
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

PHIST: a Pipelined, Hybrid-parallel Iterative Solver Toolkit
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DOMINIK ERNST, GEORG HAGER, and GERHARD WELLEIN,

Erlangen Regional Computing Center (RRZE), University of Erlangen-Nuremberg

The increasing complexity of hardware and software environments in high-performance computing poses big challenges on the

development of sustainable and hardware-efficient numerical software. This paper addresses these challenges in the context of sparse

solvers. Existing solutions typically target sustainability, flexibility or performance, but rarely all of them.

Our new library PHIST provides implementations of solvers for sparse linear systems and eigenvalue problems. It is a productivity

platform for performance-aware developers of algorithms and application software with abstractions that do not obscure the view on

hardware-software interaction.

The PHIST software architecture and the PHIST development process were designed to overcome shortcomings of existing packages.

An interface layer for basic sparse linear algebra functionality that can be provided by multiple backends ensures sustainability, and

PHIST supports common techniques for improving scalability and performance of algorithms such as blocking and kernel fusion.

We showcase these concepts using the PHIST implementation of a block Jacobi-Davidson solver for non-Hermitian and generalized

eigenproblems. We study its performance on a multi-core CPU, a GPU and a large-scale many-core system. Furthermore, we show

how an existing implementation of a block Krylov-Schur method in the Trilinos package Anasazi can benefit from the performance

engineering techniques used in PHIST.
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1 INTRODUCTION

Iterative solvers for sparse linear systems and eigenvalue problems are common components of many simulations and

often take a significant portion of the overall runtime. There exist a variety of libraries providing basic linear algebra

data structures and operations (called kernels subsequently), and implementations of iterative solvers. We will list a

few efforts in order to motivate the development of a new library below. PHIST originated in an Exa-scale eigensolver

project
1
and therefore has a focus on linear eigenproblems up to now, but the close relation between the two classes

of linear algebra problems allows us to also address linear systems to some extent. Future work may lead more in

1
ESSEX, https://blogs.fau.de/essex/
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2 Thies, J. et al

the direction of linear solvers and preconditioners as well. An early version of PHIST and some related software was

described in [Thies et al. 2016], and algorithmic and performance details on our block Jacobi-Davidson implementation

can be found in [Röhrig-Zöllner et al. 2015].

1.1 Related software

The two most well-known open source software frameworks in the field of high performance numerical linear algebra

are PETSc [Balay et al. 2016] and Trilinos [Heroux et al. 2005]. PETSc provides MPI-only implementations of both the

kernel and solver level, focusing on linear systems. This effort is augmented by the SLEPc library [Hernandez et al.

2005], which provides eigensolvers based on PETSc. In this framework it is not straight-forward to integrate faster

kernel operations but one has to rely on the PETSc developers to do a good job.

Trilinos is organized in interoperable subpackages. Epetra and Tpetra [Baker and Heroux 2012] provide data

structures and kernels using MPI and ‘MPI+X’ parallelization, respectively, i.e. the aim of Tpetra is to support thread-

level parallelism, GPUs and future technology on the node level while employing MPI between the nodes of a cluster.

The other two Trilinos packages we should mention are called Anasazi [Baker et al. 2009] and Belos, the former provides

iterative solvers for linear eigenvalue problems, the latter Krylov methods for linear systems (with preconditioning

provided by other packages). Algorithms in these libraries are implemented using an abstraction layer that can be

provided by any linear algebra framework supporting ‘multi-vectors’, i.e. very tall and skinny matrices. We have adopted

a similar but more expressive abstraction layer in PHIST, and since the operations required by Belos and Anasazi are a

subset of ours, we can integrate their algorithm implementations in PHIST, as will be shown in Section 5.1.

In the field of sparse eigensolvers, two more libraries should be mentioned. The hugely popular ARpack [Lehoucq

et al. 1998] (and its MPI-parallel version PARpack) implements the implicitly restarted Arnoldi method. It uses a

reverse communication interface (RCI) so that the user does not need to be aware of the underlying data structures.

PRIMME [Stathopoulos and McCombs 2010] implements variants of the Davidson method (Jacobi-Davidson QMR,

Generalized Davidson+k) but is restricted to symmetric/Hermitian problems. Both ARpack and PRIMME rely on the

BLAS library for process-level operations (except for the sparse matrix-vector and preconditioning operations) and

expose raw data arrays to the user for applying operators. Unfortunately, BLAS implementations typically perform

poorly for tall and skinny matrices because they are optimized for the compute-bounded case. And the way the libraries

allocate memory for vectors and expose it to the user makes it very difficult to efficiently use NUMA machines or

accelerators like GPUs.

1.2 Performance optimization of sparse solvers

For many years, HPC users are experiencing the effects of the impending end of Moore’s law. Hardware performance

improvements happen mostly on the node level by increasing the complexity of the memory subsystem and parallelizing

the low (SIMD/SIMT) and intermediate levels (more cores). There are (at least) three approaches to helping programmers

tackle this increased complexity: (i) tasking frameworks that perform runtime scheduling and allow the user to specify

his program as a series of code blocks with input and output dependencies; (ii) provide an expressive ‘language’ that hides

the underlying complexity by automatically generating code for different hardware, and (iii) provide highly optimized

libraries that use the full expressiveness of programming languages like CUDA. Some examples the approaches are

(i) PLASMA
2
and MAGMA

3
,

2
https://bitbucket.org/icl/plasma

3
http://icl.cs.utk.edu/magma/
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PHIST: a Pipelined, Hybrid-parallel Iterative Solver Toolkit 3

(ii) RAJA
4
, Alpaka

5
and the Trilinos library Kokkos (which is used for the node-level parallelization of Tpetra used

in some examples below),

(iii) (cu)BLAS and our own GHOST library [Kreutzer et al. 2017], see also Section 2.6.

In addition to the low-level optimization, algorithm researchers are working out ways to increase the performance

of iterative schemes on modern hardware. Many efforts are focused on reducing the cost of synchronizations in an

algorithm. ‘Communication avoiding’ Krylov methods (e.g. [Hoemmen 2010], [Mohiyuddin et al. 2009]) are based on

the idea of s−step methods, which use other than Krylov bases for some steps and then add the generated block to

a Krylov subspace. The advantage is that fewer single vectors need to be orthogonalized against the existing basis,

which reduces the number of global synchronizations. Another class of methods that receives significant attention

in the HPC community are the so-called ‘pipelined’ Krylov methods (see e.g. [Ghysels et al. 2013]). These techniques

rearrange operations in order to be able to overlap the communication/synchronization required for inner products

with computations during the sparse matrix-vector operation.

From a mathematical point of view, both approaches change the underlying polynomials of the algorithms and may

infringe the numerical robustness. In particular for non-Hermitian eigenvalue problems we therefore did not focus our

research so far on such approaches but follow down the numerically robust but fully optimized path here. In particular

we want to stress that the term ‘pipelined’ in the name of our software refers to a wide range of techniques to improve

the computational performance, from enabling low-level SIMD operations to block eigensolvers that solve for a number

of eigenpairs in a pipelined way. We do have basic support for overlapping e.g. reductions with the sparse matrix-vector

product, but are not using them so far in algorithm implementations. Even without sacrificing numerical stability,

though, it is possible to significantly improve the performance. PHIST is designed to facilitate various algorithm-level

optimizations, which will be described in Section 3.

The remainder of this paper is organized as follows. Section 2 gives an overview of the entire PHIST software, and

summarizes some related software that can be used to extend the functionality of PHIST. In Section 3 we discuss

possibilities to improve the performance of iterative solvers on HPC systems, and how PHIST supports their imple-

mentation. As an example we show how the performance of the block Krylov-Schur method can be improved by a

combination of fast kernels and a block orthogonalization scheme. In Section 4 we introduce the software architecture

of PHIST and motivate it by a test- and benchmark-driven development process for HPC codes. Section 5 describes

some details of the eigensolvers available in PHIST, along with some node-level performance results. Scalability on

a many-node/many-core system is investigated in Section 6. Section 7 concludes the paper with a summary and an

outlook on future work.

2 OVERVIEW OF PHIST

In this section we describe the software architecture and basic interface of PHIST, and give an overview of the

functionality currently available at the algorithm level. PHIST was developed alongside several other libraries which

are not covered in this paper but can be used to add functionality to the basic package. Some of these libraries are

included as subdirectories in the PHIST software, and we will briefly describe them in Section 2.6.

4
https://github.com/LLNL/RAJA

5
https://github.com/ComputationalRadiationPhysics/alpaka
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Fig. 1. Software architecture of PHIST. The components on the left can be provided by external libraries, the right-hand side constitutes
the PHIST framework, which can also be extended by other libraries.

2.1 Software architecture

Our software architecture consists of three layers, as shown in Figure 1: the algorithms layer, the (algorithmic) core

and the kernels (or computational core). A kernel interface hides the low-level implementations of basic linear algebra

from the higher layers. To maximize portability and performance, the upper two layers can not access objects with

significant amounts data, like sparse matrices or (multi-)vectors. For example, a Gram-Schmidt process only requires

basic operations like vector additions and inner products, so it will be implemented in the algorithmic core layer. A

Gauß-Seidel sweep requires access to individual matrix entries and a hardware-specific implementation, so it would

belong to the computational core. The kernel library takes care of all levels of parallelism (e.g. SIMD, multi-threading,

accelerator usage and inter-process communication). This means that the core and algorithm layers can be largely

oblivious of e.g. whether the present machine uses distributed memory, contains GPUs etc. The kernel interface can be

provided by any linear algebra library supporting the required operations, see Section 2.2.

The core layer provides implementations of common building blocks of high-level solvers. Examples are routines for

orthogonalizing vector spaces, computing a matrix polynomial or factorizing a small and dense matrix.

At the top level, iterative methods are implemented using the kernel and core layer operations. The aim is to allow

algorithm researchers to work only on the top two layers, while low-level HPC experts can implement the required

kernels. Collaboration between the two groups follows a test- and benchmark-driven development process, detailed in

Section 4.

A fourth component of the software architecture is the preconditioning interface. Typically, there is a close interaction

between the kernel library and more advanced preconditioning techniques like multigrid or incomplete factorization

methods. We therefore allow preconditioners to be based on a particular kernel library, in which case they can only be

used with that kernel library, unless additional ‘glue code’ is used to e.g. convert sparse matrix formats or apply an

operator to another multi-vector class.

Manuscript submitted to ACM
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PHIST: a Pipelined, Hybrid-parallel Iterative Solver Toolkit 5

2.2 Basic data structures and interface

Our basic interface is inspired by theMessage Passing Interface (MPI), and the Petra object model used in Trilinos [Heroux

et al. 2003]. Independent of the underlying kernel library, the primary interface of PHIST is in plain C. From this,

C++, Python and Fortran 2003 bindings are generated
6
. The C++ bindings allow code which is templated on the

scalar data type to conveniently call the appropriate PHIST functions via a static class template instead of having to

generate the C function names using macros. The first and last PHIST functions called by a program should always be

phist_kernels_init and phist_kernels_finalize.

Macros are used to generate function names for different data types, e.g. functions taking real-valued double

precision data start with phist_D. The data types supported depend on the kernel library, but in principle there are

four (S and D for real single and double precision, and C and Z for complex single and double precision). An example

of this approach is shown in Listing 2. Listing 3 and 4 shows the same code snippet using the C++ and Fortran

bindings, respectively (note that these are only code snippets, not complete programs). The basic error handling

mechanism is an integer error code returned as the last argument (iflag) of each function, and a macro is available

for checking this flag and printing an error message. The iflag argument serves a dual purpose in PHIST: it can

also be used to encode ‘hints’ for the underlying implementation of the function, e.g. in Example 1, one could set

iflag=PHIST_SPARSEMAT_OPT_BLOCKSPMVM|PHIST_SPARSEMAT_PERM_GLOBAL on line 9. This will tell the kernel library

that we are primarily intending to compute sparse matrix products with multiple vectors at the same time, and it may

optimize its storage format for this case. Furthermore, we allow the kernel library to repartition the matrix in case the

feature is available.

The Petra object model defines a hierarchy of objects, including high-level linear algebra and low-level communication

data structures. We only adopt a subset of these objects, namely:

• comm abstracts the MPI_Comm so that it is in principle possible to implement the kernels using some other

communication layer;

• map defines the ordering and distribution (‘index space’) of rows of a sparse or dense matrix across processes;

• sdMat represents a small and dense matrix that is local to each process. It must be stored in column-major order

and use a constant column stride larger than or equal to the number of rows. Operations on sdMats are assumed

to be cheap. In the Petra model this object is a special case of an mvec;

• mvec, a multi-column vector or ‘tall and skinny matrix’, stored either in row- or column major order, depending

on the kernel library used. The row resp. column stride must be constant and may be larger than the respective

dimension of the object;

• sparseMat large and sparse matrix object which is presently mainly accessible via sparse matrix-vector multipli-

cation (spMVM) in PHIST.

The ordering and distribution of the elements of an mvec are defined by a map. In PHIST this is a much waker

construct than in the Petra object model, where maps can represent partial and overlapping index spaces, e.g. to describe

the global column indices living on each process (‘column map’). For (sparse) matrices, we use an additional object

called context for this purpose. It provides access to map objects for creating mvec objects compatible with the matrix

and may store additional information e.g. on communication patterns required for the spMVM. There exists a default

implementation that defines the context to consist of four maps, defining the row- and column index spaces of the

matrix, and the index spaces of the vectors X and Y , respectively, if X = AY is a valid sparse matrix-vector product.

6
Generating the Fortran 2003 bindings is possible in PHIST 1.7.2 and later

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Thies, J. et al

The context is also needed if one wants to create a second matrix B such that X = BY is again a valid spMVM. The

capabilities of the map object are left mostly to the kernel library, for PHIST a simple object suffices that stores the

processor offsets for a distributed global linear index space.

Similar to MPI, the above objects are passed to functions via handles. Their implementation details are left mostly to

the kernel library. In addition, PHIST defines a C struct called linearOp, which in the simplest case wraps a sparseMat

or a preconditioner, but also allows to use PHIST solvers in a matrix-free way.

The PHIST kernel interface is more extensive than the interface layers of Belos and Anasazi, which only contain

functions needed for implementing iterative solvers for given operators. PHIST’s kernel interface is meant to allow

complete applications to stay independent of the backend used, so it also contains methods to create and fill sparse

matrices, to copy data to and from multi-vectors, or write them to a file. In contrast to Belos/Anasazi, we also have an

object for small and dense matrices, which almost doubles the number of functions required.

Another set of arithmetic functions is added to allow specific optimizations for our solvers. For these, a default

implementation yielding correct behavior but suboptimal performance is provided. An example is the generalized

scaling routine V ← V · C,V ∈ RN×m ,C ∈ Rm×m , for which the default implementation uses a temporary copy of

V . Other examples of such functions include fused kernels computing two or more quantities simultatneously (see

Section 3 below).

In order to support accelerator hardware that requires explicit data transfers to and from main memory (e.g. GPUs),

there are functions like sdMat_from_device, which must be called in the appropriate locations in an algorithm in order

to be able to run on such hardware. This is different from e.g. the Tpetra library, which keeps track of whether the host-

and device-side need synchronization. This approach is certainly more convenient but may also lead to performance

bugs which have to be tracked down using e.g. a profiling tool.

In total, Anasazi requires 23 functions to be implemented, most of which are for multi-vector operations. Implementing

the full PHIST interface requires about four times as many functions, but the main increase comes from the requirement

to implement the sdMat interface (which is sequential and not performance critical) and advanced kernels which have

a default implementation. If one only wants to use the iterative solvers (and not the full application interface), the

functionality required for Anasazi and PHIST is roughly the same. The look and feel of PHIST code is illustrated in

Listings 1–4 for different supported programming languages.

1 # include " p h i s t _ k e r n e l s . h "

2

3

4 phis t_comm_ptr comm=NULL ;

5 ph i s t _Dspa r s eMa t _p t r A=NULL ;

6 in t i f l a g =0 ;

7 ph i s t_comm_crea te (&comm,& i f l a g ) ;

8 a s s e r t ( i f l a g ==0) ;

9 i f l a g =0 ;

10 phis t_DsparseMat_read_mm (&A, " my_matrix .mm" , & i f l a g ) ; a s s e r t ( i f l a g ==0) ;

Listing 1. Example 1: C code for reading a sparse matrix from a MatrixMarket file (in real double precision arithmetic).

Manuscript submitted to ACM
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PHIST: a Pipelined, Hybrid-parallel Iterative Solver Toolkit 7

1 # include " p h i s t _ k e r n e l s . h "

2 # include " ph i s t _mac ro s . h "

3 # include " ph i s t _gen_d . h "

4 phis t_comm_ptr comm=NULL ;

5 TYPE ( sp a r s eMa t _p t r ) A=NULL ;

6 in t i f l a g =0 ;

7 PHIST_CHK_IERR ( ph i s t_comm_crea te (&comm,& i f l a g ) , i f l a g ) ;

8 i f l a g =0 ;

9 PHIST_CHK_IERR ( SUBR ( sparseMat_read_mm )

10 (&A , " my_matrix .mm" ,& i f l a g ) , i f l a g ) ;

Listing 2. Example 1, C code using PHIST macros for generating type-specific code and checking return flags.

1 # include " p h i s t _ t y p e s . hpp "

2 # include " p h i s t _ k e r n e l s . hpp "

3

4 us ing namespace p h i s t ;

5 p h i s t : : comm_ptr comm = n u l l p t r ;

6 types <double > : : s p a r s eMa t_p t r A = n u l l p t r ;

7 in t i f l a g = 0 ;

8 t r y {

9 ph i s t_comm_crea te (&comm , & i f l a g ) ;

10 ke rne l s <double > : : sparseMat_read_mm

11 (&A, comm , " my_matrix .mm" , & i f l a g ) ;

12 } c a t ch ( Excep t i on const& ex ) { . . . }

Listing 3. Example 1 using the C++ bindings.

1 # include " p h i s t _ f o r t . h "

2

3 use , i n t r i n s i c : : i s o _ c _ b i n d i n g

4 use p h i s t _ k e r n e l s

5 use ph i s t _ k e r n e l s _ d

6 impl i c i t none
7

8 type ( ph is t_comm_ptr ) comm

9 type ( ph i s t _Dspa r s eMa t _p t r ) A

10 integer ( c _ i n t ) i f l a g

11

12 i f l a g =0

13 c a l l ph i s t_comm_crea te ( comm , i f l a g )

14 i f l a g =0

15 c a l l phist_DsparseMat_read_mm &

16 (A , C_CHAR_" my_matrix .mm" / / C_NULL_CHAR , i f l a g ) ;

17 i f ( i f l a g / = 0 ) STOP ' e r r o r in PHIST '

Listing 4. Example 1 using the Fortran 2003 bindings.

Manuscript submitted to ACM
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8 Thies, J. et al

Kernel libraries currently supported. In order to make PHIST self-contained, there is a reference implementation of

the kernel interface using Fortran 2003, OpenMP and MPI. This reference implementation uses the CRS format for

sparse matrix storage, row-major multi-vectors (see Section 3) and some pre-compiled kernels for the common block

sizes nb = 1, 2, 4 and 8 (e.g., sparse matrix times nb -column mvecs and different matrix products involving two or more

mvecs with nb columns). It gives decent performance on multi- and manycore machines, as we will show later, and

could be fully integrated in Fortran applications. These ‘builtin’ kernels only support the real double precision data

type.

A performance-oriented alternative is GHOST [Kreutzer et al. 2017], which uses MPI, OpenMP and CUDA to support

a wider range of hardware. GHOST implements all four data types (i.e. single and double precision, real and complex),

and mvecs in either row- or column-major storage. While GHOST is not a part of PHIST, we include some performance

results in this paper to make the point that especially on GPUs there is much optimization potential in mainstream

libraries.

In order to be useful for a wide range of application codes, we also support several popular HPC libraries mentioned

in the introduction; PETSc, Trilinos (Epetra and Tpetra), Eigen
7
and MAGMA. For MAGMA, only a subset of the

functions are implemented because we realized that using GPUs in this context only makes sense with fully optimized

kernels as provided by GHOST, and applications are typically not built directly on top of MAGMA. All interfaces are

regularly tested for regressions, see also Section 4.

2.3 Core functionality

In this layer we currently have implementations of some factorizations of small and dense matrices (e.g. Cholesky,

Schur and singular value decompositions), which mainly make use of the LAPACK library. Furthermore, there are

routines for orthogonalizing multi-vectors (see Section 3.1), and a Chebyshev method for counting eigenvalues in an

interval (the so-called Kernel Polynomial Method, KPM [Weiße et al. 2006]).

Furthermore, our operator interface (linearOp) is implemented in the core layer, along with functions to e.g. wrap a

sparse matrix, a pair of matrices or construct a product of several operators.

2.4 Preconditioning interface

In principle all that is needed to use a preconditioner in PHIST is the light-weight linearOp interface. However, in

order to provide a simple interface for using methods available in (or based on) a particular kernel library, we provide

an interface for constructing and updating the linearOp wrapper given a C enumerated type and a character string,

which may e.g. contain the name of an option file or some other specification for the underlying method. The most

important function for the user in this interface is precon_create (prefixed by e.g. phist_D). In our primary eigenvalue

solver (the Jacobi-Davidson method) an approximation of the kernel of the operator to be preconditioned is available,

and some preconditioners may be able to exploit such information. The interface therefore also allows providing the

approximate null space of the operator as an mvec when creating or updating the preconditioner.

Internally, a C++ traits class called PreconTraits is used to implement the necessary interfaces. Methods currently

supported are the Ifpack and ML packages (for Epetra), and the Ifpack2 library (for Tpetra). Users can specialize the

class template for the enum value USER_PRECON in order to extend the functionality with their own preconditioner.

7
https://github.com/eigenteam/eigen-git-mirror
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2.5 High-level algorithms (solvers)

In this category PHIST provides on the one hand interfaces to the Trilinos packages Belos and Anasazi, so that linear

solvers like block CG and GMRES, and eigensolvers like block Krylov-Schur or LOBPCG can be used via the PHIST

interface, and with any PHIST kernel library. The central eigensolver in PHIST is the block Jacobi-Davidson QR (BJDQR)

method called subspacejada, which can be used for solving generalized and non-Hermitian eigenproblems. Some

implementation details will be discussed in Section 5.

BJDQR requires the solution of a set of linear systems (A − σjB)x j = −r j , j = 1 . . .nb . For this purpose we have

implemented a number of blocked Krylov methods like GMRES, MINRES and BiCGStab. In contrast to the block Krylov

methods found in Belos, these solvers build nb separate Krylov spaces, which reduces the effort for orthogonalization

at the cost of some numerical efficiency. Compared to solving a sequence of nb linear systems with one right-hand

side each, we still achieve better performance when applying operators and need fewer reductions. A non-standard

algorithm we implemented is the CGMN method [Björck and Elfving 1979]. This algorithm can be seen as a CG-

accelerated Kaczmarz method, and is particularly useful for matrices with small diagonal entries and highly indefinite

matrices [Gordon and Gordon 2008]. A distributed memory variant called CARP-CG was developed by Gordon and

Gordon [Gordon and Gordon 2010], and in [Galgon et al. 2015] we demonstrated its potential for solving linear systems

arising when computing interior eigenvalues of some matrices using the FEAST method. We have not yet used it for

preconditioning the Jacobi-Davidson method. Applications for which this method may be useful include the Helmholtz

equations [Gordon and Gordon 2013].

2.6 Related libraries co-developed with PHIST

It is clear that the challenges of extreme-scale computing must be tackled by a collection of software packages that work

well together. We have already mentioned the interoperability of PHIST with some other libraries like Trilinos. But

there are also some developments that address complementary topics of extreme-scale computing. Two of these efforts

have been integrated in PHIST, namely CRAFT (Checkpoint-Restart and Automatic Fault-Tolerance
8
) and SCAMAC

(SCAlable MAtrix Collection
9
). The former provides an easy-to-use interface for making a program resilient to hardware

faults, the latter allows the scalable and portable construction of benchmark problems for eigensolvers.

A third library that is important for the motivation of PHIST is called GHOST (General, Hybrid and Optimized

Sparse Toolkit
10
). It provides highly optimized implementations of the kernel layer required by PHIST for Clusters of

CPUs, GPUs and many-core processors. GHOST is to be seen as highly experimental, though, and relies completely on

the PHIST test framework for correctness checks. While GHOST is not under discussion in this paper (for a reference

see [Kreutzer et al. 2017]), we do include some performance results in Section 5. They show the achievement of PHIST

to integrate experimental kernels for new hardware while at the same time maintaining software robustness.

Finally we want to mention the BEAST library (Beyond fEAST
11
), which is based on PHIST and implements several

projection-based eigensolvers using contour integration, Chebyshev polynomials and moments.

GHOST and BEAST are available as independent but interoperable software packages. Some of these efforts are

described in more detail in [Thies et al. 2016].

8
https://bitbucket.org/essex/craft

9
https://bitbucket.org/essex/MatrixCollection

10
https://bitbucket.org/essex/ghost

11
https://bitbucket.org/essex/beast/
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3 ALGORITHM-LEVEL PERFORMANCE OPTIMIZATION USING PHIST

Typically, the performance of sparse matrix solvers is bounded by the memory bandwidth on modern HPC systems.

This observation leads to some typical techniques for optimizing the performance of such methods, which must be

supported by the lower levels of the software in order to keep the algorithm implementation simple and readable. If

the amount of data is small compared to the memory bandwidth, the limiting factor may shift to some latency in the

system, e.g. for communication between host and device or via the network, or for launching a kernel on the GPU. In

this case reduction operations may become the bottleneck, which occur in inner products.

A central technique in PHIST is the use of block algorithms. For linear systems one can e.g. solve for multiple right-

hand sides using a block Krylov method [Gutknecht 2006]. Similarly, eigenvalue solvers can often be straight-forwardly

generalized to block variants which are applicable as soon as more than one eigenpair is sought, and may be numerically

superior for finding tightly clustered or multiple eigenvalues. Besides this numerical benefit, block methods may be

advantageous from a performance point of view [Gropp et al. 1999; Röhrig-Zöllner et al. 2015]. Typically when applying

a sparse matrix to a vector, due to the indirect memory access pattern unneeded vector elements are loaded into the

cache. When performing the operation on multiple vectors stored as a block (or multi-vector) in row-major order (that

is, the elements of the different columns lie adjacent in memory for each row), this unnecessary and often erratic

memory traffic can be reduced. Furthermore, BLAS1 operations like scalar products and vector scaling are replaced by

slightly more compute intensive inner products with ‘tall and skinny’ matrices. Performing these operations by BLAS3

(GEMM) function calls though, typically leads to poor performance because implementations are optimized for the

compute-bound case of roughly square matrices. PHIST offers a number of kernel functions for these operations, e.g. if

V ,W are mvecs and C is an sdMat with appropriate dimensions,

• mvecT_times_mvec computes C ← αVTW + βC ,

• mvec_times_sdMat computes V ← αWC + βV , and

• mvec_times_sdMat_inplace performs the operation V
:,1:k ← V ·C if V is n ×m and C ism × k,k ≤ m.

A mechanism to avoid data movements is the use of views. A view of an mvec in PHIST is a lightweight object

that represents (a subset of) the columns of another mvec. In contrast to the Trilinos libraries Epetra and Tpetra, a

view can only be created of a contiguous range of columns. The reason for this restriction is that we want to support

multi-vectors stored in row-major order without too much implementation and performance overhead. A view of an

sdMat can be created as well. Such an object represents a contiguous subset of rows and columns of the existing object.

A view is fully equivalent to an actual object and can be passed to any of the PHIST functions. Deleting a view does not

affect the original object, and all views of an object must be deleted before the object itself. From a performance point

of view, one has to be careful because operations on one or a few columns of an mvec in row-major storage leads to

strided data accesses and decreased performance.

A third technique in PHIST is kernel fusion. If two or more subsequent operations are performed that involve the

same data structure, it may be possible to load it only once into the cache and perform all required operations. For

example, the sequence

w = Av

α = vTw

can be computed in a single loop, requiring only one vector to be loaded instead of up to three. The corresponding PHIST

function is called (following a shortened naming convention) fused_spmv_mvTmv. There are a few functions like this,

Manuscript submitted to ACM
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with simple fallback implementations for kernel libraries that are not specifically optimized for PHIST. Note that there

is no general mechanism for concatenating operations like this, In our experience with the CUDA implementations in

GHOST, achieving reasonable performance on GPUs requires a dedicated effort for each operation implemented, taking

into account the details of all memory movements.

The final mechanism we aim to support is thread-level concurrency, meaning that multiple kernels can be ‘launched’

before querying their results, and they can be executed concurrently on multi-threaded hardware. The GHOST kernel

library offers a tasking mechanism for this, which takes care of handling thread affinity and works well together with

OpenMP [Kreutzer et al. 2017]. Launching multiple tasks may in general lead to oversubscription of computational

cores, and may interfere with the way the kernel library handles thread affinity. For this reason, we currently use the

feature only with GHOST and only for the case of overlapping other computations with the reductions in dot products

and the ‘halo exchange’ in sparse matrix-vector multiplication. We offer an interface to execute inner products and

sparse matrix-vector products in several stages, so that one can start the operation, perform other work, and then

finish the operation by waiting for the result. The code for overlapping the global reduction in a dot product with a

vector ‘AXPY’ is shown in Listing 5. The general technique could be used to implement ‘pipelined’ Krylov methods

and similar algorithms. For other kernel libraries, the macros result in in-order execution of the operations and thus

numerically correct behavior. For kernel libraries using non-blocking MPI for these communication tasks, one could

easily implement our interface in a non-blocking way.

1 / / d e c l a r e a t a s k f o r t h e d o t p r o d u c t
2 PHIST_TASK_DECLARE ( dotTask ) ;

3

4 / / s t a r t a d o t p r o d u c t s =x^Ty
5 PHIST_TASK_BEGIN ( dotTask )

6 phist_Dmvec_dot_mvec ) ( x , y ,& s ,& i f l a g ) ;

7 PHIST_TASK_END_NOWAIT

8

9 / / wa i t f o r t h e l o c a l d o t p r o d u c t c ompu t a t i o n s
10 PHIST_TASK_WAIT_STEP ( dotTask ) ;

11

12 / / p e r f o rm some o t h e r o p e r a t i o n v=v+ a lpha ∗w
13 phist_Dmvec_add_mvec ( a lpha ,w, 1 . 0 , v , i f l a g ) ;

14

15 / / wa i t f o r t h e d o t p r o d u c t r e d u c t i o n
16 PHIST_TASK_WAIT ( dotTask ) ;

Listing 5. Overlapping communication and computation using task macros

In the future we plan to implement the interface in a more general way so that it works with other kernel libraries

than GHOST as well, e.g. using the C++ std::future concept.

3.1 Example: block orthogonalization

In various sparse iterative solvers an operation is needed which we call ‘block orthogonalization’. Given orthonormal

vectors

(
w1, . . . ,wk

)
=W and a multi-vector X ∈ Rn×nb , find orthonormal Y ∈ Rn×ñb with

YR1 = X −WR2, and WTY = 0

Manuscript submitted to ACM
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Fig. 2. Runtime reduction for block orthogonalization by kernel fusion. The label M × K means that X ∈ RN×K is orthogonalized
againstW ∈ RN×M for a fixed vector length N = 8 · 10

6. The experiment was run on a 2-socket Intel Haswell EP CPU (E-2670 v.3)
with 12 cores per socket.

This problem can be addressed using a two phase algorithm:

Phase 1 Project: X̄ ← (I −WWT )X

Phase 2 Normalize: Y ← f (X̄ )

Suitable choices for f include SVQB [Stathopoulos and Wu 2002] or TSQR [Demmel et al. 2012]. As each phase may

deteriorate the result of the other, one needs to iterate between the phases. It is therefore in our experience not necessary

to use the highly accurate TSQR method, and we resort to SVQB, which has simpler performance characteristics. This

results in a method of the form f (X̄ ) = X̄ · д(M), where M = X̄T X̄ is called the Gram matrix. The sdMat д can be

computed using a Cholesky factorization or an eigendecomposition (as in SVQB).

Kernel fusion. It is possible to reduce the amount of data traffic in the above iterative procedure by rearranging the

operations:

Phase 3’ X̄ ← X · д(M), N ←WT X̄

Phase 1’ X̄ ← X −WN , M ← X̄T X̄

Phase 2’ X̄ ← Xд(M), M̄ ← X̄T X̄

In this algorithm, the bars above X and M are used only to make clear within a phase whether the ‘old’ or the

‘updated’ quantity is used, the next phase will always start with the updated quantity (e.g. X̄ from the previous phase as

X ) because all operations are performed in-place. In order to start the iteration,M must be computed once beforehand.

The two operations in each phase can be performed using a fused kernel while the required data is available in the

cache. The second computation of the GramianM in Phase 1’ can be used to check a stopping criterion and is input for

the next step (Phase 3’) if needed, so that the overall number of reductions is the same as before. A brief performance

study with this approach (using the builtin kernels) is shown in Figure 2.
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Fig. 3. The test-driven HPC development process

4 SOFTWARE AND PERFORMANCE ENGINEERING

It is our proclaimed goal to implement holistic performance engineering for sparse iterative solvers, an approach that

yields an implementation with well understood and predictable overall hardware performance. We will show in Section 5

that this requires considering all three software layers (kernels, core and algorithms) together. Our software development

methodology could be described as ‘test- and benchmark-driven co-design’ of the three layers. The workflow is depicted

in Figure 3. Solvers can be implemented using an established kernel library in the first place. Any functionality useful

for different algorithms is moved into the core layer.

Whenever a new kernel is required, tests and a performance model (see ‘perfcheck’ below) are added, and the

operation is implemented using the established kernel library. This is typically easy because there may already be an

implementation in one of the supported kernel libraries, or a ‘quick-and-dirty’ implementation suffices. At this point the

optimization of the kernel for different hardware can start, using the performance model and tests to verify the code.

A crucial part of PHIST is the extensive test suite. It is based on the Google test framework
12
, with some modifications

to support MPI parallel programs (e.g. all assertions are globalized using a reduction). A fully optimized implementation

of the kernels we need can take a very large number of code paths, for instance, GHOST calls different functions for

a certain operation depending on data layout and alignment and available SIMD features of the CPU. It is therefore

difficult to achieve full coverage on this level. We address this problem by trying to anticipate common bugs in the

kernel library. Using macros like those described in Section 2.2, we generate from a single code tests for different block

sizes, data types, with or without alignment, using both small and larger vector lengths.

The second tool for implementing our workflow is the so-called ‘perfcheck’ feature. By default, a timer is used to

provide some information on where time is spent in a PHIST run. This can be replaced by information on how much of

the performance predicted by an appropriate model is achieved by the various kernels. There are currently two simple

types of models: either a kernel is ‘small’, meaning that it should not take a significant amount of time (e.g. operations

on sdMats), or it is bounded by the memory bandwidth. In this case we select an appropriate benchmark with similar

balance of loads and stores (a STREAM benchmark [McCalpin 2007]) and apply the roofline model [Williams et al.

2008]. The assumption that kernels involving sparse matrices and/or multi-vectors are memory bandwidth-bound holds

true as long as the number of rows per process is large enough. For sparse matrix-vector products, an optimistic lower

12
https://github.com/google/googletest
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bound for the run time is calculated by assuming that each element of the input vector is loaded exactly once, which

may not be true for irregular sparsity patterns (see [Kreutzer et al. 2014] for a more accurate roofline model).

Example: when running the Anasazi block Krylov-Schur solver with a block size of 4 (see Section 5), one gets a line

like this for each kernel (with some additional columns to show the variation in the timing results, omitted here):

function(dim) / (formula) total time %roofline count

phist_Dmvec_times_sdMat_inplace(nV=4,nW=4,*iflag=0) 6.156e+00 11.7 174

STREAM_TRIAD((nV+nW)*n*sizeof(_ST_))

This operation is called 174 times, takes about 6 seconds in total and achieves only 12% of the predicted performance.

One can activate in addition the ‘realistic’ option, meaning that strided memory accesses are taken into account and the

model assumes that data is loaded by cache lines:

function(dim) / (formula) total time %roofline count

phist_Dmvec_times_sdMat_inplace(nV=4,nW=4,ldV=85,*iflag=0) 6.013e+00 23.8 174

STREAM_TRIAD((nV_+nW_)*n*sizeof(_ST_))

From the above output we can learn two things. On the one hand, many operations are performed using a large stride

of ldV = 85. This happens when carelessly using views while the mvecs are stored in row-major order. To avoid large

strides at least at the beginning, our Jacobi-Davidson implementation resizes the searchspace in a step-wise manner.

For the blocked GMRES correction solver we use an array of mvecs to store the basis. The second observation is that

even taking the stride into account, the achieved performance is only about 24%. The reason in this particular case may

be that the problem size of 128
3
is comparatively small and the kernel library is optimized for larger data sets (i.e. the

memory-bounded case).

Documentation. Here PHIST uses three complementary techniques. The Doxygen software can be used to generate

HTML documentation for all relevant functions and data structures from comments in the header files. We make an

effort to group the documentation into useful modules, the top level of which correspond roughly to the software layers

described above.

A second component of the documentation is a wiki that can be found at https://bitbucket.org/essex/phist/wiki/. It

provides a more high-level view of the software, explains some of the underlying principles discussed in this paper and

contains information on compilation and usage.

Finally, the software contains a number of drivers and examples, programs that can be run from the command line for

assessing the performance of specific solvers and kernels, and which give an overview of how to use the different layers.

5 EIGENSOLVERS AVAILABLE IN PHIST

In this section we describe the implementation of two central solvers in PHIST: the block Krylov-Schur solver imple-

mented in Anasazi, which we enhanced with our own orthogonalization scheme, and the block JDQR method. Some

performance results using three different kernel libraries are presented to show the benefits of hand-optimized kernels

for these methods. The experiments are performed on a multi-core CPU and a GPU:

• “Skylake”: 4× of Intel Xeon Scalable “Skylake” Gold 6132, 2.60 GHz, 14-Core Socket 3647, 384GB DDR4 RAM.

• “Volta”: NVidia Tesla V100-SXM2 GPU, 16GB HBM2 memory.

On the CPU, we use one MPI rank per socket, and one OpenMP thread per core for the PHIST builtin, GHOST and

Tpetra kernel libraries, and one MPI rank per core for Epetra. In all cases, we fill all of the 56 available cores. In Table 1
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(left) we measured the streaming memory bandwidth for the two architectures with some simple benchmarks (a load, a

store dominated benchmark and a benchmark with two loads and one store). The right part of the table shows the

performance achieved on the GPU in practice for the inner product of two mvecs (using the GHOST implementation).

The fundamental problem when using GPUs in our context becomes apparent here: the main memory is extremely fast

but small, and in order to even get away from the launch latency penalty one needs quite large data sets (i.e. long vectors).

A similar benchmark on the Skylake CPU gives more than 90% roofline performance already for N = 2M,nb = 2. We

have not tackled this problem, as will be seen later on, but the measurements indicate that despite the high memory

bandwidth we should not expect much performance gain here for practical algorithms because we are restricted to

relatively small matrices.

benchmark Skylake Volta

load 360 812

store 200 883

triad 260 843

nb N=1M 2M 4M 8M 16M 32M

1 12 23 37 58 78 83

2 31 35 53 68 81 88

4 34 53 66 83 88 95

8 51 70 85 87 99 100

Table 1. Left: measurements of the streaming memory bandwidth (in Gb/s) on our test hardware. Right: Percentage of the memory
bandwidth achieved by the operation XTY , X , Y ∈ RN×nb on the Volta GPU. Note that the STREAM benchmarks are run with one
billion elements, whereas the problem size on the right is a few million.

5.1 Block Krylov-Schur

This eigensolver is available in Anasazi and is essentially a block variant of the Arnoldi method which is restarted

using a Schur decomposition [Stewart 2002]. In every iteration, a new block is generated by applying the operator and

orthogonalizing the result against the current basis. Anasazi has several options for the block orthogonalization. We

will compare the SVQB variant implemented in Anasazi with our own, as described in the previous section.

We consider a non-symmetric standard eigenproblem which stems from the discretization of a 3D PDE using a 7-point

stencil
13

and 128
3
grid points (the matrix is generated in PHIST using the string “BENCH3D-128-B1”). We request the

10 right-most eigenpairs to an accuracy of 10
−6

and allow at most 80 vectors in the basis (10-80 blocks depending on the

block size nb ). Block orthogonalization is performed here using our own implementation. The reason why we use such

a relatively small matrix is that we want to run these experiments also on the GPU, which has very limited memory. In

Figure 4 we compare the overall runtime for different kernel libraries and block sizes on the Skylake CPU. At a first

glance, the GHOST library performs slightly worse than our own kernels, which can probably be explained by additional

overheads in that library for performing relatively small computations (the problem size is so small here that a single

vector fits into the cache of the four combined CPU sockets, and GHOST uses dynamic dispatching to automatically

generated kernels, which introduces a small constant overhead). Experience shows that GHOST outperforms the

builtin PHIST kernels typically when the matrix structure is irregular (due to the more sophisticated SELL−C − σ

format [Kreutzer et al. 2014]). If the run-time is dominated by block vector operations, the overall performance of both

implementations is similar, with variationns in single kernels because not all variants are implemented in both libraries.

The builtin kernels achieve a speed-up of 2-3 over Tpetra here. This is most likely caused by missing fused and in-place

kernels in Tpetra, so that the block orthogonalization routine needs to allocate temporary vectors. As Tpetra performs

13
a 3D variant of the matpde generator available at

https://math.nist.gov/MatrixMarket/data/NEP/matpde/matpde.html
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Fig. 4. CPU runtime of Block Krylov-Schur method with different block sizes and kernel libraries.

‘first touch’ allocation, this leads to significant additional memory traffic. Another point is that the spMVM is faster

using row-major storage, as in GHOST and the builtin kernels.

A more thorough analysis using PHIST’s perfcheck tool (see Section 4) reveals that with the builtin kernels, more

than half of the runtime is spent in operations with a stride of 85. Anasazi was not implemented with row-major mvecs

in mind, and a significant speed-up could be achieved by rewriting its algorithms to avoid views leading to large strides.

In Figures 5 and 6 we look at the effect of replacing the orthogonalization scheme in Anasazi with our own

implementation, on Skylake and Volta, respectively. Both schemes use iterated CGS/SVQB, but obviously implemented

differently. The combination of row-major storage (Builtin/GHOST) with our block orthogonalization gives the fastest

result, but the Tpetra implementation (with col-major storage) can also benefit, at least on the CPU. On the GPU, the

temporary memory allocations (see above) lead to too much overhead. Furthermore, we see the anticipated result that

for such a small problem size, the higher memory bandwidth of the GPU does not translate into an actual speed-up.

5.2 Block Jacobi-Davidson QR eigensolver

The primary solver in PHIST is a block Jacobi-Davidson method for computing some eigenpairs of large, sparse,

Hermitian or non-Hermitian matrix pencils [A,B], where B should be Hermitian and positive definite. Details of the

algorithm and implementation can be found in [Röhrig-Zöllner et al. 2015], but we will summarize the main lines here

as well and add some extensions that have been made in the mean time.

Let B denote the set of real or complex numbers. Given A,B ∈ BN×N and an integer k ≪ N , the method tries to

compute (Q,R),Q ∈ BN×k ,R ∈ Bk×k such thatAQ = BQR,QHBQ = I , and R a Schur form (block upper triangular with

complex pairs of eigenvalues represented by a 2× 2 block on the diagonal in the real case). The user can specify whether

to compute the smallest (S) or largest (L) eigenvalues in terms of their real part (R) or magnitude (M). The primary aim of

the implementation is to compute eigenpairs at the lower or upper end of the spectrum (‘SR’ or ‘LR’). The approximate

eigenvalues can then be found on the diagonal of R. We use standard Ritz values to approximate the eigenvalues, for
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Fig. 5. Runtime of the block Krylov Schur solver on the Skylake CPU with the Anasazi (‘theirs’) and PHIST (‘ours’) implementations
of SVQB.

nb = 1 nb = 2 nb = 4 nb = 8

10

20

30

40

16.8
19.5

17.9

20.8

16.8

23.5

27.6

35.5

17.7
20.2 20.2

31.6

6.43 6.44 6.67 6.72

p
h
i
s
t
_
D
a
n
a
s
a
z
i
r
u
n
t
i
m
e
(
s
)

Tpetra+theirs Tpetra+ours GHOST+theirs GHOST+ours

Fig. 6. Runtime of the block Krylov Schur solver on the Volta GPU with the Anasazi (‘theirs’) and PHIST (‘ours’) implementations of
SVQB.

computing interior ones harmonic Ritz values may be more appropriate (see also the review article [Hochstenbach and

Notay 2006] on Jacobi-Davidson methods).

Our implementation takes as parameters the minimum and maximum basis sizes mmin and mmax , and the block

size nb . It starts by building a basis of size mmin using the Arnoldi method, and then extends this basis by nb vectors
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per iteration. If the basis exceeds mmax vectors, a restart is performed by extracting the ‘best’ mmin directions from

the larger subspace. The directions to be added are determined by solving the nb independent correction equations

(I − Q̃Q̃∗)(A − σi I )(I − Q̃Q̃
∗)∆qi ≈ −(Aq̃i − Q̃r̃i ), i = 1 . . . l . (1)

where q̃j are the current approximations, ∆qj the desired (Newton) corrections, and Q̃ = [Q q̃] contains the already

converged (‘locked’) eigenbasisQ and the current approximations. We can write the equation in a more abstract form as

precOp · jdOp · ∆qj = −precOp · (Aq̃i − Q̃r̃ j ),j = 1 . . .nb , (2)

and solve it approximately using some iterations of a Krylov subspace method. The default choices in PHIST are GMRES

and MINRES for general and Hermitian problems, respectively. In the simplest case of a standard eigenvalue problem

without preconditioning (discussed in [Röhrig-Zöllner et al. 2015]), precOp = I and jdOp = (I −Q̃Q̃H )(A−σi I )(I −Q̃Q̃
H ),

where the rightmost (pre-)projection can be omitted in practice.

For generalized eigenvalue problems, the preprojection operator cannot be omitted and we obtain

jdOpB = (I − (BQ̃)Q̃
H )(A − σiB)(I − Q̃(BQ̃)

H ).

Left) preconditioning is implemented by following the jdOp operator by

precOpB = (I − (K
−1V )((BV )HK−1V )−1(BV )H )K−1.

We note that different choices are possible. Many variants for the Hermitian standard problem are implemented in

PRIMME [Stathopoulos and McCombs 2010], but for non-Hermitian and generalized problems one has to be more

careful. In our implementation we decided to preselect the variants above to achieve robust behavior for many practical

problems, but in the future we may expose more options to the users if the need in applications arises.

Benchmark results. We will evaluate the performance of the subspacejada solver for two different matrices, the first

is a larger variant of the previous 3D example, where we now compute the left-most eigenvalues (near 0) instead (for

Krylov-Schur this would require a shift-invert technique). The second is the original 2D matpde benchmark on a 2048
2

grid, where we look for the right-most eigenvalues. This leads to slightly longer vectors and less memory consumption

for storing the matrix, making it hopefully more suitable for the Volta GPU. To save memory we compute in both cases

only 10 eigenpairs and allow at most 40 vectors in the basis (restarting from 20 when needed). The tolerance is 10
−6

as

before.

Figure 7 shows some overall timing results for the 256
3
problem on the Skylake CPU. We see that for large enough

problem sizes our optimization techniques (kernel fusion, row major storage etc.) start to pay off and the PHIST builtin

kernels are faster than the pure MPI variant in Epetra. Increasing the block size nb beyond 2 does not pay off when

searching for only a few eigenvalues, as was also reported in [Röhrig-Zöllner et al. 2015]. Table 2 shows the results

for the 2D problem on the two architectures and using different kernel libraries. The first observation is that for the

single-CPU configuration with a relatively small matrix, Epetra (MPI only) performs remarkably well, and the Tpetra

(OpenMP) implementation is remarkably slow (possibly due to ‘first touch’ and temporary objects, see above). With the

GHOST CUDA kernels one can match the CPU performance, which agrees with our previous experience for small

problem sizes.

The overall number of iterations and runtime for computing the smallest eigenvalues of the BENCH3D matrix is

quite high. The convergence is dominated by the Laplace-like component of the equations, and using a preconditioner is
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Fig. 7. Runtime of the Jacobi-Davidson solver for computing the smallest 10 eigenpairs of the BENCH3D-256-B1 matrix on the
Skylake CPU.

kernel lib ttot [s]

Tpetra 80.28

Epetra 7.21

Builtin 9.11

Ghost (Volta) 7.09

Tpetra (Volta) 46

Table 2. Timing results for
the matpde2048 problem us-
ing subspacejada. The first
three cases are run on the Sky-
lake CPU, the last two on the
GPU.

the method of choice to alleviate this. Table 3 shows the effect of using the AMG preconditioner ML in addition to doing

some inner GMRES iterations. For configuring the ML preconditioner we use the default settings for ‘non-symmetric

smoothed aggregation’ (NSSA) as implemented in Trilinos 12.12.1.

problem size preconditioner iterations spMVMs ttot tдmres

128
3

GMRES 471 10 403 38.5 24.7

GMRES+ML 31 720 26.3 13.2

256
3

GMRES 815 17 971 736 496

GMRES+ML 29 668 227 116

Table 3. Effect of using the AMG solver ML to precondition the PHIST Jacobi-Davidson method (block size 2) for the non-symmetric
problem ‘B1’.

The number of iterations is reduced to a small constant, as one would hope with a multigrid method. The timing

results indicate that there is quite some room for optimization. Our implementation applies the preconditioner repeatedly
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to the projection space, for instance. With row-major storage of mvecs the preconditioning operation itself would also

become faster.

6 SCALABILITY BEYOND ONE NODE

So far we have focused on the performance on a single node. This case can be investigated thoroughly using performance

models, and we give it special attention because nowadays the performance increase of HPC systems comes almost

exclusively from increased parallelism on the nodes. In this section we will show some results of large-scale benchmarks

for the block Jacobi-Davidson QR method. The eigenproblems are scaled-up versions of the 7-point Laplace problem

(‘A0’) and the non-symmetric ‘B1’ PDE problem used before. As the convergence for these matrices (without additional

preconditioning) depends strongly on the grid size, we fix the number of outer JDQR iterations to 240 in order to

compare runs for different matrix sizes, and report the performance in TFlop/s. The correction equations are solved

approximately by 10 steps of MINRES or GMRES, respectively, where in the GMRES algorithm we use a robust iterated

modified Gram-Schmidt (IMGS) orthogonalization, which requires a relatively large number of global reductions. The

matrix is partitioned linearly after sorting the indices using an octree algorithm (also known as the Morton space-filling

curve).

The machine we use is the Oakforest-PACS supercomputer (OFP) at the Japanese joint center for advanced high-

performance computing (JCAHPC)
14
. It consists of 8 208 nodes of Intel Xeon Phi 7250 processors with 68 cores each,

and an Intel Omnipath interconnect. OFP achieved a performance of about 385 TFlop/s in the HPCG benchmark,

which is the appropriate measure for our memory bounded sparse matrix algorithms. We chose the GHOST kernel

library because it has dedicated AVX512 code, and compiled everything using the Intel compiler and Intel MPI (version

2018.1.163). Benchmark sizes are chosen to fit in the 16GB high bandwidth memory on each node.

Figure 8 shows the weak scaling for the non-symmetric (B1) and symmetric (A0) case. The largest problem size is

N = 4 096
3
on 8 192 and 4 096 nodes, respectively. The percentage in the figure shows the parallel efficiency compared

to the first measurement, e.g. if Pk is the performnce on k nodes,
kmin ·Pk
k ·Pkmin

· 100% is shown. We observe that in both

cases we achieve a parallel efficiency of more than 50%, but the overall performance of 148 TFlop/s is clearly below

the HPCG value, despite the block size of 4 used. This can be explained by the fact that we do not exploit the stencil

structure of the test matrix, whereas the HPCG code is optimized to solve this particular problem. The average roofline

performance achieved over the run with block size nb = 4 is estimated by PHIST between 21% (16 nodes) and 12% (8 192

nodes) for the symmetric problem, and between 27% (8 nodes) and 17% (4 096 nodes) for the non-symmetric problem,

which requires significantly more global reductions due to the IMGS scheme in GMRES. The detailed profiling output

shows the expected behavior that the relative cost of vector updates and other trivially parallel kernels decreases at

scale compared to sparse matrix-vector multiplication (spMVM). Kernels involving an ‘allreduce’ consume about 3.3

times as much of the runtime as the spMVM for B1 on 4 096 nodes. These results indicate that – at least for the case of

weak scaling – the price for the orthogonalizations in BJDQR is tolerable.

Fig. 9 shows the performance achieved for the symmetric problem when keeping the problem size fixed to N = 1 024
3

and increasing the number of nodes. The right-hand figure shows the block speed-up defined by

Pnb=k
Pnb=1

. This shows that

the strong scaling behavior of BJDQR can indeed improved by using larger block sizes (by collecting scalar products into

a single reduction). However, one has to keep in mind that this also increases the number of iterations to convergence.

14
http://jcahpc.jp/ofp/ofp_intro.html
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Fig. 8. Weak scaling results for BJDQR. Top: non-symmetric 7-point PDE matrix using GMRES+IMGS and approx. 16.7 million
unknowns/node (different block sizes). Bottom: symmetric 7-point Laplace problem using MINRES as correction solver and approx.
8.4 million unknowns/node (block size 4).

7 SUMMARY AND FUTUREWORK

We hope to have shown in this paper how a combination of classical software engineering and HPC performance

engineering allows to make reliable statements about the performance of sparse iterative solvers. The PHIST software

offers a framework for implementing new algorithmic ideas in a portable way, putting emphasis on different aspects

(e.g. performance, supported hardware or data types) by choosing an appropriate back-end. It allows developers of

algorithms and applications to stay independent of a concrete implementation for a long time, making a thorough

performance assessment before deciding on a back-end to run their simulation.
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Fig. 9. strong scaling (top) and corresponding ‘block speed-up’ (bottom) for the symmetric N = 1 024
3 problem.

We discussed and demonstrated various performance optimizations for iterative methods, from multi-vectors in

row-major storage to kernel fusion. The algorithms we presented (block orthogonalization, Krylov-Schur and Jacobi-

Davidson) are to be understood as blueprints for implementing other methods.

The Krylov-Schur implementation in Anasazi is currently geared towards column-major storage. We have made

a first step towards higher block performance by introducing our orthogonalization scheme, but the use of views in

larger blocks still costs quite some performance.

On GPUs we showed that good performance can be achieved with GHOST as long as the data sets are large enough.

The comparatively small GPU memory is a problem here and we will investigate the use of unified virtual memory
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(UVM) to be able to solve larger problems. Another idea is to reduce the memory footprint of algorithms, for Jacobi-

Davidson this could be achieved e.g. by computing VT
AV on-the-fly rather than storing AV . Another idea is to store

mvecs in single precision (but perform calculations in double for robustness) if the required accuracy is not too high.

For concrete applications, matrix-free operators and preconditioners may be used.

The builtin PHIST kernels include an experimental ‘high precision’ feature that has not been discussed in this paper

because fast kernels are only available for certain block sizes so far, and we plan to assess its usefulness in concrete

case studies first. The feature allows storing small and dense matrices in quadruple precision and using more accurate

reductions to e.g. increase the effect of an orthogonalization step.

We demonstrated weak and strong scaling efficiency of BJDQR on a Peta-scale machine, and the advantage of the

block variant as it reduces the number of global reductions. These results are, however, to be taken with some caution

as the machine’s behavior at large scale is much more difficult to understand than on the node level. Performance

modelling of large distributed memory systems remains a topic for future work.

Many-node Performance could be further improved by reducing the number of reductions, or hiding them behind

useful computation. However, this would likely infringe the numerical robustness, especially for non-Hermitian eigen-

value problems. We therefore focus on the approach to reduce the number of iterations by using good preconditioning

techniques. We showed by an example how a multigrid preconditioner could reduce the total number of matrix-vector

products by a large factor, but in our implementation there is quite some room for improvement in terms of runtime.

We believe that the development of efficient preconditioners for eigenvalue problems (especially when looking for

interior eigenvalues) is a major challenge in numerical linear algebra to date and offers interesting opportunities both

on the mathematical and computational side. Future work in PHIST will address this challenge.
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A NOTES ON REPRODUCING THE EXPERIMENTS IN THIS PAPER

It is our goal to make high performance available via PHIST, but unfortunately the complexity of the entire software

stack may still make it difficult for readers to reproduce similar performance results. As an effort towards reproducibility

we here specify the versions of software used, and the process of installing and running PHIST used in the paper.

• Spack (https://github.com/spack/spack), branch develop at commit c1e3e5de5c)
• OpenMPI and Trilinos installation without CUDA:

> spack find -v -d trilinos

-- linux-ubuntu16.04-x86_64 / gcc@7.3.0 -------------------------

trilinos@12.12.1~alloptpkgs+amesos+amesos2+anasazi+aztec+belos~boost build_type=Release

~cgns~dtk+epetra+epetraext+exodus+fortran~fortrilinos+gtest+hdf5~hypre+ifpack+ifpack2

+instantiate+instantiate_cmplx~intrepid~intrepid2+metis+ml+muelu~mumps+nox+openmp~pnetcdf

~python~rol+sacado~shards+shared~stk+suite-sparse~superlu~superlu-dist+teuchos+tpetra~x11

~xsdkflags~zlib+zoltan+zoltan2

^glm@0.9.7.1 build_type=Release

^hdf5@1.10.1~cxx~debug~fortran+hl+mpi+pic+shared~szip~threadsafe

^openmpi@3.0.1~cuda fabrics=verbs ~java~memchecker+pmi schedulers=slurm
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~sqlite3+thread_multiple~ucx+vt

^hwloc@1.11.9~cairo~cuda+libxml2+pci+shared

^libpciaccess@0.13.5

^libxml2@2.9.4~python

^xz@5.2.3

^zlib@1.2.11+optimize+pic+shared

^numactl@2.0.11

^intel-mkl@2018.1.163~ilp64+shared threads=none

^matio@1.5.9+hdf5+shared+zlib

^metis@5.1.0 build_type=Release ~gdb~int64 patches=[omitted] ~real64+shared

^netcdf@4.4.1.1~dap~hdf4 maxdims=1024 maxvars=8192 +mpi~parallel-netcdf+shared

^parmetis@4.0.3 build_type=Release ~gdb patches=[omitted] +shared

^suite-sparse@5.2.0~cuda~openmp+pic~tbb

• OpenMPI installation with CUDA:

> spack find -v -d openmpi+cuda

-- linux-ubuntu16.04-x86_64 / gcc@5.4.0 -------------------------

openmpi@3.0.1+cuda fabrics=verbs ~java~memchecker+pmi schedulers=slurm

~sqlite3+thread_multiple~ucx+vt

^hwloc@1.11.9~cairo+cuda+libxml2+pci+shared

^cuda@9.0.176

^libpciaccess@0.13.5

^libxml2@2.9.4~python

^xz@5.2.3

^zlib@1.2.11+optimize+pic+shared

^numactl@2.0.11

• Trilinos (master branch at commit 52db64a86f) with CUDA: see

phist/buildScripts/build-trilinos-gpu.sh included in PHIST 1.6.x (note that we used our own adaptation

of the nvcc_wrapper script, which is also included in phist).

• PHIST v1.6.1 with Tpetra and CUDA:

phist/buildScripts/script_sc-hpc_tpetra_cuda.sh in PHIST 1.6.x.

• GHOST (devel branch at commit a3b75fc52c7ea)

• Scripts for running the examples are found in

phist/exampleRuns/solvers/ in PHIST 1.6.x.

Finally we want to mention two particular performance hazards the user should be aware of when trying to

achieve good performance with PHIST. The first is that a sequential BLAS library should be used, e.g. the reference

implementation on http://www.netlib.org/ or Intel MKL with the appropriate sequential flag (PHIST CMake

option -DBLA_VENDOR="Intel10_64lp_seq"). Second, the binding of processes and threads to physical cores is very

important on NUMA systems like our Skylake node. OpenMPI in the current version binds processes to cores by default.

PHIST also tries to bind processes and threads to cores, and the two do not necessarily work well together. You can

either disable the PHIST feature using the CMake flag -DPHIST_TRY_TO_PIN_THREADS=OFF and attempt to bind the

threads using e.g. OpenMP environment variables, or choose the appropriate flags for mpirun (we use -np 4 --bind-to

numa with builtin, Tpetra and ghost, and -np 56 --bind-to core with Epetra. Here 4 is the number of available

CPU sockets and 56 the total number of CPU cores on the node. Using -np 1 --bind-to none gave a performance

degradation in the eigensolver runs of about 10% in our experiments. We assume that here irregular accesses to other

NUMA domains during the spMVM are more expensive than copying large chunks into MPI communication buffers.
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