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The use of computers in design is substantially different today from what it was only 30 years 
ago. And light-years ahead of how things were designed before computers entered the scene 
only about 60 years ago. This article discusses the use of computers, more specifically 
computational design, as a useful tool for designers (computational design here refers to the 
application of computational tools to design practice). 

Design practice often involves long hours devoted to repetitive tasks such as research, testing, 
and drawing many options in order to work out the best solution for a given problem. This is 
particularly the case for architecture and construction. For example, if designers working on a 
new residential building want to find out the optimal slant for each façade panel to maximize 
solar gain (amount of sunlight entering through each window), they will need to test several 
strategies, evaluate them, create models, and simulate results in order to compare the efficiency 
of each option. Once the designers have found the right strategy, they will still need to revisit 
each individual panel to evaluate the best angle for performing the task. In this way, a single 
design job could take weeks of testing, adjustments, meetings with consultants, and could easily 
lead to frustration with the complexity of the entire process. 

For centuries designers accepted this repetitive and often vexing process, largely because they 
had no choice. It was either this or not design anything of any interest. For example, Renaissance 
architects created multiple physical models/maquettes to convince their clients of the aesthetic 
qualities of their projects. It is therefore not surprising that the automation and optimization of 
tasks appeals to designers and others involved in the design process. This is particularly evident 
in the case of computational design, whereby computers and software are used as a fundamental 
part of the process. 

 

Evolution of Computational Tools 

During the 1990s and 2000s, designers started to recognize the benefits of using computers to 
simplify laborious or complex tasks, to save time and resources, and to acquire a higher level of 
precision and control over the design process. Notably, architecture firm Gehry and Partners 
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made early use of the parametric software Catia to assist the design and fabrication of the 
Guggenheim Museum in Bilbao, Spain. Around the same time, in 1993, Jon Hirschtick developed 
Solidworks a CAD (computer-aided design) software that is now used by millions of designers and 
engineers in product design. The use of CAD, whereby designers use software to replicate hand-
drafting more efficiently and accurately, quickly became popular. 

After this initial “digital phase,” which focused largely on the replication of human tasks by 
computers, a new way of using computers for design emerged. Recently, a new generation of 
designers has started including the use of algorithms and computational logic in their work. This 
approach necessitates a much greater understanding of how computers work and involves the 
use of computational thinking as a fundamental part of the design process. This new digital age 
in design includes an awareness of algorithmic logic, datasets, and statistic models. In this 
respect, as design becomes increasingly data-driven, designers find themselves learning more 
about this data and developing more effective ways of handling them. The technique of form-
finding is a clear example of such an approach, where the shape of a building is not created by 
the designer but by a combination of algorithms. The designers develop a series of tasks for the 
computer to perform, they set certain conditions, and then they use computers to run a series of 
simulations/tests that will eventually return the desired shape. Such approaches have been 
applied to many fields in design including jewelry, product, and furniture design (Philippe Morel’s 
algorithmic chair is a good example of this); fashion (e.g. 3-D printed garments); graphic design 
(using software like Casey Reas and Ben Fry’s Processing); as well as architecture and 
construction.    

In general terms, design practice is a vast and complex discipline and it would not be possible to 
automate or optimize all aspects of it. For example, aspects pertaining to intuition, synthesis, and 
creativity within the design process are hardwired into human nature and cannot be easily 
replicated by algorithms. However, areas that involve the use of data could be processed by 
computers and automated in order to augment the design practice. In this sense, computational 
design should not be considered a substitute for design in general, where automation completely 
takes over the creative process, it should rather be considered as an additional tool for designers 
that can, and indeed should, be used to simplify, improve, and extend their work. Through 
computation, designers can perform quicker, more accurate, and more comprehensive tasks to 
test concepts and ideas.       

  

Machine Learning  

One of the most popular and increasingly used computational approaches to design is machine 
learning (ML). This is where designers and data scientists work together to generate workflows—
a combined series of different steps in a process that result in optimized shapes, spatial 
configurations, and more performant objects. It is not difficult to imagine how designers 
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frustrated with the angle calculations of multiple facade panels may welcome ML as a very useful 
tool.      

There are three main types of applications where ML is proving particularly beneficial within 
design processes, specifically in the architecture, engineering, and construction (AEC) industry.  

The first of these are analytical tools, where designers use ML techniques to simulate and monitor 
possible design scenarios. This includes the analysis of existing buildings and public spaces, as 
well as hypothetical studies, where different factors are tested and building performances 
evaluated. A recent example of this approach is the MIT SenseAble City Lab’s AI Station project 
which analyzed Wi-Fi signals to understand how passengers move through two train stations in 
Paris.1 They used a multi-layered analytical process called deep convolutional neural network 
(DCNN) to evaluate indoor legibility in the Gare de Lyon and Gare St. Lazare. Indoor legibility is 
the extent to which a space is organized in a clear and coherent pattern and can be recognized 
by users. Researchers in this project used photographic images as an input in order to observe 
people’s behaviors and space utilization, as well as visual portions of the spaces.   

The second type are design tools that have been developed to support designers in their projects 
and research, mainly running on open platforms. These include Dynamo (an open-source 
graphical programming tool), Autodesk Revit (one of the main pieces of building information 
modeling software used widely by architects, mechanical engineers, and contractors), and 
McNeel Rhinoceros’ Grasshopper (a visual programming language and 3-D modeling software). 
This group includes applications like Dodo, Owl, or Lunchbox where traditional parametric 3-D 
modeling programs can be augmented by libraries that add machine learning capabilities (e.g. 
artificial neural network, nonlinear regression, K-Means clustering, etc.) to be used in conjunction 
with spatial data modeling.  

 

 
1 The project is explained in detail here: https://bit.ly/2TBtmr6. 

https://www.food4rhino.com/app/dodo
https://www.food4rhino.com/app/owl
https://www.food4rhino.com/app/lunchbox
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Figure 1. Example of Rhino/Grasshopper interface (Lunchbox library). The example shows a non-linear regression 
applied to a random series of points. The algorithm predicts the Y-value based on the X-value from a training set. 
(Image by author.)   

 

The third group includes management and information tools and can be considered as an 
extended version of more traditional building information Modeling (BIM) systems. These tools 
are generally referred as part of “City Information Systems” (CIM) and are characterized by a 
wider application of ML to urban policy and management. New ML-led approaches are being 
developed across the private and public sectors to combine existing urban information (property, 
location data, and ordinance survey.) with information generated by the actors involved in the 
planning process. A particularly successful example is PlanTech, an initiative developed and 
supported by Connected Places Catapult’s digital planning group. The aim of this project is to 
foster new ways of managing the public digital infrastructure of planning through increasingly 
more interconnected databases being used by the different actors involved in the planning 
process, and more automated and optimized services for final users.  

 

ML and Optimization for Design: A case study  

One particular example may offer more clarity on how ML approaches are being used within the 
AEC industry. In a special issue of the International Journal of Architectural Computing (IJAC), 
dedicated to the topic of “Intelligent and Informed,” Tarabishy and colleagues presented a ML-
based model for effectively computing the spatial and visual connectivity potential of a given 
space. These are important metrics for developing interior layouts, but calculating them in real 
time can be difficult. 

https://www.plantechweek.com/
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Designers at the global architectural firm Foster + Partners have been working on finding new 
ways to analyze the spatial configuration of complex building projects (for example large office 
blocks) at the concept stage of the design process. Spatial configuration is considered in terms of 
traverse-ability (a measure of how easily users can walk through a space), proximity (the distance 
between various elements within a space), and visual connectivity (how easily users can see 
various key parts of the office). The original paper by Tarabishy et al. [1],upon which the following 
account is based, offers a very good example of how contemporary designers and data scientists 
can work together to optimize their design outcomes.   

Traditionally, Dijkstra’s algorithm has been used to calculate spatial connectivity and visibility 
graph analysis (VGA) to calculate visual connectivity. Dijkstra’s algorithm calculates the shortest 
paths between nodes in a graph, which may represent, for example, various elements in the 
office, and VGA analyzes what people can see in a given space. The problem with these 
techniques, especially when applied to architecture, is that their computation can be quite heavy 
and time-consuming making it difficult to provide a real-time response where it is most needed, 
for example in the sketch/concept design phase. In their study, the authors explore the use of 
ML-based techniques to generate surrogate models that substitute/augment these 
computationally heavy simulations using deep neural networks. These approaches achieve a 
significant reduction of the computation time along with an optimization of the resources 
required [1].  

In the paper, Tarabishy et al. begin by explaining how the spatial and visual connectivity for a 
given floor plan can be calculated using VGA and Dijkstra’s algorithm, a lengthy process requiring 
significant computational resources including hours/weeks of calculations depending on the 
complexity of the floor plan and the availability of resources.  

In order to prepare the spatial configuration of a building for simulation and analysis in this way, 
floor plans need to be reduced to a spatial grid (and parametrized) that includes the key features 
of the building such as walls, doors, passages, furniture, etc. In this particular study each cell is 
0.3 meters and is represented as a graph node for the purposes of analysis. Adjacency is 
calculated as immediate connection with neighboring cells for the spatial connectivity (excluding 
unavailable cells like those of walls), and with the rule of “two nodes are connected to each other 
if you can draw a line without crossing an obstacle for visual connectivity [1].” Tarabishy et al. 
used Dijkstra’s algorithm to calculate the shortest path within the graph (i.e. traversing the 
graph), while the values of the connectivities were calculated using an isovist graph model.   

Recognizing the computational intensity of these simulations, they set about trying to improve 
the calculation of spatial and visual connectivity by using machine learning. They considered this 
task in terms of a supervised learning problem, using floor plans as images, and approaching the 
problem in terms of image processing (rather than semantically, as before). This can be thought 
of as a mapping exercise between an image of a floor plan (used as an input, with key spatial 
features such as walls and furniture) and an image of an analyzed plan (used as an output). The 

https://journals.sagepub.com/doi/full/10.1177/1478077119894483
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output image has some of its pixels unchanged, namely those representing walls and furniture, 
and others with new values assigned according to the analysis. These values are represented 
using color gradients.  

Having re-expressed the problem in terms of image processing, Tarabishy et al. employed 
convolutional neural networks (CNNs) to optimize the analysis of spatial and visual connectivity. 
This method is supported by recent experiments indicating that these CNNs-based algorithms 
can perform better than others in object detection performance and image classification. In order 
to be useful for the ML experiment, Tarabishy et al. needed to prepare a set of training data in a 
suitable format. This data consisted of a large number of different floor plans in raster format 
and with enough resolution to be effectively processed without unnecessary noise. The 
researchers were then able to carry out a synthetic data generation using an automated system 
through a CAD framework (Rhinoceros and Grasshopper). This parametric model allowed them 
to generate 6,000 bidimensional plans with a variety of spatial configurations (walls and furniture 
arrangement) to be used for initial testing [1]. The generated images had a resolution of 100 x 
100 pixels (each pixel representing 1 meter of physical office space). This was considered a good 
compromise between the indication of key elements in the plan (expressed in binary terms, with 
black pixels representing walls and un-traversable elements and white pixel for walkable spaces 
in the grid) and a reasonable analysis time (which grows exponentially with the resolution). 

In order to improve the analysis of these plans with regards to boundaries and the position of 
users, they introduced a signed distance function (SDF) in all generated plans. This function is 
used to determine the distance of any point x from the closest other fixed point in a set Ω 
(indicating the office boundary walls). There is evidence to support that the inclusion of the SDF, 
along with a binary system of spatial representation, and in conjunction with CNNs can improve 
the computability of a model for real-time analyses.  

Once the dataset is ready for inputting there are a number of parameters that need to be 
considered and tested before starting the actual training. In this project, the learning rate and 
the choice of the algorithm were among the most important of these. Tarabishy et al. tested a 
number of approaches from the U-Net model, which is a type of CNN based on a fully 
convolutional network (FCN) that has been developed for biomedical image segmentation and 
that, compared with the original FCN, outputs more precise segmentations with a smaller 
number of training images including stochastic gradient descent (SGD), Adam, RMSProp, and 
Adadelta. Among all these optimizers, SGD and Adadelta performed better, with a rapid 
convergence (correctly mapping black pixels in input with black pixels in output). Eventually they 
selected Adadelta to run the experiment on the basis that it presented the fastest convergence 
rate i.e. correctly mapping black pixels in input with black pixels in output than the other options 
[1]. 

Machines learn by means of a loss function, a method of evaluating how well the algorithm 
models the given data. Tarabishy et al. opted to use a combination of the mean squared error 
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(MSE) and gradient difference loss (GDL) (to introduce a weighted sum) to define the loss function 
in this case. The latter approach is used in ML, as well as in neural networks, to estimate the 
performance of a certain model in the optimization process.  

In order to obtain the intended level of accuracy , the researchers introduced a generative 
adversarial networks (GAN) approach based upon two models competing with each other to 
complete a given task; one generating images that are accurate enough to convince the other 
model, and a discriminator assessing the outputted images. GAN then converts the loss function 
into a parameter that can be used to train the model. According to the researchers,  “This 
architecture avoids hand-engineering of the loss function and incentivizes the network to 
produce images which could be undistinguishable from reality” [1].  

They implemented GAN and carried out this training with the Pix2Pix architecture. This is where 
a network maps input to output images, while at the same time learning a loss function to train 
the mapping that allowed them to translate an input image to a specific output (instead of a 
random image), to become a conditional generative adversarial network (cGAN) [1].  

They found that [by using]  “the Pix2Pix architecture, inference (predicting the output given an 
input image) for one image is computed in 0.08 s and for the U-Net in 0.032 s for each of the 
analyses, compared to 15 s for running the actual spatial connectivity analysis and 128 s for 
running the visual connectivity.” The results clearly demonstrate how deep learning surrogate 
models (and more specifically convolutional neural networks) can significantly reduce the 
calculation time for an analysis of spatial configuration (0.032 seconds versus 15 and 128 seconds 
of the methods based on graphs and using VGA and the Dijkstra’s algorithm).      

 

Computational Design Today and Tomorrow  

This study is fairly representative of the work that progressively hybrid profiles of architects, 
planners, and data scientists are conducting under the umbrella of computational design. 
Increasingly, global architecture and urban design firms are establishing in-house research 
clusters to carry out advanced research in data analysis and visualization, building optimization, 
simulation, and building performance. Zaha Hadid’s Code, KPFui Urban Interface, and Foster + 
Partners’ Applied Research and Development group are all well-known examples of this trend. 
Research like the study conducted by Tarabishy and colleagues is increasingly relevant both for 
designers and, more importantly, for everyone involved in the planning, management, and use 
of cities and public spaces. Research into optimization within design is helping to produce quicker 
and more accurate simulations, tests, and prototypes in projects where each decision in the 
design phase corresponds to a large number of actions, costs, months, and years of work and 
resources. Simulations and analyses of buildings and cities are becoming increasingly more 
precise, leaving a smaller margin for error and human mistakes. Automation and optimization of 

http://www.zha-code-education.org/
https://ui.kpf.com/
https://www.fosterandpartners.com/expertise/research/
https://www.fosterandpartners.com/expertise/research/
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processes in design yield better outcomes (that are more performant, functional, and 
appreciated by users).  

There are many aspects of design that are not computational and still rely on human perception, 
taste, preference, and intuition. However, the systems for the computational aspects have come 
a long way and will allow for much more complex systems in the future. 

A number of challenges still exist for the years ahead. Such approaches are still generally sporadic 
and characteristic of only a small number of cutting-edge research groups within traditional 
design firms and universities. In other words, research in optimization, classification, sorting, and 
machine learning more generally are only possible today within those practices and institutions 
that can allow investment, in terms of time and resources, into computational research. This 
tends to occur on a centralized level (research centers, universities, and large design consultancy 
companies), and is much more difficult (and rare) for small-medium design practices, start-ups, 
and individuals to engage in. If this line of research is considered to be vital for the progress of 
design, we are still quite far from reaching a critical mass whereby computational design becomes 
a collective effort, shared by the entire global design community instead of being promoted by a 
few small groups of excellence. 

There may be a silver lining though. As technology progresses at a fast pace, the AEC industry is 
constantly pressured to embrace new ways for processes to be automated and optimized, 
projects to be planned and controlled with higher accuracy, and new data to be produced around 
each design process (from the exact quantity of certain building materials present in a 
construction site to metrics to monitor the user’s experience in cities). The next 5-10 years will 
be characterized by an increase in attention to computational design, optimization, and ML 
techniques to support design. Cities are likely to be increasingly governed by intelligent systems 
where ML will be a fundamental component, and young designers currently enrolled in a growing 
number of new university programs that include computational design in their curricula, will be 
able to contribute more significantly to urban projects. They will consider ML as one of many 
options in their design toolbox, therefore normalizing and extending the use of ML within the 
design process. This would allow the extension of computational design and ML to a larger 
platform, whereby the number of designers engaging in the use of (and proportionally in the 
research associated with) machine learning reach a critical mass extending to small groups and 
individuals as well.      

 

Acknowledgements 

The central part of this article is dedicated to the description of a project carried out by Sherif 
Tarabishy, Stamatios Psarras, Marcin Kosicki, and Martha Tsigkari, first published in 2019 in the 
International Journal of Architectural Computing (IJAC). I would like to thank Sherif Tarabishy at 

https://doi.org/10.1177/1478077119894483


Ubiquity, an ACM publication 
 May 2020
  

 
 

http://ubiquity.acm.org 10   2020 Copyright held by the Owner/Author.  
     Publication rights licensed to ACM. 
 

the Applied Research and Development group, Foster + Partners, London, UK for his support with 
this article. 

I would also like to thank the editors at Ubiquity Magazine for their useful comments and 
suggestions, in particular Alessio Malizia who supported me with fruitful discussions and good 
advice. Finally, I would like to thank Anouska Plaut for her help with the overall structure of the 
article.  

 

References 

[1] Tarabishy, S., Psarras, S., Kosicki, M., and Tsigkari, M. Deep learning surrogate models for 
spatial and visual connectivity. International Journal of Architectural Computing 18, 1 (2020). 

 

About the Author 

Silvio Carta is an ARB RIBA architect and Head of Art and Design at the University of 
Hertfordshire, where he is also Director of the Professional Doctorate in Design (DDES). His 
main fields of interest are digital design, data-driven design and computational design. Silvio is 
the head of the editorial board of Seoul-based C3 magazine and editor of 
Architecture_MPS  (UCL Press). He is currently working on the Machine Learning and the City 
Reader for Wiley. His last research monograph is “Big Data, Code and the Discrete City. Shaping 
Public Realms” (Routledge 2019). 

 

 

DOI: 10.1145/3401842 


