
ar
X

iv
:2

00
6.

05
69

3v
1

 [
cs

.A
R

]
 1

0
Ju

n
20

20

A GPU Register File using Static Data Compression

Alexandra Angerd, Erik Sintorn, and Per Stenström
Department of Computer Science and Engineering

Chalmers University of Technology

Göteborg, Sweden

{angerd,erik.sintorn,per.stenstrom}@chalmers.se

ABSTRACT

GPUs rely on large register files to unlock thread-level parallelism

for high throughput. Unfortunately, large register files are power

hungry, making it important to seek for new approaches to im-

prove their utilization.

�is paper introduces a new register file organization for effi-

cient register-packing of narrow integer and floating-point operands

designed to leverage on advances in static analysis. We show that

the hardware/so�ware co-designed register file organization yields

a performance improvement of up to 79%, and 18.6%, on average,

at a modest output-quality degradation.

1 INTRODUCTION

ModernGPUs provide a high throughput by enablingmassive thread-

level parallelism (TLP). Large register files are needed to provide

fast context-switching between threads, and GPUs rely on ever

larger register files in order to further increase thread-level par-

allelism (TLP) [15, 25]. �e Fermi architecture, a few generations

back, had a register file size of about 131 KB per streaming multi-

processor (SM), consuming 13.4% of the total dynamic power [13].

With 15 SMs, it sums up to about 2 MB register storage in total.

In contemporary architectures, such as NVIDIA’s Turing, the total

register file size sums up to approximately 18 MB [18]; a ninefold

increase!

TLP can be increased by leveraging amore efficient utilization of

the register resources to decrease the per-thread register footprint.

In a conventional register file, the operands are stored at a granu-

larity of 32 bits. However, it has been shown that many operands

in GPU workloads require significantly less space. For example, a

large portion of the integer operands is narrow [7, 25]. Further-

more, in the case of floating-point operands, their precision can be

significantly reducedwith a negligible impact on quality [22], espe-

cially if the operands are allowed to have different precisions [1].

Previous work [2, 7, 25] propose register-file organizations which

pack operands by establishing the number of significant bits, i.e.

the bitwidth, at run time using zero/one-detection logic to remove

redundant sign extension bits. However, this approach does not

work for floating-point data. Still, it has been shown that the pre-

cision of many floating-point operands can be reduced substan-

tially [1] with negligible impact on the quality of the application

output. In addition, the precision of a floating-point operand can-

not be decided at run time, since it is not possible to know what

impact reduction of precision of a specific operand has on the end

result.

Conference’17, Washington, DC, USA

2016. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

In this paper, we propose, for the first time, a register file or-

ganization capable of storing operands at a fine granularity re-

gardless of the data type. Our evaluation shows that in order to

achieve significant reduction of the register footprint, both inte-

ger and floating-point data have to be considered. To the best of

our knowledge, our approach is the first to support mixed pack-

ing of both integers and floating-point numbers. We do this by

annotating the bitwidth needed by each operand at the instruction

level, at compile time. To detect narrow integers, we leverage static

range analysis [21]. To determine the precision of each float, we

leverage a method that tunes the precision to meet a user-defined

output quality threshold [1]. �e annotations are taken into con-

sideration to achieve a dense register allocation. At run time, our

proposed register file uses a configurable indirection table to store

the location of each operand.

Our approach is inspired by the idea of a configurable indirec-

tion table given by Angerd et al. [1]. �ey assume the existence

of a register file with support for low-precision floats. However,

they do not consider any support for narrow integers. Further-

more, they do not present any microarchitectural design of such

a register file, nor how it could be integrated into a GPU pipeline,

not even for floats. Hence, how to design a compiler-assisted reg-

ister file which supports both integer and floating-point data re-

mains unsolved. In particular, a microarchitectural design of such

a register file organization implies a number of challenges, which

we address in this paper: First, the indirection table needs to be

consulted for each and every register access. Since this access is

on the critical path, it introduces latency which can have an ad-

verse impact on performance. Second, the indirection table must

be able to handle multiple accesses per cycle, since several register

accesses have to be carried out simultaneously. �ird, conversions

between different floating-point formats are necessary. We miti-

gate these challenges by presenting an indirection table microar-

chitecture which matches the throughput of the register file, as

well as conversion units capable of carrying out floating-point for-

mat changes in one cycle. Our evaluation shows that our approach

yields a performance improvement of up to 79% and 18.6%, on av-

erage, compared to a register file which only supports an operand

granularity of 32 bits.

Our contributions in this paper are the following:

• A new register file organization for GPUs which, unlike previ-

ously proposed solutions, is capable of supporting narrow operands

regardless of data type (integer and floating point data).

• A new concept for efficient packing of narrow operands, which

is built upon static bitwidth analysis co-designed with a new

register file concept.

1

http://arxiv.org/abs/2006.05693v1

Table 1: Register pressure, occupancy, and IPC of the base-

line, when using either one or both parts of the framework,

and when artificially increasing the occupancy.

Register Pressure Occupancy IPC

Original 52 21% 196

Narrow integers 46 - -

Narrow floats 36 - -

Narrow integers + floats 29 62.5% 352

Artificial occupancy increase 52 62.5% 377

• An evaluation of the proposedmicroarchitectural design, which

shows a performance improvement of up to 79%, and 18.6% on

average, when allowing for a slight output quality loss.

�e rest of the paper is organized as follows. Section 2 provides

a motivational example. Section 3 introduces the baseline GPU

architecture and our proposed register file organization. Section 4

presents the static approach we use to reduce operand bitwidths.

Section 5 describes the methodology used to derive the results in

Section 6. We discuss the implications on other architectures in

Section 7. Finally, we put our work in the context of related work

in Section 8 before we conclude in Section 9.

2 MOTIVATION

In this section, we show the performance improvement obtained

by increasing TLP through improved register file utilization for a

kernel called IMGVF, included in the Leukocyte application from

the Rodinia benchmark suite [4]. �e core idea is to reduce the reg-

ister pressure, that is, the maximum number of fixed-size registers

needed by a thread, by reducing the bitwidth of the operands. �is

way, the register file can accommodate more threads. For IMGVF,

the original register pressure is 52 registers.

�e kernel’s register pressure directly affects howmany threads

are allocated to each GPU core. In the CUDA programming model,

warps consist of 32 threads which are further bundled into blocks,

whose size are kernel-specific and decided by the programmer. �e

assignment of threads to a core is done at the granularity of blocks.

A Fermi GPU has 32,768 registers per core, and can support up to

48 warps to be active, simultaneously. However, the block size for

IMGVF is ten warps with a register pressure of (52 x 32 x 10 =)

16,640 registers. Hence, only one block fits in the register file; the

register usage severely limits the achievable TLP. We refer to this

limit as occupancy, i.e. the ratio of active warps to the maximum

number of warps supported by the core.

To reduce the register pressure and increase the occupancy, we

run the application through the static analysis framework (described

in detail in Section 4). It consists of two parts: A static analysis

framework 1) that based on [21] finds the required number of bits

for each integer operand and 2) that based on [1] establishes the

precision for each floating-point operand given a user-specified

quality metric and threshold. Here, we have specified the quality

metric and threshold such that no deviation from the original out-

put is allowed. Table 1 reports the original register pressure, when

each framework is applied in isolation, and when both frameworks

are used. When both frameworks are used, the register pressure is

lowered from 52 to 29 registers. As a result, three blocks (30 warps)

can now fit into the register file simultaneously, as opposed to one

!"#$%&'()*+,-%./'+(0#%121,.+'#/%./'+(

3%3%3

!"#$%"&%'"

(&)*+,-

.'//01%'"+2)$%+,-

4"'+15*,6

(&)*+,

(&)*+3 .'//01%'"+2)$%+,

.'//01%'"+2)$%+3

4&/50+

6"5)1&%'"

3%3%3

4&/50+.')70"%0"

8'5"10+

$)9$"01%$')+%&#/0

:0;%$)&%$')+

$)9$"01%$')+%&#/0

(5<<0"

4&/50+

=>%"&1%'"

4&/50+

=>%"&1%'"

4&/50+

=>%"&1%'"

?&"@ A: A);%"51%$')

7*8'&%

98*:

;':/1&

98*:

<#/=1"+%

98*:

>#,*+'#/

98*:

?1:'(+1"

@A

?1*&B

98*:

@/&'"1,+'#/%'/9#

CDE%5'+(F

G)1"*/&%

CHIEJ%5'+(F

7*8'&%

98*:

;':/1&

98*:

<#/=1"+%

98*:

>#,*+'#/

98*:

?1:'(+1"

@A

?1*&B

98*:

@/&'"1,+'#/%'/9#

CDE%5'+(F

G)1"*/&

CHIEJ%5'+(F

7*8'&%

98*:

;':/1&%

98*:

<#/=1"+

98*:

>#,*+'#/

98*:

?1:'(+1"

@A

?1*&B

98*:

@/&'"1,+'#/%'/9#

CDE%5'+(F

G)1"*/&

CHIEJ%5'+(F

G?
!"#$%,"#((5*"

Figure 1: Baseline operand collector design with proposed

extensions (in green).

block in the original case. Hence, the occupancy is increased from

21% to 62.5%.

To confirm that an increase in occupancy would unlock more

TLP and higher performance, we run the application with a sim-

ulated Fermi GPU, using GPGPU-Sim [3] (details are provided in

Section 5), both using the original occupancy and the occupancy

reached with our compression technique by increasing the size of

the simulated register file. �e result is presented in Table 1; with

a higher occupancy, the Instructions Per Clock (IPC) is increased

by 91%.

We also modify GPGPU-Sim to include the microarchitectural

structures needed to implement the proposed register file using

an indirection table approach described in Section 3. As seen in

Table 1, the increase in IPC is close to what can be achieved by

artificially allowing for higher occupancy.

3 NEW REGISTER FILE ORGANIZATION

In this section, we first describe the baseline GPU in Section 3.1.

�en, in Section 3.2, we describe the microarchitectural implemen-

tation of the new register file organization.

3.1 GPU Baseline Architecture

Our baseline microarchitecture resembles NVIDIA’s Fermi archi-

tecture [16] used in several recent studies [12, 13]. �e threads in

each warp are executed in lockstep, but with different register val-

ues in a SIMD-fashion. Hence, threads are scheduled to execution

units at warp granularity.

�e GPU has 15 cores called Streaming Multiprocessors (SMs),

which share an L2 cache. Each SM has a private L1 cache, a lo-

cal shared memory, and a dedicated texture cache. Each SM also

has twowarp schedulers, which together can schedule two instruc-

tions from different warps simultaneously. One SM also comprises

two Single Precision Units (SPUs), one Special Function Unit (SFU),

and one memory (LD/ST) unit. All units execute at the granularity

of one warp instruction (32 lock-stepped thread instructions). �e

SPUs execute all types of instructions except for built-in trigono-

metric and logarithmic operations, which are executed using the

SFUs. �e LD/ST unit carries out memory operations.

To hide idle cycles caused by hazards and memory access la-

tency, the SM keeps a large number of warps in flight supporting

2

!"#$%& !"#$%'

! " # $$ $$ #% &!&"

! " # $$ $$ #% &!&"

()*+"#, +& +' -& -'

& . ' ' '

' ' ' . .

/ # ("!""!!!! !!!!!"!"

0 ' ' ' '

1#,2+*3425# 6"78*
9*:2;4*+%<28*

")*+,- ,./012.,

3"!#()40215

")26,.+7 ,./012.,)

3&#)40215

")26,.+7 ,./012.,)

3&#)40215

Figure 2: Each thread register is divided into eight slices.

�ese are accessed through an indirection table.

fast context-switches by a large register file. To provide a large

bandwidth and the appearance of being multi-ported, the baseline

register file uses an operand collector (see Figure 1). �e register

file is split into 16 banks, each with 64 entries, 1024 bits wide, with

one read port and one write port per bank. Because each warp is

executed in lockstep, the registers are stored in vectors of 32 thread

registers, forming a warp register. A register file access applies to

a warp register. To maximize throughput, an arbitrator is associ-

ated with the operand collector to distribute the requests from all

collector units (CUs) to maximize register-bank accesses in each

cycle.

A warp instruction is allocated to one of the CUs in the operand

collector. �e valid flags in the CUare set indicating which operands

to fetch from the register file. �e operands are then queued at the

arbitrator. Since the arbitrator is optimized for throughput, and

not for individual warp latency, only one operand can be collected

to each CU in each cycle. Hence, it may take a few cycles before

all operands for a certain warp instruction are collected. When all

operands for a warp instruction are collected, i.e., when all ready

flags in one CU are set, the warp instruction is ready to be for-

warded to the execution units.

3.2 Proposed Register File Organization

To store operands at a fine granularity, each thread register is di-

vided into slices (4 bits each to efficiently support the floating-point

format described in Section 5.2), with an operand comprising data

contained in multiple slices (see Figure 2). An indirection table

points out in which registers andwhich slices the operand is stored.

�e allocation of slices to each operand is static for each kernel (to

be described in Section 4), so the configuration of the indirection

table is different for each kernel. Changes to the baseline register

file are confined to the operand collector as the indirection table

keeps all information needed to access individual registers.

3.2.1 Overview ofOperandCollector. �echanges to the operand

collector comprises the green blocks in Figure 1.

When a register read instruction is allocated to a CU, it collects

the location information for each operand from the Source indirec-

tion table. �e operand is then queued to the arbitrator as before.

�e data returned from the register file is compressed, i.e., only

some slices of the returned data contain valid data. �e Value Ex-

tractor rearranges the slices such that the data is properly aligned,

and the aligned data is returned to the operand collector. It also

!"#$%&'()&) *+,)&%+- %-.+/0)&%+-1

234%5&3/'6'7)58

296'!99999992!6'9!99!!99

!!!! !!!! !!!! !!!! !!!!

2!

"#$%&'(

)!*+#$*&'(:/+0'/34%5&3/'$)-8'-

;<=

!!!! !!!! !!!! !!!! !!!! !!!! !!!!

29

:/+0'/34%5&3/'$)-8'0

;<=

Figure 3: Example: a 16-bit float is split into two separate

registers. A�er a fetch, the TVEs extract and align the data.

sign-extends the operand if it is an integer. If the operand is a nar-

row float, however, it needs to be extended to single precision by

the Value Converter before being forwarded to the execution units.

Register write instructions collect location information from the

Destination indirection table. However, bank conflicts might occur

in the indirection table so a buffer temporarily storing conflicting

operands is added. As the probability of a conflict is small (the

writeback bus is three operands wide, and the number of banks in

the indirection table is 16) the number of buffer entries is negligi-

ble; one entry corresponds to one warp-register, which is on the

order of 0.1% of the size of the register file. To store a float operand

which takes up less than 32 bits, it is converted to lower precision.

�en, the operand is aligned to its corresponding placement inside

the physical register using a Value Truncator.

3.2.2 The Indirection Tables. Since the source indirection table

is on the critical path, it is vital that it has the same throughput as

the register file. To guarantee this, the organization of the indirec-

tion table is similar to that of the operand collector: the SRAM cells

are divided into 16 banks. A separate arbitrator distributes read re-

quests in such a way that as many banks as possible are accessed

each cycle. We assume 256 architectural registers, where the in-

direction table has to store 32 bits for each of them. A detailed

area analysis of the indirection table and the other structures in

the proposed register file is provided in Section 6.4.

To avoid contention we introduce separate, yet identical, indi-

rection tables for the read and the write paths.

3.2.3 Value Extractor. When the content of a physical register

is read from the register file, it is expected that only a few slices

contain the required operand. �ese slices need to be extracted

from the rest of the data. As shown in the example scenario of

Figure 3, the data of a 16-bit float operand is placed within two

separate physical registers: data slice 0 is placed in slice 7 in phys-

ical register r0, while data slices 1, 2, and 3 are placed in slices 2, 3,

and 6 in physical register r1. To restore the data, the thread value

extractor (TVE) rearranges the slices, and sets unused slices to zero.

Later, when both physical registers are fetched, the two parts are

merged into a complete operand using an OR operation.

As Figure 4 shows, each value extractor consists of 32 parallel

�read Value Extractors (TVEs). Each of them carries out the ex-

traction for one thread register and it consists of eight 9-to-1 and

one 2-to-1 multiplexer. �e mask together with some logic gates,

connected to the multiplexer select lines, decides the placement of

3

!
"
#$
%
&
'
()
"
*
(+
)

!"#

!"#

!"#

!"#

!"#

!"#

!"#

!"#

!"#

!"#

!"#

!"#

$

%

&'

,-)%". !"#$% &'()"*(+)

%%%%''''

Figure 4: �e value extractor includes 32 TVEs. Each TVE in-

cludes eight 9:1-multiplexers, which select among the input

slices and a nibble of zeros or ones.

the input slices, zeros, and ones in the output. �e 2-to-1 multi-

plexer decides whether the value should be padded with zeros or

ones, depending on the type of operand. A float or unsigned inte-

ger should always be padded with zeros, while a signed integer is

simply sign-extended.

3.2.4 Extended Collector Unit. �e CU is extended with four

fields per operand, as shown in the lower-right part of Figure 1.

�e first is a bit which indicates whether the operand is signed

or not. �e second is a convert info flag, which indicates whether

the operand is a float which needs to be converted. �e third is

a location flag, which indicates whether the operand location has

been fetched. �e fourth is an indirection info field, which is filled

by an access to the indirection table.

�e CU is also extended with a 1024-bit OR-gate, which is used

if the operand is split into two different physical registers. �e first

part that is fetched is simply placed into the operand field. When

the second part arrives, it is OR’ed with the data in the operand

field to form a complete operand.

3.2.5 Value Converter. �e Value Converter (VC) extends low-

precision float operands to single-precision floats. Since two in-

structions can be scheduled in each cycle, and each instruction

has up to three source operands, up to six conversions need to

be carried out in each cycle to maintain the maximum throughput.

Hence, the VC consists of six parallelWarp Value Converters. Each

of these, in turn, consists of 32 parallel �read Value Converters.

�e low-precision format we use mimics the IEEE 754 standard,

with support for plus/minus infinity and not-a-number values. Dur-

ing format conversion, denormals are truncated to zero, which is

safe as the same simplification is made in the precision selection

step described in Section 4.1.

!"#$%&'%()*+#," ")%-).#, $,#/010)*

!"#$%& '%()$!#)*+%,-#

!"#$%2'%!$-0"%3*4%$-3/# 0*%1-0/#1

567

'
%
()
$
!#
)
*
+%
,-
#

8-)3"9
:#1 ;)

.
%
#/
0'
%
()
$
!
#)
*
+%
,-
#

767

767

767

767

767

767

767

767

<

=

>&

567

567

Figure 5: �e value truncator converts the operand to lower

precision and places the data into its assigned slices.

!"##$%&"'()*+&,

!"#$%&'()*+,-%./'+(

-".'%$(

+*/+'$%&+"*(

&01#$

2$3+,&$'(

4$&%5

60#.$(

!"*7$'&$'

60#.$(

$8&'0%&"'
98$%.&+"*

:$,&+*0&+"*(

+*/+'$%&+"*(

&01#$

60#.$(

;'.*%0&"'
<'+&$10%=

Figure 6: Proposed extension of the pipeline (in green).

3.2.6 Value Truncator. Before an operandwith narrow bitwidth

is wri�en back into the register file, it has to be adjusted to its as-

signed slices. �is is carried out by the Value Truncator depicted in

Figure 5, which comprises three Warp Value Truncators (WVTs).

�is is because we assume that the writeback bus is three instruc-

tions wide, as modelled by GPGPU-Sim [3]. Similar to the WTC,

each WVT consists of 32 smaller units called �read Value Trun-

cators (TVTs). Each TVT carries out the required steps before the

operand can be wri�en back. In Step 1, if the operand is a nar-

row float, it is converted to lower precision. If not, this step is

skipped. In Step 2, the data is placed within its corresponding reg-

ister slices. �is procedure is the same as in Figure 4, but with

another set of logic for the select lines. Since an operand can be

split and placed into two physical locations, two thread value ex-

tractors are needed.

In the last step, VTs forward compressed data together with the

masks to the register file. At writeback, only the bit lines corre-

sponding to the mask are activated, so as to not overwrite the data

in the other slices.

3.2.7 Pipelining. Tomaintain the baseline clock speed, wemod-

ify the pipeline according to Figure 6, where the stages marked in

green are added to that of the baseline marked in white. In the un-

modified pipeline, the operand collector is in charge of sending all

its operands to the register fetch stage, and not passing the instruc-

tion to the execution stage before all of its operands are collected.

In our modified pipeline, the operand collector is also responsible

for synchronizing the accesses to the source indirection table, and

sending floats to the value converter. We assume all new stages

can be carried out in one clock cycle, as will be justified in the next

section.

3.2.8 Timing. �e indirection table has the same organization

as the register file, so we assume the same timing with a maximum

throughput of 16 accesses per cycle.

We estimate the propagation delay of the value converter using

Catapult C together with the NanGate 45 nm Open Cell Library by

synthesizing it to the register transfer level (Note: Fermi is imple-

mented in 40 nm). A critical path analysis shows that the delay is

well within a Fermi clock cycle (0.71 ns). Since the converter has

six parallel units, we assume a throughput of six conversions per

cycle.

�e value extractor has a shallow critical path of one multi-

plexer. �erefore, we assume it can be carried out within a register-

read cycle, and no additional cycles are added.

At writeback, destination operands are looked up in the des-

tination indirection table and, if necessary, truncated using the

value truncator. �e destination indirection table is identical to the

source indirection table, and consequently we assume the same

4

!"#$%&%'(

)*(%(+

,#+%&-#".

/00'$1-%'(

/220%$1-%'(

3*10%-4.

-5"#&5'06

71820#.

%(2*-&

9%6-5

1(('-1-%'(& :(6%"#$-%'(.%(;'

,1(+#.

/(104&%&

Figure 7: Overview of the static framework.

timing. Furthermore, we assume that the value truncator has a

similar propagation delay as the value converter. Hence, the min-

imum writeback delay is two cycles if conversion is needed, and

one cycle otherwise. However, in Fermi, the writeback bus is three

operands wide, which means that bank conflicts are possible in the

destination indirection table. To account for these, we pessimisti-

cally model the additional propagation delay as three cycles for all

operands.

4 STATIC ANALYSIS FRAMEWORK

�e static analysis framework (see Figure 7) comprises three steps:

a range analysis step (Section 4.2), which identifies and reduces

the bitwidth of integer operands, a precision-reduction step (Sec-

tion 4.1), which tunes the precision of the floating-point operands,

and a register allocation step (Section 4.3). �e range analysis and

the precision-reduction steps find and annotate all operands with

their needed bitwidths. �e register allocation step assigns a suit-

able number of slices to each operand. Before execution of a kernel,

the kernel-specific indirection information is loaded into the indi-

rection table.

4.1 Floating-Point Precision Tuning

To reduce the bitwidth of floating-point operands, we employ a

method proposed byAngerd et al. [1]. �eir precision-tuningmethod

is a heuristic whose goal is to identify how much the precision of

each floating-point value can be reduced while meeting a speci-

fied quality threshold. To achieve this, it uses as input an applica-

tion, a quality threshold, and a number of application sample in-

puts. �ese inputs are used to determine how much the precision

of each floating-point value can be reduced to meet the quality re-

quirement. It then recursively explores how much the precision

of each floating-point value can be reduced. �is is carried out at

the instruction level, where the instructions are in Single Static As-

signment (SSA) form, meaning that each value corresponds to one

single value definition. Each SSA register is then annotated with

a bitwidth which meets the targeted quality threshold. Obviously,

since this approach is data driven, it relies on a domain expert to

provide a set of representative sample inputs. No quality guaran-

tees are given for inputs outside of the set.

4.2 Static Range Analysis

To detect narrow integers offline, we propose to use static range

analysis [21]. Originally, range analysis was used to secure pro-

grams against integer overflows. However, we use static range

analysis to determine the number of bits needed for each integer

operand. �is is carried out at the instruction level. �e steps taken

in the analysis are shown in Figure 8: First, the program is con-

verted into a control flow graph (CFG) which uses a representation

k = 0

while k < 50{
i = 0

j = k

while i < j{
print k

i = i + 1

k = k + 1

}
}
print k

k1 = φ(k0, k2)

k1 < 50?
k0 = 0

kt = k1∩[−∞,49]

i0 = 0

j0 = kt

print kf

i1 = φ(i0,i2)

i1 < j0?

k2 = kt + 1print kt

i2 = i1 + 1

tf

t f

(a) (b)
I[k0] = [0,0]

I[k1] = [0,50]

I[k2] = [1,50]

I[kt] = [0,49]

I[kf] = [50,50]

I[i0] = [0,0]

I[i1] = [0,49]

I[i2] = [1,50]

I[j0] = [0,49]

I[k] =
⋃

I[kx] = [0,50]

I[i] =
⋃

I[ix] = [0,50]

I[j] =
⋃

I[jx] = [0,49]

k : 6 bits

i : 6 bits

j : 6 bits

(c) (d)

Figure 8: �e steps of the static range analysis. (a): Example

program. (b): CFG in e-SSA-form. (c): Ranges in e-SSA-form.

(d): Range and required bitwidth of each original variable.

called Extended SSA (e-SSA) form. �is makes it possible to cap-

ture inequalities enforced by control flow dependencies. E.g., the

code in Figure 8a is converted into the CFG in Figure 8b, where the

first branch produces two versions of variable k: kt which is below

50, and kf which is greater than or equal to 50. Next, the CFG is

fed into the range algorithm [21]. It creates constraints based on

the CFG, analyzes them, and outputs a range for each e-SSA regis-

ter (Figure 8c). Finally, we merge the ranges of all e-SSA registers

which belongs to each original variable by finding the union of

their ranges, as shown in Figure 8d. Finally, we determine how

many bits are needed to describe this range.

4.3 Register Allocation

To allocate registers, we make use of an existing algorithm [1]. We

extend the algorithm to consider the width annotations from the

range analysis as well as the precision reduction step, and assign

a sufficient amount of slices to each operand. �e output contains

information about the location within the register file for each

operand (denoted ”indirection info” in Figure 7): a register name

points out which physical register to access, and an 8-bit mask

shows which slices within the physical register are allocated for

the architectural register. In addition, to minimize fragmentation,

each architectural register can be split into two parts and placed

into the slices of two different physical registers, which is why each

entry in the indirection table in Figure 7 has two physical registers,

r0 and r1, and two masks,m0 andm1.

5 EVALUATION METHODOLOGY

5.1 Simulation Set-Up

Weevaluate the impact of our proposed design bymodifyingGPGPU-

Sim [3]. Table 2 summarizes the se�ings, which correspond to

the configuration of a Fermi GTX 480 GPU. While relatively old,

this baseline is widely used in GPU microarchitecture research

5

Table 2: Summary of GPU parameters.

Parameter Value Parameter Value

(per GPU) (per SM)

Clock Frequency 1400 MHz Warp Schedulers 2

SMs 15 Max Warps 48

Scheduling Policy Greedy then oldest �read Registers 32768

L2 cache 786 KB Register Banks 16

Register Bank Width 1024 bits

Entries / Bank 64

Operand Collectors 16

L1 cache 16 KB

Shared memory 48 KB

Table 3: Distribution of bits for each considered floating-

point format. All configurations also include a sign bit.

Bits, Total 32 28 24 20 16 12 8

Exponent bits 8 7 6 5 5 4 3

Mantissa bits 23 20 17 14 10 7 4

(e.g. [2, 9, 11]). �e reason for that is that the basic SM pipeline

in contemporary GPUs is similar to the one in Fermi. �erefore,

our proposal is also applicable to newer architectures: the thread-

to-register ratio has not changed much. Register shortage remains

a problem. In Section 7 we give further insight into how our pro-

posal scales to other architectures than Fermi.

GPGPU-Sim simulates NVIDIA’s instruction set PTX. We use

the framework described in Section 4 to annotate each PTX regis-

ter with a bitwidth. �en, the register allocator outputs the indi-

rection table contents in the form of register IDs and masks. �is

information is then uploaded to GPGPU-Sim and consulted before

any register access is carried out.

�e PTX instruction set is an intermediate representation com-

piled by ptxas, the proprietary NVIDIA backend compiler, into the

target assembly code. Since we carry out annotations and register

allocation directly on PTX, our register usage deviates from what

ptxas reports. In all cases, our liveness analysis reports slightly

more registers than ptxas does, since the PTX assembly code is

not fully optimized. Hence, our register usage is an overestima-

tion compared to what is required in the executed assembly code.

5.2 Floating-Point Formats

�e IEEE 754 standard defines five floating-point precision formats,

of which three are supported by modern GPUs: double, single, and

half precision (64, 32, and 16 bits respectively) [18]. �e formatswe

consider are listed in Table 3. Besides the standard 32- and 16-bit

precision formats, the rest are chosen to approximately maintain

the single-precision ratio between the exponent and mantissa bits.

We choose this format because prior research [1] has shown that

it outperforms both using only the formats supported by the IEEE

754 standard as well as mantissa truncation in how efficiently each

bit is used.

As none of our benchmarks use double precision, we do not

consider precision formats larger than 32 bits.

Table 4: A summary of the evaluated kernels.

�ality Register usage Warps Group

Name metric per thread per block

Deferred SSIM 47 8 1

SSAO SSIM 28 8 1

Elevated SSIM 46 8 1

Pathtracer SSIM 50 8 1

CFD % deviation 60 6 2

DWT2D % deviation 38 6 2

Hotspot % deviation 31 8 2

Hotspot3D % deviation 42 8 2

IMGVF % deviation 52 10 2

GICOV % deviation 24 6 2

Hybridsort Binary 36 8 3

5.3 Benchmarks and �ality Metrics

We evaluate our work using eleven CUDA kernels from various

application domains common to GPUs, in which the occupancy is

bounded by the register usage. �e first four are graphics kernels.

Deferred and SSAO are standard passes used in many modern real

time applications. Elevated and Pathtracer are both larger kernels

taken from the shadertoys [20] web site. Elevated generates an

image of a fractal landscape through ray marching using common

techniques such as evaluation of fractals and perlin noise. Path-

tracer implements a standard path-tracing algorithm.

�e other seven kernels are from benchmarks in the Rodinia

benchmark suite [4]. �ey are selected because their occupancy

is limited by register pressure, and they are possible to run on the

simulator.

Table 4 summarizes the kernels, together with their quality met-

ric, their original register usage per thread, and their original occu-

pancy. �e graphics kernels all use the Structural Similarity Index

(SSIM) [26] to measure quality, which is a well-established metric

for comparing the quality of e.g. compressed images. For Hybrid-

sort, we use a binary qualitymetric, i.e. the output can be correct or

wrong. For the remaining kernels, we use percentage of deviation

from the correct output. Note that, while SSIM is awell-established

quality metric for images, the % deviation metric might not always

be ideal. �e choice of quality metric has a large impact on both

the possibility to trade bits for output quality, as well as how us-

able the end result is. Ideally, the quality metric should be decided

by application domain experts. However, in this paper, we use it to

demonstrate the potential of our approach. �e metric can easily

be replaced by something more appropriate, without any impact

on our approach.

6 RESULTS

We first investigate what impact the static framework has on the

register pressure and occupancy. Second, we examine the perfor-

mance impact in terms of instructions per clock (IPC). �ird, we

carry out a sensitivity analysis with respect to writeback delay.

Fourth, we present an area overhead analysis.

6

CF
D

DW
T2
D

Ho
ts
po
t3
D

Hy
br
id
so
rt

GI
CO

V

IM
GV

F

Ho
ts
po
t

De
fe
rre

d

Pa
th
tra

ce
r

SS
AO

El
ev
at
ed

0

20

40

60

Re
gi
st
er
 P
re
ss
ur
e

Original
Narrow integers

Narrow floats, perfect quality
Narrow floats, high quality

Narrow integers + floats, perfect quality
Narrow integers + floats, high quality

Figure 9: Original register pressure and the register pressure

when using the static analysis framework for two different

quality thresholds.

6.1 Impact on Register Pressure and Occupancy

We consider two output quality thresholds. �e first one is when

no quality degradation is allowed, called perfect quality, and define

it as SSIM = 1.0 for Group 1 (see Table 4), and as 0% deviation

for Group 2. �e metric of Hybridsort is binary and has only two

levels: perfect and not acceptable. �e second threshold is when a

slight quality loss is accepted. We call this high quality, and define

it as SSIM = 0.9 for Group 1, 10% deviation for Group 2, and perfect

for Hybridsort (since its qualitymetric is binary). Up to 10% quality

loss is generally acceptable [14], but note that this threshold should

be carefully considered by the domain expert.

Figure 9 presents the impact the static framework has on the

register pressure: the y-axis shows the required number of regis-

ters per thread, and we present 6 bars per benchmark. �e first bar,

from the le�, shows the original register pressure. �e second bar

shows the register pressure if only integers are compressed. �e

third and fourth bars show the register pressure if only floats are

considered for compression, for perfect and high quality. �e fi�h

and sixth bar show the register pressure if both integers and floats

are compressed, for perfect and high quality, respectively.

�e framework reduces the register pressure for all benchmarks.

Hybridsort, GICOV, and IMGVF show the largest relative reduc-

tion, since they respondwell to both parts of the framework. While

the floating-point reduction framework is responsible for the largest

reduction in register pressure overall, for some benchmarks (e.g.

DWT2D, Hotspot3D, Hotspot) the static integer reduction frame-

work is of key importance to achieve a register pressure reduction.

Figure 10 presents the impact of the register pressure reduction

on the occupancy. �e first bar, from the le�, shows the original oc-

cupancy. �e second and third bars show the occupancy when us-

ing our proposed approach, for a perfect and a high output quality.

Here, the entire framework is used, whichmeans that both integers

and floats are reduced. In all cases, the occupancy increases. How-

ever in some cases, the decrease in register pressure does not trans-

form into a corresponding increase in occupancy. �is is because

shared memory-usage can also limit the achievable occupancy. For

example, consider the result of IMGVF. When going from perfect

to high output quality, the register pressure is reduced from 29 to

24 registers. If only register pressure was the limiting factor, the

occupancy would increase to four blocks, since 24 registers ×32

threads ×10 warps ×4 blocks = 30720 < 32768. However, each

block also uses 14,560 bytes of shared memory, meaning that no

CF
D

DW
T2
D

Ho
ts
po
t3
D

Hy
br
id
so
rt

GI
CO

V

IM
GV

F

Ho
ts
po
t

De
fe
rre

d

Pa
th
tra

ce
r

SS
AO

El
ev
at
ed

0

2

4

6

8

Ac
tiv
e
Th
re
ad
 B
lo
ck
s /
 S
M Original Indirection table, perfect quality Indirection table, high quality

Figure 10: Impact on occupancy for two quality thresholds.

CF
D

DW
T2

D

Ho
ts
po

t3
D

Hy
br
id
so
rt

GI
CO

V

IM
GV

F

Ho
ts
po

t

De
fe
rre

d

Pa
th
tra

ce
r

SS
AO

El
ev
at
ed

Ge
om

et
ric

M
ea

n

0
25
50
75

100

IP
C
in
cr
ea

se
 (%

)

Perfect Output Quality High Output Quality

Figure 11: Impact on IPC for two quality thresholds.

more than 3 blocks can fit into the 48 KB shared memory of the

SM.

6.2 Impact on Performance

Figure 11 shows the impact on IPC when using the proposed regis-

ter file organization, for a perfect and high output quality. In many

cases, the IPC correlates with the increase in occupancy, with an

increase in geometric mean of 15.75% and 18.6% for a perfect and

high output quality, respectively. For CFD, DWT2D, Hotspot3D,

IMGVF, Deferred, and Pathtracer we see a substantial increase in

IPC (between 9% and 79%). However, for some benchmarks the

IPC decreases. For GICOV and SSAO, the IPC decrease is due to

contention in the texture cache. For a perfect quality output, the

miss rate increases from 76% to 86% for GICOV, and from 69% to

73% for SSAO, which hurts performance.

For Elevated, there is a decrease in IPC when targeting a perfect

output quality, but a slight increase for the high quality output.

�is is because the new operand collector has a deeper pipeline,

which requires more warps. We investigate the relationship be-

tween IPC and pipeline stages further in Section 6.3.

6.3 Sensitivity Analysis: Writeback Delay

In the evaluation in Section 6.2, we model the writeback delay for

each operand as three clock cycles; one cycle for conversion from

high to low precision, one cycle for accessing the register file, and

one cycle to account for possible indirection table bank conflicts.

�is is quite a pessimistic estimation since not every operand needs

to be converted. In addition, the risk for bank conflicts is low since

the writeback pipeline is three operands wide, and the number of

banks is 16. Nevertheless, the true number of required cycles might

be either more or less than three, which motivates a sensitivity

analysis of the writeback delay.

7

CF
D

DW
T2

D

Ho
ts

po
t3

D

Hy
br

id
so

rt

GI
CO

V

IM
GV

F

Ho
ts

po
t

De
fe

rre
d

Pa
th

tra
ce

r

SS
AO

El
ev

at
ed

0

200

400

600

800

IP
C

0
2
4
8

Figure 12: Impact on IPCwhen varying the number of write-

back delay cycles.

Figure 12 shows the resulting IPC for all benchmarks when as-

suming four different writeback delays: 0, 2, 4, and 8 cycles. For

most of the benchmarks, the impact is small up to four cycles. �e

exceptions are Elevated and GICOV, for which IPC significantly

deteriorates at four cycles. �e reason is that GPUs do not in-

clude forwarding but rely on a scoreboard that prevents schedul-

ing dependent instructions resulting in lower IPC. Note that timing

anomalies sometimes give non-intuitive increases of IPC for larger

writeback delays, e.g. in Deferred.

6.4 Area Overhead Analysis

�is section uses transistor count as a proxy for the area overhead

of the green blocks in Figure 1.

�e value extractors are themost transistor hungry. Each thread-

level value extractor (TVE) consists of eight 9:1-multi-plexerswhich

are 32 bits wide. Assuming each bit of each multiplexer can be im-

plemented with eight 6-transistor AOI cells, the transistor count is

1536 per TVE.Additionally, each TVE also requires one 2:1-multiplexer,

four bits wide, which adds 6 × 4 = 24 transistors. Since each warp

consists of 32 threads, each warp-level extractor requires about

50K transistors. In total, this sums up to 50K × 16 = 800K tran-

sistors, since one extractor per bank is needed.

We synthesize the Value Converter to the register-transfer level.

By analyzing the resulting gate network, consisting mainly of an

adder and some multiplexers, we estimate the transistor count per

thread-level value converter to be approximately 1300. �is sums

up to 249,600 transistors for 6 warp-level value converters. Each in-

direction table has 256 32-bit entries. Assuming each bit is stored

with a 6-transistor SRAM cell, the transistor count for each indi-

rection table is 49,152. Two indirection tables are needed: 98,304

transistors in total.

�e number of transistors for the value truncators can be es-

timated using the value converter and value extractor overheads.

Each thread-level value truncator consists of one thread-level value

truncator and two thread-level value extractors. We assume that

a value truncator requires roughly the same area as a value con-

verter, since the steps taken are similar. �en, each thread-level

value truncator requires 1 × 1300+ 2 × 2048 = 5396 transistors, in

total 5396× 32× 3 = 518, 016 for three warp-level value truncators.

Finally, the extension for one CU consists of one 1024-bit wide

OR-gate and additional SRAM-cells. Assuming a 6-transistor OR-

gate per bit, and 35 bits additional storage per CU, the overhead

per CU is 1024 × 6 + 35 × 3 × 6 = 6774 transistors; 108,384 for all

16 units.

In total, the estimated transistor budget for all structures is about

1.8million transistors per streamingmultiprocessor, i.e around 1, 800, 000×

15 = 27, 000, 000 transistors in total. �is is a pessimistic esti-

mation, since no circuit-level optimizations have been considered.

Still, it is a very small fraction (less than 1%) of the total transistor

budget, which is about 3.1 billion transistors for the GTX 480 chip.

6.5 Power Overhead Analysis

We estimate the power overhead analytically by considering static

and dynamic power, separately.

Generally, static power increases linearly with the circuit area:

hence, we estimate the overhead in static power to increase lin-

early with the area overhead estimated in the previous section.

When it comes to dynamic power, we compare our proposed

design with a twice as big register file. �e rationale is that for

some benchmarks, our design more than double the number of ac-

tive thread blocks. To reach the same occupancy by increasing the

register file size, it also has to (more than) double. Our conclusion

is that our design increases dynamic power less than what a twice

as big a register file would do. We come to this conclusion based

on three reasons:

First, the largest difference from the original pipeline is that the

proposed design occasionally fetches two registers instead of one

during a register read. Naturally, this behaviour increases the dy-

namic power of the register read by 2x when a double-fetch hap-

pens. However, how o�en this occurs is controlled by the com-

piler, since it makes the decision whether an operand should i) be

split and placed in two different physical registers or ii) be placed

contiguously in one physical register. Hence, the compiler could

be designed to be aware of the trade-off between minimizing frag-

mentation (i) and minimizing power dissipation (ii).

Second, in theworst case, the proposed register file organization

increases the number of register fetches by 2x, which would lead

to a doubling in power for each register read. However, note that

this does not necessarily increase the power more than it would to

instead double the size of the register file. Because of the banked

register file organization, a doubling in capacity means a doubling

in the number of entries of each bank, which means a doubling in

bitline length. Since most of the dynamic power consumed in an

SRAM is due to bitline charging [5], a doubling in bitline length

also doubles the consumed dynamic power per register read.

Finally, as for the rest of the added structures, we estimate their

contribution to the dynamic power overhead to be small: the dy-

namic power from the value converters, value truncators, and value

extractors are negligible in comparison to the power consumption

of the large register file since the energy per operation is typically

an order of magnitude below that of SRAM structures [19]. Fur-

thermore, while the indirection tables are SRAM structures, they

are also very small in comparison to the register file.

7 DISCUSSION

Our evaluation uses the NVIDIA Fermi architecture as baseline.

However, it is important to understand the design implications on

8

newer architectures. Here, we give a comparison on how it scales

to the NVIDIA Volta [17] architecture.

Register shortage is a reality also in newer architectures. While

the total register-file size of Volta is much larger than Fermi (20480

KB vs 1965 KB), the Volta architecture also supports more threads

in total: each thread only has 31 32-bit registers available at maxi-

mum occupancy. Keeping the register count low continues to be a

problem for programmers, as the tuning has to be carried out man-

ually [6]. �is is a cumbersome task which requires the program-

mer to either re-write the kernel or accept inefficient trade-offs

such as register spilling to reach a high occupancy. Hence, register

shortage remains a problem which can be alleviated by employing

our approach.

When it comes to area, our estimate is that the overhead is

slightly larger for Volta than for Fermi, but still very small (just

over 2% of the total transistor budget). Note that this is a pes-

simistic estimate, since no optimizations has been considered, as

further discussed below. �e main reason for the increase is that

Volta has a higher count of individual register files than Fermi. We

derive this conclusion from the discussion below.

Recall from Section 3.1 that Fermi has two warp schedulers per

SM.�ey share a register file of 256 KB, as well as all the computing

units in the SM. In comparison, each SM in the Volta architecture

is partitioned into four processing blocks, where each block has a

dedicated warp scheduler, a register file of 64 KB, and its own com-

puting units. Each register file requires its own operand collector,

and thus dedicated indirection tables, value extractors, and value

converters.

Since the number of register banks scales with the maximum

instruction throughput (two per SM for Fermi vs one per process-

ing block for Volta), and we need one value extractor per bank, we

assume that Volta requires half of the value extractors needed for

a Fermi register file, which corresponds to 400k transistors accord-

ing to Section 6.4 . Assuming all other structures are unchanged,

we get an area overhead of 1.8M-0.4M = 1.4M transistors per pro-

cessing block, or 5.6M transistors per SM. �e Volta architecture

has 84 SMs, which sums up to a total area overhead of 470 mil-

lion transistors. Although this is a higher count than for the Fermi

architecture, Volta also has a significantly higher transistor count

of 21 billion transistors in total. As a result, the area overhead is

still a very small fraction compared to the total transistor budget

(just over 2%). Note that this is a pessimistic estimation, since no

circuit-level optimizations has been considered. In addition, while

out of scope for this paper, it might be possible to share some of

the structures between the processing blocks, which would further

reduce the area overhead.

8 RELATED WORK

GPU register file optimizations have been addressed in several prior

studies. Gilani et al. [7], Esfeden et al. [2], as well as Wang and

Zhang [25] investigate optimizations based on narrow integers which

are detected at run time, in stark contrast to our static approach

which works for all types of narrow data. Voitsechov et al. [23]

employ narrow integer-packing based on static analysis, but they

do not support floats.

Angerd et al. [1] present a study on reducing the bitwidth of

floating-point values, which is the method we adopt to tune the

precision of floats offline. �eir method assumes an indirection ta-

ble capable of handling floating-point operands of different bitwidths,

but they do not present a microarchitecture design of the register

file nor a complete register-file design capable of dealing with both

integer and floating-point operands. We present a complete design,

at the microarchitecture level, of such a register file.

Other related studies include Jeon et al. [8] who investigate re-

leasing dead registers and re-allocating them to other warps. Yu et

al. [27] propose a technique which increases the number of active

warps by employing run-time allocation. Furthermore, Khorazani

et al. [9] propose a so�ware-hardware co-mechanism where some

operands are statically allocated, while others time-share registers.

Also, RegLess [10] uses a compiler-supported technique to only al-

locate register file space to currently accessed regions of code, a

technique orthogonal to our approach. All these techniques are

orthogonal to our, since they do not target reduction of register

pressure.

Furthermore, Lee et al. [12] target register compression to en-

ablemore power-efficient GPUs. While this techniquemight lower

the physical register usage per thread, their microarchitectural im-

plementation specifically targets power consumption, while we

target performance improvements.

9 CONCLUSION

Modern GPUs rely on TLP to provide high throughput. �e thread

register footprint limits TLP, since the state of all active threads

must be readily available in the register file. In this paper, we pro-

pose a new concept for efficient register-packing, which combines

static integer and float operand compression with a novel GPU reg-

ister file organization capable of lowering the register footprint by

densely storing narrow operand values. We present a detailed mi-

croarchitectural implementation of the proposed organization, to-

gether with a performance evaluation and an overhead analysis.

Our results show that the IPC of the investigated benchmarks can

be increased by up to 79%, 18.6% on average, when allowing for a

slight quality output degradation.

ACKNOWLEDGMENTS

�is work is supported by the Swedish Research Council under

contract numbers VR-2014-06221 and VR-2019-04929.

REFERENCES
[1] Alexandra Angerd, Erik Sintorn, and Per Stenström. 2017. A Framework for

Automated and Controlled Floating-Point Accuracy Reduction in Graphics Ap-
plications on GPUs. ACM Trans. Archit. Code Optim. 14, 4, Article 46 (Dec. 2017),
25 pages. h�ps://doi.org/10.1145/3151032

[2] Hodjat Asghari Esfeden, FarzadKhorasani, Hyeran Jeon, DanielWong, andNael
Abu-Ghazaleh. 2019. CORF: Coalescing Operand Register File for GPUs. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’19). ACM, New
York, NY, USA, 701–714. h�ps://doi.org/10.1145/3297858.3304026

[3] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. 2009. An-
alyzing CUDA workloads using a detailed GPU simulator. In 2009 IEEE Inter-
national Symposium on Performance Analysis of Systems and So�ware. 163–174.
h�ps://doi.org/10.1109/ISPASS.2009.4919648

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009
IEEE International Symposium on Workload Characterization (IISWC). 44–54.
h�ps://doi.org/10.1109/IISWC.2009.5306797

9

https://doi.org/10.1145/3151032
https://doi.org/10.1145/3297858.3304026
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/IISWC.2009.5306797

[5] Shin-Pao Cheng and Shi-Yu Huang. 2005. A low-power SRAM design using
quiet-bitline architecture. 135– 139. h�ps://doi.org/10.1109/MTDT.2005.10

[6] NVIDIA Corporation. 2019. CUDA C++ Best Practices Guide:
Calculating Occupancy. Retrieved February 28, 2020 from
h�ps://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#calculating-occupancy

[7] S. Z. Gilani, N. S. Kim, and M. J. Schulte. 2013. Power-efficient comput-
ing for compute-intensive GPGPU applications. In 2013 IEEE 19th Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 330–341.
h�ps://doi.org/10.1109/HPCA.2013.6522330

[8] Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and Murali Annavaram.
2015. GPU Register File Virtualization. In Proceedings of the 48th International
Symposium on Microarchitecture (MICRO-48). ACM, New York, NY, USA, 420–
432. h�ps://doi.org/10.1145/2830772.2830784

[9] Farzad Khorazani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani, Nuwan
Jayasena, and Vivek Sarkar. 2018. RegMutex: Inter-Warp GPU Register Time-
Sharing. In Proceedings of the 45th Annual International Symposium on Computer
Architecture (ISCA ’18). ACM.

[10] John Kloosterman, Jonathan Beaumont, D. Anoushe Jamshidi, Jonathan Bailey,
Trevor Mudge, and Sco� Mahlke. 2017. Regless: Just-in-time Operand Stag-
ing for GPUs. In Proceedings of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 151–164.
h�ps://doi.org/10.1145/3123939.3123974

[11] Gunjae Koo, Yunho Oh, Won Woo Ro, and Murali Annavaram. 2017.
Access Pa�ern-Aware Cache Management for Improving Data Utilization
in GPU. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 307–319.
h�ps://doi.org/10.1145/3079856.3080239

[12] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro, and Mu-
rali Annavaram. 2015. Warped-compression: Enabling Power Efficient GPUs
�rough Register Compression. In Proceedings of the 42Nd Annual International
Symposium onComputer Architecture (ISCA ’15). ACM,New York, NY, USA, 502–
514. h�ps://doi.org/10.1145/2749469.2750417

[13] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWa�ch: Enabling En-
ergy Optimizations in GPGPUs. In Proceedings of the 40th Annual International
Symposium onComputer Architecture (ISCA ’13). ACM,New York, NY, USA, 487–
498. h�ps://doi.org/10.1145/2485922.2485964

[14] SparshMi�al. 2016. A Survey of Techniques for Approximate Computing. Com-
put. Surveys 48, 4 (3 2016). h�ps://doi.org/10.1145/2893356

[15] S. Mi�al. 2017. A Survey of Techniques for Architecting and Managing GPU
Register File. IEEE Transactions on Parallel and Distributed Systems 28, 1 (Jan
2017), 16–28. h�ps://doi.org/10.1109/TPDS.2016.2546249

[16] NVIDIA. 2009. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
White Paper.

[17] NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. White Paper.
[18] NVIDIA. 2018. NVIDIA Turing GPU Architecture: Graphics reinvented. White

Paper.
[19] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky.

2017. Dark Memory and Accelerator-Rich System Optimization in
the Dark Silicon Era. IEEE Design Test 34, 2 (April 2017), 39–50.
h�ps://doi.org/10.1109/MDAT.2016.2573586

[20] I. �ilez and P. Jeremias. 2017. Shadertoy. Retrieved March 27, 2017 from
h�ps://www.shadertoy.com/

[21] Fernando Magno �intao Pereira, Raphael Ernani Rodrigues, and Vic-
tor Hugo Sperle Campos. 2013. A Fast and Low-overhead Technique
to Secure Programs Against Integer Overflows. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO) (CGO ’13). IEEE Computer Society, Washington, DC, USA, 1–11.
h�ps://doi.org/10.1109/CGO.2013.6494996

[22] Vijay Sathish, Michael J. Schulte, and Nam Sung Kim. 2012. Lossless and Lossy
Memory I/O Link Compression for Improving Performance of GPGPU Work-
loads. In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT ’12). ACM, New York, NY, USA, 325–334.
h�ps://doi.org/10.1145/2370816.2370864

[23] Dani Voitsechov, Arslan Zulfiqar, Mark Stephenson, Mark Gebhart, and
Stephen W. Keckler. 2018. So�ware-Directed Techniques for Improved GPU
Register File Utilization. ACM Trans. Archit. Code Optim. 15, 3, Article 38 (Sept.
2018), 23 pages. h�ps://doi.org/10.1145/3243905

[24] Vasily Volkov. 2016. Understanding latency hiding on gpus. Ph.D. Dissertation.
UC Berkeley.

[25] X. Wang and W. Zhang. 2017. GPU Register Packing: Dy-
namically Exploiting Narrow-Width Operands to Improve Per-
formance. In 2017 IEEE Trustcom/BigDataSE/ICESS. 745–752.
h�ps://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.308

[26] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004.
Image quality assessment: from error visibility to structural similar-
ity. IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612.
h�ps://doi.org/10.1109/TIP.2003.819861

[27] Licheng Yu, Yulong Pei, Tianzhou Chen, and Minghui Wu. 2016. Architecture
supported register stash for GPGPU. J. Parallel and Distrib. Comput. 89 (2016),
25 – 36. h�ps://doi.org/10.1016/j.jpdc.2015.12.003

10

https://doi.org/10.1109/MTDT.2005.10
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#calculating-occupancy
https://doi.org/10.1109/HPCA.2013.6522330
https://doi.org/10.1145/2830772.2830784
https://doi.org/10.1145/3123939.3123974
https://doi.org/10.1145/3079856.3080239
https://doi.org/10.1145/2749469.2750417
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1145/2893356
https://doi.org/10.1109/TPDS.2016.2546249
https://doi.org/10.1109/MDAT.2016.2573586
https://www.shadertoy.com/
https://doi.org/10.1109/CGO.2013.6494996
https://doi.org/10.1145/2370816.2370864
https://doi.org/10.1145/3243905
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.308
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1016/j.jpdc.2015.12.003

	Abstract
	1 Introduction
	2 Motivation
	3 New Register File Organization
	3.1 GPU Baseline Architecture
	3.2 Proposed Register File Organization

	4 Static Analysis Framework
	4.1 Floating-Point Precision Tuning
	4.2 Static Range Analysis
	4.3 Register Allocation

	5 Evaluation Methodology
	5.1 Simulation Set-Up
	5.2 Floating-Point Formats
	5.3 Benchmarks and Quality Metrics

	6 Results
	6.1 Impact on Register Pressure and Occupancy
	6.2 Impact on Performance
	6.3 Sensitivity Analysis: Writeback Delay
	6.4 Area Overhead Analysis
	6.5 Power Overhead Analysis

	7 Discussion
	8 Related Work
	9 Conclusion
	References

