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ABSTRACT

REVISITING SPARSE DYNAMIC PROGRAMMING

FOR THE 0/1 KNAPSACK PROBLEM

The 0/1-Knapsack Problem is a classic NP-hard problem. There are two common approaches

to obtain the exact solution: branch-and-bound (BB) and dynamic programming (DP). A so-

called, “sparse” DP algorithm (SKPDP) that performs fewer operations than the standard algorithm

(KPDP) is well known. To the best of our knowledge, there has been no quantitative analysis of

the benefits of sparsity. We provide a careful empirical evaluation of SKPDP and observe that for

a “large enough” capacity, C, the number of operations performed by SKPDP is invariant with re-

spect to C for many problem instances. This leads to the possibility of an exponential improvement

over the conventional KPDP. We experimentally explore SKPDP over a large range of knapsack

problem instances and provide a detailed study of the attributes that impact the performance.

DP algorithms have a nice regular structure and are amenable to highly parallel implementa-

tions. However, due to the dependence structure, parallelizing SKPDP is challenging. We propose

two parallelization strategies (fine-grain and coarse-grain) for SKPDP on modern multi-core pro-

cessors and demonstrate a scalable improvement in the performance.
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Chapter 1

Introduction

The 0/1 knapsack problem (0/1-KP, or just KP in this paper) is a well known, NP-hard com-

binatorial optimization problem with applications in production planning [1], in risk balancing

and assortment optimization [2], and in storage capacity limitation [3]. It seeks to optimally fill

a knapsack of a given capacity, C, from a set of N objects. There are two standard algorithmic

approaches to solving it exactly: dynamic programming (DP) and branch-and-bound (BB). The

execution time of BB may vary with problem instances and this has led to very extensive research

on techniques and heuristics that work well in “practice.” On the other hand, most standard im-

plementations of DP build (at least conceptually) a table whose size is parameterized by only the

number N and C, leading to a complexity of NC, regardless of the specific weight-profit distribu-

tion.1 Most knapsack solvers therefore use DP only to solve small knapsack sub-problems, leaving

the “heavy lifting” to BB.

A so called, “sparse” DP algorithm (SKPDP) that performs fewer operations than the standard

algorithm (KPDP) is known for a while [4–6] but to the best of our knowledge, there has been no

quantitative analysis of its benefits. Moreover, the authors proposed a “wavefront array” (an early

form of application-specific hardware accelerator) for this algorithm, but that too, was not actually

implemented.

In this paper, we first carefully evaluate the potential benefits of SKPDP (see Chapter 3). We

make the rather surprising observation that when C is sufficiently large, the expected execution

time (measured by counting the “number of points generated” by SKPDP) becomes invariant with

C, leading to an execution time that is only linear in the input size. This means that sparsity

provides an exponential gain.

1Note that one of the inputs to the KP is the integer C, and its size, i.e., the number of bits needed to represent it,

is lgC. This is why an execution time proportional to C is considered “exponential.”
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Next, we explore two parallelization techniques (see Chapters 4 and 5) for implementing

SKPDP on modern multicore CPUs. The first one is a fine-grain technique where processors

collaborate to compute the DP table, one row at a time. In the second, “coarse-grain” algorithm,

the (virtual) processors operate in a pipelined, “producer-consumer” fashion, each one responsible

for computing all the elements in a row. We also do a detailed analysis of the two algorithms

identifying (i) the overheads of each scheme, and (ii) situations when they are compute/memory

bound. In Chapter 6 we talk about the potential future work. Before providing our experimental

results, the very next chapter is dedicated to describing the background knowledge.
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Chapter 2

Background

We now describe the background needed to make this paper self contained, and prior related

work on the problem.

The 0/1 Knapsack Problem (KP) is formally defined [7] as follows. Given a set of N items and

a knapsack with a limited capacity C, where each item i have profit pi and weight wi, the objective

of the KP is to select items to achieve the maximum total profit without exceeding the capacity.

Mathematically,

Maximize

N
∑

i=1

pixi

subject to

N
∑

i=1

wixi < C

xi ∈ {0, 1}

(2.1)

There is a significant body of work on algorithms and tools for KP, many of them described in

standard textbooks [7–10]. Being an NP hard problem, many authors investigate heuristic and/or

approximate algorithms, with or without bounds on the approximations. As for exact solutions,

there are two main algorithms: dynamic programming (DP) and branch-and-bound (BB). We focus

on DP, defined by the following recurrence.

f(i, j) =


































0, if i = 0 or j = 0

f(i, j − 1), if i > 0 and j < wi

max(f(j, i− 1),

pi + f(j − wi, i− 1)) if i > 0 and j ≥ wi

(2.2)

The function f(i, j) denotes and defines the maximal profit that can be achieved with a knap-

sack of capacity j, drawing items out of only the first i items. The standard KPDP algorithm

computes and stores this table in an order (possibly in parallel) ditated by the dependences of the
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recurrence. This phase, called the forward pass, does O(NC) work. Then, an O(N) “backtrack-

ing” traversal of the table constructs the actual solution. The total execution time of KPDP is thus

O(NC). An example of a table generated by the KPDP algorithm is shown in Table 2.1 which

shows the DP table for a KP instance with four items and capacity 10.

Table 2.1: A KPDP table with N = 4 and C = 10 with weights, 5, 4, 6, 1 and profits, 7, 8, 9, 4, respectively.

The significance of the boxed entries is explained in Section 2.2.

Items Capacity

0 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 7 7 7 7 7 7

2 0 0 0 0 8 8 8 8 8 15 15

3 0 0 0 0 8 8 9 9 9 15 17

4 0 4 4 4 8 12 12 13 13 15 19

In this paper, we exploit two known improvements to KPDP. The first one reduces the space

complexity to only O(C) so that the whole table does not need not be saved (this comes with a two-

fold increase in execution time). The other improvement utilizes the sparsity in the computation of

the KPDP table [4–6]. For the sake of completeness, we describe them here.

2.1 Memory efficient KPDP

The dynamic programming algorithm normally requires the entire table to be retained, and this

is often unacceptably large for large problems. The memory efficient KPDP is an adaptation of an

old trick to improve DP algorithms, that was first proposed by Hirshberg for the longest common

subsequence (LCS) problem [11]. The technique was adapted to KP by Kellerer et al. [7, pp 46-50]

and by Nibbelink et at. [12] who also propose a hardware implementation on FPGAs. It avoids

backtracking by recursively, directly solving subproblems of the form 〈i, j, c〉, that determine the

optimal subset of the i-through-j-th (inclusive) objects for a capacity of c. The top level call is thus

to Solve〈1, N, C〉, and Solve〈i, j, c〉 proceeds as follows:

4



1. Base case: if i = j, there is only one object, so choose it if and only if it fits (i.e., wi ≤ c)

2. General case: Let m = ⌊ j+i

2
⌋. Determine (details below) a c∗ between 0 and c such that

in the (some) solution to the subproblem 〈i, j, c〉 the combined sum of the weights of the

selected object in the “first half” i.e., i-through-m-th objects, is c∗. This is called the “optimal

split” of the capacity c. Now,

(a) Recursively call Solve〈i,m, c∗〉, and

(b) Recursively call Solve〈m+ 1, j, (c− c∗)〉

So the main issue is to determine c∗. We first determine for the first “half” of the objects, a

vector X[j] for 0 ≤ j ≤ c, the optimal profit that can be obtained with capacity j (using only

objects in that half). We also construct a similar vector, X ′[j] for the other half. This can be done

in only 2c memory using recurrence (2.2), by maintianing only two rows of the table, and costs

(j − i)c work. Using these two arrays, c∗ is given by

c∗ = argmaxci=0X[i] +X[c− i]

The capacity arguments in all the calls at any levels of the recursion tree add up to C, and

the number of objects considered halves level by level. Hence, the total work of this algorithm is

2NC, just a two-fold increase.

2.2 Sparse KPDP (SKPDP)

The KPDP algorithm generally retains a table which contains the maximum profits achievable

by any value of capacity between 0 and C and considering the items incrementally. To clarify, in

the table 2.1, the cell indexed by the 3rd row and the 8th column contains the maximum profit value

considering only the first 3 items and a capacity value of 8. Andonov and Rajopadhye [4, 5] and

Dupont de Dinechin et al. [6] showed how, for the KPDP and the UKP (the unbounded knapsack

problem), the sequences representing the i-th row could be computed from the one representing
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the (i − 1)-st row. The work is similar to early ideas on a list based algorithm [13] that reduced

the complexity of the subset-sum problem to O(
√
2N), but uses streams of index-value pairs. The

main idea behind the SKPDP is the notion of monotonically: it is clear that for any fixed i, the

values of f(i, j) are monotonically non-decreasing with respect to j. This is because, in any sub-

problem, we can do no worse than we are currently doing by increasing capacity. This is illustrated

in Table 2.1, where the boxed entries are the first occurrence of a value in a given row. Because of

sparsity, one may enviage a “sparse” representation, where all the table entries are not computed,

rather only the “points of inflection” are explicitly evaluated. To do this, we use a representation

for the table in the form of “index-value” pairs: the entire i-th row is represented by a list, of the

form, 〈j, f(i, j)〉, as shown in Table 2.2. We refer to these pairs, representing the boxed entries of

the Table 2.1, as “critical points”.

Table 2.2: The SKPDP representation of Table 2.1.

Items

1 〈0, 0〉, 〈5, 7〉
2 〈0, 0〉, 〈4, 8〉, 〈9, 15〉
3 〈0, 0〉, 〈4, 8〉, 〈6, 9〉, 〈9, 15〉, 〈10, 17〉
4 〈0, 0〉, 〈1, 4〉, 〈4, 8〉, 〈5, 12〉, 〈7, 13〉, 〈9, 15〉, 〈10, 19〉

2.3 Add-Merge-Kill

Andonov and Rajopadhye [14] and Dupont de Dinechin et al. [6] proposed to implement the

SKPDP algorithm on dedicated application specific hardware as a WAP (Wavefront Array Proces-

sor [15, 16]). However, because the memory efficient technique had not been discovered at that

time the total number of data transfers that the accelerator needed to perform was the same order

as the number of computations.

Regardless of whether it is implemented in hardware or in software, and whether the final

algorithm is memory-efficient or not, the heart of the Andonov-Rajopadhye sparse algorithm is a
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technique called Add-Merge-Kill, by which any row of the sparse table can be constructed from

the previous one. To understand it, consider the 3rd row of the Table (2.2),

〈0, 0〉, 〈4, 8〉, 〈6, 9〉, 〈9, 15〉, 〈10, 17〉 (2.3)

To generate the 4th row we first add the weight and profit of the 4th element 〈1, 4〉 to every element

of the list (2.3). We get,

〈1, 4〉, 〈5, 12〉, 〈7, 13〉, 〈10, 19〉, 〈11, 21〉 (2.4)

Next, we merge the two lists (keeping them in increasing order of the first component of each tuple,

producing the list:

〈0, 0〉, 〈1, 4〉, 〈4, 8〉, 〈5, 12〉, 〈6, 9〉, 〈7, 13〉, 〈9, 15〉, 〈10, 19〉, 〈10, 17〉, 〈11, 21〉 (2.5)

Then, we delete (kill) all the dominated elements, i.e., those whose second component is not

(strictly) greater than a preceding element’s second component, producing the list,

〈0, 0〉, 〈1, 4〉, 〈4, 8〉, 〈5, 12〉, 〈7, 13〉, 〈9, 15〉, 〈10, 19〉 (2.6)

which is exactly row 4 of Table 2.2. Notice that 〈11, 21〉 has been discarded because 11 is greater

than the maximum capacity 10. Algorithm 1 gives a pseudo-code of our implementation of the

Add-Merge-Kill algorithm.

Figure 2.1 shows a graphical depiction of the algorithm 1. The solid blue line represents the

3rd sequence S3. The dotted orange line represents the sequence we get after adding 〈1, 4〉 to each

pairs of S3. The solid green line represents the 4th sequence which we get by taking the maximum

profit values at each critical points of the previous two sequences.
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Figure 2.1: Add-Merge-Kill algorithm; the solid blue line represents the 3rd sequence S3; the dotted orange

line represents the sequence we get after adding 〈1, 4〉 to each pairs of S3; the solid green line represents the

4th sequence which we get by taking the maximum profit values at each critical points of the previous two

sequences.

8



Algorithm 1: Add-Merge-Kill

Input : Si : i-th row

〈wi+1, pi+1〉: weight and profit of the (i+ 1)-th item

Output: Si+1 : (i+1)-th row

Si ← current row, Si+1 ← empty;

j, k, p← 0, 0, 0;

/*Add step*/

S ′

i ← replace each element 〈x, y〉 in Si by 〈x+ wi+1, y + pi+1〉 ;

/*Merge-Kill step*/

while the end of Si not reached and S ′

i[k].weight ≤ C do

if Si[j].weight < S ′

i[k].weight then

if Si[j].profit < S ′

i[k].profit then

Si+1[p]← Si[j];
p← p+ 1, j ← j + 1;

else

k ← k + 1;

end

else if Si[j].weight > S ′

i[k].weight then

if Si[j].profit > S ′

i[k].profit then

Si+1[p]← S ′

i[k];
p← p+ 1, k ← k + 1;

else

j ← j + 1;

end

else

if Si[j].profit > S ′

i[k].profit then

k ← k + 1;

else

j ← j + 1;

end

end

end

/*Append the remaining items*/

while the end of Si not reached do

Si+1[p]← Si[j];
p← p+ 1, j ← j + 1;

end

while the end of S ′

i not reached and S ′

i[k].weight ≤ C do

Si+1[p]← S ′

i[k];
p← p+ 1, k ← k + 1;

end

9



2.4 Symbols

If not stated otherwise the meaning of the symbols generally used in this paper is defined in the

table 2.3.

Table 2.3: Meaning of the symbols used in this paper

Symbols Meaning

N Number of items in a knapsack problem instance

C Capacity of a knapsack problem instance

wi Weight of the i-th item of a knapsack instance

pi Profit of the i-th item of a knapsack instance

P Number of processors/threads

Pk Symbolizes the kth processor/thread

Wavg Average weight of the items of a knapsack problem instance

λ Input parameter to SKPDP that is used to determine the fraction of the number of

the items that fit into the knapsack on average; fraction of the objects that fit = 1
λ

when Wavg =
λC
N

σ Input parameter to SKPDP that that controls the variance in profitability (ratio of pi

and wi) among different items and it is also referred as the noise value

The next three chapters describe our main results: empirical study of the benefits of sparsity,

a fine-grain parallelization, and a coarse-grain parallelization that provides scalable speedup on

shared-memory platforms.
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Chapter 3

Empirical Analysis of Complexity

To investigate the potential gains of the sparse implementation over the dense version, we im-

plemented SKPDP and measured the total number of iterations for many instances of knapsack

problem. We define “iteration count” as the total number of Merge-Kill (MK) operations executed

by the sparse algorithm. We use “iteration count” as a surrogate for this total number of compu-

tations in the sparse version. Note that it is trivial to compute the total number of iterations and

the total operation count is a multiple of the number of iterations. This is a constant multiple,

and moreover, we observed a near perfect correlation between “iteration count” and the actual

execution time. The reduction in execution time can be exponential when N ≪ C. The goal

of this empirical study is to identify the different types of problem instances where SKPDP can

outperform conventional KPDP. Given that we are interested in knapsack problem instances with

significantly large values of C, we must use the memory efficient version of knapsack that uses

divide-and-conquer strategy so that we don’t run out of available physical memory. Even though

the memory efficient version does about twice as much computation compared to the full table

version, it enables us to experiment with knapsack problem instances with very large values of C.

3.1 Generation of Problem Instances

Researchers have been synthesizing different types of knapsack problem instances. Pisinger

[17] surveyed the performance of several popular algorithms on a suite of knapsack problem in-

stances, and showed that problem instances with strongly-correlated weights and profits are hard-

est to solve. Since we are interested in DP, we generate instances where the capacity, C, and

correspondingly, the weights and profits can be arbitrarily (i.e., exponentially) increased. In our

exploration, we seek to study the impact of a certain set of parameters, as discussed below.

Furthermore, it is important to make sure that the knapsack problem instances are not contrived.
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3.1.1 The expected number of objects that fit

We control the fraction (of the N items) the fit into the knapsack. For this, we introduce a

parameter, λ, (where λ ≥ 2) and set the average weight of all the items to Wavg = λC
N

so that the

fraction of items that fit into the knapsack is 1
λ

.

3.1.2 Distribution of the weights

Next, we design two types of weight distribution schemes for the average weight given by

Wavg above. In the first scheme, we use a normal distribution with a mean of Wavg and a standard

deviation of 0.3Wavg. For the second type, we use a log-normal distribution with a mean of Wavg

while making sure that the largest weight (given by Wmax) is close to C. This helps us analyze the

impact of very large weights on SKPDP.

3.1.3 The variance in profitability

It is well known that for every item (i) in the knapsack problem, when the ratio of the profit (pi)

and weight (wi) is a constant, we end up with the hardest problem instances, essentially variants of

the subset-sum problem. We would like to observe the impact of variance in profitability (pi/wi) of

the knapsack items on SKPDP. Therefore, we generate problem instances with different levels of

correlation between weights and profits. For this, we first set the profits to be a constant multiple

of the weights, and then introduce a small random noise value. The noise is used to adjust the

variance in profitability of the knapsack items.

pi = c0wi + ri (3.1)

where, c0 as a constant, and ri is in the range [−σWavg, σWavg]. According to Pisinger [17], if

c0 = 1 and ri = αWmax [0 < α < 1] equation (3.1) generates Strongly Correlated problem in-

stances, otherwise Weakly Correlated problem instances are generated. While Strongly Correlated

problem instance are the second hardest after the Subset Sum problem instances, Weakly Corre-

lated problem instance can have variable levels of hardness depending on the value of σ. Note
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that our approach of generating the weights and profits is a bit different from that of Pisinger [17].

Instead of choosing the number of items, N and the range of weights, R, we pick the number of

items and the capacity, C first. Also, instead of randomly choosing weights within the given range,

we take a normal distribution of the weights in order to better control the average weight. This is

useful for evaluating SKPDP because the fraction of the number of items that fit into the knapsack

is an important attribute to be explored.

We also make sure that our problem instances are not artificially easy. When generating a

problem set (varying N and C) we make sure to maintain the same values of the three attributes

we discussed earlier. So, a problem instance with a larger capacity also has a weight distribution

where the average weight, Wavg is proportionally larger.

3.2 Gain

We measure the total work done by SKPDP in terms of the number of iterations executed.

For SKPDP to be beneficial, the number of operations performed by the sparse algorithm must be

significantly less than that of the dense version. The number of iterations required to generate one

row of the sparse table is no more than twice the size (number of pairs) of the previous row. So,

the total number of operations needed to generate the whole sparse table is a constant factor of the

total number of pairs/critical points in the generated sparse table. With the increase in sparsity of

the table, we expect improvement in the performance. In the worst case, a problem instance will

hardly have any sparsity and, therefore, most of the rows in the sparse table will be of length C. To

generate each row we perform approximately 2C Merge-Kill operations. So, in the worst case the

upper bound on the computational complexity of SKPDP will be O(NC). Because we are using

the memory efficient divide-and-conquer strategy to find the exact solution, the constant factor is

4 (the sparse algorithm manipulates index-value pairs, two-fold inefficient than simply the profit

value computed by the dense KPDP). We define potential performance gain as,
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gain = 1− no. of iterations for SKPDP

no. of iterations for dense KPDP

≈ 1− no. of iterations for SKPDP

2NC
(3.2)

The denominator is 2NC because we are using the memory efficient implementation of KPDP.

From 3.2, we can deduce that the value of gain is in the range [−1, 1]. A positive gain implies

that SKPDP performs better than conventional KPDP and a negative value of gain means that

SKPDP performs worse than conventional KPDP. We use the number of iterations (of Merge-Kill

operations) needed to compute gain, instead of the sum of the lengths of the rows in the sparse table,

because the iteration count is more representative of the actual operation count and the execution

time. Also note that when the gain is 1, the number of perations performed by SKPDP is negligible

compared to KPDP (ther fractional part tends to zero).

In Figure 3.1, we plot the computational gain of SKPDP against problem instances with the

total knapsack capacity C ranging from 212 to 249 and number of items N ranging from 28 to

212. To generate this plot, we used 190 different knapsack problem instances with 38 different

values of C and 5 different values of N , each with a normal distribution of the weight values,

where approximately 1/8 of the items fit into the capacity (i.e., average weight is 8C/N ) and

Weakly Correlated weight and profit values with σ = 0.1%. For smaller values of C the gain is

negative, meaning that the overhead of calculating the sparse data structure is high compared to

the reduction in data point in the table. As we consider problem instances with larger values of C,

the value of gain approaches 1, which indicates that the number of iterations needed for SKPDP

is significantly less than conventional KPDP. This prompts us to do further investigations on the

benefits of SKPDP.

3.3 Experimental Results

We did all experimentation using C programming language on linux machines with Intel(R)

Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz. The processor has 8 cores with hyper-

threading (16 threads). The machines are equiped with 32GB of RAM. The compiler used is Intel
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Figure 3.1: Gain due to sparsity (on a log-log plot) as a function of C, on 190 different knapsack problem

instances each with items with (i) Weakly correlated weight and profit values with σ = 0.1%, (ii) normal

distribution of the weight/profit values, and (iii) Wavg = 8C/N .
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C++ Compiler version 19.0.0.117. We used OpenMP [?] for implementing prallelization on CPU.

We used Intel VTune 2019 performance analysis tool to analyze our programs.

Figure 3.2 shows a log-log plot of the execution time vs the capacity using the same problem

instances that are used to generate figure 3.1. It confirms our hypothesis that SKPDP performs

significantly better for problem instances where N ≪ C. Note that the problem instances in

Figure 3.2 have the same attributes as those in the Figure 3.1. For problem instances with larger

capacity, the weight values are also proportionally larger which ensures that the average number

of elements that fit into the capacity remains N/λ (where λ ≥ 2) for all problem instances. This

further guarantees that the problems are not easily solvable.

Figure 3.2: Execution times of SKPDP for different instances of knapsack problem with varying values of

N and C. For all problem instances Wavg = 8C
N

. The solid lines represent the execution times of SKPDP

and the dashed lines represent the execution times of conventional KPDP.

In Figure 3.2, we observe that while the execution times of KPDP(dashed lines) stays linear

with capacity C (exponential with input size lg(C)), the execution times of SKPDP(solid lines)
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become invariant with capacity. So, for problem instances where N ≪ C, the gain in performance

can be exponential with SKPDP compared to KPDP. On the other hand, when C is not large enough

SKPDP is only a constant factor worse than KPDP. For the problem instances that we explored, in

the worst case SKPDP is approximately 7 times slower than conventional KPDP.

From Figure 3.3, we observe the correlation between the iteration count and execution time for

the SKPDP implementation. It is clear that for SKPDP the iteration count is proportional to the

execution time.

Figure 3.3: Relation between execution time and the iteration count of SKPDP across instances of the

knapsack problem. The correlation of the iteration count and the execution time suggests that the iteration

count is directly proportional to the execution time.

The challenge is to identify those problem instances that have large enough value of C such

that SKPDP proves to be beneficial over conventional KPDP. Such instances depend on the number

items, N , the correlation between the weights and profits(i.e., profitability) and the total number

of items that fit into the capacity(guided by λ).
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3.3.1 Weakly Correlated Problem Instances

For Weakly Correlated problem instances the variance in profitability is can be controlled using

the value of σ in equation (3.1). Figure 3.4 shows that this is also true for SKPDP. When σ = 0, the

SKPDP has exponential behavior. As we increase the noise(σ) value, thus increasing the variance

in profitability among the items, we see much better performance by SKPDP. Even with a fairly

low variance in profitability we can see an exponential performance improvement from SKPDP.

On the other hand, the variance in profitability does not impact the complexity of conventional

KPDP.

Figure 3.4: Iteration count of SKPDP for different levels of variance in profitability; For all problem in-

stances N = 256 and Wavg = 8C
N

3.3.2 Impact of the fraction of the items that fit into the capacity

Figure 3.5 compares the iteration count of knapsack problem instances with 4 different average

weights of the items. When we want half of the items to fit into the capacity (on average), we
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make sure that Wavg = 2C
N

; when we want 1/4-th of items to fit into the capacity, we make sure

that Wavg = 4C
N

and so on. From figure 3.5, we see that for any values of N and C, the problem

instances with higher values of Wavg have more sparsity. Again, this attribute does not impact the

complexity of conventional KPDP.

Figure 3.5: Iteration count of SKPDP for different number of the items fitting into the capacity; N = 256,

and the noise is σ = 0.1%

As we can see from the figures 3.4 and 3.5, for large values of C, the iteration count reaches a

peak and (almost) flattens out. The peak values vary for different values of correlations between

the weights and profits and also the fraction of the number of elements that fit into the knapsack.

Figure 3.6 confirms this fact. A block in the figure 3.6 represents the peak iteration count achieved

by knapsack problem instances with λ values ranging from 2 to 16 and σ values ranging from 0.1%

to 100%.
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Figure 3.6: The impact of λ and σ on the sparsity; For all problem instances N = 210 and C < 250; Each

block shows the peak iteration count for values of λ and σ.

3.4 Strongly correlated problem instances

When we set the noise σ = 0, we end up with a variation of the Subset-sum problem. Accord-

ing to Pisinger [17], the hardest knapsack problem instances, other than the Subset-sum problem,

are the ones with the following attributes

pi = wi + αWmax (3.3)

For the problem instances, that adhere to the equation (3.3), the Pearson correlation coefficient

between the weights and profits is 1, but unlike the Subset-sum problem different items have dif-

ferent values of profitability. This variance in profitability is dependent on the distribution of the

weight (or profit) values and the value of α. In equation 3.3, when α = 0 (which is same as setting

the noise σ = 0 in equation 3.1) the variance in profitability is zero. Given that α > 0, if the weight

distribution is random then the variance in profitability is also random and the execution time of

SKPDP is unpredictable. Knapsack problem instances that have a normal weight distribution and

adhere to the equation (3.3) are hard for SKPDP. Figure 3.7 shows the iteration count for SKPDP
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on a knapsack problem instances with no variance in profitability (similar to the Subset-sum prob-

lem) and also on a Strongly Correlated problem instance. For reference, we have included the

iteration count of KPDP for different values of N and C (which is N ∗ C). Iteration counts of

SKPDP for the problem instances with no variance in profitability is very similar to KPDP. For

Strongly correlated problem instances SKPDP also shows asymptotically exponential complexity

but we do observe an exponential improvement (no matter how small of an exponent it may be).

Figure 3.7: Comparision of iteration counts of KPDP, SKPDP (on Perfectly correlated Knapsack problem

instance), and SKPDP (on Strongly Correlated problem instance); where N = 256, σ = 0.001, λ = 8.
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Chapter 4

Fine-grain Parallelization of SKPDP

The conventional KPDP table is filled out from top to bottom and left to right. Because each

row depends on entries from only the only previous one, the left to right computation can be

trivially parallelized. But in SKPDP, the left to right computation, Add-Merge-Kill (AMK), is

inherently sequential. In this chapter we explain how this can nevertheless be parallelized, for the

price of producing some additional (potentially incorrect) points which we fix later in a cleanup

stage. This is similar to, and yet independent of the notion of rank convergence proposed by Maleki

et al. [18] who also break dependencies to parallelize DP, possibly incorrectly, and subsequently

fix errors (due to broken dependency) in a later stage. They showed that a property called rank

convergence can significantly reduce the overhead of the cleanup stage. However, the KPDP is not

amenable to this because its rank can be proved to remain non-convergent (the matrices involved

remain full-rank). Nevertheless, we show how the basic idea is adaptable.

Figure 4.1 illustrates the parallelization. If the size of the row is small, the row is computed by

a single thread (the yellow rows), otherwise the row is split into P contiguous sections (red row),

with the kth processor computing the kth section of the row. The size of each section is bound by

C/P .

Since we represent a sparse row (see Table 2.2) as a list of “index-value” pairs of the form

〈j, f(i, j)〉, we now have P such sublists of index-value pairs. All threads independently apply

AMK to their respective sublists, producing outputs O1 . . . OP . However, if we simply concatenate

the outputs, we will not get a legal sequence of pairs that represent Sj+1: some of the index-value

pairs in Ok may be dominated by the elements in Ok′ for k′ < k, and none of them have been

compared with each other.

Define x such that the last x elements of Ok have a value of j no less than the first element of

Ok+1. Similarly, define y such that the first y elements of Ok+1 have no higher value of j than the

last element of Ok. Then, we apply AMK to the last x elements of Ok and the first y elements of
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Figure 4.1: Fine-Grain Parallelization of SKPDP; N = 16, C = 512, σ = 0.001, λ = 2

Ok+1. This “stitching” step does x + y extra iterations of AMK. This too can be done in parallel,

all threads (in parallel) applying the AMK on their suffix and the prefix of the next section.

4.1 Overhead Analysis

In the worst case x = y = wi. So, every stitching for a row will require at most 2(P − 1)wi

extra AMK operations. In order to parallelize on P processors, the size of the input row must

be greater than αwiP (here, α ≥ 2 is a tunable constant). This ensures that there is no overlap

between Ok−1 and Ok+1 while stitching. In the worst case, 2wi elements will need to be merged

for every section for every row. Thus a total of 2P
∑

i wi extra computations must be performed

for stitching. The upper bound on this is C, the capacity. Every row may do as much as C

extra work. This implies a factor of two overhead. Because of this, and because our preliminary

implementation confirmed the high overhead, we did not pursue this parallelization further, even

though the algorithmic strategy was intriguing.

23



Chapter 5

Coarse-grain Parallelization

In the previous chapter, we discussed parallelizing the computation of a single row in the

SKPDP table. In this chapter, we explore the potential of computing multiple rows at the same

time.

The idea of using the coarse-grain parallelization technique stems from the realization that a

whole row of the sparse table does not have to be computed before starting the calculation of

the next row. A similar technique is used to parallelize the Unbounded KPDP [19] which has

dependencies between rows. As a row of the sparse table is being computed, the values can be

used immediately for calculating the next row. A thread is responsible for the computation of

a row and each thread acts as a consumer of the values produced by the thread computing the

previous row. In hardware, this can be implemented as streaming input to processing elements of

a hardware accelerator [4], but in software, element-wise synchronization between threads can be

very costly. In order to minimize the synchronization cost between threads, the data between two

consecutive threads can be shared in blocks or bursts instead. Here, the block or burst size becomes

a very important parameter to be tuned because huge block sizes can hinder the parallelism and

tiny block sizes can introduce a lot of costly synchronization between threads.

One obvious way of computing multiple rows at a time is to spawn as many threads as the

number of rows in the table. In this approach, the computation of each row is assigned to a thread.

In the beginning, all the threads except for the first one will be blocked because only the first thread

has available input data to proceed. As soon as the first thread produces a block of output data,

it passes the data along to the second thread to start computing the first part of the second row.

Similarly, the third row starts computing when data is made available by the second row and so

on. Notice that this approach can spawn many threads because the number of threads spawned is

O(N). Interestingly, this approach does not cause deadlock despite such a large number of threads
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because when a thread is waiting on the adjacent threads it releases the physical core for other

threads and there are no circular dependencies.

While the previous approach works, it may have a lot of overhead due to spawning O(N)

threads at once. Instead of spawning O(N) threads at once, we could work with P rows at a time

spawning only P threads. Here P is a parameter of the algorithm. With this approach, we calculate

the sparse table of SKPDP in ⌈N/P ⌉ separate passes.

Figure 5.1: Coarse-grained parallelization of SKPDP; N = 16, C = 512, σ = 0.001, λ = 2.

Figure 5.1 illustrates the idea of pipelining in the context of SKPDP for a small knapsack

problem instance with N = 16 and C = 512. The horizontal bars represent the size of each

row of the sparse table. The yellow colored parts are already calculated; the red blocks are being

calculated in parallel and the green parts are yet to be calculated. Each thread Pk is a producer

for the thread Pk+1 and consumer of the thread Pk−1 where 0 < k < P . P threads calculate

P rows at a time. For every pass of P threads, the first thread reads an entire input row that is
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saved in the memory and the last thread writes an entire output row. In other words, every Pth

row of the sparse table is stored in the slow memory. The rows in-between are computed in small

chunks. Every thread in-between maintains an input buffer and an output buffer to facilitate the

producer-consumer relation between the preceding and the succeeding threads. Every thread also

maintains a local buffer of size wi. The local buffer is necessary because in the Add-Merge-Kill

algorithm the two elements that we are comparing can be wi apart. The local buffer is implemented

as a FIFO stack using a rotating array. Two OpenMP locks are used for each thread to maintain

synchronization between consecutive threads, called the input lock and the output lock. Each

thread uses the input lock to make sure that it does not attempt to read from an empty input buffer

and uses the output lock to make sure that it doesn’t write to a full output buffer. The use of the

locks for synchronization is as follows. Once the output buffer is full, a thread Pk cannot write to

its output buffer anymore. The thread Pk tries to acquire the input lock of the next thread Pk+1 and

dumps its output buffer into the input buffer of the Pk+1. Notice that here Pk acquires the input

lock of Pk+1 to ensure that Pk+1 is not trying to read from its input thread while Pk is writing. In

addition to the two locks per thread, we use flags to ensure correctness in the code.

5.0.1 Overhead Analysis

The overheads of this technique are the block-wise synchronizations and the additional memory

storage requirements. If P threads maintain a buffer of wi, then the worst-case space-complexity

of this algorithm can be calculated as O(2NC +WmaxP ). This means that large values of wi can

hurt the performance. Also, very large values of P will require a large memory footprint, whereas

small values of P will reduce the scope of parallelization.

5.0.2 Implementation Details

Using this technique we store the every P -th row of the sparse table into slow memory. The

(P − 1)-th thread is responsible for storing an entire sparse row, whereas the threads 0 to P − 2

maintain local buffers of size wi. Two very important parameters for this implementation are the

block-size and the thread count (P ). Depending on the problem instance different values of block-
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size and thread count performs the best. We run a grid search on these two parameters and pick the

minimal execution time in our plots. Threads are created using the OpenMP environment variable.

We use OpenMP locks for synchronization of threads.

5.0.3 Results

Coarse-grain parallelization performs very well on SKPDP. Figure 5.2a compares the execu-

tion times of SKPDP and it’s coarse-grained parallelization. Figure 5.2b shows the performance

improvement of the coarse-grained parallelization over the sequential implementation. For large

problem instances, we observe more than 5x speedup using the coarse-grained parallelization ap-

proach on an eight-core machine.
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(a) Execution times

(b) Improvement by parallelization

Figure 5.2: Comparison of the execution times of Coarse-grained Pipelined vs Sequential SKPDP(in log

scale); dotted lines represent the Sequential SKPDP and solid lines represent the Coarse-grained SKPDP;

for all problem instances σ = 0.1% and λ = 8.
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Chapter 6

Future work

6.1 A model to predict the performance gain by SKPDP

At this point we know that as long as a knapsack problem instance have variance in profitability

and N ≪ C we will get performance gain by using SKPDP. Figure 3.6 shows a pattern of how

different attributes of the knapsack problem instance contribute to the sparsity. But, we don’t have

a model to predict whether for a given problem instance SKPDP will be better than conventional

KPDP. Ideally a linear prediction model can tell us how much gain we can expect from SKPDP

when used on a particular knapsack problem instance. We could potentially use Machine Learning

tools to build a prediction model for this purpose.

6.2 Ordering the items by weight values to maximize sparsity

We observed that re-ordering the items of a knapsack problem instance ends up producing

slightly different sparsity (i.e. different iteration counts). More experimentation is required to

figure out the optimal ordering of the items to maximize sparsity of SKPDP.

6.3 Comparing SKPDP with BB algorithm

We did not compare the SKPDP with Branch-and-Bound(BB) algorithm. It would be interest-

ing to see if BB algorithm can also perform as well as SKPDP for similar problem instances. Run

time of BB algorithm is unpredictable compared to SKPDP.

6.4 Impact of other weight distributions on SKPDP

We did not explore the impact of other types of weight distribution on SKPDP. The only two

distributions that we used are normal and log-normal distributions. Normal distribution is conve-
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nient to fine tune the average weight Wavg of the items of knapsack problem. If we want to come

up with a performance model, analyzing the impact of different weight distributions is important.

6.5 Choosing the best input parameters for the coarse-grained

parallelization of SKPDP

The performance of coarse-grained parallelization is dependent on the input parameters, namely

buffer size and thread count. It is imperative to come up with an heuristic that can automatically

pick the best input parameters depending on the knapsack problem instance. Machine Learning

could be used to build a fairly accurate predictive model as long as we can collect a large amount

of empirical data.
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Chapter 7

Conclusion

A large subset of knapsack problem instances can benefit from utilizing the inherent sparsity

of a KPDP. Especially the problem instances where the maximum capacity is much larger than the

number of items, exhibit exponential sparsity as long as there is some variation in the profitabil-

ity among the items. The fact that for many realistic problem instances SKPDP is exponentially

better than conventional KPDP, is a significant discovery. We also show the different attributes of

a knapsack problem instance that can effect the sparsity of SKPDP. We propose two paralleliza-

tion techniques and present initial findings of those parallel implementations. While the proposed

fine-grained parallelization technique proved to have significant overhead due to additional mem-

ory accesses, speedup achieved by the coarse-grained parallelization is exceptional. The next big

step towards making SKPDP more useful is to find a model to analytically predict whether using

SKPDP on a given knapsack problem instance is advantageous or not.
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