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ABSTRACT
In graph embedding, the connectivity information of a graph is used

to represent each vertex as a point in a d-dimensional space. Unlike

the original, irregular structural information, such a representation

can be used for a multitude of machine learning tasks. Although the

process is extremely useful in practice, it is indeed expensive and

unfortunately, the graphs are becoming larger and harder to em-

bed. Attempts at scaling up the process to larger graphs have been

successful but often at a steep price in hardware requirements. We

present Gosh , an approach for embedding graphs of arbitrary sizes

on a single GPU with minimum constraints. Gosh utilizes a novel

graph coarsening approach to compress the graph and minimize the

work required for embedding, delivering high-quality embeddings

at a fraction of the time compared to the state-of-the-art. In addition

to this, it incorporates a decomposition schema that enables any

arbitrarily large graph to be embedded using a single GPU with

minimum constraints on the memory size. With these techniques,

Gosh is able to embed a graph with over 65 million vertices and

1.8 billion edges in less than an hour on a single GPU and obtains

a 93% AUCROC for link-prediction which can be increased to 95%

by running the tool for 80 minutes.

CCS CONCEPTS
• Parallel computing methodologies→ Parallel algorithms;
Shared memory algorithms; •Mathematics of computing→Dis-
crete mathematics; Graph theory; Graph algorithms.
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1 INTRODUCTION
Graphs are widely adopted to model the interactions within real-

life data such as social networks, citation networks, web data, etc.

Recently, using machine learning (ML) tasks such as link predic-

tion, node classification, and anomaly detection on graphs became

a popular area with various applications from different domains.

The raw connectivity information of a graph, represented as its

adjacency matrix, does not easily lend itself to be used in such ML

tasks; regular d-dimensional representations are more appropriate

for learning valid correlations between graph elements. Unfortu-

nately, the connectivity information does not have such a structure.

Recently, there has been a growing interest in the literature in

the graph embedding problem which focuses on representing the

vertices of a graph as d-dimensional vectors while embedding its

structure into a d-dimensional space.

Various graph embedding techniques [6, 17, 21, 22] have been

proposed in the literature. However, these approaches do not usually

scale to large, real-world graphs. For example, Verse [22], deep-
walk [17], node2vec [6] and Line [21] require hours of CPU train-

ing, even for small- and medium-scale graphs. Although these ap-

proaches can be parallelized, a multi-core CPU implementation of

Verse takes more than two hours on 16 CPU cores for a graph with

2 million vertices and 20 million edges. There are other attempts

to increase graph embedding performance. Harp [3] and Mile [10]

apply graph coarsening, a process in which a graph is compressed

into smaller graphs, to make the process faster, but they do not

have a parallel implementation. Accelerators such as GPUs can be

used to deal with large-scale graphs. However, to the best of our

knowledge, the only GPU-based tool in the literature is Graphvite.
Although Graphvite is faster than the CPU counterparts, its use

is limited by the device memory and it cannot embed large graphs

with a single GPU.

In this paper, we present Gosh1
; an algorithm that performs

parallel coarsening and many-core parallelism on GPU for fast em-

bedding. The tool is designed to be fast and accurate and to handle

large-scale graphs even on a single GPU. However, it can easily be

extended to the multi-GPU setting. Gosh performs the embedding

in a multilevel setting by using a novel, parallel coarsening algo-

rithm which can shrink graphs while preserving their structural

information and trying to avoid giant vertex sets during coarsening.

With coarsening, the initial graph is iteratively shrunk into mul-

tiple levels. Then, starting from the smallest graph, unsupervised

training is performed on the GPU. The embedding obtained from

the current level is directly copied to the next one by using the

coarsening information obtained from the above level. The process

continues with the expanded embedding for the next level until the

original graph is processed on the GPU and the final embedding is

obtained. The contributions can be summarized as follows:

1
The code is publicly available at https://github.com/SabanciParallelComputing/GOSH

ar
X

iv
:2

00
8.

12
33

6v
2 

 [
cs

.D
C

] 
 3

1 
A

ug
 2

02
0

https://doi.org/10.1145/3404397.3404456
https://doi.org/10.1145/3404397.3404456
https://doi.org/10.1145/3404397.3404456
https://github.com/SabanciParallelComputing/GOSH


ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Taha Atahan Akyildiz, Amro Alabsi Aljundi, and Kamer Kaya

• To the best of our knowledge, the only GPU-based graph

embedding tool, Graphvite, cannot handle embedding large

graphs on a single GPU when the total size of the embedding

is larger than the total available memory of the GPU. On

the contrary, Gosh applies a smart decomposition, update

scheduling, and synchronization to perform the embedding

even when the memory requirement exceeds the memory

available on a single GPU.

• Thanks to multilevel coarsening and smart work distribution

across levels,Gosh’s embedding is ultra-fast. For instance, on

the graph com-lj, Graphvite, a state-of-the-art GPU-based
embedding tool, spends around 11 minutes to reach 98.33%

AUCROC score. On the same graph, Gosh spends only 2.5

minutes and obtains 98.46% AUCROC score. Furthermore,

based on the numbers given in [23], the embedding takes

more than 20 hours on 4 Tesla P100 GPUs for a graph of

65 million vertices and 1.8 billion edges (the link prediction

scores are not reported in [23] for this graph). On a single

Titan X GPU, Gosh reaches 95% AUCROC score within 1.5

hours.

• The dimension, i.e., the number of features, used for the em-

bedding process can vary with respect to the application. For

different d values, the best possible GPU-implementation,

which utilizes the device cores better, also differs. For differ-

ent d values, Gosh performs different parallelization strate-

gies to further increase the performance of embedding es-

pecially for small d values.

• The multilevel setting for graph embedding has been previ-

ously applied by Mile [10] and Harp [3]. Since CPU-based
embedding takes hours, the coarsening literature suggests

that the time required for coarsening is negligible in compar-

ison. In this work, we show that a parallel coarsening algo-

rithm is necessary since Gosh is orders of magnitude faster

than CPU-based approaches. To overcome this bottleneck,

we propose an efficient and parallel coarsening algorithm

which is empirically much faster than that ofMile and Harp.

The rest of the paper is organized as follows: In Section 2, the no-

tation used in the paper is given. Section 3 describes Gosh in detail

including the coarsening algorithm and the techniques designed

and implemented to handle large graphs. The experimental results

are presented in Section 4 and the related work is summarized

comparatively in Section 5. Section 6 concludes the paper.

2 NOTATION AND BACKGROUND
A graph G = (V ,E) has V as the set of nodes/vertices and E ⊆
(V × V ) as the set of edges among them. For undirected graphs,

an edge is an unordered pair while in directed graphs, the order is

significant. An embedding of a graphG = (V ,E) is a |V | × d matrix

M, where d is the dimension of the embedding. The vector M[i]
corresponds to a vertex i ∈ V and each value j in the vectorM[i][j]
captures a different feature of vertex i . The embedding of a graph

can be used in many machine learning tasks such as link prediction

[11], node classification [17] and anomaly detection [7].

There are many algorithms in the literature for embedding the

nodes of a graph into a d-dimensional space. Gosh implements the

embedding method of Verse [22]; a method which, in addition to

Figure 1:Multilevel embedding performed byGosh: first, the
coarsened set of graphs are generated. Then, the embedding
matrices are trained untilM0 is obtained.

having fast run-time and lowmemory overhead, is highly generaliz-

able as it can produce embeddings that reflect any vertex-to-vertex

similarity measureQ . To elaborate, this approach defines two distri-

butions for each vertexv : The first, simv
Q , is obtained from the simi-

larity values betweenv and every other vertex inG computed based

onQ . The second, simv
E , is derived from the embedding by using the

cosine similarities ofv’s embedding vector and those of every other

vertex in G. A soft-max normalization is applied to these values

as a post-processing step so they sum up to 1. The problem then

becomes the minimization of the Kullback-Leibler (KL) divergence

between the two distributions for every vertex. In this paper, we

choose Q to be the adjacency similarity measure described in [22].

Algorithm 1: UpdateEmbedding
Data:M[v],M[sample], b, lr
Result:M[v],M[sample]

1 score ← b − σ (M[v] ⊙M[sample]) × lr
2 M[v] ← M[v] +M[sample] · score
3 M[sample] ← M[sample] +M[v] · score

The training procedure employs Noise Contrastive Estimation for

convergence of the objective above as described in [22]. The process

trains a logistic regression classifier to separate vertex samples

drawn from the empirical distributionQ and vertex samples drawn

from a noise distribution N , with the corresponding embedding

vectors being the parameters of this classifier. More precisely, all the

vertices are processed a total number of e times, i.e., epochs, where
processing a vertex v ∈ V consists of drawing a single positive

sampleu from simv
Q and ns negative samples s1, s2, . . . , sns from N .

In themeantime, logistic regression is used tominimize the negative

log-likelihood of observing u and not observing s1, s2, . . . , sns by
updating the corresponding embedding vectors of v and all the

other samples. A single update is shown in Algorithm 1, where

M[v] is the embedding vector of v , M[sample] is the embedding

vector of the sample, b is a binary number that is 1 if the sample is

positive (drawn from Q) or negative (drawn from N ), ⊙ is the dot-

product operation, σ is the sigmoid function and lr is the learning
rate of the classifier.

The notation used in the paper is given in Table 1.

3 EMBEDDING ON SMALL HARDWARE
This section is organized as follows: First, a high-level explana-

tion of GOSH is provided. Then, Section 3.1 describes the GPU
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Table 1: Notation used in the paper.

Symbol Definition

G0 = (V0,E0) The original graph to be embedded.

Gi = (Vi ,Ei ) Represents a graph, which is coarsened i times.

Γ+(u) The set of outgoing neighbors of vertex u.
Γ−(u) The set of incoming neighbors of vertex u.
Γ(u) Neighborhood of u, i.e., Γ+Gi

(u)⋃ Γ−Gi
(u).

d # features per vertex, i.e., dimension of the embedding.

ns # negative samples per vertex.

σ Sigmoid function.

simm Similarity metric used in training.

e Total number of epochs that will be performed

lr Learning rate.

D Total amount of coarsening levels.

G The set of coarsened graphs created from a graph G = G0.

p Smoothing ratio for epoch distribution.

ei # epochs for coarsening level i .
Mi Embedding matrix obtained for Gi .

M The set of mappings used in coarsening.

mapi Mapping information from Gi−1 to Gi .

Vi The partitioning of vertex set Vi .
Pi The partitioning of embedding matrixMi .

Ki # parts inVi .
PGPU # embedding parts to be placed on the GPU.

SGPU # sample pools to be placed on the GPU.

B # positive samples per vertex in a single sample pool.

implementation for the embedding process in detail. Following the

embedding process, in Section 3.2, a new coarsening approach is

introduced and the parallel implementation details are provided.

Finally, Section 3.3 describes the partitioning schema which enables

Gosh to handle graphs that do not fit on the GPU memory.

Given a graph G0, Gosh , shown in Algorithm 2, computes the

embedding matrix M0. This is done in two stages;

(1) creating a set G = {G0,G1, . . . ,GD−1} of graphs coarsened
in an iterative manner (as in the left of Figure 1) where one

or more than one nodes inGi−1 are represented by a super

node in Gi (Line 1),

(2) starting from GD−1, training the embedding matrixMi for

the graphGi and projecting it toGi−1 to later trainMi−1 (as
in the right of Figure 1) (Lines 3- 11).

The training process is repeated until M0 is obtained. To obtain

Mi−1 from Mi the mapping information of Gi−1 is used, where

Mi [u] = Mi−1[v] iff u ∈ Vi is a super node of v ∈ Vi−1.
Gosh provides support for large-scale graphs for which the

memory footprint of the training exceeds the device memory. Even

for practical sizes, e.g., |V | = 128M and d = 128, the number of

entries in the matrix is approximately 16G. With double precision,

one needs to have 128GB memory on the device to store the entire

matrix. For each Gi , Gosh initially checks if both Gi and Mi can

fit in the GPU (Line 5). If so, it proceeds by copying Gi and the

projection of Mi to the GPU and carrying out the embedding of

Gi in a single step (Lines 6-7). Otherwise, it generates positive

samples in CPU and carries out the embedding of Gi by copying

the relative portions of the samples and Mi and training the graph

in batches (Line 10).

Using multilevel coarsening arises an interesting problem; let e
be the total number of epochs one performs on all levels. With a

naive approach, one can distribute the epochs evenly to each level.

However, when more epochs are reserved for Gi s in the lower lev-

els, the process will be faster. To add, the corresponding embedding

matrices will have a significant impact on the overall process as

they are projected to further levels. On the other hand, when more

epochs are reserved for the higher levels, i.e., larger Gi s, the em-

bedding is expected to be more fine-tuned. So the question is how
to distribute the epoch budget to the levels. Based on our preliminary

experiments, Gosh employs a mixed strategy; a portion, p, of the
epochs are distributed uniformly and the remaining (e × (1 − p))
epochs are distributed geometrically. That is, training at level i uses
ei = e/D+e ′i epochs where e

′
i is half of e

′
i+1. The valuep is called the

smoothing ratio and is left as a configurable parameter for the user

to establish an interplay between the performance and accuracy.

Another parameter that has a significant impact on embedding

quality is the learning rate. For multilevel embedding, a question

that arises is how to set the learning strategy for each level. In Gosh ,
we use the same initial learning rate for each level, i.e., for the train-

ing of eachMi and decrease it after each epoch. That is, the learning

rate for epoch j at the ith level is equal to lr ×max

(
1 − j

ei , 10
−4
)
.

Algorithm 2: Gosh
Data: G0, ns , lr , lrd , p, e , threshold , PGPU , SGPU , B
Result:M

1 G ←MultiEdgeCollapse (G0, threshold)
2 Randomly initializeMD−1
3 for i from D − 1 to 1 do
4 ei ← calculateEpochs(e , p, i)

5 if Gi andMi fits into GPU then
6 CopyToDevice(Gi ,Mi )

7 Mi ← TrainInGPU (Gi ,Mi , ns , lr , lrd , ei )

8 else
9 Mi ← LargeGraphGPU (Gi ,Mi , ns , lr , lrd , ei ,

10 PGPU , SGPU , B)

11 Mi−1 ← ExpandEmbedding(Mi ,mapi−1)

12 return M0

3.1 Graph embedding in Gosh
Gosh implements a GPU parallel, lock-free learning step for the

embedding algorithm. As mentioned above, following VERSE, we
use an SGD-based optimization process for training. As shown

in [14], a lock-free implementation of SGD, which does not take

the race conditions, i.e., simultaneous updates, into account, does

not have a significant impact on the learning quality of the task

on multi-core processors. However, our preliminary experiments

show that on a GPU, where millions of threads are being executed

in parallel, such race conditions significantly deteriorate the quality

of the embedding. For Gosh , we follow a slightly more restricted

implementation which is still not race-free.

To reduce the impact of race conditions, we synchronize the

epochs and ensure that no two epochs are processed at the same



ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Taha Atahan Akyildiz, Amro Alabsi Aljundi, and Kamer Kaya

time. For an epoch to train Mi , Gosh traverses Vi in parallel by

assigning a single vertex to a single GPU-warp. For a single (source)

vertex, multiple positive and negative samples are processed one

after another and updates are performed as in Algorithm 1. With

this implementation and vertex-to-warp assignment, a vertexv ∈ Vi
cannot be a source vertex for two concurrent updates but it may

be (positively or negatively) sampled by another vertex while the

warp processing v is still active. Similarly, v can be sampled by two

different source vertices at the same time. Hence, the reads/writes

on Mi [v] are not completely race free. However, according to our

experiments, synchronizing the epochs and samples for the same

source vertex is enough to robustly perform the embedding process.

As shown in Algorithm 3, the positive and negative samples

are generated in the GPU. For a source vertex v ∈ Vi , the positive
sample u ∈ Vi is chosen from ΓGi (v). Negative samples, on the

other hand, are drawn from a noise distribution as mentioned in

Section 2 which we model as a uniform random distribution over

Vi . After each sampling, the corresponding update is performed by

using the procedure in Algorithm 1.

Algorithm 3: TrainInGPU
Data: Gi ,Mi , ns , lr , ei
Result:Mi

1 for j = 0 to ei − 1 do
2 lr ′ ← lr ×max

(
1 − j

ei , 10
−4
)

/* Each src below is assigned to a GPU warp */

3 for ∀src ∈ Vi in parallel do
4 u ← GetPositiveSample(Gi )

5 UpdateEmbedding(Mi [src], Mi [u], 1, lr ′ )
6 for k = 1 to ns do
7 u ← GetNegativeSample(Gi )

8 UpdateEmbedding(Mi [src], Mi [u], 0, lr ′)

During the updates for a source vertex src , the threads in the

corresponding warp perform (1 + ns ) × d accesses toMi [src]. For
large values of ns and d , performing this many global memory

accesses dramatically decreases the performance. To mitigate this,

before processing src , Gosh copiesMi [src] from global to shared

memory. Then for all positive and negative samples, the reads and

writes for the source are performed on the shared memory. Finally,

Mi [src] is copied back to global memory. On the other hand, for the

sampled u vertices, Mi [u] is always kept in global memory since

each entry is read and written only once. To perform coalesced

accesses onMi [u], the reads and writes are performed in a round-

robin fashion. That is Mi [u][j + (32 × k)] is accessed by thread j at
the kth access where 32 is the number of threads within a warp.

3.1.1 Embedding for small dimensions. Assuming a warp contains

32 threads, when d ≤ 16 dimensions are used for embedding, a

single source vertex does not keep all the threads in a warp busy.

In this case, 32 − d warp threads remain idle which yields to the

under-utilization of the device. To tackle this problem, we integrate

a specialized implementation for small dimension embedding. We

set the number of threads responsible for a source vertex as the

smallest multiple of 8 larger than or equal to d , i.e., 8 or 16. Hence,
depending on d , we can assign 2 or 4 vertices to a single warp.

3.2 Graph coarsening
Gosh employs a fast algorithm to keep the structural information

within the coarsed graphs while maximizing the coarsening effi-
ciency and effectiveness. Coarsening efficiency at the ith level is

measured by the rate of shrinking defined as (|Vi−1 | − |Vi |)/|Vi−1 |.
On the other hand, the effectiveness is measured in terms of its

embedding quality compared to other possible coarsenings of the

same graph embedded with the same parameters. We adapt an

agglomerative coarsening approach, MultiEdgeCollapse, which

generates vertex clusters in a way similar to the one used in [3].

Given Gi = (Vi ,Ei ), the vertices in Vi are processed one by one. If

v is not marked, it is marked, and mapped to a cluster, i.e., a new

vertex in Vi+1 and its edges are processed. If an edge (v,u) ∈ Ei ,
where u is not marked, u is added to v’s cluster. Then, all of the
vertices in v’s cluster are shrunk into a super vertex vsup ∈ Gi+1.

MultiEdgeCollapse preserves both the first- and second-order

proximites [21] in a graph. The former measures the pairwise con-

nection between vertices, and the latter represents the similarity

between vertices’ neighborhoods. It achieves that by collapsing

vertices that belong to the same neighborhood around a local, hub

vertex. However, if this process is handled carelessly, two, giant

hub vertices can be merged. We observed that this degrades the

effectiveness and efficiency of the coarsening. The effectiveness

degrades since the structural equivalence is not preserved in the

lower levels of the coarsening, where most of the vertices are repre-

sented by a small set of super vertices. Furthermore having a small

set of giant supers inhibits the graph from being coarsened further,

resulting in an insufficient efficiency. To mitigate this, a new condi-

tion for matching is introduced to the algorithm, where u ∈ Vi can
not be put into the cluster ofv ∈ Vi if |ΓGi (u)| and |ΓGi (v)| are both
larger than

|Ei |
|Vi | . Consequently, assuming that the hub vertices will

have a higher degree than the density of Gi , two of them can no

longer be in the same cluster. Our preliminary experiments show

that this simple rule has a significant effect on both the efficiency

and the effectiveness of the coarsening.

As mentioned above, when a vertex is marked and added to a

cluster, its edges are not processed further and it does not contribute

to the coarsening. Performing the coarsening with an arbitrary

ordering may degrade the efficiency since large vertices can be

locked by the vertices with small neighborhoods. Hence, when an

edge (u,v) ∈ Ei is used for coarsening for a hub-vertex v ∈ Vi , to
maximize efficiency, we preferu ∈ Vi to be inserted in to the cluster

of origin v . To provide this, an ordering is procured by sorting the

vertices with respect to their neighborhood size and this ordering

is used during coarsening. This ensures processing vertices with a

higher degree before the vertices with smaller neighborhoods and

this results in a substantial increase in the coarsening efficiency.

The details of the coarsening phase are given in Algorithm 4.

The algorithm takes an uncoarsened graph G = G0 and returns

the set of coarsened graphs G along with the mapping information

to be used to project the embedding matricesM. G andM are

initialized as {G0} and empty set, respectively. Starting from i = 0,

the coarsening continues until a graphGi+1 with less than threshold
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vertices is generated. As mentioned above, first the vertices in

Gi are sorted with respect to their neighborhood sizes. Then the

coarsening is performed and a smaller Gi+1 is generated. We also

store the mapping informationmapi used to shrinkGi toGi+1. This

will be used later to project the embedding matrixMi+1 obtained

for Gi+1 to initialize the matrixMi for Gi . To add, threshold = 100

is used for all the experiments in the paper which is the default

value for Gosh .

Algorithm 4:MultiEdgeCollapse

Data: G0 = (V0,E0), threshold
Result: G,M

1 G ← {G0},M ← ∅, i ← 0

2 while |Vi | > threshold do
3 order ← Sort(Gi )

4 for v ∈ Vi domapi [v] ← −1
5 δ ← |Ei |/|Vi |
6 cluster ← 0

7 for v in order do
8 if mapi [v] = −1 then
9 mapi [v] ← cluster

10 cluster ← cluster + 1

11 foreach (v,u) ∈ Ei do
12 if |ΓGi (v)| ≤ δ or |ΓGi (u)| ≤ δ then
13 if mapi [u] = −1 then
14 mapi [u] ←mapi [v]

15 Gi+1 ← Coarsen(Gi ,mapi )

16 G ← G ∪ {Gi+1},M ←M ∪ {mapi }, i ← i + 1

3.2.1 Complexity analysis: All the algorithms, coarsening and em-

bedding, use the Compressed Sparse Row (CSR) graph data struc-

ture. In CSR, an array, adj holds the neighbors of every vertex in

the graph consecutively. It is a list of all the neighbors of vertex 0,

followed by all the neighbors of vertex 1, and so on. Another array,

xadj, holds the starting indices of each vertex’s neighbors in adj,
with the last index being the number of edges in the graph. In other

words, the neighbors of vertex i are stored in the array adj from
adj[xadj[i]] until adj[xadj[i + 1]].

MultiEdgeCollapse has three stages; sorting (line 3), map-

ping (lines 7–14) and coarsening (line 15). A counting sort is imple-

mented for the first stage with a time complexity of O(|V | + |E |).
For mapping, the algorithm traverses all the edges in the graph.

This has a time complexity of O(|V | + |E |). Finally, coarsening the

graph requires sorting the vertices with respect to their mappings

and going through all the vertices and their edges within the CSR,

which also has a time complexity of O(|V | + |E |).

3.2.2 Parallelization: When the embedding is performed on the

CPU, as the literature suggests, embedding dominates the total

execution time. However, with fast embedding as in Gosh , this is
not the case. Thus, we parallelize the coarsening on the CPU.

In a parallel coarsening with τ threads, one can simply traverse

Vi in parallel and perform the mapping with no synchronization.

However, this creates race conditions and inconsistent coarsenings.

To avoid race conditions, we use a lock per each entry of mapi .
To update mapi [v] and mapi [u] as in lines 9 and 14, the thread

first tries to lockmapi [v] andmapi [u], respectively. If the lock is

obtained, the process continues. Otherwise, the thread skips the

current candidate and continues with the next vertex. One caveat

is the update on the counter cluster . Hence, instead of using a

separate variable for super vertex ids, the parallel version uses the

hub-vertex id for mapping. That ismapi [v] is set to v unlike line

9 of the sequential algorithm. Note that with this implementation,

mapi does not provide a mapping to actual vertex IDs inGi+1. This

can be fixed in O(|V |) time via sequential traversals of themapi
array, which first detect/count the vertices that hasmapi [v] = v
and reset themapi values for all.

The parallel coarsened graph construction is not straightforward.

After the mapping, the degrees of the (super) vertices in Gi+1 are

not yet known. To alleviate that, we allocate a private E
j
i+1 region

in the memory to each thread tj , 1 ≤ j ≤ τ . These threads create
the edge lists of the new vertices on these private regions which are

then merged on a different location of size |Ei+1 |. To do that first a

sequential scan operation is performed to find the region in Ei+1
for each thread. Then the private information is copied to Ei+1.

An important problem that needs to be addressed for all the

steps above is load imbalance. Since the degree distribution on the

original graph can be skewed and becomes more skewed for the

coarsened graphs, a static vertex-to-thread assignment can reduce

the performance. Hence Gosh uses a dynamic scheduling strategy,

which uses small batch sizes for all the steps above.

3.3 Handling large graphs
One of the strongest points of Gosh is the ability to quickly gener-

ate a high-quality embedding of a large-scale graph on a single GPU.

Herewe present the techniques usedwhen the graph and the embed-

ding matrix do not fit in the GPU memory. The base algorithm for

Gosh requires storingd×|V | and (|V |+1)+ |E | entries for the matrix

and the graph, respectively, for a graphG = (V ,E). For large graphs
with millions of vertices, a single GPU is unable to store this data.

We mitigate the bottleneck of storingMi on the GPU by using a

partitioning schema similar to [8, 23], in whichMi is partitioned

and embedding is carried out on the sub-matrices instead of the

entirety of Mi . Formally, we partition Vi into Ki disjoint subsets of

verticesVi = {V 0

i ,V
1

i , . . . ,V
Ki−1
i }. Let Pi = {M0

i ,M
1

i , . . . ,M
Ki−1
i }

be the sub-matrices ofMi corresponding to the vertex sets inVi .
With partitioning, embeddingGi becomes the process of moving

the sub-matrices in Pi to the GPU, carrying out the training on

these parts, and switching them out for the next sub-matrices, and

so on.

In order to carry out the embedding correctly, all possible neg-

ative samples, chosen from Vi ×Vi , must be able to be processed.

To do this, Gosh handles the embedding in rotations. During a

rotation there will always be a point in time when Mj
i and Mk

i are

together in the GPU for all 0 ≤ j < k < K . When this happens, B

positive and B × ns negative samples are chosen from V
j
i (or V k

i )

for every vertex in V k
i (or V

j
i ). This way, in each rotation, we run

a total of at most B × Ki updates on every vertex, which makes

a full rotation (almost) equivalent to B × Ki epochs. We use the
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term almost since a vertex v ∈ V j
i may not have a neighbor in V k

i .

In this case, no positive updates are performed for v whenV
j
i and

V k
i are on the device. Hence, running

ei
B×Ki rotations is (almost)

equivalent to running ei epochs for the embedding. We set B = 5

as the default value in Gosh and experiment with different values

to see its impact on embedding quality and performance.

Although partitioning the embedding matrix solves the first

memory bottleneck, storingGi on the GPU can still be problematic

since this will leave less space for the sub-matrices. This is why we

opt not to storeGi on the GPU. The positive samples are chosen on

the host and only when required, they are sent to the GPU. Negative

samples, on the other hand, are still generated on the GPU: the

kernel for the parts (V j
i ,V

k
i ) draws the negative samples for vertices

in V
j
i randomly from V k

i and vice versa for vertices in V k
i .

3.3.1 Minimizing the data movements: Since the embedding is

performed on pairs of sub-matrices, the rotation order in which

we process the pairs is important to minimize the data move-

ment operations. We follow an order resembling the inside-out
order proposed in [8] which formally defines the part pairs as

(V a0
i ,V

b0
i ), (V

a1
i ,V

b1
i ), · · · , (V

aℓ
i ,V

bℓ
i ) where ℓ =

Ki (Ki+1)
2

and

(V aj
i ,V

bj
i ) =


(V 0

i ,V
0

i ) j = 0

(V aj−1
i ,V

bj−1+1
i ) j > 0 and aj−1 > bj−1

(V aj−1+1
i ,V 0

i ) aj−1 = bj−1

3.3.2 Choosing the sub-matrices and samples to be stored: Let PGPU
be the number of sub-matrices stored on the GPU at a time. Since

we require every sub-matrix pair to exist on the GPU together dur-

ing a single rotation, the smallest acceptable value is 2. However,

PGPU = 2 means that there will be time instances where all the

kernels processing the current sub-matrices finish and a new kernel

cannot start until a new sub-matrix is copied to the GPU. This leaves

the GPU idle during the copy operation. On the other hand, using

PGPU > 2 occupies more space but allows an overlap of data trans-

fers with kernel executions. For instance, assumeM1

i ,M
2

i andM4

i
are on GPU and the three upcoming kernels are (V 4

i ,V
1

i ), (V
4

i ,V
2

i )
and (V 4

i ,V
3

i ). The first two kernels are dispatched and after the first
finishes, while the second is running, M1

i is replaced with M3

i , thus

hiding the latency. A large PGPU increases the amount of overlap.

However, it also consumes more space on the GPU and increases

Ki , i.e., the number of sets inVi . This leads to a rotation containing

more kernels, i.e., pairs to be processed. For this reason, we set

PGPU = 3 to both hide the latency and occupy less GPU memory.

Since we do not keep the large graphs on GPU memory and

draw positive samples on the CPU, these samples must also be

transferred to the GPU for each kernel. However, if all these sam-

ples are transferred at once, similar to above, Ki increases and the

performance decreases. To solve this issue, we only keep samples

for SGPU pairs on the GPU and dynamically replace a pool once it

is consumed. We set SGPU = 4 as we’ve experimentally found it to

be an adequate value for all our graphs.

3.3.3 Implementation details: Embedding a large graphGi requires

an orchestrated execution of multiple tasks on the host and the

device. Gosh coordinates the following tasks by single host thread:

Figure 2: Memory model of large graphs algorithm embed-
ding graph Gi . 1) Embedding sub-matrices are copied be-
tween the host and GPU as needed, 2) When sample pool
S
j,k
i is ready, it is copied to an empty buffer. 3) When a sam-
ple pool on the GPU is used up, it is replaced by the next
sample pool from the buffer.

(1) The main thread dispatches the embedding kernels to the

GPU, as well as moves the sub-matrices forth and back be-

tween the host and GPU. Multiple GPU streams are used to

allow for multiple kernel dispatches at once to maximize the

utilization.

(2) The SampleManager thread performs (positive) sampling

into pools. When necessary, SampleManager creates a team

of threads to generate samples for a single sample pool. Once

a pool is ready to be sent to the GPU, it is kept in a buffer.

(3) PoolManager dispatches the sample pools to the GPU. Once

a sample pool is used up on the GPU, and becomes free to

be overwritten, PoolManager dispatches a ready pool to the

GPU.

Coordination among these threads is provided through condition

variables. A high-level overview of the large graph embedding pro-

cess is shown in Figure 2 and its pseudocode is given in Algorithm 5.

In Line 1 of Algorithm 5, we compute Ki and the number of ro-

tations e‘. Line 2 initializes an arrayGPUState of size PGPU which

keeps track of embedding sub-matrices currently stored on the GPU.

GPUState[j] = k means that bin j on the GPU currently holdsMk
i

where an entry−1 indicates that the bin j is empty. At the beginning,

the first PGPU sub-matrices are copied to the GPU (lines 3–4) by call-

ing the function SwitchSubMatrices (j,k)which copiesMj
i out of

the GPU, replaces it withMk
i , and returns the newGPUState . After-

wards, the PoolManager and SampleManager threads are started

and the main thread starts to perform the embedding rotations.

Lines 7–13 run the main embedding loop.

When the sub-matricesMm
i ,Ms

i and the sample pool Sm,s
i are

ready, the function EmbeddingKernel (Mm
i , Ms

i , ns , lr ) runs the

embedding kernel on the sub-matrices pair (Mj
i ,M

k
j ) using ns neg-

ative samples and learning rate lr . Finally, the function NextSub-

Matrix (GPUState , a, b) will determine the next sub-matrix to be

switched into the GPU after running EmbeddingKernel (Mj
i , M

k
i ,

ns , lr ) given GPUState .

4 EXPERIMENTS
We will first explain the ML pipeline we used to evaluate embed-

dings and to compute AUCROC (Area Under the Receiver Operating
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Algorithm 5: LargeGraphGPU
Data: Gi ,Mi , ns , lr , ei , PGPU , SGPU , B
Result:Mi

1 e ′ ← ei
B×Ki

, Ki ← GetEmbeddingPartInfo(Gi )

2 GPUState[0 : PGPU − 1]← {−1, −1, . . . , −1}
3 for i ← 0 to PGPU − 1 do
4 GPUState ← SwitchSubMatrices (-1, i)

5 thread(SampleManager, Ki , e
′
, SGPU )

6 thread(PoolManager, Ki , e
′
, SGPU )

7 for r from 1 to e ′ do
8 form from 0 to Ki − 1 do
9 for s from 0 tom do

10 Wait forMm
i ,Ms

i and S
m,s
i to be on GPU

11 EmbeddingKernel (Mm
i , Ms

i ,ns , lr )

12 nextSM ← NextSubMatrix (GPUState ,m, s)

13 GPUState ← SwitchSubMatrices (s , nextSM)

Characteristics) scores. Then the data-sets will be summarized and

the state-of-the-art tools used to evaluate the performance of Gosh
will be listed. Lastly, the results will be given.

4.1 Evaluation with link-prediction pipeline
We evaluate the embedding quality of Gosh , Verse, Mile, and
Graphvite with link prediction, which is one of the most common

ML tasks that embedding algorithms are evaluated by [6, 8, 22, 23].

First, the input graph G is split into train and test sub-graphs as

Gtrain = (Vtrain ,Etrain ) and Gtest = (Vtest ,Etest ) respectively.
Gtrain contains 80% of the edges of G, where Gtest contains the

remaining 20%. Then, we remove all the isolated vertices from

Gtrain and also all (u,v) edges from Gtest , where u or v is not

in Gtrain . This guarantees that Vtest ⊆ Vtrain . Next, we execute
the tools to generate embeddings of Gtrain . Finally, we employ a

Logistic Regression model which uses the embeddings generated

in the previous step to predict the existence of edges in Gtest . For

medium scale graphs, we used the LogisticRegression module

from scikit-learn. However, logistic regression becomes too ex-

pensive for large-scale graphs. Thus, for such graphs, we use the

SGDClassifiermodule from scikit-learn with a logistic regres-

sion solver.

For the prediction pipeline, we create two matrices, Rtrain , and
Rtest . Each vector Rtrain [i] represents either a positive or a neg-
ative sample, and we obtain these vectors by doing element-wise

multiplication of two vectors fromM0, corresponding to two ver-

tices in the graph. Rtrain includes all the edges inGtrain as positive

samples. Moreover, we generate |Etrain | number of negative sam-

ples from (Vtrain × Vtrain ) \ Etrain and add them as vectors to

Rtrain to make a balanced training set for the logistic regression

classifier. In addition to d values obtained via element-wise mul-

tiplications, for Rtrain , a label representing a positive or negative
sample is concatenated to the end of the vector. Hence, the length of

each Rtrain vector is d + 1. We create Rtest in a similar fashion by

usingGtest instead ofGtrain as the source of the samples. We first

train the logistic regression model using Rtrain , and then test the

Table 2: Normal and large graphs used in the experiments.

Graph |V| |E| Density

com-dblp [9] 317,080 1,049,866 3.31

com-amazon [9] 334,863 925,872 2.76

youtube [13] 1,138,499 4,945,382 4.34

soc-pokec [9] 1,632,803 30,622,564 18.75

wiki-topcats [9] 1,791,489 28,511,807 15.92

com-orkut [9] 3,072,441 117,185,083 38.14

com-lj [9] 3,997,962 34,681,189 8.67

soc-LiveJournal [9] 4,847,571 68,993,773 14.23

hyperlink2012 [12] 39,497,204 623,056,313 15.77

soc-sinaweibo [18] 58,655,849 261,321,071 4.46

twitter_rv [18] 41,652,230 1,468,365,182 35.25

com-friendster [9] 65,608,366 1,806,067,135 27.53

validity of the model with Rtest . Finally, we report the AUCROC
score obtained from the test set [4].

4.2 Datasets used for the experiments
We use various graphs in the evaluation process to cover many

structural variations and to evaluate the tools in terms of perfor-

mance and quality as fairly and thoroughly as possible. The graphs

differ in terms of their origin, the number of vertices, and density.

The properties of these graphs are given in Table 2. The medium-

scale graphs, with less than 10M vertices, and large-scale ones are

separated in the table.

4.3 State-of-the art tools used for evaluation
To evaluate the performance and the quality of Gosh , we use the
results of the following state-of-the-art tools as a baseline.

Verse: is a recent multi-core graph embedding tool [22]. It can

employ different vertex-similarity measures including PPR, adja-

cency lists, and SimRank. We use the PPR similarity measure and

α = 0.85 as recommended by the authors. For Verse, we set the
epoch number to e = 600, 1000, and 1400, use a learning rate of

lr = 0.0025 and report the best AUCROC. Larger learning rates

produce worse results.

Graphvite: is a state-of-the-art, fast multi-GPU graph embed-

ding tool. However, according to [23], the algorithm cannot embed

graphs with |V | > 12, 000, 000 on a single GPU. We use the default

values for the hyperparameters as recommended by the authors and

LINE is chosen as the base embedding method. As for the number

of epochs, we use two settings; a fast setting with e = 600 epochs,

and a slow setting with e = 1000 epochs.

Mile: performs embedding by coarsening a graph into multiple

levels similar toGosh [10]. It trains the smallest level and refines the

embeddings up the coarsening levels. However, unlike Gosh , Mile
uses a neural network to project the coarsened graph embedding

to that of the original graph. We use the following parameters for

the model: DeepWalk as a base embedding method, MD-GCN as a

refinement method, 8 levels of coarsening, and a learning rate of

lr = 0.001. As for the epochs used during training, we note that

Mile does not allow the number of epochs to be configured. Hence,

that decision was left to the model itself.

For Gosh , we use three configurations: fast, normal and slow,

with parameters given in Table 3. The configurations differ in terms
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Table 3: Gosh configurations, fast, normal and small for
medium-scale and large-scale graphs. A version with no
coarsening is also used in the experiments.

Configuration p lr enormal elarдe

Fast 0.1 0.050 600 100

Normal 0.3 0.035 1000 200

Slow 0.5 0.025 1400 300

No coarsening - 0.045 1000 200

of the number of epochs, smoothing ratio and learning rate. Com-

pared to Gosh-slow, Gosh-fast uses a smaller p and a larger lr to
compensate for the lesser number of epochs on the original graph

with faster learning. Furthermore, we include in the experiments a

version of Gosh which does not perform coarsening. This configu-

ration spends all of the epochs on the original graph. In addition

to these differences, for medium-scale graphs, a larger number

of epochs is used for each configuration compared to large-scale

graphs.

For the experiments with Gosh and Verse, we define a single
epoch as sampling |E | target vertices. We do so to match the defi-

nition of an epoch given by Graphvite [23] for the fairness of the

experiments. With this definition, using fewer epochs for large-

scale graphs makes more sense since a single epoch implies billions

of samples and updates for such graphs, whereas for medium-scale

graphs this number is in the order of tens of millions.

All the experiments run on a single machine with 2 sockets, each

with 8 Intel E5-2620 v4 CPU cores running at 2.10GHz with two

hyper-threads per core (32 logical cores in total), and 198GB RAM.

To avoid the effects of hyper-threading, we only use 16 threads for

parallel executions. The GPU experiments use a single Titan X Pas-

cal GPU with 12GB of memory. The server has Ubuntu 4.4.0-159
as the operating system. All the CPU codes are compiled with

gcc 7.3.0 with -O3 as the optimization parameter. For CPU paral-

lelization, OpenMP multithreading is used in general. Only for large

graphs, a hybrid implementation with OpenMP and C++11 threading
is employed. For GPU implementations and compilation, nvcc with
CUDA 10.1 and optimization flag -O3 are used. The GPUs are con-

nected to the server via PCIe 3.0 x16. For GPU implementations,

all the relevant data structures are stored on the device memory,

unified memory is not used.

4.4 Experiments on coarsening performance
Table 4 provides the properties of the coarsenings obtained from the

sequential and parallel coarsening algorithms with τ = 32 threads.

As the results show, parallel coarsening reaches a similar number

of levels and the graphs at the last-level are of similar sizes. Hence,

there is a negligible difference regarding the quality of graphs gener-

ated by the two algorithms. Only for soc-sinaweibo, there is a one-
level difference for which |VD−1 | also has a difference of 142 vertices.

With a similar coarsening quality, the parallel algorithm is 5–

10× faster compared to the sequential counterpart. As described in

Section 3.2.2, the time complexity is O(|V |+ |E |) and in practice, |E |
dominates the workload. Although there are other parameters, the

variation in the speedups is in concordance with the variation in

the number of edges. For instance, soc-sinaweibo only has 200M

edges and yields the smallest speedup value of 5.8×. On the other

hand, the largest speedup 10.5× is obtained for com-friendster,
which is the largest in our data-set with 1.8B edges.

Table 4: Execution times, the number of levels and the size of
the last-level graphs for sequential and parallel coarsening
with τ = 32 threads for the large-scale graphs. The results
are the average of 5 runs.

Graph τ Time (s) Speedup D |VD−1 |

hyperlink2012
1 365.49 - 8 2411

32 45.36 8.06× 8 2385

soc-sinaweibo
1 135.92 - 10 272

32 23.54 5.77× 9 414

twitter_rv
1 629.20 - 12 541

32 77.77 8.09× 12 432

com-friendster
1 2468.52 - 10 1164

32 235.38 10.49× 10 1158

4.4.1 Gosh vs Mile. In Table 5, we show a brief comparison of

MILE and Gosh with 16 threads on the graph com-orkut. Since
MILE does not have a stopping criterion for coarsening, we used

the same amount of coarsening levels for both algorithms. While

coarsening a graph of 3 million vertices and 100 million edges,Gosh
is 264 times faster than MILE. Moreover, Gosh is a lot more effi-

cient regarding the number of vertices obtained at each level. For

instance, in 8 levels Gosh shrinks com-orkut to only 230 vertices,

while MILE shrinks it to 12062 vertices. This is important since the

training time is affected by the number of vertices at each level.

4.5 Experiments on handling large graphs
Figure 3 shows the effect of adjusting the batch size B for large-

graph embedding. The top figure provides the execution time and

the bottom figure provides the AUCROC scores. We can see the

trade-off between performance and quality while increasing B. The
execution time decreases since the number of embedding rounds

is reduced. However, the quality also decreases since increasing B
results in increasing the number of updates being carried out on a

subset of the graph in isolation from the rest of the embedding pro-

cess. To be as efficient as possible and not to decrease the accuracy

significantly, we use B = 5 as the default value for Gosh .

Table 5: Mile vs Gosh coarsening on com-orkut. A parallel
coarsening with τ = 16 threads is used for Gosh.

i Time (s) |Vi | i Time (s) |Vi |

M
il
e

0 - 3056838

G
os
h

0 - 3056838

1 249.77 1535168 1 4.44 975132

2 237.39 768804 2 1.23 213707

3 184.72 384752 3 0.62 46667

4 151.24 192507 4 0.16 8084

5 139.23 96308 5 0.03 2000

6 128.47 48183 6 0.01 701

7 117.75 24107 7 < 0.01 375

8 99.73 12062 8 < 0.01 275

Total 1308.31 - Total 6.60 -
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Table 6: Link prediction results on medium-scale graphs. Every data-point is the average of 15 results. Verse and Gosh uses
τ = 16 threads.Mile is a sequential tool. Both Graphvite and Gosh uses the same GPU. The speedup values are computed based
on the execution time of Verse.

Graph Algorithm Time (s) Speedup AUCROC(%) Graph Algorithm Time (s) Speedup AUCROC(%)

com-dblp

Verse 247.99 1.00× 97.82

com-amazon

Verse 216.18 1.00× 97.71

Mile 136.65 1.81× 97.65 Mile 146.29 1.48× 98.14
Graphvite-fast 13.97 17.70× 97.80 Graphvite-fast 12.45 17.36× 97.40

Graphvite-slow 19.93 12.40× 98.08 Graphvite-slow 16.84 12.83× 97.82

Gosh-fast 0.72 344.43× 96.45 Gosh-fast 0.69 313.30× 97.20

Gosh-normal 2.08 119.23× 97.38 Gosh-normal 1.88 114.99× 98.29

Gosh-slow 3.84 64.58× 97.63 Gosh-slow 3.59 60.22× 98.43
Gosh-NoCoarse 29.97 8.27× 93.31 Gosh-NoCoarse 24.60 8.79× 90.13

com-lj

Verse 12502.72 1.00× 98.86

com-orkut

Verse 45994.93 1.00× 98.65
Mile 3948.62 3.17× 80.19 Mile 11904.31 3.86× 90.38

Graphvite-fast 373.58 33.47× 98.04 Graphvite-fast 1246.38 36.90× 98.02

Graphvite-slow 644.43 19.40× 98.33 Graphvite-slow 2199.25 20.91× 98.05
Gosh-fast 16.27 768.45× 96.82 Gosh-fast 43.30 1062.24× 97.35

Gosh-normal 55.01 227.28× 98.33 Gosh-normal 185.12 248.46× 97.63

Gosh-slow 153.72 81.33× 98.46 Gosh-slow 487.33 94.38× 97.69

Gosh-NoCoarse 675.25 18.52× 98.32 Gosh-NoCoarse 2301.89 19.98× 97.64

wiki-

topcats

Verse 8709.48 1.00× 99.31

youtube

Verse 1365.36 1.00× 98.04
Mile 4953.68 1.76× 86.04 Mile 1328.62 1.03× 94.17

Graphvite-fast 310.47 28.05× 96.42 Graphvite-fast 63.90 21.37× 97.07

Graphvite-slow 544.06 16.01× 96.28 Graphvite-slow 104.76 13.03× 97.45

Gosh-fast 11.34 768.03× 98.13 Gosh-fast 2.76 494.70× 96.16

Gosh-normal 40.76 213.68× 98.33 Gosh-normal 7.15 190.96× 97.78

Gosh-slow 93.86 92.79× 98.50 Gosh-slow 15.32 89.12× 97.93
Gosh-NoCoarse 549.65 15.85× 98.51 Gosh-NoCoarse 158.60 8.61× 97.16

soc-pokec

Verse 9182.53 1.00× 98.32

soc-

LiveJournal

Verse 14965.76 1.00× 97.61
Mile 2848.78 3.22× 85.75 Mile 6210.58 2.41× 80.84

Graphvite-fast 370.73 24.77× 97.42 Graphvite-fast 745.33 20.08× 99.23

Graphvite-slow 607.07 15.13× 97.37 Graphvite-slow 1209.95 12.37× 99.31
Gosh-fast 16.34 561.97× 96.34 Gosh-fast 29.74 503.22× 98.58

Gosh-normal 54.66 167.99× 96.49 Gosh-normal 112.72 132.77× 98.87

Gosh-slow 131.06 70.06× 96.67 Gosh-slow 183.64 81.50× 98.76

Gosh-NoCoarse 598.95 15.33× 97.28 Gosh-NoCoarse 1348.74 11.10× 98.88

Figure 3: Running large-graph embedding on hyperlink
with different B values.

4.6 Experiments on embedding quality
Tables 6 and 7 provide the execution times and AUCROC scores of

the tools evaluated in this work on medium-scale and large-scale

graphs, respectively. The parameters for the tools are given in Sec-

tion 4.3 (see Table 3 for Gosh configurations). The first observation

is that coarsening does not have a significant negative effect on the

quality of the embedding. While Gosh performs worse on some

medium-scale graphs with coarsening, for others, the scores are

approximately the same or even better. Since all of the epochs are

reserved for the original graph in the non-coarsened version, we

expect the results of this configuration to be more fine-tuned. How-

ever, the data shows that training in the coarser levels may have

a more prominent effect than training more on the original graph.

In addition to Gosh configurations, we use Graphvite,Mile, and
Verse on medium-scale graphs. The results are given in Table 6. To

evaluate the runtime performance of the tools, we use the execution

time of Verse as the baseline and present the speedups by each tool.

From these experiments, we have the following observations:

• Gosh-fast is an ultra-fast solution that produces very accu-

rate embeddings at a fraction of the time compared to all

the systems under evaluation. It can achieve a speedup over

Verse of up to three orders of magnitude and an average of

600×with a maximum loss in AUCROC of 2% and an average

loss of 1.16%. When compared toMile, it is superior in terms

of AUCROC in six out of eight graphs while being at least

two orders of magnitude faster. As for Graphvite, we see
that, at an average loss in AUCROC of 0.54%, Graphvite can
achieve an average speedup of 23.44×.
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• Gosh-normal demonstrates the speed/quality trade-off of

Gosh and its flexibility. Switching from Gosh-fast to Gosh-
normal results in an average AUCROC increase of 0.76%

while only reducing the speed on average by a factor of 3×.
• The flexibility is demonstrated further by Gosh-slow whose

accuracy becomes close to the best tool for every graph.

Compared to Verse, this configuration has an average loss

of 0.24% in AUCROC, but still has an average speedup of

79.24×.
• To compare Gosh with the state-of-the-art GPU implementa-

tion Graphvite, we used the best AUCROCs of the tools. For
4/8 graphs, Gosh configurations produce better AUCROC

compared to Graphvite configurations. The values are simi-

lar; on average, Gosh achieves 0.16% higher AUCROCs than

Graphvite. However, Gosh is 5.2× faster than Graphvite
on average.

4.6.1 Large-scale graphs. The results of the experiments for large-

scale graphs can be seen in Table 7. We observe the following:

Graphvite results are not reported since, for all the large-scale

graphs, the executable runs out of CPUmemory on ourmachine.We

find thatGraphvite on hyperlink2012 is reported to achieve 94.3%
link-prediction AUCROC after an embedding for 5.36 hours using

four Tesla P100s GPUs [23]. Gosh-normal achieves an AUCROC of

97.20% after an embedding taking only 0.2 hours using a single Titan

X GPU (26.8× speedup). It is also reported that Graphvite takes

20.3 hours on com-friendster [23] where Gosh-normal requires

only 0.76 hours (26.7× speedup).

Mile cannot embed hyperlink2012 and soc-sinaweibo before
the 12 hour timeout. Furthermore, the executable failed to run on

the other two graphs due to insufficient memory.

Verse timed out for 3 of the 4 graphs, as shown in Table 7. How-

ever, it performed the embedding on soc-sinaweibo successfully.

Compared to Gosh-slow, it scores a 0.52% higher AUCROC. On the

other hand, Gosh-slow achieves a 26× speedup over Verse.

4.7 Experiments on smaller dimensions
We analyzed the performance of Gosh when multiple vertices

are assigned to a single warp, where d is small. The results on

com-orkut and soc-LiveJournal are given in Table 8. Without

small-dimension technique (SM), Gosh takes approximately the

same time for d = 8, 16 and 32 where 4× and 2× less work is

performed for d = 8 and 16. With SM, we observe 2.63× and

1.84× speedups for d = 8 and 16, respectively. Moreover, for

soc-LiveJournal, we obtain 2.70× and 1.85× speedups for d = 8

and d = 16, respectively. As expected, with or without SM, d = 32

timings are almost the same.

4.8 Speedup breakdown
For a more detailed analysis of performance improvements, we

run intermediate versions of Gosh and report the speedup over

16-thread CPU implementation. The experiments are conducted

with six graphs; two large-scale graphs (com-friendster, and
hyperlink2012), and four medium-scale graphs. We did not run

the GPU implementations that are not using coarsening on the

large-scale graphs as they take a long amount of time. The results

are presented in Figure 4.

Table 7: Link prediction results on large graphs. Every data-
point is the average of 6 results. Graphvite and Mile fail to
embed any of the graphs due to excessive memory usage or
an execution time larger than 12 hours. τ = 16 threads used
for both Verse and Gosh.

AUC
Graph Algorithm Time (s) Speedup ROC (%)

hyperlink2012

Verse Timeout - -

Gosh-fast 201.02 - 87.60

Gosh-normal 724.09 - 97.20

Gosh-slow 1676.93 - 98.00

soc-sinaweibo

Verse 20397.79 1.00× 99.89

Gosh-fast 48.88 417.30× 70.27

Gosh-normal 352.86 57.81× 97.00

Gosh-slow 759.85 26.84× 99.37

twitter_rv

Verse Timeout - -

Gosh-fast 261.08 - 91.78

Gosh-normal 994.46 - 97.36

Gosh-slow 2128.70 - 98.50

com-friendster

Verse Timeout - -

Gosh-fast 680.33 - 85.17

Gosh-normal 2720.82 - 93.40

Gosh-slow 5000.96 - 94.98

Table 8: Performance of Gosh with (SM = Yes) & without (SM
= No) small-dimension embedding and τ = 16 threads.

Graph SM d Time (s) Graph SM d Time (s)

co
m-

or
ku

t No

8 63.72

so
c-
Li
ve
Jo
ur
na
l

No

8 40.13

16 64.20 16 40.46

32 64.95 32 41.22

Yes

8 24.27

Yes

8 14.86

16 34.98 16 21.82

32 64.54 32 40.93

Figure 4: The speedups obtained from running intermedi-
ate versions of Gosh compared to our multi-core CPU im-
plementation with 16 threads.

The first Gosh version is the Naive GPU implementation that

results in an average slowdown of 3.3×. The Optimized GPU ver-

sion leverages architecture-specific optimizations to reduce mem-

ory access overhead. That is, global memory is organized to have

coalesced accesses, and shared memory is utilized to reduce the

number of global memory accesses. This version is 5.4× faster than

the 16-thread one. These two versions do not use coarsening.
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The next version employs Sequential Coarsening, as well as all the
GPU optimizations from the previous one. ThisGosh version scores

an average speedup of 45× over the CPU version, while maintaining

the embedding quality as shown in Table 6. This is due to the cumu-

lative nature of the updates on the coarsened graphs, where a single

update on a super vertex is propagated to all the vertices it contains.

The Parallel Coarsening version, which is the final Gosh , fur-
ther improves the performance. As discussed in Section 4.4, the

performance difference between Parallel Coarsening and Sequential
Coarsening is expected to be more for larger graphs. For instance, on

com-friendster, sequential and parallel coarsening phases take

2468.52 and 235.38 seconds, respectively (Table 4). On the same

graph, the total run-time of Gosh-normal is 2720.82 seconds (Table

7). In other words, parallel coarsening results in an 80% improve-

ment on performance.

5 RELATEDWORK
There are various approaches proposed for embedding graphs. A

survey on these techniques can be found in [5]. For instance, in

matrix factorization based embedding, the matrix representing the

relationship between vertices in the graph is factorized [1, 2, 16, 19].

Another approach in the literature is the sampling-based embed-

ding [6, 17, 21, 22] in which the samples are drawn from the graph

and used to train a single-layer neural network. Different embed-

ding algorithms use different sampling strategies, most notable of

which are random walks [6, 17]. Each algorithm in the literature

tries to capture the structural and role/class information based on

a similarity measure and/or a sampling strategy. There also have

been attempts [16, 22] for a more generalized embedding process.

Graph embedding is an expensive task and hard to perform with-

out high-performance hardware. Graph coarsening [3, 10], as well

as distributed system approaches [8, 15, 20] have been previously

used to tackle this issue. However, these methods do not fully uti-

lize a specialized, now ubiquitous piece of hardware, GPU. The

literature does not usually focus on the performance of coarsening

since, on CPUs, embedding is slow and coarsening time is negli-

gible. However, this is not the same for GPUs. Furthermore, even

state-of-the-art embedding tools are using coarsening schemes that

cannot shrink the graphs well.

There have been attempts to make the embeddings faster by uti-

lizing GPUs; Graphvite generates samples on the host device and

performs the embedding on the GPU [23]. However, when the total

GPU memory is not capable of storing the embedding matrix, the

tool cannot perform the embedding. To the best of our knowledge,

there is no sampling-based graph embedding tool in the literature

which is designed for memory restricted but powerful GPUs. Gosh
tries to utilize the power of GPUs by applying coarsening and using

a judiciously orchestrated CPU-GPU parallelism.

6 CONCLUSION AND FUTUREWORK
In this paper, we introduce a high-quality, fast graph embedding

approach that utilizes CPU and GPU at the same time. The tool

can embed any graph by employing a partitioning schema along

with dynamic on-CPU sampling. In addition to this, we provide op-

timization techniques to minimize GPU idling and maximize GPU

utilization during embedding. Furthermore, a parallel coarsening

algorithm, which outperforms the state-of-the-art coarsening tech-

niques both in terms of efficiency and speed, is proposed. We fine-

tuned the coarsening approach to produce high-quality embeddings

at a fraction of the time spent by the state-of-the-art. Our exper-

iments demonstrate the effectiveness of Gosh on a wide variety of

graphs. In the future, we are planning to make Gosh publicly avail-

able with easy-to-use interfaces for widely used software such as

Matlab and scikit-learn. Furthermore, we will extend our work

for other ML tasks such as classification and anomaly detection.
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