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ABSTRACT
Is it possible to predict moment-to-moment gameplay engagement
based solely on game telemetry? Can we reveal engaging moments
of gameplay by observing the way the viewers of the game behave?
To address these questions in this paper, we reframe the way game-
play engagement is defined and we view it, instead, through the
eyes of a game’s live audience. We build prediction models for view-
ers’ engagement based on data collected from the popular battle
royale game PlayerUnknown’s Battlegrounds as obtained from the
Twitch streaming service. In particular, we collect viewers’ chat
logs and in-game telemetry data from several hundred matches of
five popular streamers (containing over 100, 000 game events) and
machine learn the mapping between gameplay and viewer chat
frequency during play, using small neural network architectures.
Our key findings showcase that engagement models trained solely
on 40 gameplay features can reach accuracies of up to 80% on aver-
age and 84% at best. Our models are scalable and generalisable as
they perform equally well within- and across-streamers, as well as
across streamer play styles.
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Figure 1: Moment-to-moment engagement prediction of a
live PUBG streamer. In the middle of the screen a replay
of the game can be seen. The streamer’s face is on the left
(blurred out to preserve anonymity). Engagement is illus-
trated as a continuous orange line at the bottomof the video;
its current value is displayed underneath. The streamer’s
name (also blurred in this example) and play style (i.e.,Noob
in this example) are shown at the top left of the dashboard.
See Section 4.3 for more details regarding the methods used
to identify PUBG play styles. The video on the screenshot is
obtained through the TwitchDeveloperAPI (fair use), PUBG
is a registered trademark of PUBG CORPORATION.

1 INTRODUCTION
The reliable estimation of the moment-to-moment gameplay en-
gagement is arguably of utmost value for game development. Accu-
rate proxies of engagement may not only enhance a game’s mon-
etisation strategy, they can also be used for rapidly testing games
through artificial game-playing agents that are equipped with such
engagement estimates. Artificial intelligence algorithms that are
driven by reliable engagement models can, in turn, improve aspects
of player experience and lead to the design of entirely new and
engaging gameplay via game content generation [48].

With the advent of streaming services and the growing popu-
larity of electronic sport competitions, the engagement of game
spectators became increasingly important; if not as important as
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the engagement of players themselves. This is evidenced by the
exponential growth of game streaming services such as Twitch1
and Mixer2 and the audience of games like PlayerUnknown’s Battle-
grounds (PUBG Corporation, 2017) or Fortnite (Epic Games, 2017)
in recent years. Unconventionally in this study, instead of looking
at the player’s behaviour as a predictor of engagement we reframe
the modelling problem and look at gameplay engagement from the
viewers’ perspective. We define gameplay as the state of a game
that is experienced and engagement as the active participation of
viewers of gameplay. We thus assume there is an unknown map-
ping between gameplay—that is live streamed to viewers—and the
engagement of the audience of that game.

To test this hypothesis we utilise the popular video live stream-
ing service Twitch and obtain data from 5 popular streamers of
the game PlayerUnknown’s Battlegrounds—PUBG (PUBG Corpo-
ration, 2017) as streamed on Twitch. Importantly, three of those
streamers are currently ranked within the top 10 PUBG streamer
list—rank 1, 2 and 7—in terms of viewership. To construct models
of moment-to-moment gameplay engagement in this initial study
we investigate the relationship between critical events of the game
and the corresponding frequency of messages in the chat feed. In
particular, we use artificial neural networks that are able to predict
gameplay engagement (as attributed to the viewers’ chat frequency)
at each critical event in the game (e.g., player death, head-shot, kill
etc.). The derived models reach accuracies of up to 80% on average
and 84% at best suggesting that gameplay events can form accu-
rate predictors of viewer engagement and that viewer behaviour
(through the frequency of chatting) can be attributed to gameplay.
Our models are able to predict engagement within and across the
five different streamers with similarly high accuracies showcas-
ing the scalability and generalisability of the approach. Moreover,
the models can accurately predict engagement—with accuracies
up to 75-80% on average—across three different PUBG play styles
(Noob, Explorer and Pro) which are identified through data cluster-
ing methods. The outcome of this work is a continuous prediction
of engagement (engagement line) and play style for any given live
PUBG video that is streamed (see Figure 1).

This paper is novel in several ways. First it approaches gameplay
engagement from a third-person (viewer) rather than a first-person
(player) perspective, as normally done in player modelling studies
[47, 48]. Second, it introduces a continuous moment-to-moment
predictor of engagement in games with a particular application
to a popular live streamed game. Finally, the engagement models
obtained are highly accurate and general within and across stream-
ers indicating that the function between viewer engagement and
gameplay can be learned accurately. Before delving into the details
of our methods, the data we solicited, and the key results we ob-
tained, in the next section we elaborate further on our definition
of gameplay engagement and review the literature on predictive
models of engagement.

2 ENGAGEMENT
Engagement is a popular yet ambiguous term used in user expe-
rience design and research to describe a continuous interest and

1https://www.twitch.tv
2https://mixer.com/

interaction. The concept of engagement generally encompasses
both cognitive and affective processes and is widely associated
with attention, arousal [25], information interaction [40], the flow
state [9], aesthetics [18], novelty, and challenge [30]. In the remain-
der of this section we first review the relationship between viewing
behaviour and engagement, we then move onto surveying the links
between chat messaging and engagement, and finally we cover core
aspects of engagement prediction.

2.1 Gameplay Engagement via Viewers
Can viewer behaviour reveal anything about gameplay engage-
ment? According to Yee [49], the main factors that motivate online
gameplay are immersion, social interest, and achievement. While
these factors attempt to describe why people play games, they can
also inform us why people watch others playing. Contemporary
studies of Sjöblom et al. [36, 37], for instance, reveal similar moti-
vations for watching game streams in the form of affective, social,
and tension release needs of viewers.

In this paper we assume there is function between the gameplay
state and the engagement of the viewers of that game and we define
engagement as the active participation of viewers of gameplay.
The theoretical grounding of this assumption builds on the theory
of mind [8] pointing to our cognitive ability to attribute mental
states to ourselves and to others and feel how they might feel. The
relationship between a player’s and a viewer’s engagement has also
been described in player experience frameworks such as those of
Lazzaro [19]—the people factor of “fun”—or the player archetype
taxonomy by Bartle [4]—the socialiser archetype. In practical terms,
this attribution of gameplay engagement to viewers can be seen as
a form of third-person annotation which is the dominant practice
for obtaining reliable labels of ground truth in affective computing
[6]. Given the above, the underlying hypothesis explored in this
study focuses on people engaging with a game as viewers instead
of players.

2.2 From Chat Messages to Engagement
Although playing is a generally more interactive activity compared
to spectating, online viewers are not entirely passive [30]. The par-
ticipatory communities on Twitch streams, for instance, encourage
social engagement while qualitative studies reveal a connection
between interaction and pivotal points of streams both in terms
of novelty and emotion [17]. While spectators react to the stream
content often in an emotionally charged manner—producing rapid,
unique patterns of crowd communication [16, 29]—their engage-
ment is entangled with the streamer’s focus and the para-social
nature of the streamer–spectator relationship [44]. Beyond the sus-
pense of the streamed game content, however, spectators may also
engage with the streamer and their online personality.

Intuitively it seems appropriate to associate viewer engagement
to high frequencies of chatting behaviour. Recent evidence, how-
ever, suggests that higher message frequencies might not always
correspond to more engaging content [29]. One explanation of
this phenomenon lies within the dynamics between the streamer
and the spectators as the continuous interaction of viewers is, in
part, mediated by para-social interactions with the streamer [44].

https://www.twitch.tv
https://mixer.com/
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Consequently, when the streamer’s attention is directed to the im-
mediate gameplay, spectators lose a point of interaction, causing a
drop in their message frequency until a cathartic point is reached,
prompting an emotional response. Another explanation lies within
the ways viewers manage the incongruity between the novelty of
the stimuli and their internal mental models [33]. Encountering
a boring segment, the viewers’ engagement with the video drops;
to maintain the level of stimuli, however, the engagement with
the chat increases. This can explain the drive behind “spamming”
behaviour and emoji cascades [3] which spike during frustrating
or boring sections of streams [29].

Based on the aforementioned studies we argue that the design
of a measurement (or a proxy) of engagement that attributes en-
gagement to higher frequencies of viewer-player interactions can
be misleading. In particular, given the dynamics of the examined
game—which include long stretches of low tension gameplay (see
Section 3.1 for more details)—in this paper we approximate specta-
tor engagement with the gameplay content as a function inverse to
the viewers’ chat message frequency.

2.3 Continuous Engagement Prediction
As mentioned earlier, watching streamed gameplay content in-
volves active participation in the form of submitting video rec-
ommendations and posting comments. Traditional data analytics
methods rely on these metrics—in addition to passive viewership
numbers—to calculate the engagement of videos [12, 21] in terms
of dropout, re-engagement, and engagement levels. Dropout and
re-engagement can generally be measured and predicted similarly
to churn and rely on the user’s interaction with a whole platform
rather than the streamed content [11, 43]. Predicting the engage-
ment level of the video per se, however, often relies on data specific
to the streamed content. These metrics focus on the number of
interactions during the video such as comments and chat messages
[29]. Predictive modelling, in such cases, builds on the language and
emotional content of the messages via natural language processing
and sentiment analysis [3]. These approaches may also integrate
qualitative analyses via visualisation methods [31] or statistical
aggregations of chat logs.

Player profiling—a dominant practice in the games industry
[14, 15]—relies mostly on basic statistical approaches and unsuper-
vised learning methods that derive emergent patterns and distinct
groups within the behaviour of players [5, 7, 13]. These methods
integrate well into existing industry practices and provide valuable
information for both designers and industry stakeholders about
how people are interacting with their content in general. Increas-
ingly larger games—with previously unseen amounts of content to
stream—come with unique challenges, however, which clustering
and profiling methods are unequipped to solve. A response to such
growth in available content volume is dynamic player modelling.
Player modelling relies on large amounts of data and models the
behaviour and experience of players, thereby providing dynamic
feedback beyond large-scale observations [47, 48]. In particular,
player modelling methods that rely on various supervised learning
techniques have already been applied successfully to predict churn
[32, 41], player behaviour [2, 22], motivation [26], and experience
[45, 46].

In contrast to the aforementioned studies onmedia and gameplay
engagement, in this paper we focus on a time-continuous prediction
of engagement. While traditional analytics focus on evaluating a
piece of content (such as a gameplay stream) as a unit we, instead
introduce a method for a fine-grained, moment-to-moment predic-
tion of engagement. With this method it is possible to model the
moment-to-moment change in engagement—not just highlighting
more and less engaging sessions—but providing time-continuous
feedback on how engagement changes within a game session. We
also introduce a novel proxy for engagement in the form of reverse
chat frequency that is used to generate a continuous trace of engage-
ment labels for streamed content. While this ad-hoc metric has to be
cross-verified against annotated engagement, our results showcase
that features of gameplay content can predict such a measure with
supreme levels of accuracy within and across streamers.

3 DATASET
This section outlines the dataset used in this studywith an emphasis,
on the one hand, on the particular game selected and the telemetry
features considered (see Section 3.1) and, on the other hand, on the
engagement annotations we obtained through Twitch (see Section
3.2).

3.1 PUBG & Extracted Features
In our attempt to predict engagement via streamed gameplay con-
tent we selected PUBG (PUBG Corporation, 2017) as the test-bed
for all reported experiments. Our selection is based primarily on
two core factors: a) the game’s popularity and b) the availability of
detailed streaming data.

PUBG (PUBG Corporation, 2017) heralded the rise of Battle-
Royale style games and reached high levels of popularity with
streamers, who broadcast their gameplay for awide audience. PUBG
is a multiplayer online shooter game, in which a group of players
(up to 100 at a time) are dropped into a large open map and left to
scavenge for weapons and items, eventually engaging each other in
combat until only the winner remains; see Figure 2. The gameplay
dynamic is characterised by long stretches of traversal and prepa-
ration which are inter-cut by fast bursts of action. As the game
progresses, the playable area shrinks, forcing the remaining play-
ers closer together, increasing the likelihood of combat. If players
remain outside the area of the playable radius they take constant
damage; this area is refereed to as the Blue Zone. The shrinking
of the Safe Zone encompassed by the Blue Zone is played out in
phases. In each phase an Evacuation Zone is designated, outside of
which players get a warning to evacuate the area. The Blue Zone
then shrinks gradually the Safe Zone to the size of the Evacuation
Zone. The pacing of the game is occasionally broken up by the
bombardment of a random localised area, which is indicated by
a Red Zone and forces players to take shelter inside buildings or
evacuate the area.

PUBG Corporation provides an API and telemetry service3,
through which developers and researchers can generate dense
datasets of gameplay telemetry. Each session is logged in detail
in a hierarchical structure, organised by gameplay events and ob-
jects (such as players, pickups, vehicles, and weapons). There are 40
3https://documentation.pubg.com/

https://documentation.pubg.com/
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Figure 2: To the left: Gameplay stream; to the right: live chat
feed. Screenshot of PUBG obtained from Twitch (fair use).
PUBG is a registered trademark of PUBG CORPORATION.
Identifying information of the streamer and the content of
the chat window is blurred out to preserve anonymity.

gameplay events and 10 objects available through the API, which
cover all players on the level and general game states as well. As
this study focuses only on the streamer’s content, data relating
to other players (e.g., their position, actions, and combat periods
which do not involve the streamer) is filtered out. This filtering is
also necessary due to the unique structure of battle royale-style
games. Given the generally large map sizes and the initial scattered
distribution of players, one can spend long stretches of the game
alone, scavenging for weapons and items, while other players are
locked in a battle elsewhere. We only focus on the streamer in an
effort to limit the noise of the dataset as most enemy action is com-
pletely hidden from the streamer (and their audience) and actual
combat happens in short bursts.

Apart from the aforementioned filtering, we are making use
of the full extent of the PUBG API, extracting all event based fea-
tures without any hand-selection. In particular, we extract 40 PUBG
gameplay features for the experiments reported in this paper. The
features can be broken down to 5 main categories: Health, Traversal,
Combat, Item Use, and General Game State. The Health category in-
cludes the streamer’s Health Level and a number of boolean events:
Healing, Reviving, Receiving Revive, Armor Being Destroyed, Made
Groggy, Taking Damage, and Being Killed. The Traversal category
includes the distance travelled since the last event (Delta Location),
and the In Blue Zone, In Red Zone, Swim Start, Swim End, Vault
Start, Vehicle Ride, Vehicle Leave boolean game events. The Combat
category includes the Shot Count, Damage Done scalar values and
the following boolean features: Is Attacking, Weapon Fired, Caused
Damage, Destroyed Object, Destroyed Armour, Destroyed Wheel, De-
stroyed Vehicle, Made Enemy Groggy. The Item Use category keeps
track of the Item Drop, Item Equip, Item Unequip, Item Pickup, Item
Pickup From Carepackage, Item Pickup From Lootbox, Item Use, Item
Attach, Item Detach boolean events. Finally, the General Game State
category includes the Elapsed Time (in seconds), Number of Alive
Teams and Number of Alive Players and the Phase of the game (i.e.,
Blue or Red Zone).

3.2 Twitch & Engagement
For the purposes of this studywe obtained live PUBG gameplay data
from Twitch; currently the largest streaming platform. Although

Twitch is a general-purpose live-streaming platform, much of the
site’s traffic is generated by videogame streaming, both casual and
competitive. As eSports and game streaming becomemore andmore
popular, the need for selecting more engaging streams, or parts
of streams, rises. This is especially true to videogame streaming
where fast rising trends can upend previously successful genres and
new consumer darlings can skyrocket a company. While Twitch
connects streamers with viewers, it also provides a platform for
viewers to connect with each other. As it can be seen in Figure
2 chatting while watching streamers is a large part of the shared
experience. Indeed, contemporary studies on the motivation behind
Twitch viewership show that the strongest motivations are social,
followed by affective and tension release needs [37]. While viewers
do receive some level of gratification from watching streams and
engaging with other viewers, cognitive (i.e., learning) and personal
integrative (i.e., recognition by peers) needs are less pronounced
[36] in the users of the platform.

As mentioned earlier in this paper we measure moment-to-
moment engagement as the inverse frequency of chat messages in
between two consecutive events of the game. This value is com-
puted as the number of chat messages between two consecutive
events and normalised between 0 and 1. To account for the reac-
tionary nature of spectator chat, we look at the number of messages
not congruently but following gameplay events (i.e., the number of
messages between the observed event and the next event). It is im-
portant to note that our metric focuses on the game content-related
engagement of the spectators, and not the player’s engagement with
the game. Following the study of Makantasis et al. [23] in this paper
we view the prediction of engagement as a binary classification task,
in which the objective is to predict “high” or “low” engagement la-
bels. In particular, we consider low and high engaging those events
with a message frequency higher and lower, respectively, than a
selected threshold, α . While it might seem surprising to associate
lower frequencies as moments of viewer’s high engagement, by
qualitatively inspecting the videos we observed that the chat room
tends to be more quiet when fast-pace action is happening on the
screen (i.e., viewers are paying more attention to the screen) and
chat more when there are calmer slow-pace moments (e.g., as a
manifestation of boredom).

3.3 Streamer Data Collection & Preprocessing
To test to which degree we can predict the PUBG engagement
through telemetry events, we solicit in-game events and correspond-
ing chat messages from the PUBG API and Twitch API, respectively,
from 23 August 2019 to 12 January 2020. In particular we collected
data from five anonymised streamers—referred in this paper as A,
B, C, D and E—based on their popularity and the availability of
datasets which are large enough to be explored through machine
learning. Table 1 presents the streamers’ ranking 4, the number of
videos and matches collected, the average number of viewers 5, the
average duration, the number of chat messages, and the number of
events collected within the selected timeframe, for each of the five
streamers. Based on these statistics we can observe directly that
4Ranked by the total viewership hours (hours live× average viewers) obtained obtained
at the time of writing from https://www.twitchmetrics.net/. Only English language
speakers are considered in this ranking.
5Live value; last accessed at the time of writing.
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Table 1: Rank, number of videos, number ofmatches, average number of views (per video), averagematch duration (in seconds,
permatch), average number of chat messages (per match), and number of events (per match) across the five selected streamers.
Standard deviation is shown in parentheses.

Streamer Rank # Videos # Matches # Viewers Duration # Chat # Events
A 1 8 74 3789.6 (195.2) 478.2 (516.9) 279.7 (363.5) 290.8 (298.6)
B 2 2 48 2150.0 (861.3) 636.4 (572.5) 261.9 (329.8) 456.2 (392.3)
C 7 3 89 460.6 (35.3) 512.7 (558.9) 91.6 (104.2) 382.6 (372.8)
D 14 3 34 893.0 (342.5) 813.6 (563.4) 129.1 (139.6) 387.6 (289.3)
E N/A 3 79 1175.3 (334.4) 429.9 (402.6) 92.8 (110.9) 369.9 (359.4)

Average 6.0 (5.9) 3.8 (2.4) 64.8 (22.9) 1693.8 (1325.8) 574.2 (154.1) 171.0 (92.5) 377.4 (58.9)

the two top ranked streamers, A and B, have a substantially higher
number of viewers and chat messages per match compared to the
other three streamers, who have comparable numbers among them.
An interesting exception to this popularity ranking is the average
match duration of D who seems to be playing roughly two times
longer than the other streamers.

After the extraction and preprocessing of the input features (see
Section 3.1) and the transformation of the message frequencies
into binary labels (see Section 3.2), we obtain a total of 119, 345
labelled events. Independently of the class splitting threshold (α )
value chosen, the dataset presents a highly unbalanced ratio be-
tween the two classes, with a majority of the labels being classified
as high engagement. To balance the dataset, we oversample—by
randomly sampling the available samples with replacement—and
undersample—by randomly selecting a given number of samples—
the minority and majority classes, respectively, resulting to baseline
accuracies of 50%. We follow this process individually for the train-
ing and test sets so that we eliminate any data leakage. Ideally the
over and undersampling method proposed could be isolated on
the training set; doing so, however, would yield highly unbalanced
test sets that would not ease the analysis in this study. As long as
the data processing method we followed does not allow for data
leakage between training and test partitions the accuracy of the
models obtained is generalisable to potentially highly-unbalanced
unseen data.

4 EXPERIMENTS
For all experiments included in this paper we employ artificial neu-
ral networks (ANNs) as our prediction models. We picked ANNs
in this initial study because of their evidenced training efficiency
in large-scale datasets compared to other machine learning ap-
proaches such as support vector machines [1]. More importantly
for this work (and potential future studies), ANNs can be easily
extended to fuse different input modalities (e.g., pixel and telemetry
data), which cannot be easily accomplished with other machine
learning techniques [20]. A number of different ANN architectures
and set of hyperparameters have been tested. In particular, we
performed a sensitivity analysis across three different parameters:
learning rate, number of hidden nodes and dropout rate. Based on
that extensive parameter tuning process the ANNs we use feature
a single fully-connected hidden layer composed of 128 nodes, fol-
lowed by a dropout layer [38]; the network has an output node

Table 2: Best configurations of α and ϵ values for each
streamer (see Section 4.1) and cluster (see Section 4.3).

Streamer Cluster
A B C D E Noob Explorer Pro

α 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3
ϵ 0.0 0.05 0.05 0.02 0.08 0.00 0.05 0.08

that predicts high (1) or low (0) engagement. All nodes use the ELU
activation function [10], the learning rate equals 10−5, and the ANN
is trained for 100 epochs.

In the first round of experiments (Section 4.1), we train and
test our model individually on each of the five streamers. In the
second set of experiments (Section 4.2), we test the scalability of
our engagement models across all the streamers. In Section 4.3
we, instead, identify and model the different play styles across
all streamers and finally in Section 4.4 we discuss qualitatively
about the engagement lines produced from our models across two
representative videos.

4.1 Individual Streamer Models
In this first set of experiments, we collect and machine learn data
coming from each streamer individually. We validate our models
using a 5-fold cross-validation scheme in which the matches are
distributed randomly within the folds.

To assess which splitting criteria lead to the best model perfor-
mances, we explore four different threshold α values (0.0, 0.1, 0.2,
0.3). Earlier work, however, suggests that this naive approach may
lead to split criteria biases, as the model may learn to classify high
and low engagement based on trivial differences in the frequency
of the events [23, 24, 45, 46]. To address this challenge, we employ
an uncertainty bound (ϵ) when we split the data so that we filter out
any unambiguous datapoints close to the selected threshold value;
in particular, we omit all the events that fall within the range α ± ϵ .
In addition to the four α values we explore three different values
for ϵ = {0.02, 0.05, 0.08}, we examine all the possible combinations
of α and ϵ exhaustively, and we select the configuration with the
highest 5-fold cross-validation accuracy. Table 2 shows the setup
selected for each streamer.

Figure 3 shows the performances achieved for each streamer
for the selected hyper-parameters. All individual streamer models
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Figure 3: Individual-streamer engagement models: Average
5-fold cross validation accuracies. Error bars denote 95% con-
fidence intervals.

Table 3: Engagement models across all streamers: Average
accuracies and their 95% confidence intervals for different
splitting criteria (α ) and uncertainty bound (ϵ) configura-
tions. The highest accuracy appears in boldface.

α
ϵ 0.0 0.1 0.2 0.3
0.0 70.1% ±1.5% 70.2% ±3.2% 72.8% ±1.4% 74.7% ±3.6%
0.02 70.2% ±2.4% 71.1% ±3.6% 73.1% ±1.3% 70.1% ±11.8%
0.05 70.3% ±2.0% 71.9% ±3.4% 74.1% ±2.6% 71.2% ±11.8%
0.08 70.4% ±1.8% 73.4% ±3.3% 74.2% ±3.2% 71.2% ±11.9%

of engagement achieve similar performance which reaches 76%
to 80% on average. In particular the best accuracies are observed
for the streamers B (79.7% on average; 84.3% at best), D (78.0%
on average; 82.4% at best), and C (77.8% on average; 80.43% at
best) while slightly lower values are obtained with E (76.8% on
average; 80.8% at best), and A (76.0% on average; 83.2% at best).
These results already indicate that our method can capture the
relationship between streamer telemetry and viewer engagement
with a very high accuracy across four different streamers.

4.2 Models Across All Streamers
The findings of the previous set of experiments showcase that
capturing the engagement of individual streamers is possible with a
very high accuracy. In this section we examine to which degree the
models can generalise further and capture the engagement values
of unseen streamers. To test the models’ generality we employ the
demanding leave-one-streamer-out cross-validation scheme [23],
in which we train our model based on the data collected from
four streamers, and we test it against the remaining streamer. This
process is repeated five times, one for each streamer, and the results
are averaged. The results obtained with this validation method are
a robust indicator of the generalisation capacity of the proposed
method, as by subdividing the data into the five available streamers
we cannot overfit to a particular streamer data distribution (given
the different number of viewers for each streamer) and data leakage
is avoided by design.

For all the reported experiments (Table 3), we select the best
parameter setup based on an exhaustive search of all combinations
of α and ϵ values as performed in Section 4.1. The best model we
could find (74.7% on average; 78.7% at best) yields a lower accuracy
compared to the accuracies of the models tested on the data of
individual streamers. This is unsurprising as a model’s generality
within-streamer is far easier to achieve than a model’s generality
across-streamers.

4.3 Models of Streamer Play Styles
Given the results obtained in the first two rounds of experiments
it becomes apparent that a general model of engagement across
streamers is a rather challenging task. Our hypothesis is that stream-
ers depict varying (non-consistent) behaviours across the matches
they play which, in turn, makes any attempt to model engagement
across them very challenging for machine learning. We assume,
instead, that there are general patterns of play across streamers
that machine learning could capture and associate to engagement
in an easier manner.

To investigate whether the five streamers show different play
styles, we cluster the data collected. The raw data used in the
moment-to-moment engagement prediction, however, is too sparse
to extract any meaningful clusters. Therefore we first aggregate the
119, 345 events to 324 matches—i.e., we sum the boolean events (e.g.,
Healing) and we average the scalar values (e.g., Delta Location)—and
for each match we normalise the data with min-max normalisation.

To determine the number of clusters present in the data we
follow the approach proposed in [13], we employ two different
clustering algorithms—k-means and hierarchical clustering [42]—
and we test the consistency of their outcomes. We first apply k-
means to the normalised data for k ranging from 1 to 10, and we
compute the quantisation error—i.e., the sum of the distances of
every data point to the corresponding cluster centroid. The results
show that the percent decrease of the quantisation error when k
increases is particularly high with two and three clusters, with
a decrease of 53% and 20%, respectively. With higher values of k
(k ≥ 4) the difference is more contained (between 1% and 10%).
Similar results are obtained with the silhouette coefficient method
[34]. The silhouette coefficient (s) is equivalent to the difference
of the mean intra-cluster distance and the mean nearest-cluster
distance; higher silhouette coefficient values correspond to better
defined clusters, bounded between 1 and −1. The results show that
for k = 2, k = 3 and k = 4 we obtain the highest coefficients, with
s = 0.45, s = 0.28 and s = 0.26 respectively; higher values of k ,
instead, produce lower silhouette coefficients, between s = 0.18
and s = 0.2.

An alternative approach to find the appropriate number of clus-
ters is to partition the data in a hierarchical manner starting from
every single match and then observe the relationship between the
number of clusters and the corresponding squared Euclidean dis-
tance that separates those clusters. In our application of hierarchical
clustering we use the Ward distance metric [42], which minimises
the total within-cluster variance. This approach yields comparable
results tok-means: the dendrogram of Figure 4 shows that a squared
Euclidean distance threshold higher than 6.6 yields three clusters,
while a threshold higher than 10.3 yields two clusters. The analysis
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Figure 4: Dendrogram resulting fromhierarchical clustering
with theWard method. Indicatively, a distance threshold of
7.5 yields 3 clusters.

performed with these two unsupervised learning algorithms collec-
tively indicates that the most appropriate number of data clusters
lies between two and three. Two clusters partition the data into
highly unbalanced clusters, with 86 matches (74, 947 events) for
the first cluster and 238 matches (44, 398 events) for the second
cluster. Similarly, four clusters yield an unbalanced distribution,
with 152 matches (14, 266 events) for the first cluster, 53 matches for
the second cluster (47, 088 events), 95 for the third cluster (35, 367
events) and 24 for the fourth cluster (22, 624 events). Three clusters,
however, yield a more uniformly distributed match data partition-
ing, with 155 (14, 858 events), 105 (42, 878 events) and 64 matches
(61, 609 events) for the first, second and third cluster, respectively.
If we use the information entropy (H ) [35] as a measure of the bal-
ance of the distribution of the matches obtained, we notice a higher
entropy (H = 0.95) with three clusters compared to two (H = 0.84)
and four clusters (H = 0.87). Given the high imbalance of matches
partitioned with two clusters, and the similarity of results obtained
by the two clustering algorithms it appears that the most reliable
way to partition this dataset is through three clusters.

To label the three player styles clustered, we investigate how
the features of gameplay are grouped within each cluster. Figure
5 shows the distribution of four representative features across the
three clusters. The features displayed are Delta Location (distance
covered in a match), Kill (number of opponents killed in a match),
Taking Damage (damage taken by the player in a match), and Time
(match duration in seconds). Using popular game culture terminol-
ogy we label the first cluster as Noob play style as in those matches
the streamer does not play particularly well, he reaches a low num-
ber of kills and is more likely to be killed. Meanwhile, the matches
are much shorter, most likely because the streamer dies within
the first minutes of the match. The second cluster of play style is
labelled as Explorer: in those matches the streamer explores the
map far more—as the Delta Location feature is higher compared to
the other two clusters—but the performance of the player is still
average, as shown by the Kill and Being Killed features. Finally, we
label the third play style as Pro as it features matches where the
streamer has played his best: he tends to kill more players, to die
less often compared to the other two clusters, and while it takes
a considerable amount of damage he survives longer (i.e., higher
Time values), most likely winning the match.

Figure 5: Normalised stacked bar chart: mean values of four
representative features across the three play styles.Noob, Ex-
plorer and Pro are depicted in red, blue and green, respec-
tively.

Figure 6: Normalised stacked bar chart of the three play
styles across the five streamers.

Figure 6 shows the distribution of the three play styles across the
five streamers and the variation of play styles the different streamers
depict, validating our hypothesis. In particular, A is labelled as a
Noob in the majority of his matches, while D appears to be more of
a Explorer player type. C, B, and E show a more uniform distribution
of the three play styles in their gameplay.

Given the three different play styles we obtained we test the
generalisability of moment-to-moment engagement models that
are built on the play styles, instead of the streamers. We thus train
a separate engagement model per play style. Following Section 4.2,
we perform an exhaustive search of the predetermined values of α
and ϵ for each play style model. To compare the results obtained, we
validate our models using a leave-one-streamer-out cross-validation
scheme. Figure 7 illustrates the average test accuracies obtained for
the three different play style models of engagement. All models are
predicting engagement with high degrees of accuracy (over 75%
on average) but the model for the Noob play style performs better
(78.0% on average, 84.2% at best) than the models for the Explorer
(77.0% on average, 81.4% at best) and the Pro play style (75.4% on
average, 80.7% at best). The key findings in this section suggest
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Figure 7: Test accuracies across the three play styles aver-
aged from 5 runs of leave-one-streamer-out validation. Er-
ror bars denote 95% confidence intervals.

that constructing models of engagement across streamer play styles
instead across streamers offers a higher generalisability potential
for the model.

4.4 Engagement Line Analysis
In this section we discuss two indicative examples of PUBGmatches
with their corresponding engagement line prediction. Figure 8
shows the two example engagement lines as associated with video
frame sequences taken from streamer A. To extract and display a
continuous line of engagement between events, we apply a moving
average (sampled every second) to the output of the engagement
model.

At the top graph of Figure 8 we observe a steady increase of
engagement as the player starts the match searching for enemies
and exploring around the map but with no battle events occurring.
Towards the end of the match we observe a further increase of
the engagement value which is associated with a fast-pace action
phase in which the player engages in battle with several opponents.
The player at the bottom graph of Figure 8 is shooting and healing
himself during the initial phase of the match (first 20 seconds);
as a result the model predicts high engagement values for this
initial phase. In the middle phase of the match (200 − 500 seconds)
the player drives around the map and hence the model yields low
levels of engagement. Towards the end of the match, however, the
engagement value increases rapidly as the player gets shot and he
is engaged in a battle against another player in a house.

5 DISCUSSION
The key findings of this paper suggest that it is not only possible
to rely solely on a number of key gameplay events and predict the
level of viewer engagement in a continuous fashion but that it can
be done with high levels of accuracy.

The approach, however, needs to be tested across a number of
varying properties of the dataset considered. Even though the re-
sults obtained on 5 PUBG streamers—and several thousand game
events—already support the scalability of the method within this
game, a larger dataset across more streamers will make our find-
ings even stronger. In addition to the size of the dataset alternative
machine learning methods will need to be tested involving deep
learning methods as these are more appropriate for larger datasets.

It is already highly encouraging, however, that accuracies of over
80% could be reached with relatively simple and shallow ANN archi-
tectures. The type of method will also depend on the types of data
the model will be trained on. Future studies will consider the use
of natural language processing for the chat boxes, facial expression
and speech recognition for the streamer, as well as computer vi-
sion methods for the pixels of the video stream—as e.g., in [23]—in
an attempt to reach more accurate models of engagement. While
adding more modalities of input to the predictor of engagement
might be beneficial to the accuracy of the models it makes the model
more dependable on specific input types and, hence, less versatile.
The experiments reported in this paper already suggest that sim-
ple telemetry features of the game suffice for the construction of
engagement models of high accuracy.

Our notion of gameplay engagement is associated with viewer
behaviour and, in particular, with the inverse chatting frequency.
While such a proxy of engagement is theoretically grounded, it
is supported by recent evidence in the literature, and it can be
predicted from gameplay telemetry, other ground truths of engage-
ment are planned to be designed andmodelled. Any ad-hoc proxy of
engagement—as the one proposed here—will need to be empirically
cross-verified against annotation data obtained via video annota-
tion tools such as PAGAN [27, 28]. It is important to note, however,
that verifying the ad-hoc engagement proxy we designed in this
initial study is beyond the focus of this paper; the core outcome of
this study, instead, is that engagement (as defined here) is both theo-
retically supported and can be predicted accurately from gameplay
characteristics in a moment-to-moment fashion. Given the absence
of any engagement annotation or emotion labelling in the PUBG
game (and most streamed games), reframing the problem of engage-
ment and looking at it from the lens of the viewers’ behaviour offers
a general-purpose ground truth that can be easily obtained without
further human intervention and tedious annotation processes.

The presented results are relevant to researchers and game in-
dustry stakeholders alike. The presented methodology can serve as
a basis for future studies towards a more holistic understanding of
engagement in games and beyond. Since our ad-hoc metric focuses
on game content-related engagement of spectators, it highlights the
elements of the gameplay experience, which can be controlled by
developers. Thus, games that are developed with streaming content
in mind can largely benefit from this type of engagement approxi-
mation from the early stages of creation. Our system could also aid
industry stakeholders and streaming services who face challenges
of information-overload and are in need of algorithmic ways to
sort and highlight engaging content. Finally, predicting spectator
engagement with the streamed game content can also be used for
the procedural generation of play with the aim of creating and
curating artificial streams [39]. In light of the highly promising
results, this study offers some initial evidence that engagement of
gameplay videos can be predicted through game telemetry in a
particular game of a particular genre. Future studies will focus on
testing the proposed methodology across different games of the
battle royale genre and also across dissimilar game genres.
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Fig. 8. Two indicative examples of video streams taken from the streamer A with the corresponding engagement lines as predicted by
our ANN model. The figure depicts stream screenshots at particular events during the game. The video on the screenshots is obtained
through the Twitch Developer API (fair use), PUBG is a registered trademark of PUBG CORPORATION.

4.4 Engagement Line Analysis

In this section we discuss two indicative examples of PUBG matches with their corresponding engagement line
prediction. Figure 8 shows the two example engagement lines as associated with video frame sequences taken from
streamer A. To extract and display a continuous line of engagement between events, we apply a moving average
(sampled every second) to the output of the engagement model.

At the top graph of Figure 8 we observe a steady increase of engagement as the player starts the match searching for
enemies and exploring around the map but with no battle events occurring. Towards the end of the match we observe a
further increase of the engagement value which is associated with a fast-pace action phase in which the player engages
in battle with several opponents. The player at the bottom graph of Figure 8 is shooting and healing himself during the
initial phase of the match (first 20 seconds); as a result the model predicts high engagement values for this initial phase.
In the middle phase of the match (200 − 500 seconds) the player drives around the map and hence the model yields low
levels of engagement. Towards the end of the match, however, the engagement value increases rapidly as the player
gets shot and he is engaged in a battle against another player in a house.

5 DISCUSSION

The key findings of this paper suggest that it is not only possible to rely solely on a number of key gameplay events
and predict the level of viewer engagement in a continuous fashion but that it can be done with high levels of accuracy.

The approach, however, needs to be tested across a number of varying properties of the dataset considered. Even
though the results obtained on 5 PUBG streamers—and several thousand game events—already support the scalability of
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Figure 8: Two indicative examples of video streams taken from the streamer A with the corresponding engagement lines as
predicted by our ANN model. The figure depicts stream screenshots at particular events during the game. The video on the
screenshots is obtained through theTwitchDeveloperAPI (fair use), PUBG is a registered trademark of PUBGCORPORATION.

6 CONCLUSIONS
In this paper we reframe the way gameplay engagement is naturally
viewed: from a first person to a third person perspective. In partic-
ular, we attempt to predict the moment-to-moment engagement of
viewers of live streamed games through their chatting activity. We
test our hypothesis that gameplay can be a good predictor of viewer
chat frequency in PUBG (PUBGCorporation, 2017) live streams that
are obtained over 5 Twitch streamers. We employ shallow ANNs
and we model engagement as a function of player metrics across
critical events of the game. Our results showcase that modelling
engagement in a continuous fashion is not only possible but that
viewer engagement can be predicted with accuracies, that reach
80% on average (and 84% at best). The models appear to be versatile
within and across different streamers as well as across different
play styles of streamers. This initial study showcases the potential
of the approach for measuring moment-to-moment engagement in
game streams (and beyond) through simple yet critical events in
the game.
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