Mpp)-ng =
-1
> dg(i) + C - (kg — np) + Mpp - np
kg

For the cases where Ziczl dg(i)+C-kg = C-ng, GD-vanilla
outperforms DD if the number of matches for GD is greater
than Z—ﬁ times the number of matches for DD. Notice that
the number of matches for GD is always equal or greater
than the number of matches for DD.

GD-reduced: Using a similar analysis, we can determine
that GD-reduced always improves the transmission cost
compared to DD, because kg < np and Z,-czl (hB,GD,,ed, +
dp(i)) = X2y hs pp-

GD-dual: By replacing Bpp with Bgp + (Bpp — Bgp) in
Equation 1 and considering that for any i, dg(i) < np, shows
that GD-dual reduces the transmission cost compared to DD
in all scenarios.

< MGD

Example. For ng = 128, ny = 127, hg = 20 and C =
1000000, DD reduces the transmission cost if Mpp > 156250.
If Ziczl dp(i)+ C-kp = C-npg, GD-vanilla outperforms DD as
long as Mgp > 1.00787Mpp which means GD should have

at least 1231 more matches. However ifw+k3—n3 =1
then GD-vanilla outperforms DD if Mgp > 1.00787Mpp +
7874.01 which means GD should have at least 9105 more
matches compared to DD.

3.2 Compression ratio

As shown in Figure 1, we achieve different compression ratio
for LZW, DEFLATE [11], DD and the various GD variants
over a real-world data for different chunk lengths.

All schemes are applied over the data at byte level. We
consider 6-byte fingerprints (hg pp = 6) and Hamming codes
as the transformation.

We observe that GD-reduced and GD-dual (with or with-
out offset removal) outperform LZW, DEFLATE and DD for
chunk lengths of 16, 64 and 128 bytes. For large chunk length
of 256 B, DEFLATE provides better compression ratio com-
pared to other schemes while our techniques outperform
LZW and DD with gains of up to 1.41x and 1.48X%, respec-
tively. GD-vanilla with offset removal provides up to 1.4x
and 1.05X better compression ratio compared to DD for
chunk lengths of 256 and 128 B, respectively.

3.3 Transformation function effect

Table 2 compares the number of unique basis under DD, GD
using Hamming with and without offset removal, and using
Reed-Solomon as transformation functions considering 2
real-wold data sets. In addition to the water dataset [1], we
use energy measurements from private households [2, 5]
using readings spanning a 6-month time span.!

We applied DD and GD over the columns on byte level. Ta-
ble 2 shows that the number of unique bases for GD is lower
than the one for DD for all the schemes which means that
the number of matches for GD is greater than the number of
matches for DD for both datasets. GD based on Hamming
with offset removal has reduced the number of unique bases
by up to 35% for water meter measurements.

4 HERMES ARCHITECTURE

Assumptions. In order to design and deploy a distributed net-
work using HERMES, we assume the following: (1) all nodes
use the same fingerprint length; (2) all generalized dedu-
plication nodes use the same transformation configuration;
and (3) all deduplication node use the same chunk length, to
avoid the need for transmitting the fingerprint/chunk length
and the transformation configuration in the network.

1From 01.07.2012 until 31.01.2013.

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

Table 2: Number of bases for real-world data sets.

Water meter measurements Electricity consumption & occupancy
Bases # Bases
GD GD
GD . GD GD . GD
ng | # Chunks DD . Hamming 5 | # Chunks DD . Hamming 2
Hamming 1 RS Hamming 1 RS
offset rem. offset rem.
32| 8,062,520 | 535,959 516,455 488,738 | 485,714 | 20,909,713 | 9,971,873 | 9,933,732 9,407,828 | 9,898,888
64 | 4,031,260 | 539,377 537,689 499,233 | 537,010 | 10,454,862 | 5,437,915 | 5,428,332 5,246,798 | 5,425,244
128 | 2,015,630 | 335,678 334,244 269,619 | 334,877 | 5,227,436 | 2,920,964 | 2,916,975 2,852,228 | 2,918,966
256 | 1,007,815 | 260,276 259,720 168,140 | 260,534%| 2,613,721 | 1,560,935 | 1,558,771 1,532,526 | 1,557,2943
512 503,908 | 153,245 153,118 121,073 - 1,306,867 832,608 831,308 821,580 -
1024 251,954 | 90,636 90,586 67,188 = 653,533 446,218 445,060 442,070 =
! With preprocessing step of offset removal. 2 RSys6(np,ng —2). 3 RSy56(255, 253).
Table 3: Message types for the HERMES protocol and re- Source Intermediate Sink

lation with the node classes.

Message Type basic dedup. gen. dedup.
Response v 4 v
Data 4 2y &
Deduplication X v X
Deduplication data X v X
Gen. deduplication X X v
Gen. deduplication data X X 4

A distributed deployment of HERMES allows for different
types of nodes: source, sink and intermediate nodes.

Source nodes inject data into the network, while sink
nodes only ingest data without further retransmissions. An
intermediate node is any node between a sink and source.

Each node handles messages according to its own (unique)
class: basic, deduplication and generalized deduplication.

Basic nodes serve as a pass-through, without any data
processing. Deduplication nodes perform DD on the node.
Finally, a generalized deduplication node performs GD lo-
cally. Depending on its type, a node handles different kinds of
messages, as shown in Table 3. All nodes can send response
messages, used to communicate success, acknowledgement
or failures in the system to the previous node in the commu-
nication chain. Basic nodes acting as source can only send
raw data using the data message type.

A deduplication node can send two types of messages,
(1) a deduplication message with the chunk finger, and (2) a
deduplication data message, which piggyback the fingerprint
and the chunk itself, when the latter is missing in the system.

A similar pattern is used for generalised deduplication
nodes. Initially, a first deduplication message is send, with
the fingerprint of a basis and the deviation.

If the basis is missing in the system, the node sends a
deduplication data message, including the fingerprint and the
chunk. If a deduplication or generalized deduplication node

Figure 3: Data transmission from a basic source
through a generalised deduplication intermediate to
a generalised deduplication sink.

receives a data message, they process the message payload
using DD or GD, according to their node’s type.

To invoke the transmission of (generalised) deduplication
data message, a node receiving the message must respond
with a new fingerprint message as this tells the sending node
that it is a basis fingerprint that has not been seen before.

Figure 3 illustrates the transmission of messages between
HERMES nodes with a simple 3-nodes topology. The interme-
diate and sink nodes use generalized deduplication.

The source sends a data message (m,) to the intermedi-
ate node. Upon reception, the intermediate replies with an
acknowledgement (mgc).

The intermediate node, using GD on the message payload,
will construct a generalized deduplication message (mgyq)
and send it to the sink node. The sink node detects a new
fingerprint and responds with the corresponding response
message (myr). In turn, this triggers the intermediate node
to send a generalized deduplication data message (mgqq), to
which the sink will respond with an m.

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

Apart from the computational resources needed to operate
GD or DD, nodes must maintain locally a record of seen
fingerprints. Here we keep a continuously growing record
of fingerprints in memory. The memory cost for a single
chunk/basis record is |fingerprint| in bytes plus 8 bytes
used for data referencing; we call this cost m. From this, the
total number of chunks/bases we can represent in n MB of

memory can be computed as "'rflzo . Using CRC-32 hashes as
fingerprints this gives us that in 256 MB of memory, we can
represent 22,369,621 fingerprints.

Security considerations.

An attacker can inject (generalised) deduplication data
messages where the fingerprint f; is not correct for the basis
or chunk in the message, potentially corrupting the data in
the system. If such as message is the first for the given f;
the data in system will be corrupt. A possible mitigation
strategy is to use validation checks, where a fingerprint f
is generated for the chunk or basis and the validation will
be: if fi = f] then f; is valid else f; is invalid. If the result
is invalid the message should be rejected and the sender
of the message could be excluded from the network. Notice
however that this attack can be launched also against systems
using classical deduplication techniques.

Implementation details. The current implementation
for Hermes protocol supports GD-vanilla and GD-reduced.
We are considering GD-vanilla throughout this paper unless
otherwise stated. The HERMES protocol implementation re-
quires support for C++ 2017, is therefore linked against GNU
C++ library 6.0.25, and consists of 2394 LOC.

5 EVALUATION

This section presents our experimental evaluation of the HEr-
MES prototype. Given the intricacies of obtaining accurate
power measurements on IoT devices, we begin by describ-
ing our experimental and measurement setup. Finally we
present our results based on micro-benchmarks and macro-
benchmarks on synthetic datasets.

5.1 Testbed

Our experiments are deployed over a switched cluster of
16 Raspberry Pi 4B? featuring a Raspberry Pi PoE-HAT® to
enable 802.3af Power-over-Ethernet [21].

We deploy a simple network topology where Raspberry
Pis are used as source nodes and are connected to a Dell Pow-
erEdge R330 server acting as sink node. The Raspberry Pis
are powered using PoE by an Ubiquiti Networks UniFi USW-
48P-750 switch and are connected over a Gigabit Ethernet
link.

Zhttps://www.raspberrypi.org/products/raspberry-pi-4-model-b/
3https://www.raspberrypi.org/products/poe-hat/

Each Raspberry Pi is running the beta bootloader 2019-
12-03 and Raspian Buster Lite (2020-02-13) with a Linux
(v4.19.97) which are installed on a 32 GiB SanDisk Extreme
microSDXC UHS-I card.

The clocks of all machines used during the benchmarks
are synchronized using NTP in order to relate the power
consumption to the statistics of a benchmark run.

5.2 Power Measurements

The power measurements are gathered using two techniques.
PowerSpy2. The Alciom PowerSpy2* is a power analyzer
connected between a power plug and a power adapter. It
supports two modes: (1) data logging, and (2) real-time.

The former produces periodic measurements that are stored
in the internal persistent memory and can later be fetched
and analyzed. The latter allows the device to stream periodic
measurements over Bluetooth v2.

We configure the PowerSpy in real-time mode to record
measurements at a frequency of 50 Hz (i.e., one new sample
is produced every 0.02 s.

UniFi Switch.

The UniFi switch provides an access protected API reach-
able over alocal telnet connection that can be used to query
the PoE status of its ports. We exploit this option to periodi-
cally gather PoE measurements on the utilized ports using
an ad-hoc expect script®.

With this method our script is able to record PoE infor-
mation at a frequency of about 8 Hz. We point out that the
switch can sometimes detect the PoE state wrongly, i.e., a
device is connected but detected by the switch as an open
circuit or unknown state. In these situations the switch does
not provide any PoE status information and the power con-
sumption is not measured.

Reduction of interferences. During the execution of
the micro-benchmark the Raspberry Pi is attached to the
PowerSpy. With an auxiliary machine we connect simultane-
ously to the Raspberry Pi for monitoring and to the PowerSpy
for recording power measurements. We interface with the
Raspberry Pi via a serial channel (USB-to-UART). We em-
ploy UART in order to keep the static power consumption
of the Raspberry Pi as low as possible and to avoid power
interference from other peripherals. Hence, no peripherals
were attached to the Raspberry Pi except for Ethernet and
the UART GPIO pins.

Additionally, several system services (e.g., cron, ssh, timesyncd,

etc.) are disabled for the micro-benchmark to avoid interfer-
ence from other processes during the measurement.

*https://www.alciom.com/en/our-trades/products/powerspy2/
Shttps://core.tcl-lang.org/expect/index

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/poe-hat/
https://www.alciom.com/en/our-trades/products/powerspy2/
https://core.tcl-lang.org/expect/index

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

4

6 10° 10
GD
s 10°
z 10%F
°
= o o
Saf < v =
2 [o
@ 5 N 102
= S 3 s
N %) i
~
=
> 10' |
52 102 F
L] N
2 4 6 8 10 12 14 16 10° 10" 10° 10° 10* 10° 10° 10 10° 10° 10* 10°
Parity bits [bit] Uniaue chunk repetitions Number of uniaue chunks per basis
(a) Chunk to basis ratio (b) Repetitive chunks (c) Unique chunks per basis
Figure 4: Comparison of DD and GD.
14 _—T — T T 10° 40 7
=
Ll ey ey - ey I
30t aon
tr 2o v z
= I = z -
= c
2 c)
3o.a 5 -
3 @ 10} g
o6 =]
= £ o
’ : 1 :
o
o4r 3 0wl oo Ao F ol
10 UH == 10
0 npmommnm | |. Lmil]
1

8 16 32 64 128 256 512 102420484096 1 2 4
Chunk size [B]

1 2 4

(a) Energy per bit

8 16 32 64 128 256 512 102420484096
Chunk size [B]

(b) Compression ratio

2 4 8 16 32 64 128 256 512 102420484096
Chunk size [B]

(c) Throughput

Figure 5: Micro-benchmark on Raspberry Pi 4B.

5.3 Classic vs. Generalized Deduplication

First we demonstrate the impact a data set with certain prop-
erties can have on classic and generalized deduplication.
More specifically we analyze the impact of repetitive chunks
and the number of chunks mapping to a basis.

We will show our best case scenario using synthetic data
sets. Let us consider Hamming codes as the transformation
function. Then, all chunks which are 1 bit away from an
error-free codeword (our basis) will be mapped to the same
basis. Given this fact, we generate data sets for each chunk
length of ng = [%1 individually, as follows. First, we gener-
ate random error-free codewords. Then, for each error-free
codeword, we generate chunks which are 1 bit away from it.

Our generator for the synthetic data set can be parame-
terized to create a specific number of (unique) bases and to
derive a specific number of (unique) chunks. A basis can be
easily generated by selecting a random number of length
k bits. The error-free codeword is made by encoding the
basis. Chunks can then be derived by flipping a random bit
and testing that the newly created chunk maps to the same
basis.

With generalized deduplication data chunks are mapped to
basis. The ratio of chunks to basis for consecutive numbers
of parity bits is depicted in Figure 4a and given in nepes.
As the number of parity bits increases (and therefore also
the chunk size), so do the number of chunks mapping to a
basis. Consequently the compression ratio increases with
the number of parity bits.

Figure 6 compares the compression ratio of our technique
based on GD with two standard compression algorithms,
DEFLATE and LZW, considering the synthetic data sets. We
consider CRC32 to generate the fingerprints. We apply all
the schemes on each chunk individually. Figure 6 shows
neither DEFLATE nor LZW compress the data (compression
ratio is lower than 1). For larger chunk lengths, DD slightly
compress the data. That is while GD compresses the data
significantly after the chunk length of 8 B. GD provides a
compression ratio of 334 and 668 for chunk lengths of 2048
and 4096 bytes, respectively. Compression ratio for DD is
only 1.58 for chunk lengths of 2048 and 4096 bytes.

Data sets with a lot of repetitive chunks are favored by
DD over GD as can be seen for multiple repetitions of the
full set of 2 B chunks in Figure 4b. Although GD is capable of

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

103

V- LzZw
-@- DEFLATE

1074 - 6D

== Original size

Compression ratio

100 4= m

1071 4

21 23 25 27 29 ol
Chunk length (B)

Figure 6: Compression ratio under different schemes us-
ing synthetic data sets.

mapping multiple chunks to a basis compared to DD, GD also
has to store the deviation of a chunk to its basis. The infor-
mation held by the deviation results in an additional storage
requirement for GD and is thus an unfavored characteristic
of a data set.

The last property we mention is the number of unique
chunks per basis. The number of unique chunks mapping to
a basis increases with the chunk size as previously shown
in Figure 4a. In Figure 4c we demonstrate the different stor-
age requirements for DD and GD for a data set of a little more
than a million chunks. By gradually increasing the number
of unique chunks, we see that GD can map more chunks to
a basis and achieves a better compression ratio.

5.4 Micro-benchmark

Our set of micro-benchmarks are shown in Figure 5, using
the previously described synthetic datasets. We show the
different trade-offs in terms of chunk-size, energy per bit,
compression ratio and throughput. Results show that energy
per bit performance of GD is comparable to DD even con-
sidering the added transformation computation. For chunk
sizes of 8 bytes and above, GD not only compresses the data,
but it does so significantly better than DD. For chunks of 64
bytes, GD requires an order of magnitude fewer bits than
for DD to represent the data. For chunks of 4096 bytes, GD
outperforms DD by three orders of magnitude. This is due to
the large number of chunks matched to each basis. Finally,
the achieved throughput maxes out at 30+ Mbps for a single
thread. We have considered all the operations to measure
this throughput. These operations include reading the data
from memory, applying the compression algorithm and look-
ing for fingerprints in memory to check the availability of
the fingerprint for DD and GD. In a real world scenario, a
source node only needs to apply the compression algorithm
and it is the sink node which looks for the fingerprint. Thus,
we expect a higher throughput in real deployments. Future
work will consider using NEON instruction sets in ARM to
speed up processing.

5.5 Macro-benchmark

In the macro-benchmark, we present the combined statistics
for the Raspberry Pi cluster. We evaluate three different trans-
mission methods: raw, DD and GD. By raw, we designate
sending raw data chunks. Although our prototype implemen-
tation has multi-threading capability, we decided to use only
two threads to be comparable to the micro-benchmark. We
use one thread to handle the networking and a second thread
to do the necessary transformations and look-ups. Figure 7a
shows that for smaller chunks the energy is higher. This is
due to the inaccuracy of the measurement done with the
UniFi switch. The switch has a much lower time resolution
to update the PoE status statistics, which we observed to be
around 4 to 5 seconds. With large chunk sizes (larger than
typical IoT ones), the energy also increases for GD. What is
most important, is that the network traffic generated for the
different methods in Figure 7b is reduced significantly with
GD. As seen in the micro-benchmark, the macro-benchmark
also shows an optimal throughput between 4 and 12 parity
bits. Approaching 1024 KiB, we recognize a significant drop
in throughput for GD. We assume this is due to hardware
limitations, like exceeding cache limits.

6 RELATED WORK

A large number of lossy and lossless compression techniques
have been proposed in the literature to reduce the data
transmission by source nodes. Lossy strategies for compress-
ing across multiple data sources, such as compressive sens-
ing [7, 17, 20], error correcting codes to achieve distributed
source coding [12, 14, 28], usually provide high data com-
pression at the cost of introducing some distortion (losses,
errors) at the time of reconstruction of the data. However, for
many IoT applications, such as smart metering or industrial
sensing, errors are not acceptable. These applications usually
rely on a combination of standard compression algorithms
applied to a packet-by-packet basis and delta compression
within the same packet. Applying standard compressors to
small data limits their compression potential. Given the lim-
ited computing and memory capabilities of most IoT devices,
these devices rely on simpler algorithms (e.g., LZW) rather
than more advanced but more computationally and memory
intensive ones (e.g., DEFLATE [11], 7z [26]).

Deduplication (DD) is used widely to reduce both storage
and transmission cost [27]. Applying DD at the sink node
reduces the storage cost by removing equal chunks or files,
an approach usually called target-based [16]. Instead, when
applied at the source node, i.e., source-based approach [16],
DD reduces simultaneously both storage and transmission
cost.

Cross-user deduplication helps to reduce the storage cost
further by deduplicating data over all the users’ data. It has

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

[raw Eraw
DD CIbD
[mmfes) n Cled

Energy [nJ/bit]
5

Bytes sent [MiB]
5

.
5]
"
5}

©
)

[UORURERRAERL - wudld

[raw
DD
500 |[CJGD

w IS
S <]
S 5}

Throughput [Mbit/s]
N
S
8

1 2 4 8 16 32 64 128 256 512 102420484096 1 2 4 8 16 32 64 128 256 512 102420484096 1 2 4 8 16 32 64 128 256 512 102420484096

Chunk size [B]

(a) Energy per bit

Chunk size [B]

(b) Network traffic generated

Chunk size [B]

(c) Throughput

Figure 7: Macro-benchmark on Raspberry Pi 4B cluster.

serious security implications due to deterministic status re-
sponse to the existence of a chunk [16]. To solve this issue,
a wide range of approaches have been proposed [15, 27, 38].
However, all these solution generally suffer from high com-
putational complexity and/or negatively impact the compres-
sion rate.

In contrast to DD, source-based, cross-user GD does not
provide a deterministic response regarding availability of a
chunk. GD expands a chunk into a basis and a deviation to
increase the hit probability into previously received bases.
For example, using Hamming as the transformation function
for GD and for chunk length of 1 KB, there exist 8192 differ-
ent chunks mapped to each basis. The number of possible
chunks increases when considering Reed-Solomon as the
transformation function.

7 CONCLUSION AND FUTURE WORK

This work proposed and evaluated a new protocol (HERMES)
for data compression across multiple sources using the emerg-
ing concept of generalized deduplication. GD generalizes the
concept of deduplication by introducing a systematic, trans-
formation stage that allows us to cluster similar data without
the need to compare it to a pool of values (as in Delta encod-
ing) or using similarity fingerprints.

We have shown that HERMEs allows the system to reach
significant benefits in compression of the data and reduc-
ing data transmission without loss. We achieve this with a
small added computational overhead as shown in deploy-
ments with Raspberry Pi model 4B. This evaluation was
carried out considering different data chunk sizes and trans-
formation functions for GD. For small data packets, our eval-
uations show that GD significantly outperforms standard
compression approaches used in IoT scenarios, e.g., LZW,
and even more computationally intensive approaches such
as DEFLATE. Additionally, we demonstrated that HERMES

under ideal conditions can provide orders of magnitude bet-
ter compression than DD and even LZW/DEFLATE (on a
packet by packet basis) given GD’s ability to automatically
identify similar data. Finally, we contributed with new and
efficient strategies of GD that advance the theoretical work
in [37] to address practical considerations and reduce some
overheads in GD compared to DD.

Future work will focus on developing transformations
that are more data-aware (e.g., dynamically choosing trans-
formations) to enhance overall compression or system per-
formance. We will also focus on carrying out large-scale
deployments of HERMES, potentially considering more com-
putationally limited devices, e.g., Arduinos. Finally, we will
enhance HERMES to allow its operation over unreliable trans-
port protocols, e.g., UDP, expanding its capability ranging
from packet loss correction and management, even consider-
ing a joint design with forward error correction techniques
and network coding [36], to congestion control.

ACKNOWLEDGEMENTS

This work was partially financed by the SCALE-IoT Project
(Grant No. 7026-00042B) granted by the Independent Re-
search Fund Denmark, by the Aarhus Universitets Forskn-
ingsfond (AUFF) Starting Grant Project AUFF- 2017-FLS-7-1,
and Aarhus University’s DIGIT Centre.

The research leading to these results has also received
funding from the European Union’s Horizon 2020 research
and innovation programme under the LEGaTO Project (legato-
project.eu), grant agreement No 780681.

REFERENCES

[1] 2013. Indian Dataset for Ambient Water and Energy. http://iawe.
github.io/ Accessed: 2020-02-03.

[2] 2016. ECO data set (Electricity Consumption & Occupancy).
http://rossa-prod-ap21.ethz.ch/delivery/DeliveryManagerServlet?
dps_pid=IE594964 Accessed: 2020-01-20.

[3] Farzad Amirjavid, Petros Spachos, Liang Song, and Konstantinos N
Plataniotis. 2016. Network coding in internet of things. In 2016 IEEE

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://legato-project.eu/
https://legato-project.eu/
http://iawe.github.io/
http://iawe.github.io/
http://rossa-prod-ap21.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964
http://rossa-prod-ap21.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964

(11

[12

(13

(14

[15

[16

(17

[18

[19

[20

=

=

—

—

[t

[l

=

]

—

]

—

[t

CC-BY 4.0. This is the author’s preprint version of the camera-ready article. A shorter version of this paper is published in the
proceedings of 14th ACM International Conference on Distributed and Event-Based Systems (DEBS 2020),
https://doi.org/10.1145/3401025.3404098.

21st International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD). IEEE, 140-145.
Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B Srivastava.
2013. It’s Different: Insights into home energy consumption in India.
In Proceedings of the 5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings. 1-8.

Christian Beckel, Wilhelm Kleiminger, Romano Cicchetti, Thorsten
Staake, and Silvia Santini. 2014. The ECO data set and the performance
of non-intrusive load monitoring algorithms. In Proceedings of the 1st
ACM conference on embedded systems for energy-efficient buildings.
80-89.

Philip A Catherwood, David Steele, Mike Little, Stephen Mccomb, and
James McLaughlin. 2018. A community-based IoT personalized wire-
less healthcare solution trial. IEEE journal of translational engineering
in health and medicine 6 (2018), 1-13.

J. Cheng, H. Jiang, X. Ma, L. Liu, L. Qian, C. Tian, and W. Liu. 2010.
Efficient Data Collection with Sampling in WSNs: Making Use of Ma-
trix Completion Techniques. In 2010 IEEE Global Telecommunications
Conference GLOBECOM 2010. 1-5.

VNI Cisco. 2018. Cisco Visual Networking Index: Forecast and trends,
2017-2022. White Paper 1 (2018).

Louis Columbus. 2018. Roundup of Internet of Things: Forecasts and
Market Estimates.

John Rydning David Reinsel, John Gantz. 2018. The
Digitization of the World From Edge to Core. https:
/Iwww.seagate.com/files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf

L. Peter Deutsch. 1996. DEFLATE Compressed Data Format Specification
version 1.3. RFC 1951. RFC Editor. http://www.rfc-editor.org/rfc/
rfc1951.txt http://www.rfc-editor.org/rfc/rfc1951.txt.

A. W. Eckford and Wei Yu. 2005. Density evolution for the simultaneous
decoding of LDPC-based slepian-wolf source codes. In Proceedings.
International Symposium on Information Theory, 2005. ISIT 2005. 1401—
1405.

Olakunle Elijah, Tharek Abdul Rahman, Igbafe Orikumhi, Chee Yen
Leow, and MHD Nour Hindia. 2018. An overview of Internet of Things
(IoT) and data analytics in agriculture: Benefits and challenges. IEEE
Internet of Things Journal 5, 5 (2018), 3758-3773.

Ahmed Elzanaty, Andrea Giorgetti, and Marco Chiani. 2019. Lossy
Compression of Noisy Sparse Sources Based on Syndrome Encoding.
IEEE Transactions on Communications 67, 10 (2019), 7073-7087.

Yuan Gao, Hequn Xian, and Aimin Yu. 2020. Secure data deduplication
for Internet-of-things sensor networks based on threshold dynamic
adjustment. International Journal of Distributed Sensor Networks 16, 3
(2020), 1550147720911003.

Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. 2010.
Side channels in cloud services: Deduplication in cloud storage. IEEE
Security & Privacy 8, 6 (2010), 40-47.

J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak. 2008. Compressed
Sensing for Networked Data. IEEE Signal Processing Magazine 25, 2
(2008), 92-101.

Kien A Hua, Ning Jiang, Jason Kuhns, Vaithiyanathan Sundaram, and
Cliff Zou. 2015. Redundancy control through traffic deduplication. In
2015 IEEE Conference on Computer Communications (INFOCOM). IEEE,
10-18.

Abdallah Jarwan, Ayman Sabbah, and Mohamed Ibnkahla. 2019. Data
transmission reduction schemes in WSNs for efficient IoT systems.
IEEE Journal on Selected Areas in Communications 37, 6 (2019), 1307-
1324.

Jia Meng, Husheng Li, and Zhu Han. 2009. Sparse event detection
in wireless sensor networks using compressive sensing. In 2009 43rd
Annual Conference on Information Sciences and Systems. 181-185.

[21]

[22]

Galit Mendelson. 2004. All you need to know about Power over Eth-
ernet (PoE) and the IEEE 802.3 af Standard. Internet Citation,[Online]
Fun (2004).

Dutch T Meyer and William J Bolosky. 2012. A study of practical
deduplication. ACM Transactions on Storage (TOS) 7, 4 (2012), 14.

[23] Jorge Castifieira Moreira and Patrick Guy Farrell. 2006. Essentials of

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

error-control coding. John Wiley & Sons.

Rosario Morello, Claudio De Capua, Gaetano Fulco, and Subhas Chan-
dra Mukhopadhyay. 2017. A smart power meter to monitor energy
flow in smart grids: The role of advanced sensing and IoT in the electric
grid of the future. IEEE Sensors Journal 17, 23 (2017), 7828-7837.
Lars Nielsen, Rasmus Vestergaard, Niloofar Yazdani, Prasad Talasila,
Daniel E Lucani, and Marton Sipos. 2019. Alexandria: A Proof-of-
concept Implementation and Evaluation of Generalised Data Dedupli-
cation. In Globecom. IEEE Conference and Exhibition.

Igor Pavlov. [n.d.]. 7-Zip. https://www.7-zip.org/. visited: 06/09-2019.
Zahra Pooranian, Kang-Cheng Chen, Chia-Mu Yu, and Mauro Conti.
2018. RARE: Defeating side channels based on data-deduplication in
cloud storage. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 444-449.

S. S. Pradhan and K. Ramchandran. 2003. Distributed source coding
using syndromes (DISCUS): design and construction. IEEE Transactions
on Information Theory 49, 3 (2003), 626—643.

Michael Oser Rabin. 1981. Fingerprinting by random polynomials.
Technical report (1981).

Shruti Sanadhya, Raghupathy Sivakumar, Kyu-Han Kim, Paul Cong-
don, Sriram Lakshmanan, and Jatinder Pal Singh. 2012. Asymmetric
caching: improved network deduplication for mobile devices. In Pro-
ceedings of the 18th annual international conference on Mobile computing
and networking. ACM, 161-172.

Neil T Spring and David Wetherall. 2000. A protocol-independent
technique for eliminating redundant network traffic. ACM SIGCOMM
Computer Communication Review 30, 4 (2000), 87-95.

Rasmus Vestergaard, Daniel E Lucani, and Qi Zhang. 2019. Generalized
Deduplication: Lossless Compression for Large Amounts of Small IoT
Data. In European Wireless Conference. IEEE.

Welch. 1984. A Technique for High-Performance Data Compression.
Computer 17, 6 (1984), 8-19.

Terry A. Welch. 1984. A technique for high-performance data com-
pression. Computer 6 (1984), 8-19.

Stephen B Wicker and Vijay K Bhargava. 1999. Reed-Solomon codes
and their applications. John Wiley & Sons.

Niloofar Yazdani and Daniel E Lucani. 2019. Revolving Codes: High
Performance and Low Overhead Network Coding. In 2019 IEEE 2nd
Wireless Africa Conference (WAC). IEEE, 1-5.

Niloofar Yazdani and Daniel Enrique Lucani Rétter. 2019. Protocols to
Reduce CPS Sensor Traffic using Smart Indexing and Edge Computing
Support. In Jeee Globecom 2019 Workshop on Edge Computing for Cyber
Physical Systems. IEEE.

Yuan Zhang, Yunlong Mao, Minze Xu, Fengyuan Xu, and Sheng Zhong.
2019. Towards Thwarting Template Side-channel Attacks in Secure
Cloud Deduplications. IEEE Transactions on Dependable and Secure
Computing (2019).

Bing Zhou and Jiangtao Wen. 2014. Efficient file communication via
deduplication over networks with manifest feedback. IEEE Communi-
cations Letters 18, 1 (2014), 94-97.

J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (May
1977), 337-343. https://doi.org/10.1109/TIT.1977.1055714

J. Ziv and A. Lempel. 1978. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory 24, 5
(1978), 530-536.

https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://www.rfc-editor.org/rfc/rfc1951.txt
http://www.rfc-editor.org/rfc/rfc1951.txt
http://www.rfc-editor.org/rfc/rfc1951.txt
https://www.7-zip.org/
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	2 Background
	2.1 Fingerprints and data deduplication
	2.2 Generalized deduplication
	2.3 GD for efficient data transmission
	2.4 Transformation functions
	2.5 Preprocessing

	3 Communication Mechanisms
	3.1 Transmission cost
	3.2 Compression ratio
	3.3 Transformation function effect

	4 Hermes Architecture
	5 Evaluation
	5.1 Testbed
	5.2 Power Measurements
	5.3 Classic vs. Generalized Deduplication
	5.4 Micro-benchmark
	5.5 Macro-benchmark

	6 Related Work
	7 Conclusion and Future Work
	References

