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FPGADefender: Malicious Self-Oscillator Scanning for

Xilinx UltraScale+ FPGAs

TUAN MINH LA, KASPAR MATAS, NIKOLA GRUNCHEVSKI, KHOA DANG PHAM,

and DIRK KOCH, The University of Manchester, UK

Sharing configuration bitstreams rather than netlists is a very desirable feature to protect IP or to share IP
without longer CAD tool processing times. Furthermore, an increasing number of systems could hugely benefit
from serving multiple users on the same FPGA, for example, for resource pooling in cloud infrastructures.

This paper researches the threat that a malicious application can impose on an FPGA based system in
a multi-tenancy scenario from a hardware security point of view. In particular, this paper evaluates the
risk systematically for FPGA power-hammering through short-circuits and self-oscillating circuits which
potentially may cause harm to a system. This risk includes implementing, tuning, and evaluating all FPGA
self-oscillators known from the literature, but also, developing a large number of new power-hammering
designs which have not been considered before. Our experiments demonstrate that malicious circuits can be
tuned to the point that just 3% of the logic available on an Ultra96 FPGA board can draw the power budget
of the entire FPGA board. This fact suggests a waste power potential for datacenter FPGAs in the range of
kilowatts.

In addition to carefully analyzing FPGA hardware security threats, we present the FPGA virus scanner
FPGADefender that can detect (possibly) any self-oscillating FPGA circuit, as well as detecting short-circuits,
high fanout nets, and a tapping onto signals outside the scope of a module for protecting data center FPGAs
such as Xilinx UltraScale+ devices at the bitstream level.

CCS Concepts: • Security and privacy → Side-channel analysis and countermeasures; Hardware
attacks and countermeasures; • Hardware→ Reconfigurable logic and FPGAs.

Additional Key Words and Phrases: cloud computing, hardware security, FPGA, denial-of-service, power-
hammering, side-channel, bitstream, mitigation, countermeasure
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1 INTRODUCTION

With the present trend of FPGAs being offered in cloud data centers [24, 25, 53, 68] and also more
and more hardware designs being provided as bitstreams (e.g., [10, 66]), there is a strong need to
investigate FPGA hardware security. While traditionally, the FPGA hardware, as well as the design
running on the FPGA, was entirely designed and integrated by one party, we are now increasingly
heading towards ecosystems with more complex supply chains. For example, nowadays we have
cloud data centers using off-the-shelf FPGA boards as well as a stack of own, vendor, and third
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Fig. 1. Envisioned system with a virus scanner for detecting malicious configuration bitstreams.

party IPs and tools in order to provide users with FPGA-enabled Acceleration-as-a-Service (AaaS)
offerings [24] as well as with FPGA-as-a-Service (FaaS) offerings [25, 68].

The origins of this trend can be referred to as the FPGA cloud effect, which has stimulated a large
body of FPGA-related research, which was triggered by the announcement of major cloud service
providers to offer FPGA instances (e.g., Amazon AWS with its F1 FPGA instances). For the first
time, these offerings gave everybody the possibility to access high-end FPGA hardware at low
initial cost and without the need to install any FPGA design tools locally. This effect also initiated a
Renaissance in FPGA hardware security research [47], and several recent papers have demonstrated
attacks on 1) how to compromise the integrity of a system and how to deny a system’s service and
2) how to leak information from other parts of the system, as surveyed in Section 2.

However, while there are many attacks demonstrated, there are only a few papers published that
propose countermeasures for FPGA hardware security threats. Cloud service providers such as
Amazon, Alibaba, Baidu, and Nimbix rely entirely on the FPGA vendor Xilinx to protect their FPGA
infrastructure by using design rule checking (DRC) at the netlist level [24, 25, 27, 28]. We would like
to stress that the common approach of AWS and other FPGA cloud service providers is insufficient
for adding security to their system because the (Xilinx) DRCs are only catching LUT-based ROs
(see [19, 57], and our examples in Section 3). This lack of countermeasures is surprising as security
will be a paramount requirement for the possible next wave of systems where multiple tenants may
share the same FPGA in an FaaS setting (which allows harnessing the full cloud advantages for
processing and resource pooling also for FPGAs) or where end users may download and execute
configuration bitstreams as kind of hardware apps. Please note that existing FPGA cloud offerings
can already be considered as a multi-tenant scenario consisting of a shell with the I/O infrastructure
(commonly provided by the cloud service provider) and the user modules that interface to a server
node using that shell. In this setting, a user should not be able to interfere with the shell in an
uncontrolled manner, and it is essential to prevent a scenario that would allow a hijacking of any
shell functionality (e.g., for gaining access to the PCIe core which is connected to the server host
node [26]).
In this paper, we propose an FPGA virus scanner, named FPGADefender, that scans partial

module bitstreams such that a system can reject malicious modules if needed. We limit ourselves to
partial bitstreams because the present version of FPGADefender does only fully support logic tiles
(CLBs), on-chip memories (BRAMs) and arithmetic blocks (DSPs). However, that is sufficient for
data center applications where users access all peripherals (e.g., DDR memory and PCIe) through a
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Fig. 2. An illustration of the denial-of-service-like (DoS-like) threat model. A user may try to shutdown an

FPGA service in a data center by sending malicious circuits such that legitimate requests from other users

cannot use the FPGA resources. Short-circuits and power-hammering designs can be utilized for such attacks

on the system availability. Furthermore, this kind of attack may potentially age or damage the equipment.

shell and where direct access to I/O pins is commonly prohibited. The envisioned system featuring
FPGA virus scanner is shown in Figure 1. In a traditional system, a (partial) bitstream would be sent
directly to a configuration manager that is in charge of pumping the bitstream binary into the fabric.
To perform virus scanning from a bitstream, we first have to rebuild a netlist, which in turn requires
an FPGA architecture model. This netlist can then be scanned by the actual virus scanner engine,
which requires virus definitions (also known as virus signatures) and system-specific constraints. If
the scanner detects a malicious construct in the bitstream, this will be flagged to the configuration
manager, which may reject malicious bitstreams.

The current most severe FPGA hardware security threats relate to self-oscillators. Self-oscillators
(SOs) are circuits where the oscillation does not depend on an external clock (e.g., from a quartz
crystal) but on some feedback implemented in the soft logic of an FPGA. Ring-oscillators (ROs) are
a subset of self-oscillators representing circuits that are based on inverting combinatorial feedback
loops. To provide the best possible protection against self-oscillators, we examined a large number
of reported as well as several novel self-oscillating designs. We quantified their potential threats to
power-hammering thoroughly and included virus signatures for all of them to FPGADefender.

Throughout the rest of the paper, we will describe the concepts, implementation, and evaluation
of the virus scanning in more detail. Our key contributions are:

• An in-depth study on FPGA self-oscillators, including the discovery of novel oscillator designs
(Section 3).

• A model for FPGA virus scanning and virus signatures for detecting oscillators, wire-tapping,
and short-circuits from a bitstream (Section 4).

• An implementation, evaluation, and discussion of FPGADefender (Section 5).
In addition to these critical contributions, we are providing an overview of FPGA security threats
(Section 2) and a comparison of software virus scanning versus hardware virus scanning (Section 4.1).
Note that this paper uses the term virus scanning in its figurative meaning for detecting all kinds of
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Fig. 3. An illustration of the bitstream fault injection threat model in a multi-tenant computing environment.

malicious threats rather than in its original meaning of infecting a program with malicious code to
spread out in a virus-like manner.

2 HARDWARE SECURITY THREATS FOR MULTI-TENANT FPGAS

Traditionally, FPGA industry vendors considered that the security of an FPGA was primary about
protecting designs in terms of intellectual property (IP) in configuration data (or bitstream) against
cloning/overbuilding, reverse engineering, tampering, and spoofing, as summarized in [63]. On the
other hand, FPGAs are now integrated into data centers and cloud computing infrastructures [17,
24, 53], and hence, multi-tenant scenarios are expected to provide better utilization and power
efficiency as compared to the current one-user-per-fabric scheme [65]. However, due to their deep
low-level programmability, FPGAs comprise new threat models far beyond what is commonly
known from conventional CPU/GPU systems. For instance, modules running on an FPGA may
include circuits being able to measure system states at high accuracy, which may open physical
side-channels to leak sensitive data from other users [18, 55] that are not available in known
software threat models.

In this section, we take a brief literature review on potential threats against multi-tenant FPGAs
which can be categorized into 1) attacks on the system availability (DoS-like attacks), 2) attacks on
the system integrity (via bitstream fault injection), and 3) attacks on the user confidentiality (via
physical side-channel analysis); as well as state-of-the-art countermeasures.

2.1 Attacks on the System Availability

Denial-of-service-like (DoS-like) attacks are used to bring down operating infrastructures or to
compromise states in other system components that stay outside the scope of an attacking module.
At the electrical level, two means for DoS-like attacks had been utilized: short-circuits and power-
hammering.
Short-circuits on FPGAs have a long history [2, 3, 22]. In contrast, more recent research [6]

demonstrated short-circuits within the multiplexers inside a switch matrix using a manipulated
configuration bitstream resulting in a substantial current increase (with several𝑚𝐴 extra current
for a single routing multiplexer). Short-circuits may potentially age or even damage an FPGA chip
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Fig. 4. An illustration of the eavesdropping threat model of user confidentiality in a multi-tenant computing

environment.

permanently. Alternatively, this may be used for power-hammering, as discussed in the following
paragraph.
Power-hammering is another mechanism to carry out DoS-like attacks. All current power-

hammering attacks [20] are based on fast toggling circuits in order to draw a substantial amount of
dynamic power. As we will show in Section 3, it is possible to implement self-oscillating circuits
running in the GHz frequency domain with a corresponding dynamic power footprint. In [20], a
grid of ring-oscillators could be activated at an adjustable rate (to stimulate resonance effects in
the power supply regulation circuit). With this, several FPGA platforms such as Xilinx Virtex 6,
Kintex 7, and Zynq-7000 FPGAs had been crashed (and in some cases requiring power-cycling for
bringing up boards back into service). Although ring-oscillators are usually flagged with a warning
by the vendor design tool flows and hence, are not allowed to be deployed on common cloud or
data center infrastructures, recent research [19] has reported new ring-oscillator designs which
can bypass such a Design Rule Checking (DRC).

In this paper, we will investigate a large number of known as well as newly developed oscillator
variants that can be built from FPGA primitives, including LUTs, carry logics, and DSPs.

2.2 Attacks on the System Integrity

Further, FPGA security vulnerabilities include bitstream fault injection attacks [1, 58–60]. These
types of attacks are man-in-the-middle attack variants that directly compromise the integrity of a
system, commonly intending to leak a user’s confidential data, as illustrated in Figure 3. However,
bitstream fault injection attacks usually result in invalid FPGA bitstreams, which may not be easily
deployed in data centers thanks to tamper-resistant features in modern FPGAs [13, 29]. Indeed,
no such man-in-the-middle attack has been reported to be launched successfully against multi-
tenant computing infrastructures. Attestation protocols would typically identify modifications to a
bitstream. For example, a bitstream can be hashed before or after being loaded to the FPGA, and
a hash mismatch would flag any modification. In the latter case, where configuration readback
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is commonly used, FPGADefender would ensure that no bitstream would reach the FPGA that
contains malicious configurations at the electrical level.

2.3 Attacks on the User Confidentiality

Side-channel attacks on FPGAs can be either active (e.g., timing fault injection) or passive (e.g., power
analysis, crosstalk coupling, electromagnetic analysis, and thermal channel leakage). Differential
Fault Analysis (DFA) was shown in [9] for breaking cryptographical implementations, whereas in
[41], timing faults have been injected through a large number of ring-oscillators to cause voltage
drops followed by analyzing the resulting faulty ciphertext using DFA for successfully revealing
the secret key of a crypto-core.
To deploy a passive side-channel attack remotely, an attacker needs to measure parameters of

covert channels such as latency, temperature, IR drop, or any crosstalk effect, as summarized in
a recent survey [47]. Power analysis attacks have been demonstrated to leak the secret key of a
cryptographic function that was running on the same FPGA [55], running on a CPU embedded on
the same FPGA die [72], and running on a different FPGA on the same FPGA board [56]. All these
attacks have in common that they use ring-oscillators to measure key-dependent fluctuations on
the voltage.

In addition to sensing voltage, self-oscillators can be used to monitor latency variations induced
from crosstalk effects [18, 19, 54]. In these studies, it was found that a wire carrying a logical one
will slow down a ring-oscillator that is implemented directly adjacent to this wire. Therefore, by
taking advantage of the sensitivity of self-oscillators, attackers can leak the current state of a signal,
which is a concern in shared FPGA infrastructures. Furthermore, self-oscillators can be used as a
sensor to collect system states stealthily [73].

In summary, it is of paramount importance to detect any self-oscillating circuit in the valid FPGA
bitstreams, as enabled by FPGADefender.

2.4 State-of-the-art Countermeasures

To prevent side-channel power analysis attacks, different masking and hiding strategies had been
proposed. In the masking strategy, an implementation of a cryptographic algorithm is transformed
into another (typically larger) variant, which is functionally equivalent, but where the new circuit
can remain secure, although the attacker can observe some details of the operation through a side-
channel, as proposed in [35]. For example, a cryptographic module may change specific details of
the implementation (e.g., if an S-box lookup in an AES implementation is performed sequentially or
in parallel or if that S-box lookup is implemented through a table or some Boolean logic functions).
This approach makes power analysis attacks much harder as the data leaked has additionally to be
correlated with the implementation changing scheme used inside the secured core.
On the other hand, the hiding strategy aims at lowering the Signal Noise Ratio (SNR) during

the operation by either adding more sources of noise or lessening the strength of the signal power
trace that relates to the operation of the core, as suggested in [14, 21, 37, 69].
Ring-oscillators can be used to monitor the healthiness of an FPGA fabric [73] or even detect

voltage drop attacks (e.g., power-hammering, power analysis) [52, 74]. Further, recent work has
suggested using ring-oscillators not only to monitor a power analysis attack but also to respond
against the attack by triggering some noise generators [40].

Although these works claimed to respond against power-hammering and power analysis attacks,
it would be ideal that those kinds of attacks could be prevented and not even reach to an FPGA in
the first place! This protection scheme also simplifies system management as it would otherwise
require an exception handling after a fault due to an attack may have occurred. Therefore, checking
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Table 1. Configurable resources of Ultra96 compared with the data center FPGA Alveo U200

Primitive count ZU3EG Alveo U200
CLB LUTs 70560 1182240
CLB flip-flops 141120 2364480
DSP Slices 360 6840
BRAM Slices 648 6480

an FPGA bitstream before deploying it on a multi-tenant FPGA is a desirable (if not essential)
feature.

In a related work [42], LUT-based ring-oscillator designs are detected directly inside configuration
bitstreams. While that work fundamentally showed that oscillator circuits could be detected from
bitstreams, it was only shown for basic LUT-based oscillators (which are already spotted by the
FPGA vendor tools). This limitation leaves an attacker the chance to deploy alternative oscillator
designs (e.g., based on glitch amplification), which the work in [42] cannot identify. In contrast,
FPGADefender is designed to detect any self-oscillating circuits in any user design. With user

design, we refer to designs made of logic cells (LUTs), block RAMs, and DSP blocks only. This is
the model used by all cloud service providers where users can only program these blocks while
a static shell provides all other primitives that are commonly needed (e.g., for I/O and clocking).
Furthermore, [42] was implemented on a Lattice FPGA, and those FPGAs are relatively small for
building a multi-tenancy system. However, the vast majority of systems that would benefit from an
FPGA virus scanner are based onmodern FPGA architectures, which are substantially more complex
(e.g., fracturable LUTs, complex DSP blocks with ALU functionality, complex clock networks, and a
hierarchical routing fabric). Therefore, FPGADefender was designed to be compatible with Xilinx
UltraScale+ FPGAs. This feature makes FPGADefender applicable in real-world data centers and
cloud computing infrastructures [17, 24, 25].

In conclusion, discussed attacks compromise not only the user confidentiality but also the system
availability and the system integrity of an FPGA infrastructure. Although previous countermea-
sures suggested that self-oscillators can also be used to detect potential power attacks or monitor
system healthiness after the malicious bitstream is already loaded, it is crucial to have a stronger
mechanism to detect the use of malicious circuits before it has already been deployed, as provided
by FPGADefender for Xilinx UltraScale+ FPGAs.

3 A STUDY ON FPGA SELF-OSCILLATORS

In this section, we will provide an in-depth study on a wide range of self-oscillating circuits to
quantity their potential threats with a focus on power-hammering. Besides, we use this study to tune
FPGADefender for detecting all kinds of self-oscillating circuits that are practically implementable
on Xilinx UltraScale+ FPGAs using any logic, memory, or arithmetic primitives. This insight is
essential as FPGADefender should not only detect some oscillator designs but any known designs

in a user circuit. Different effects can be used to design self-oscillators, as discussed in the next
paragraphs. Because the actual oscillator speed depends on the supply voltage and temperature
(which, in turn, relates to the current operation state of the FPGA), any oscillator is probably a
potential path for a side channel. Therefore, even focusing on power-hammering in this section, by
preventing oscillators, we will further prevent the most critical side channels that are deployable
remotely.
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3.1 Experimental Setup

Our experiments are conducted on an Ultra96 board, which is equipped with a Xilinx Zynq
UltraScale+ MPSoC ZU3EG. The primitive resources count for Ultra96 in comparison with a
data center Alveo U200 [28] is shown in Table 1. We created 15 different Ring Oscillator (RO)
variants and evaluated them in Table 2. To generate the RO circuits, the PathSearch function of the
GoAhead tool [7] was used. That tool can perform a breadth-first search between arbitrary ports of
the FPGA fabric and rank the resulting paths by their latency. The expected frequency is based
on timing reports generated by the Xilinx Vivado tool [30], and the measured frequency on the
FPGA is determined by using a Time-to-Digital Converter (TDC), as shown in Figure 5. Our TDC
is a delay chain that allows us to take a snapshot of a signal propagating down the chain precisely.
By using 𝑁𝐹𝐹 = 32 flip-flops (FFs) and 𝑡𝑑𝑒𝑙𝑎𝑦 ≈ 70𝑝𝑠 (between two adjacent sample flip-flops), we
can capture a signal with a snapshot window of ≈ 2170𝑝𝑠 (Equation 1) and with a resolution of
70𝑝𝑠 approximately (see Figure 6 for details). This latency corresponds to a frequency range from
246𝑀𝐻𝑧 to 7142𝑀𝐻𝑧 (see Equation 2 where 𝑁𝐻𝐼𝐺𝐻 and 𝑁𝐿𝑂𝑊 are the number of consecutive FFs
that have registered 𝐻𝐼𝐺𝐻 -state and 𝐿𝑂𝑊 -state respectively). Figure 6 shows how the samples of
a TDC are read out to measure a frequency.
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amplification.

It should be noted that the clock buffer primitives inside a programmable logic (PL) region of
the FPGA fabric are rated for a maximum clock frequency of 891𝑀𝐻𝑧 [34]. Therefore, in order to
ensure stable TDC measurements, we operate the TDC sampling FFs at a moderate clock frequency
of 100𝑀𝐻𝑧. This is a difference to other clock measurement designs used for FPGA side-channel
attacks, which feed the RO’s output directly to clock inputs of some FFs to form a counter [18, 19, 54].
Because we aim for generating frequencies in the GHz regime, simple counter designs cannot be
used.

𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑁𝐹𝐹 × 𝑡𝑑𝑒𝑙𝑎𝑦 (1)

𝑓𝑅𝑂 =
1
𝑡𝑅𝑂

=
1

2 × 𝑐𝑦𝑐𝑙𝑒_𝑝𝑎𝑡ℎ_𝑑𝑒𝑙𝑎𝑦

≈ 1
𝑡𝑑𝑒𝑙𝑎𝑦 × (𝑁𝐻𝐼𝐺𝐻 + 𝑁𝐿𝑂𝑊 )

(2)

TDCs are subject to temperature changes, and we used heater circuits (circuits that waste power)
to heat the chip to 90◦C before actually taking any measurement. The temperature is within the
maximum operating temperature of the FPGA, which is 100◦C [34]. The heaters are not running
during the short period of time to take the (typically below one ms) measurements, and we use the
temperature sensor that is built into the FPGA to implement the temperature control. Additionally,
we took the median from 1000 measurements for each frequency reported in order to reduce the
impact of quantization errors and noise.
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Fig. 8. Tentative internal combinatorial loop inside DSP. This figure is adopted from [32].

3.2 Combinatorial Self-Oscillator Variants

The simplest self-oscillator is a combinatorial loop, which is a circuit that consists of an odd number
of chained inverters. We will refer to this basic oscillator as Ring-Oscillator (RO). The frequency of
an RO can be calculated by the propagation delay of the whole combinatorial loop which includes
propagation delay of all logic elements 𝑡𝑙𝑜𝑔𝑖𝑐 (e.g., LUTs or DSP blocks) and the net delay 𝑡𝑛𝑒𝑡 (i.e.
the routing delay) as given in Equation 3.

𝑓𝑅𝑂 =
1
𝑡𝑅𝑂

=
1

2 × (𝑡𝑙𝑜𝑔𝑖𝑐 + 𝑡𝑛𝑒𝑡 )
(3)

We performed a literature review on RO designs and found that previous researches [18–20, 41, 57]
only use LUT primitives to implement ROs. To capture any possible oscillator design, we analyzed
the exact internal architectures of the logic (i.e. SliceL/SliceM), arithmetic (i.e. DSP48E2), and BRAM
primitives available in UltraScale+ FPGAs. And for each of these primitives, we asked the question
if there exists a configurable combinatorial path from any of the primary inputs to any of the primary

outputs because this is a fundamental requirement for designing ROs. This study has to incorporate
all the different modes each primitive can be configured, and we found:

• Slices: We examined known RO designs through LUTs [18–20, 41, 57] as well as transparent
latches [19, 42, 57] and self-oscillating circuits based on glitch amplification or asynchronous
reset/preset [19, 42, 57]. In addition to these designs using FPGA slices, we found combinatorial
paths that have not been previously reported by the community, but that can be used for ROs
including 1) paths through MUX primitives (i.e. F7Mux and F8Mux multiplexers) inside the
slices and 2) paths through the carry logic (i.e. the Carry Look Ahead (CLA) logic introduced
in UltraScale+ FPGAs) (see Figure 7b).

• DSPs had not been considered in previous research for building oscillators. However, DSPs
can be used in many different configuration options, and there are many possibilities for
designing ROs. This is possible because DSP blocks can be used purely combinatorial without
any pipeline registers between the primary inputs and outputs that would prevent self-
oscillation. For instance, an RO can be formed by feeding the output of a DSP primitive back
to an input for implementing a counter without using any register in the feedback path. The
DSP48E2 primitives include not only multipliers but a tiny ALU that can perform bit-level
operations that execute faster than arithmetic operations, and for the remainder of this paper,
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cascade 
output signals

cascade input 
signals

Fig. 9. BRAM cascade functional diagram. This figure is adopted from [33].

we will only report results for the wide-XOR instruction that was found oscillating the fastest
(see also Figure 7c).
It is worth mentioning that we tried building an internal loop inside the DSPs, which may
exist in accumulator mode. We investigated this path because the accumulator register can
be bypassed to the output (as shown in Figure 8), and the documentation [32] does not state
if the bypass may eventually be used together with the accumulator mode. However, we have
not detected any switching activity or abnormal increase in power when configuring this
option. This fact implies that the flip-flop output is fed back to the accumulator input rather
than the output of the bypass multiplexer (see the top right box in Figure 8). Thus, the DSP
accumulator mode can be considered as secure from possible cycles in DSP48E2 primitives.

• BRAMs are mostly comprised of synchronous components (i.e. memory cells) that are
working on a clock basis with synchronous reset signals [33]. With this, we cannot implement
any ROs directly through internal BRAM components. The only existing combinatorial part
that we found is located inside the cascading logic, which is used to build larger memories
from multiple consecutive BRAM primitives. However, the cascading chains have dedicated
bottom-up routing resources that cannot be controlled by user logic, and cascade multiplexers
are controlled by flip-flops, as shown in Figure 9. Therefore, BRAMs are considered to be
RO-free.

We like to stress that most new oscillator designs do not throw any DRC critical warning/error
message in the vendor tool Xilinx Vivado 2019.1, which means that these oscillators are possibly
deployable, for example, on Amazon F1 cloud instances [57]. Table 2 provides an overview of most
oscillator designs examined in this paper.
While there are papers discussing self-oscillators for FPGAs [19, 42, 57], we have not found a

comprehensive study on performance tuning for improving the power-hammering potential as well
as a corresponding evaluation of such oscillators on real FPGA hardware. For differential power
analysis (DPA) attacks, an attacker typically seeks the fastest oscillator. In contrast, for a denial-
of-service attack, the waste power efficiency (power drawn per unit resources) is more important.
Even for a basic RO using LUT primitives, we found that the different LUT6 primitives inside a
CLB (i.e. a cluster of 8 LUT6 primitives sharing a switch matrix) as well as using different LUT
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Table 2. Variants of self-oscillating circuits studied on Xilinx UltraScale+ FPGAs. The results of power

consumption are measured on the Ultra96 platform equipping with a Zynq UltraScale+ MPSoC ZU3EG.

No Variants Schematics Number
of loops

Loop
Type DRC Warning

Report
Net
Delay

Report
Prim-
itive
Delay

Expected Fre-
quency

Measured Fre-
quency Power WPP

0 Empty design ø ø ø ø ø ø ø ø 2.94W ø

1 RO using LUT6 (I5)

1 
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0          1

Carry Input
Carry-MUX 
data input

Carry-out

Carry-MUX 
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓
(LUTLP-1**)

49ps 41ps 5556MHz 5882MHz 7.32W
(+4.38W) 26.63

2 RO using LUT6 (I4)

1 
0

0
1

I5
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0          1

Carry Input
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1
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1
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Y

Z

48
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1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓
(LUTLP-1**)

51ps 66ps 4274 MHz 3937 MHz 6.84W
(+3.90W) 23.69

3 RO using LUT6 (I3)

1 
0

0
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1
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(+3.05W) 18.52

4 RO using LUT6 (I2)
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I5
I4
I3
I2
I1
I0 LUT6
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5 RO using LUT6 (I1)
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6 RO using LUT6 (I0)
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0
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2000 Comb ✓
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(+3.41W) 20.75

7 Dual-RO from LUT6
primitive Refer to Figure 7a 2000×2 Comb ✓
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O6: 100ps

O5: 1272MHz
O6: 3247MHz

O5: 1235MHz
O6: 2439MHz
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8

Enhanced ROs
design for power-
hammering using
high fanout to waste
power on routing
resources

Refer to Figure 10 2000 Comb ✓
(LUTLP-1**)
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10 RO using MUX8
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11 RO using Carry Logic Refer to Figure 7b 2000 Comb ✗ 381ps 104ps 1031MHz 1109MHz 5.14W
(+2.19W) 1.67

12 RO using DSP Refer to Figure 7c 360x8 Comb ✓
(DPIP-2*,
DPOP-3*)

251ps 994ps 402MHz 585MHz 4.53W
(+1.59W) 0.27

13 RO using latch [42,
57]
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14 RO using flip-flop [19,
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Comb

✓
(PDRC-153*,

PLHOLDVIO-2*)

✗ ✗ ✗ 555MHz 5.26W
(+2.32W) 7.05

15 Glitch amplification Refer to Figure 7d 2000 Non-
Comb

✓
(PDRC-153*,

PLHOLDVIO-2*)

✗ ✗ ✗ 481MHz 8.05W
(+5.10W) 10.35

Designs 7, 8, 9, 10, 11, 12, 15 have not been reported.
Comb: Combinatorial
*: DRC warning
**: DRC critical warning
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Fig. 10. Enhanced ROs grid for power-hammering: a) schematic; b) implementation with 2000 ROs.

inputs for implementing fastest possible ROs result in a wide range for both frequency and waste
power (see Figure 12). We have discovered frequencies ranging from 1𝐺𝐻𝑧 to 6𝐺𝐻𝑧 approximately
as a result of the internal architecture of the LUTs (see Figure 11) and a variance in the routing path
delay for implementing the fastest possible loop. The corresponding waste power is not necessarily
correlating with oscillator speed. Because we do not have access to the low-level ASIC details of
any Xilinx FPGA, we cannot fully explain this behavior. Still, one possible explanation could be
that longer paths are slower and have therefore a lower RO frequency; but because there are longer
wires (with more capacitive load), more switching elements, and drivers involved per oscillator
round-trip the overall waste power may still be high (or even higher).

Figure 11 shows the internal hierarchical architecture of a LUT, which is built from a tree structure
of multiplexers where the inputs 𝐼0 to 𝐼5 are equal in their logical behavior but not for their timing.
The figure shows that input 𝐼0 needs to travel through 6 levels of multiplexing to propagate to
𝑂6 which results in a primitive latency of 177𝑝𝑠 , while input 𝐼5 only needs to propagate one
level resulting in 41𝑝𝑠 latency. Moreover, because the adjacency of UltraScale+ switch matrices
is relatively sparse (as usual for FPGAs), the fastest possible loop routing has a relatively high
variance in latency depending on which specific LUT input is used for the loop. With this, we
examined the fastest possible ROs where the loop routing can be implemented in just a single
hop1. For these ROs, Vivado reported a path delay for the external routing ranging from ≈ 46𝑝𝑠 to
≈ 71𝑝𝑠 . For having full control of the implementation throughout the experiments, we constraint
the routing using the GoAhead tool [7]. Comparing the single-hop routing RO variants against
each other is interesting because the variance in frequency is now mostly related to the internal
latency inside the LUT itself (see Figure 15). The corresponding results are listed in Table 2.

3.3 Non-Combinatorial Self-Oscillator Variants

In addition to combinatorial loop-based ROs, non-combinatorial loops had been proposed in recent
papers [19, 42, 57]. These designs use transparent latches, glitch amplification [19, 42, 57], or
asynchronous reset/preset to create oscillators [19] (see also Section 4.3.2).
We repeated the experiments in [19, 42, 57] and confirmed that all designs could implement

oscillators. Moreover, wemanually optimized these oscillators for maximum speed by using different
local routing options to fine-tune routing latencies.
1Here, a hop is actually passing two switch matrix multiplexers that together act as a pair to form a larger two-level
multiplexer, similar as used for older Xilnix FPGA architectures (see also Figure 15).
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. . .

LUT6

tI0-O6   ≈ 177ps
tI1-O6   ≈ 150ps
tI2-O6   ≈ 116ps
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tI4-O6   ≈ 66ps
tI5-O6   ≈ 41ps

Fig. 11. Logical view of a Lookup Table 6-input primitive with timing information taken from Vivado.

In our experiment using glitch amplification (see design 15 in Table 2), we created glitches by
creating routing paths with different signal propagation delays from a single T-flip-flop output
to a LUT, which implements an XOR gate to create a glitch which is fed back to the clock input
pin of the T-flip-flop. With a timing difference of 218𝑝𝑠 between the two paths, we measured a
frequency of 481MHz. It should be noted that this oscillator requires an external signal to kick-start
the oscillator.

A common property shared among the here presented non-combinatorial loops is that they rely
on local clock routing resources rather than on the global clock distribution network. We have
not seen any use of clock routing resources for implementing the internal routing of High-Level
Synthesis (HLS) generated circuits, and the clock distribution network is entirely used for clock
signal routing. For the oscillator based on glitch amplification, the Vivado tool reported a gated
clock (DRC warning code: PDRC-153) and a warning indicating a possible hold-time violation (DRC
warning code: PLHOLDVIO-2).

3.4 Self-Oscillator Power Evaluation

So far, we reported timing characteristics of self-oscillating circuits and if the Xilinx vendor tools
throw DRC error or warning messages that may or may not allow detecting oscillators in a design.
In this section, we report our results on waste power that was drawn from the different oscillator
designs, as shown in Table 2. From that table, we took the three most power-wasting designs
(Design 7, 8, 15) to highlight their suitability for power-hammering attacks (see Table 3). To quantify
the risk for power-hammering, we introduce the term Waste Power Potential (𝑊𝑃𝑃 ), which we
define as:

𝑊𝑃𝑃 =
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑤𝑎𝑠𝑡𝑒_𝑝𝑜𝑤𝑒𝑟_𝑤ℎ𝑒𝑛_𝑢𝑠𝑖𝑛𝑔_𝑡ℎ𝑒_𝑤ℎ𝑜𝑙𝑒_𝐹𝑃𝐺𝐴

𝑡𝑜𝑡𝑎𝑙_𝐹𝑃𝐺𝐴_𝑝𝑜𝑤𝑒𝑟_𝑏𝑢𝑑𝑔𝑒𝑡

=
𝑃𝑊𝑃

𝑇𝑃

(4)
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Fig. 12. ROs Frequency versus Waste Power Gain (measured for 2000 ROs) for all 8 LUT6 primitives inside

a CLB for all corresponding different cases that implement the fastest possible loop from output O6 to an

input of the same LUT (resulting in 8 × 6 = 48 individual experiments).

Where 𝑃𝑊𝑃 (PossibleWaste Power) denotes the assumed power consumedwhen a power-hammering
circuit is occupying the entire FPGA and where 𝑇𝑃 (Total Power) refers to the power envelope
typically defined by the power supply, the thermal design of the system, and the maximum power
rating of individual components, including the FPGA. Depending on the system’s power envelope,
𝑃𝑊𝑃 may not be reachable in a particular system, and 𝑃𝑊𝑃 is essentially expressing the potentially
possible waste power.𝑊𝑃𝑃 reveals how a power wasting circuit performs per unit resources and
unit power budget available in a particular system.𝑊𝑃𝑃 < 1 expresses that a power wasting circuit
is likely not to be able to crash/harm the FPGA or system, while𝑊𝑃𝑃 > 1 expresses a potential risk
to crash the FPGA. Moreover, the value of𝑊𝑃𝑃 denotes the number of resources needed to crash
an FPGA. For example, with𝑊𝑃𝑃 = 5, an attacker can crash an FPGA by using at least 20% of the
available resources. In reality, the threat will likely be even higher for power-hammering circuits
that have a𝑊𝑃𝑃 > 1 because there will be other parts of the FPGA drawing some additional power
(which could be incorporated by subtracting other power contributors from 𝑇𝑃 ). Nevertheless,
𝑊𝑃𝑃 is a good measure to quantify if a system is at risk of power-hammering. Please note that
𝑊𝑃𝑃 assumes a steady waste power consumption and that even𝑊𝑃𝑃s below one may cause harm
due to dynamic voltage (IR) drops and other dynamic effects (e.g., resonance effects triggered in a
power regulation circuit). However, the lower𝑊𝑃𝑃 , the lower the harm possible due to IR drops.
To maximize 𝑊𝑃𝑃 , we amplified the power wasting effect caused by fast toggling ROs to

additionally drive a large amount of local routing and logic elements for wasting even more power.
Figure 10 shows the idea and implementation of our experiment. As shown, we intentionally
connect each of the RO loops to some unused inputs of other ROs. These other ROs are placed in
different CLBs to use more routing resources (e.g., wires, multiplexers, etc.) along the routing paths,
which in turn wastes more power.

Figure 13 shows the power-hammering evaluation results on an Ultra96 board. 𝑉𝐶𝐶𝐼𝑁𝑇 is
the core voltage of the FPGA which is recommended to be 0.85𝑉 [34]; 𝑉𝐶𝐶_𝑆𝑀𝑃𝑆 is the voltage
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Fig. 13. Power-hammering Evaluation for Power over Core Voltage on Ultra96.

Table 3. Power-hammering evaluation between Xilinx Power Estimator, Measured Power Consumption on

Ultra96, and Speculation Power Consumption on Alveo U200.

Designs from Table 2 LUT6
used Power/Primitive

Xilinx
Power Es-
timation

Power
Gain in
Ultra96

Provisioned Power Gain
in Alveo U200 (with 50%
LUTs utilization)

WPP

Design 7 - Dual-RO 2000 2.55 mW/Primitive 0.227W 5.10W 1507W 13.39
Design 8 - Enhanced ROs 2000 3.33 mW/Primitive 2.067W 6.66W 1968W 17.51
Design 15 - Glitch Amplification 6000 0.64 mW/Primitive 0.351W 5.10W 502W 4.47

measured at the output of the power supply regulator circuit for the FPGA; and 𝐵𝑜𝑎𝑟𝑑𝑃𝑜𝑤𝑒𝑟

is measured at the 12𝑉 input to the Ultra96 board. From the result, we can see a gap between
𝑉𝐶𝐶_𝑆𝑀𝑃𝑆 and 𝑉𝐶𝐶𝐼𝑁𝑇 which relates to the voltage drop of the board’s power supply network
between the power supply regulator circuit to the FPGA. The increasing gap indicates a rise in the
current until the power supply cannot compensate any longer and eventually crashing the board.
We analyzed the schematic of the used Ultra96 board [5]. While the actual power regulator circuit
and power drivers should be able to deliver over 10A to the FPGA, there is a TPS22920 load switch
in the power network path which is rated for 4A and which has an on-resistance of ≈ 10𝑚Ω (at
working temperature), which explains most of the 𝑉𝐶𝐶_𝑆𝑀𝑃𝑆 - 𝑉𝐶𝐶𝐼𝑁𝑇 gap.

Design 8 has a𝑊𝑃𝑃 = 40.54, and our experiments revealed that with only 6% of the available
LUT resources (4000 LUTs of a ZU3EG FPGA), the used Ultra96 board crashed immediately. This
number is higher than what is suggested by𝑊𝑃𝑃 where 1/𝑊𝑃𝑃 would be enough to impose a
threat (which is 70𝑘 𝐿𝑈𝑇𝑠/40 ≈ 1750𝐿𝑈𝑇𝑠 or 2.5% LUT resource for the used ZU3EG FPGA on an
Ultra96 board). However, when studying Figure 13, we see that at ≈ 2.7% of the total LUT resources
(≈ 2000 LUTs), the core voltage starts to drop below the recommended core voltage, and the power
supply starts to struggle to keep up with the demand resulting from the power-hammering. After
that point, the power regulator circuit is unable to sustain the current demand resulting in a drop
of 𝑉𝐶𝐶_𝑆𝑀𝑃𝑆 . The tipping point when the core voltage drops below its nominal value matches
quite close to the resources indicated by𝑊𝑃𝑃 .

The here presented results are even more significant when considering a datacenter FPGA card
such as the Alveo U200 board from Xilinx. When assuming that our Zynq UltraScale+ power-
hammering results can be directly transferred to the Xilinx Virtex UltraScale+ VU9P FPGA (because
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Fig. 14. Power-hammering Evaluation for Power over Temperature on Ultra96.

they use the exact same fabric architecture and the same 16nm FinFET process [31]), this would be
equivalent to a𝑊𝑃𝑃 of 17.51 which translates into a total possible waste power of 𝑃𝑊𝑃 ≈ 3940W,
when deploying Design 8 on the entire VU9P of an Alveo U200 board (see also Table 2 and Table 3
for more results). This estimation is far beyond anything that the FPGA, the board, or the system
would ever sustain, hence expressing the importance of preventing such circuits from getting
configured on the FPGA in the first place.
Figure 14 shows the temperature of the board, corresponding to the number of deployed ROs

Although cooling mechanisms (i.e. heatsinks, fans) keep the temperature below the maximum
junction temperature, intensively heating the fabric may have a long term impact on the FPGA.
This phenomenon is in particular dangerous if the heat is generated in a hot spot and not evenly
spread across the entire FPGA die.
Additionally, we also implemented a "Dual-RO" (Figure 7a) exploiting the fact that a LUT6

primitive in UltraScale+ devices can be split into two individual LUT5 with shared inputs as
shown in Design 7 of Table 2. Thus, we can use both outputs of a fractural LUT to implement two
independent oscillators. For 2000 LUTs (4000 ROs), which corresponds to less than 3% of the device
capacity, we measured a waste power of 5.10𝑊 . Please note that this is an increment in power, and
the total power of the board was close to 8𝑊 and already close to the total power envelope of an
Ultra96 board [4]. With this, the total possible waste power 𝑃𝑊𝑃 is over 180𝑊 , considering all the
available 70K LUTs would be used for power-hammering.

4 FPGA VIRUS SCANNING AT THE ELECTRICAL LEVEL

4.1 Hardware versus Software Virus Scanning

In software systems, the confidentiality of data and task integrity are usually protected by different
layers that may go beyond what a software virus scanner is testing. This includes protection
mechanisms provided by the software operating system (OS) or run-time environments. Software
binaries encode the functionality of a program primarily as sequences of instructions. Consequently,
a virus scanner for software binaries will include a pattern matching engine, typically searching
for regular expressions, which are also known as virus signatures.
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Table 4. Contrasting protection mechanisms: software versus FPGA hardware techniques.

Software Hardware
Check software binaries using regu-
lar expressions and cryptographic hash
matches

Translate the FPGA bitstreams to
netlists and check graph properties on
netlists

Check address ranges to prevent execut-
ing malicious code

Check location information in configu-
ration bitstreams

Bounds checking and memory ran-
domization to prevent buffer overflows
(eventually by an OS)

Check volume of configuration data
written to prevent configuring adjacent
regions

Contrarily, a configuration bitstream encodes the functionality of a module essentially as a netlist,
which in turn is a structural representation given as configured FPGA primitives and configured
switching elements (i.e. multiplexers). A netlist can be modeled as a graph, and the whole physical
FPGA implementation process can be described by graph transformations, as summarized in 4.2
Consequently, a virus scanner for FPGAs needs a checker engine for graph properties. For example,
in Section 3, we examined ring-oscillators in more detail that in one variant are implemented as
cyclic combinatorial circuits (e.g., a LUT that has an output connected to its input without passing
a flip-flop). By scanning a netlist (i.e. its corresponding graph representation), we can spot such
oscillators.

A software OS and most software virus scanners commonly check memory addresses (or memory
ranges) used by programs to ensure that data is not corrupted in malicious ways or that, for example,
data segments are not executed as code. Similarly, a virus scanner for FPGAs has to check that a
configuration bitstream is not corrupting the configuration context of other parts of the system,
including other configurations or states of other parts of the system (e.g., the surrounding shell
that commonly provides DDR memory and PCIe access). Consequently, a virus scanner needs a
bitstream parser that ensures that a module will only change the configuration context of resources
allocated to that module. This requirement includes parsing addressing information that encodes
locations of primitives on the FPGA fabric as well as tracking the volume of configuration data
that is written to the device. The latter tracking prevents a kind of a buffer overflow that can arise
when configuring Xilinx FPGAs2. This attack would exploit that Xilinx FPGAs perform something
similar to an auto-increment that keeps configuring an FPGA as long as it receives configuration
data through a configuration port. As a consequence, this could overwrite the configuration of the
fabric outside an intended module bounding box.

To some extent, the tracking of the configuration bitstream length is equivalent to buffer overflow
detection and prevention techniques (e.g., bounds checking) as embedded into some compilers like
the Clang frontend for LLVM [43].

We summarized the main differences between software and hardware virus scanning in Table 4.
For full system security, it requires hardware support from the run-time system. For instance,
systems commonly provide memory management units (MMUs) that can protect memory regions
against malicious accesses. These units are also available in CPU-FPGA hybrids such as Xilinx Zynq
UltraScale+ devices or Intel Stratix-10 SX SoC devices; and these chips include dedicated IOMMUs
to protect the memory subsystem from malicious accesses initiated from the FPGA side (e.g., by
an accelerator module). Alternatively, MMU functionality can be implemented in the FPGA’s soft
2Please note that this problem is not necessarily bound to a specific vendor but that this problem is best understood for
Xilinx FPGAs which dominate the research on run-time reconfigurable systems.
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logic (commonly as part of a shell [66]). In this paper, we are, in particular, focusing on FPGA
vulnerabilities at the electrical level because protecting a system at the system level is very well
studied and, therefore, not further covered here.

4.2 Modelling the FPGA Virus Scanning Problem

Formally, any FPGA architecture can be modeled by its architecture graph 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴) which
includes as its node primitives𝑉 𝑃

𝐴
and switches𝑉 𝑆

𝐴
with𝑉𝐴 = 𝑉 𝑃

𝐴
∪𝑉 𝑆

𝐴
as well as directed edges 𝐸𝐴

between the nodes representing wires or connections3. When a module is implemented for an FPGA,
its specification (e.g., some RTL code) will undergo several transformation steps, including logic
compilation, technology mapping, placement of primitives, routing, and ultimately the generation
of the configuration bitstream. Concisely, we can say that the technology mapping is an allocation
and mapping of primitive Boolean functions (the result of the logic synthesis step) to a set of
connected primitives (including their internal configurations). The result of this step is a netlist,
which is a graph 𝐺𝑁 = (𝑉𝑁 , 𝐸𝑁 ), where the nodes are FPGA primitives.

During placement, the nodes get placed on the architecture graph𝐺𝐴, which is a binding 𝛽 of the
netlist nodes 𝑉𝑁 → 𝑉 𝑃

𝐴
. In practice, this means that we annotate for each node in 𝐺𝑁 the location

coordinate 𝐿 of the corresponding primitive of the FPGA:
𝑉𝑁 → 𝐿(𝑉 𝑃

𝐴
),∀ 𝑉 𝑃

𝐴
∈ 𝑉𝑁

The process of routing can be defined as computing a binding of the netlist edges 𝐸𝑁 to switches
𝑉 𝑆
𝐴
and wires 𝐸𝐴. In general, this is a quite complicated process, and the actual routing has, among

other things, to find spanning trees (for multiple edges 𝑒𝑛 ∈ 𝐸𝑁 that have the same source node in
𝑉𝑁 ). Primitive nodes commonly have multiple input and output ports 𝑝 ∈ 𝑃𝑡 , where 𝑃𝑡 is the set of
ports for a specific primitive type 𝑡 . The routing information can be seen as a set of switches (a
list of nodes in 𝑉 𝑆

𝐴
) and wires (a list of edges in 𝐸𝐴) that are used to implement each connection in

𝐸𝑁 . The configuration of a switch is given by none (if the switch is not used) or exactly one edge
from another node (or port in the case the source is a primitive node), which in turn represents the
selected routing multiplexer input (e.g., in a switch matrix).

A placed and routed netlist can be directly mapped to a bitstream and encodes the exact config-
uration of each element 𝑉 𝑃

𝐴
,𝑉 𝑆

𝐴
∈ 𝑉𝐴. It is essential to understand that this mapping is reversible,

meaning that a bitstream can be mapped back to a placed and routed netlist. However, this map-
ping needs the architecture graph to rebuild the routing, which is only encoded as segments in
the bitstream, rather than as complete paths. On the contrary, a netlist generated through the
implementation flow still provides a substantially higher level of abstraction than the bitstream.
This is because a netlist typically includes information such as hierarchies, symbolic names of nets
and logic blocks, and information on signal vectors, which cannot be easily decompiled from an
FPGA configuration binary. This fact is similar to software compilation into obfuscated program
binaries that also do not allow to decompile symbolic names and hierarchies.
This project uses the reversible correspondence between bitstream and netlist to rebuild flat

netlists that provide all primitives 𝑉 𝑃
𝑁
and all switching multiplexers 𝑉 𝑆

𝑁
, but that will not offer

any higher level information (such as symbol names or Boolean equations). For the remainder of
this paper, we will use 𝐺𝑁 to refer to a netlist that is rebuilt from a bitstream for detecting virus
signatures.

Please note that the goal of this paper is not to provide/offer a reverse engineering tool for FPGAs
but to show that configuration bitstreams are well suited to detect malicious circuit constructs in a
module. Related work that focuses explicitly on reverse engineering includes [8, 61, 71].

3For the sake of clarity, we deliberately omit a discussion about bidirectional wires that had been available in older FPGA
architectures.
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4.3 Detecting Self-oscillating Circuits

As mentioned in Section 2, it is of paramount importance to identify self-oscillating circuits in a
design to be deployed. The following paragraphs are devoted to different classes of self-oscillating
designs.

4.3.1 Ring-Oscillators. Ring-Oscillators break the fundamental model of register-transfer level
(RTL) descriptions where a circuit is described by

(1) registers, including FPGA slice flip-flops, pipeline registers (e.g., inside DSP primitives), or
memories, and

(2) transforming logic that is forming acyclic combinatorial paths.
These paths can be described by a network of elementary Boolean functions implemented by

look-up tables (LUTs), or DSP blocks4 that are located between the registers.
It is a good design practice to follow the RTL design principle on FPGAs [62], and this is also the

model commonly generated by High-Level Synthesis (HLS) tools [39]. In this paper, we assume that
all states are stored in flip-flops or other synchronous memory elements (which is the typical case
for FPGA designs). Circuit analysis using latches (which are sometimes used in ASIC netlists) is a
well-studied topic, and there is no fundamental obstacle to transfer the here presented methodology
to circuits based on latches.
To perform a search for cycles, we have to refine our netlist model so that each port 𝑝 ∈ 𝑃𝑡

of a primitive 𝑉𝑁 can be either a register 𝑃𝑅𝑡 or a combinatorial element 𝑃𝐿
𝑡 for routing or logic.

With this, we expand ∀𝑝 ∈ 𝑃𝑅𝑡 a path search that terminates at any other register port ∈ 𝑃𝑅𝑡 or that
recursively explores all paths while keeping track for duplicate ports visited in 𝑃𝐿

𝑡 , which would
indicate a cycle.

In general, it requires an odd number of inverters in a cycle to form a Ring-Oscillator. FPGADe-
fender is not interpreting the logic blocks for possible inverters, and we deliberately scan for
acyclic paths only. The reason for this is that if a combinatorial block (e.g., a LUT or DSP block) im-
plements an inverter between an input and an output can depend on other inputs and consequently
on a state that is only known when running a module. The philosophy of FPGADefender is to
flag any possible oscillator while not report a false positive for any design that is following RTL
design principles. Moreover, FPGADefender is stricter than the Xilinx vendor DRC checks, which
can also detect some cycles, but there are situations where the vendor DRC fails. For example, an
enabled transparent latch can be part of a Ring-Oscillator, and due to the latch (which is logically
a wire), this cycle would not be flagged by the Xilinx vendor DRC but by FPGADefender. More
examples are provided in Section 3.
For our implementation, we used Xilinx Vivado for generating a report file containing the full

architecture graph for the used Zynq UltraScale+ XCZU3 FPGA. However, that model does not
explicitly distinguish between 𝑃𝑅𝑡 and 𝑃𝐿

𝑡 , and we added this annotation through a regular expression
replacement. Furthermore, the path search inside the virus scanner incorporates all combinatorial
primitives, including LUTs, DSPs, carry logic, cascading multiplexers (i.e. F7Mux and F8Mux in
Xilinx nomenclature), which requires an understanding of the bitstream encoding of primitive
control bits. However, the actual search does not have to distinguish between different types of
primitives. This scan will identify the oscillator cases 1 . . . 12, which are reported in Section 3.

4.3.2 Self-clocking Oscillators. In our oscillator evaluation section (Section 3), we evaluated an
oscillator circuit that is based on glitches that are generated by an XOR gate with different input
4For a sake of clarity, we are omitting a deeper discussion on pipeline registers in DSP blocks for the reminder of this paper,
even FPGADefender can deal with all internal registers and pipeline stages in the DSP48 primitives which are available on
Xilinx UltraScale+ FPGAs.
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routing latencies and where the resulting glitches are fed back into the clock input of a toggle
flip-flop for a self-propelled oscillation (see variant 15 in Table 3). In order to detect this kind of
oscillator, we examine for each used flip-flop the corresponding clock source. If the source is a
global clock network, the bitstream is accepted. If the clock source cannot be considered to be
stable (e.g., a combinatorial LUT output), the bitstream is rejected. In our systems [17, 66], we
block configuration access to global clock resources for any partially reconfigurable module by
using BitMan [50] for preventing this kind of attack and FPGADefender will detect if partially
reconfigurable modules try driving global clock resources.

4.3.3 Other Oscillators. In Section 3, we presented further self-oscillating designs that allow
bypassing Vivado design rule checks (DRCs); therefore, this allows an attacker to implement
oscillators which can be deployed in cloud data centers. To confirm this, we ran experiments on
Amazon F1 instances for all Oscillator designs listed in Table 2 and all designs that don’t throw any
warning by the vendor tools can be deployed. The remainder of this paragraph will present the
corresponding detection mechanisms.

The self-oscillator detection mechanism in Section 4.3.2 scanned for the origin of a clock source,
and we use a very similar mechanism to handle asynchronous reset/preset inputs of slice flip-flops
which can also be used for creating self-oscillating circuits (see variant 14 in Table 2). To detect
this, we query the asynchronous mode flag from the bitstream for each used flip-flop, and in case
any asynchronous reset/preset mode is used, we search from the control input (i.e. the reset/preset
primitive input) backward to find the origin of the corresponding control signal. If the origin is a
combinatorial primitive pin (𝑃𝐿

𝑡 ), the bitstream is rejected while we flag a warning for registers 𝑃𝑅𝑡 .
In order to prevent the Vivado tool from flagging a combinatorial feedback loop, a transparent

latch can be incorporated in the loop (see variant 13 in Table 2). We, therefore, treat latches
as combinatorial elements (essentially like a wire) and carry out a loop search as described for
ring-oscillators (Section 4.3.1). We also report a warning in the case latches are used.
The here presented tests allow detecting any FPGA implemented self-oscillating circuits that

have been reported in the literature, including all further variants reported in Section 3.

4.4 Detecting Short-Circuits

In [2, 3, 6, 22], short-circuits had been reported that were implemented directly in the soft-logic
on an FPGA. In older FPGA families (e.g., Xilinx Virtex-II), the fabric included some long-distance
wires that could be accessed through tristate drivers at different positions, which could be used to
create short-circuits inside the fabric. The deployable attack for short-circuits in modern FPGAs
is based on the way switch matrix multiplexers are commonly implemented. In SRAM-based
FPGAs, the multiplexers are implemented with transmission gates or pass-transistors [12] and
by activating multiple inputs (i.e. switching on multiple transmission gates or pass-transistors
within the same multiplexer), a short-circuit situation arises when the corresponding multiplexer
inputs carry different logic levels. Therefore, by changing the input logic levels to the switch matrix
multiplexers, it is possible to control the power that a shorted multiplexer is drawing precisely in
time. This configuration provides the potential for denial-of-service-like (DoS-like) attacks.

As shown in Figure 15, 7-Series FPGAs from the vendor Xilinx implement a switch matrix multi-
plexer by cascading two levels of switching, each controlled through a one-hot coded configuration
word (see [6, 44] for more details on FPGA switch matrix multiplexer implementations). In contrast,
the multiplexers in UltraScale+ devices are smaller and use only one multiplexing level that is
again one-hot encoded in the configuration bitstream. Consequently, for UltraScale+ devices, a
used multiplexer input port corresponds directly to one specific configuration bit. Therefore, we
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Fig. 15. a) Switch matrix multiplexer implementation on Xilinx 7-series FPGA; b) ditto for UltraScale+ FPGAs.

reject bitstreams where a switch matrix multiplexer encoding contains more than one bit among
the set of bits that control that particular multiplexer.
Please note that the vast amount of UltraScale+ switch matrix multiplexers are used as pairs.

Consequently, UltraScale+ multiplexers are similar to 7-Series multiplexers, with the main difference
that internal multiplexer details are made visible to the user. This organization simplifies the short-
circuit detection for UltraScale+ devices as it is not necessary to determine the sets of configuration
bits that control a specific multiplexing level, as performed in [6] using graph algorithms (e.g., the
configuration bits C0, . . . , C3 in Figure 15a) form a set of configuration bits).

4.5 Bitstream Bounding-box Tests

Testing if a bitstream is exceeding its allocated (partial) region during configuration was examined
in several projects before. For example, the configuration manager for the Erlangen Slot Machine
project evaluated start address information and scanned the length of the bitstream written to
the device [46]. The REPLICA project parsed configuration bitstreams directly in hardware as
part of the configuration controller that connects to the configuration port of the FPGA [36]. A
full overview of partial reconfiguration techniques is provided in [38]. For the virus scanning
implemented in this paper, we use BitMan [50], which supports parsing of all Xilinx UltraScale+
FPGA configuration bitstreams. BitMan is used inside the FPGADefender flow for bounding box
testing and for converting FPGA bitstreams to the required netlist for further graph search, as
illustrated in Figure 1.

4.6 Detecting Wire-Tapping

The wire-tapping test checks if a partial module is connected to ports that belong to the static
system or another module outside the circuit boundary (i.e. the region allocated to a reconfigurable
module). However, a static signal may have to cross a reconfigurable region, like, for example, in
order to access a gigabit transceiver (as part of the shell), and a module placed into this region
should not be allowed to access this crossing signal. We define therefore prohibited ports/nodes
in the architecture graph 𝑝− ∈ 𝐺𝐴 (i.e. a negative filter) that are not allowed to exist in the netlist
𝐺𝑁 which is corresponding to the circuit encoded by the bitstream to be examined: 𝑝− ∉ 𝐺𝑁 . For
convenience, we allow defining prohibited ports by regular expressions, which, for example, allows
the definition of a bounding-box. This definition would be the same bounding-box as defined during
system floorplanning when reconfigurable regions are defined (i.e. a P-block in Xilinx terminology).
Because static routes may cross the area of a partial module differently in different systems, it is
necessary to define the port list individually for each system. The port list for a static route can be
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Fig. 16. FPGADefender flowchart.

easily derived automatically using the TCL interface in Vivado using the get_property command
on the specific signals to be protected.

4.7 Interface Sanity Check

As mentioned in the previous section, we defined a negative filter for a set of ports (𝑝− ∈ 𝐺𝐴). FP-
GADefender can also search for port connections that must exist in a bitstream, which implements
a positive filter (𝑝+ ∈ 𝐺𝑁 ). This filter is, in particular, used for partially reconfigurable modules to
check if the module connects to the foreseen wires between the static system and the module such
that no interface wires are left over as antennas. Only such interface wires implement the commu-
nication between a partial module and the surrounding while all other signals a strictly separated
for both the surround (static) system and the partially reconfigurable module, as implemented in
systems [51, 67]. An interface wire antenna may not necessarily indicate a malicious circuit but
flags that a reconfigurable module may have an incompatible interface.

5 FPGADEFENDER: IMPLEMENTATION AND EVALUATION

This section is devoted to the implementation and evaluation of our FPGADefender bitstream
virus scanner. The existing implementation was carried out for and tested on an Ultra96 board, but
because FPGADefender operates on models that are automatically derived from the Xilinx Vivado
tool suite, the approach is portable to all other Xilinx UltraScale+ FPGA platforms.

5.1 FPGADefender Implementation

{

"begin": {"tile": {"name": "INT", "x": 18, "y": 19}, "name": "WW2_E_END6"},

"end": {"tile": {"name": "INT", "x": 18, "y": 19}, "name": "

INT_NODE_SDQ_34_INT_OUT0"},

"attributes": []

},

Listing 1. A snippet of a single edge of a netlist graph.
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FPGADefender5 is built entirely in Python, which provides a bundle of supportive packages such
as NetworkX [23] to represent and analyze netlist graphs derived from bitstreams using BitMan.
BitMan, as discussed in Section 4, provides netlist graphs 𝐺𝑁 which contain node information 𝑉𝑁
and edge information 𝐸𝑁 . The netlist graphs are encoded in JSON format, as shown in Listing 1.
After parsing a netlist graph 𝐺𝑁 , scanning options are parsed to provide inputs for the virus

detector engines as well as a set of positive filters 𝑝+ ∈ 𝐺𝑁 and negative filters 𝑝− ∈ 𝐺𝑁 . Then the
scanning process is executed based on a set of virus detector engines:

• Combinational cycle detector: Detect combinatorial cycles and transparent latch cycles.
• Attribute detector: Detect unusual synchronous design elements such as the use of latches.
• Port detector: Detect prohibited ports that are used in the bitstream.
• Path detector: Detect prohibited paths that are used in the bitstream.
• Antenna detector: Detect dangling paths in the bitstream (which indicate physical interface
mismatches ).

• Short-circuit detector: Detect short-circuits caused by possible bitstream manipulations
(FPGADefender rejects bitstreams with invalid encodings for the routing).

• Fanout detector: Detect and report maximum fanout of the examined module.
A score is given in each of the scanning stages and summed up to deliver a total score. Based on

the reported result, the configuration manager will be able to decide whether a bitstream is safe to
be deployed or not, as shown in Figure 1. The specific security grading can be more complicated
and depends on the security requirements of a specific system. For example, the FPGADefender
scan result may be interpreted as strict or more relaxed (i.e. to allow latches). However, in any case,
the scan result is quantifying precisely the risk potential of a partially reconfigurable configuration
bitstream.
The actual implementations of the virus detector engines are based on set operator functions

and graph traversals. This graph, however, considers FPGA-specific details in the FPGADefender
implementation. For example, all modern FPGA architectures support LUTs that are fracturable.
This fact means in the case of Xilinx FPGAs that a LUT6 can implement two independent LUT5
logic functions where the five lowest inputs are shared. For instance, we could think of a full adder
where one LUT5 implements the sum result bit and the second LUT5 the carry to the next full
adder. In Section 3, fractural LUTs were introduced for implementing 2 ROs in a single LUT.
In contrast to this, as shown in Figure 17, it is possible that a combinatorial path runs through

one of the fracturable LUTs and later runs through the other fracturable LUT without forming
a cycle or any RO. For such situations, it is not enough to analyze just the routing to decide if a
netlist contains cycles or not. For example, in Section 4, the cycle scanning was introduced for
single output LUTs. In the single output case, the path search is for each LUT input expanded to
the output of the corresponding LUT. In the case of using the fractural LUT mode, expanding the
search for each LUT input to both LUT outputs could result in flagging false positives (i.e. flagging
cycles in a netlist that cannot implement ROs). This result would happen in the example shown in
Figure17 for LUT_A when, for example, the most bottom LUT input would expand a path search to
the top LUT output despite that the bottom LUT input can only affect the bottom LUT output. We
solved this problem by analyzing the LUT function table (i.e. the LUT init values in the bitstream)
using the Espresso logic minimizer [11] with the help of the PyEDA library for Python [15]. By
optimizing the LUT table values to provide a logic optimized Boolean expression, we know which
of the LUT inputs affect each of the individual LUT outputs of a fracturable LUT. We, therefore,
only expand the path search for detecting cycles for LUT inputs to a LUT output when the input
affects that LUT output. With this, we circumvent the false positive problem for fracturable LUTs.

5Available online at https://github.com/KasparMatas/FPGAVirusScanner.
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Fig. 17. Example of a path that closes in LUT_A but that does not form a cycle or RO.

5.2 Design Evaluation

In order to test and evaluate FPGADefender, we developed several test cases including 1) 15
malicious designs from Table 2 as well as a short-circuit design; and 2) 28 reference designs
including the Spector OpenCL benchmark [16], soft-core CPUs (MIPS and RISC-V [70]), crypto
cores (AES, DES [64], and SHA3 [49]) and other peripheral circuits [48], which all do not contain
any malicious circuits (see Table 5 for the list of malicious circuits and Table 6 for list of all normal
test cases).
FPGADefender found all malicious circuits and the short-circuits in our test cases. For the

experiments, each malicious circuit from Design 1 to 15 was implemented 2000 times spread out
across the FPGA. The Short-Circuit design was created directly at the bitstream level. This was
implemented with the help of BitMan, which features a low-level API to access LUT values and
switch matrix multiplexer configurations. To inject short-circuits, we looked for valid one-hot
encoded switch matrix multiplexer configurations and randomly toggled some of the zero bits (to
create randomly more hots in the multiplexer configurations). Note that the Vivado design tool
does not allow to create a bitstream that contains any short-circuit. This restriction means that
short-circuits can be prevented if, for example, a cloud service provider generates the bitstream
at the provider side rather than accepting a bitstream binary from a user. However, this also
implies that users have to share their design with the cloud service provider (at least to some
extent through design checkpoints - DCPs), which in turn is an IP protection issue. In contrast to
this, FPGADefender would allow a cloud service provider to directly accept FPGA configuration
bitstreams while being able to detect short-circuits.
It should be noted that the FPGA vendor Xilinx does currently not provide any tool or mecha-

nism to scan a bitstream for any malicious construct or any manipulation. The only requirement
FPGADefender imposes to perform its virus scanning is a plain (i.e. non-encrypted) bitstream.
So far, we tested each threat in isolation. For more rigid testing, we created designs that mix

different threats and tested each time if FPGADefender finds all threats correctly just by scanning
the configuration bitstream. In these experiments, FPGADefender correctly flagged all threats in
all test cases.
We compared the FPGADefender combinatorial cycle detection with the Xilinx DRC checker

(See Table 2). Here, FPGADefender did not only detected correctly Design 1 to 8 but also detected
the hidden combinatorial cycles from MUX primitives in Design 9 and 10, CLA primitive in Design

11, and even cycles through the DSP primitive, as in Design 12, where the Xilinx tool fails.
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Table 5. Evaluation results for malicious designs circuits.

Designs LUT used Comb Cycle Latch Short-Circuit Fanout

Malicious Circuits
Design 1 2000 2000 0 No 1
Design 2 2000 2000 0 No 1
Design 3 2000 2000 0 No 1
Design 4 2000 2000 0 No 1
Design 5 2000 2000 0 No 1
Design 6 2000 2000 0 No 1
Design 7 2000 4000 0 No 2
Design 8 2000 2000 0 No 10
Design 9 0 2000 0 No 1
Design 10 0 2000 0 No 1
Design 11 0 2000 0 No 1
Design 12 0 2880 0 No 1
Design 13 2000 2000 2000 No 1
Design 14

∗ 4000 0 0 No 3
Design 15

∗ 6000 0 0 No 4
Short Circuit 15974 11669 12 Yes 5223

∗ Designs are flagged as flip-flop clock input violation.

In Design 13, ROs are implemented through transparent latches. While Xilinx failed to flag those
ROs (even if the latch enable is activated by a constant), FPGADefender found all cyclic paths that
run through latches.

In Design 14 and 15, combinatorial logic paths are used to drive the clock input of flip-flops instead
of global clock sources. This will be flagged using the path detector engine in FPGADefender.

As a sanity check, we used FPGADefender to scan all the 28 bitstreams of the test cases that are
not intentionally designed with malicious constructs. FPGADefender has not detected malicious
constructs except for one case, the true random number generator (TRNG). The TRNG uses ring-
oscillators as a source of randomness, which all got flagged by FPGADefender. This case is a
dilemma that could be solved by providing primitives by a system vendor (e.g., a cloud service
provider) for exceptional use cases like TRNGs or PUFs (Physical Unclonable Functions). For the
True Random Number Generator using ROs, we found exact 128 combinatorial cycles corresponding
to the 128-bit random number generated.

6 DISCUSSION AND CONCLUSIONS

In this paper, we provided a complete investigation of self-oscillator threats deployable on FPGAs.
We systematically researched all published and several new oscillator designs for implementing
such self-oscillating circuits, considering all logic, arithmetic and memory primitives on a Zynq
UltraScale+ FPGA from the vendor Xilinx and we considered a range of different modes of operation
to create self-oscillation circuits (e.g., combinatorial loops, glitch amplification, and asynchronous
flip-flop modes of operation). In particular, we examined and quantified the threat potential for
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power-hammering, and we found for an optimized design that by using just 3% of the LUT resources
of an Ultra96 board, we can draw more power than the allocated power budget. This result means
that an attacker would only need control over a small amount of the total FPGA resources to crash
an FPGA board or even cause permanent damage to a system. By giving strong evidence about
the risk potential using small FPGAs for the experiments, we can project results onto new data
center FPGAs that use the same FPGA fabric architecture and manufacturing process technology.
Furthermore, several of the here researched oscillator designs are deployable on FPGA cloud service
instances, as we tested for Amazon F1 instances with potential power-hammering potentials in the
range of kilowatts, which has enormous potential for harming equipment with a corresponding
substantial monetary risk.

Due to similarities in how different FPGA architectures of different FPGA vendors are physically
implemented, the here presented attack vectors are not bound to a specific vendor. However,
different vendors provide different details on their devices and tools, and the more information is
released, the more defenses can be implemented. For instance, Intel has not released a full FPGA
architecture graph or any details on the bitstream encoding for their recent FPGAs. Therefore,
anybody who wants to perform an independent security assessment of a bitstream has to carry
out a substantial amount of reverse engineering work. The same holds for adding support for Intel
FPGAs in FPGADefender. We believe that security through obscurity is a bad practice and that only

fully documented devices should be considered for building secure systems.

We strongly believe that a security-first strategy is imperative for existing and future FPGA ecosys-

tems and that business models based on end-users having access to FPGA hardware can only be carried

out with an FPGA hardware security infrastructure in place.

We addressed this issue with the development of FPGADefender which not only can identify
(probably) any kind of self-oscillating circuit but in addition to essential threats like short-circuits
in the interconnect and tapping of wires outside of the scope of a user module. With this, FP-
GADefender can prevent all recent approaches for remote side-channel analysis [18, 54, 55] and
all popular power hammering attacks [20]. Future work will investigate if potential malicious
power-hammering from glitches (e.g., from XOR trees) can be detected reliably at the bitstream
level.
We strongly believe that all FPGA hardware security issues can be tackled by tools, and we see no

fundamental obstacle that would prevent building systems allowing user access to an FPGA, including

multi-tenancy and the direct deployment of bitstreams.

In order to make this happen and to stimulate more research on hardware security, FPGADe-
fender, as well as a gallery with design checkpoints and bitstreams of malicious circuits, is provided
under: https://github.com/KasparMatas/FPGAVirusScanner.
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Table 6. Evaluation results for benchmarking circuits.

Designs LUT used Comb Cycle Latch Short-Circuit Fanout

Normal Circuits
8b10b EncDec

∗ 72 0 0 No 15
CAN Controller

∗ 1310 0 0 No 146
BCD Adder

∗ 68 0 0 No 6
PRNG

∗ 237 0 0 No 107
Cordic

∗ 1312 0 0 No 99
I2C

∗ 307 0 0 No 87
Parallel Scrambler

∗ 66 0 0 No 11
RS232 UART

∗ 102 0 0 No 19
SPI

∗ 988 0 0 No 174
Stepper Motor

∗ 69 0 0 No 9
Breadth First Search (BFS)

† 604 0 0 No 204
DCT

† 10085 0 16 No 418
FIR Filter

† 3842 0 4 No 749
Histogram

† 2409 0 0 No 217
Merge Sort

† 2905 0 1 No 235
Matrix Multiplication

† 8116 0 9 No 1782
Normal Estimation

† 8504 0 6 No 620
Sobel Filter

† 14045 0 0 No 272
SPMV

† 10670 0 9 No 1552
Black-Scholes

‡ 12326 0 10 No 259
RISC-V CPU

‡ 3556 0 0 No 170
AES

§ 4520 0 0 No 162
DES

§ 278 0 0 No 20
Mandelbrot

§ 1716 0 42 No 183
MIPS CPU

§ 4163 0 0 No 572
SHA3

§ 10662 0 0 No 262
Skin Color Detection

§ 2022 0 0 No 147
TRNG

§ 1069 128 0 No 61

∗ Peripheral IP designs from OpenCores [48].
† Open-source OpenCL designs from Spector benchmark [16].
‡ Other open source designs [45, 70].
§ Academic handcrafted RTL designs [49, 64].
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