
A Reinforcement Learning Based System for Minimizing Cloud
Storage Service Cost

Haoyu Wang∗, Haiying Shen∗, Qi Liu∗, Kevin Zheng∗, Jie Xu♯
∗University of Virginia, Charlottesville, USA,
{hw8c, hs6ms, ql8va, ksz3kd}@virginia.edu
♯George mason University, Fairfax, USA,

{jxu13}@gmu.edu

ABSTRACT
Currently, many web applications are deployed on cloud storage
service provided by cloud service providers (CSPs). A CSP offers dif-
ferent types of storage including hot, cold and archive storage and
sets unit prices for these different types, which vary substantially.
By properly assigning the data files of a web application to different
types of storage based on their usage profiles and the CSP’s pricing
policy, a cloud customer potentially can achieve substantial cost
savings and minimize the payment to the CSP. However, no previ-
ous research handles this problem. Towards this goal, we present
a Markov Decision Process formulation for the cost minimization
problem, and then develop a reinforcement learning based approach
to effectively solve the problem, which changes the type of storage
of each data file periodically to minimize money cost in long term.
We then propose a method to aggregate concurrently requested
data files to further reduce the cloud storage service payment for
a web application. Our experiments with Wikipedia traces show
the effectiveness of the proposed methods for minimizing cloud
customer cost in comparison with other methods.
ACM Reference Format:
Haoyu Wang∗, Haiying Shen∗, Qi Liu∗, Kevin Zheng∗, Jie Xu♯ . 2020. A
Reinforcement Learning Based System forMinimizing Cloud Storage Service
Cost. In 49th International Conference on Parallel Processing - ICPP (ICPP
’20), August 17–20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3404397.3404466

1 INTRODUCTION
Cloud storage, such as Microsoft Azure [5], Amazon S3 [1], and
Google Cloud Storage [4], has become a popular commercial service
provided by cloud service providers (CSPs). More and more individ-
ual customers and enterprises are moving their data workloads to
cloud storage in order to save the capital expenditures required for
building and maintaining the hardware infrastructures and avoid
the complexity of managing the data centers. Cloud storage ser-
vice can be used by many web applications, such as online social
networks and web portals, to serve clients distributed worldwide.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404466

Cloud Storage

Hot

Cold

CSP: Cloud Service Provider

Web
Application

User Type of storage

Archive

Figure 1: The structure of web application using cloud stor-
age service.

The structure of the web application using cloud storage service is
shown in Figure 1. A CSP offers different types of storage including
hot, cold and archive storage and sets unit prices for these different
types, which vary substantially.

The payment that a cloud customer makes to the CSP includes
the costs for storage, data read/write (per operation and per GB),
change of storage type. The cost for the change of storage type
means that when a customer changes the type of a data file, it
generates a certain cost. Operations are priced differently for the
different types of storage. For example, Microsoft Azure charges
user $0.0044 in US West region per 10,000 reading operations and
$0.01 per GB for hot files, and charges $0.01 per 10,000 data reading
operations and $0.004 per GB for cold files.

In order to maximize the profit of the web application, the owner
of the web application (i.e., cloud customer) needs to minimize the
total cloud storage service money cost (cost in short) according
to the pricing policy set by the CSP. Because the prices can vary
significantly for different types of storage (hot, cold, archive data),
instead of using a single type of storage, cloud storage service cus-
tomers may be able to minimize the cost of the service by carefully
assigning data files into different types of storage based on their
usage profiles. However, it is a non-trivial task because of the in-
herent stochasticity and uncertainty in different data files’ request
frequencies over time [45]. Suppose a cloud customer assigns a data
file to the cold storage, and then unexpectedly the file’s request
frequency increases significantly, which then leads to a sharp in-
crease in cost. The cloud customer can change the type of storage
for this data file from cold to hot so that its read/write operation
cost can be reduced. However, the total payment cost is related
to other features such as the change of storage type. Frequently
changing the type of a data file may generate more cost than the

https://doi.org/10.1145/3404397.3404466
https://doi.org/10.1145/3404397.3404466
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3404397.3404466&domain=pdf&date_stamp=2020-08-17

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Haoyu Wang∗ , Haiying Shen∗ , Qi Liu∗ , Kevin Zheng∗ , Jie Xu♯

cost saving. Thus, in order to reduce the total payment, the cloud
customer needs to appropriately determine the type of data storage
and also make dynamical adjustment in response to the fluctuations
in request frequency.

As a result, there is a great need for a system that can accurately
predict data file request frequency and then dynamically determine
the type of storage for each data file in order to minimize the cost
of a web application. Thus, the problem handled in this paper is:
given several features (e.g., request frequency, storage type and data
size) of the data files in a web application deployed in a cloud storage
service, find the data storage type assignment plan (i.e., determine the
type of storage for each data file) periodically that minimizes the total
payment to the CSP. This is the first work that handles this problem.

Many previously proposed methods [9–11, 17, 24, 25, 28, 42]
focus on predicting the minimum amount of resources needed to
support the application workload to reduce cloud storage cost. For
example, Madhyastha et al. [25] studied the relationship between
capital expenditures on different types of hardware and different
storage configurations, with an aim to reduce the total monetary
cost. Adya et al. [9] proposed a file system that offers high avail-
ability and scalability at low cost. However, these methods depend
on having perfect knowledge about the workload and also do not
focus on the data type assignment problem.

In order to overcome the aforementioned challenges in handling
the problem, we propose MiniCost (Minimizing the Cost for stor-
age), a reinforcement learning based automated data storage type
assignment system for an owner of a web application to adjust
the storage types of data files stored in the CSP. It generates the
data storage type assignment plan according to the variable request
frequencies of data files and then adjusts the type of data storage
for each data file according to the changes in several features of the
data files (e.g., request frequency, data size). We first formulate this
minimizing cloud storage service cost problem into a streamlined
Markov Decision Process (MDP). Since the reinforcement learning
method can generate the optimized actions automatically, we in-
troduce how to use reinforcement learning-based method to solve
this problem. Trace-driven experimental results show this method
outperforms existing online methods by a significant margin, and
even achieves performance comparable with that of the offline
method using computationally expensive brutal force optimization.
We summarize our contributions below:

• We first analyze the Wikipedia trace data [6] and then model
the cost minimization problem using a streamlined MDP
formulation.
• We introduce a reinforcement learning based data storage
type assignment algorithm, which changes the storage types
of each data file periodically according to a cost-efficiency
objective function to minimize the total payment to the CSP
in the long term.
• We propose an enhancement method to further reduce the
total payment. Specifically, by combining several concur-
rently requested data files into one data file, the number of
data requests can be reduced, which can then help reduce
the total cost significantly.
• We conduct extensive trace-driven experiments on a super-
computing cluster with a trace from page view statistics of

Wikipedia projects [6]. Results demonstrate the efficiency
and effectiveness of our system in minimizing a customer’s
cloud storage service cost and reducing system overhead in
comparison with existing methods.

The rest of paper is organized as follows. Section 2 presents
the related work. In Section 3, we show our analytical results for
the Wikipedia trace. Section 4 formulates the cost minimization
problem into MDP. Section 5 introduces the reinforcement learn-
ing method and the enhancement to solve this cost minimization
problem. Section 6 presents the trace-driven experimental results
of MiniCost compared with other methods. Section 7 concludes our
work with remarks on our future work.

2 RELATEDWORK
Cloud storage payment minimization: Alvarez et al. [10] pro-
posed a dynamic programming method to determine the minimum
amount of resource needed to satisfy the requirement of web ap-
plications. Anderson et al. [11] explored the designs of storage
system which focuses on the satisfaction of storage I/O require-
ments. Madhyastha et al. [25] proposed scc which automates the
cluster configuration decisions based on hardware properties and
formal decisions. Adya et al. [9] proposed a file system which has
high availability and minimizes the cost through lazy propagation
of file updates. However, none of these earlier works studies how
to determine the type of storage for data files for cloud storage ser-
vice cost minimization. SPANStore (Storage Provider Aggregating
Networked Store) [45] is a key-value storage system to minimize
cost and guarantee SLOs (service level objectives). Since machine
rental and machine purchase have different advantages in storage
(e.g., easy to replace new machine and smaller short-term cost for
machine rental and smaller long-term cost for machine purchase),
Li et al.[22] evaluated the tradeoff between machine rental and ma-
chine purchase. They also provided a hybrid cloud assisted storage
plan with both machine rental and purchase for cost minimization.
However, they do not consider the variable request frequencies
for data files which can highly affect the application demand for
different resource requirements.

Cloud resource pricing: There are several previous works
studying the cloud resource pricing problem. In [31, 37, 41], how to
maximize the benefits of cloud service customers under dynamic
pricing models (including adaptive leasing and auctions) is studied.
Roh et al. [34] formulated the pricing and resource competition as
a concave game to describe the quantity competition among appli-
cation service providers reducing payment. Wu et al. [40] aimed
to achieve lower data transmission tail latency through cloud stor-
age position optimization among geo-distributed datacenters while
reducing the total payment made to the CSP by customers. Li et
al. [23] provided a cost minimization method that takes into ac-
count the limited bandwidth and storage capacities among multiple
CSPs.

Combining cloud providers: Some works consider combining
the use of multiple cloud providers to improve availability. Abu et
al. [8] designed a function to evaluate the availability of different
cloud providers and then proposed a method to achieve better
availability by combining multiple cloud providers while reducing
themonetary cost. Kotla et al. [20] proposed a similar method which

A Reinforcement Learning Based System for Minimizing Cloud Storage Service Cost ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0-0.1 0.1-0.3 0.3-0.5 0.5-0.8 >0.8

N
um

be
r

of
 f

ile
s

Standard deviation of daily request frequency

81.75%

9.93%
5.39%

2.3%

0.63%

Figure 2: Distribution of cost savings
achieved by optimal data assignment.

0

2000

4000

6000

0-0.1 0.1-0.3 0.3-0.5 0.5-0.8 >0.8Po
te

nt
ia

l s
av

ed
 m

on
ey

 f
or

on

e
da

y
($

)

Standard deviation of daily request frequency

Figure 3: Distribution of cost savings
achieved by optimal data assignment.

0

0.2

0.4

0.6

0.8

1

0-0.1 0.1-0.3 0.3-0.5 0.5-0.8 >0.8Pe
rc

en
ta

ge
 o

f r
ea

d/
w

ri
te

fr

eq
ue

nc
ie

s
pr

ed
ic

ti
on

 e
rr

or

Standard deviation of daily request frequency

Figure 4: Distribution of request fre-
quency prediction errors.

explores all the possible groups of multiple CSPs that can satisfy
long-term data durability. Wieder et al. [44] proposed a system
to determine the optimal plan for deploying MapReduce jobs via
multiple CSPs with different user-specified goals like minimizing
cost or reducing the completion time. SELECTA [18] recommends
near-optimal configurations of cloud compute and storage resource
for data analytic workloads. It uses machine learning to predict how
a job will perform under different resource configurations and then
recommend the best one. HyCloud [13] provides a cost efficient
hybrid file system which converts large-size file downloads into
small-size file synchronizations to reduce the download money cost
based on both Amazon EFS (Elastic File System) and S3.

Unlike the above methods, the goal of our method is to minimize
the total payment a cloud storage service customer made to a CSP
by leveraging the different types of storage provided by the CSP.

3 TRACE ANALYSIS: REQUEST FREQUENCY
VARIABILITIES

3.1 Data Analysis
We begin with the analysis of the Wikipedia trace [6] which is
widely used in Cloud Storage System experiment [21, 40]. This trace
includes hourly Wikipedia page views per article. We collected the
data from Jul. 15th to Sep. 15th for about 4 million articles in English.
We aim to use this trace to simulate people’s request frequency
change via web application. Thus, for the simulation of the data
storage for web application, we use Poisson distribution to set the
size of the data for all the contents (such as texts, videos, figures,
and music files) in each webpage [33]. The average data size is
100MB and we assume the data size will not change in this two
month period as in [43]. This trace doesn’t consist the location
information for each request since CSP will not charge the number
of requests according to the resource locations. We first quantify
the request frequency variabilities for data files in the time series,
and analyze the impact of request frequency variability on the cloud
storage service cost in a given period of time (e.g., one week in this
paper, since the cycle time of the request frequencies for each data
file is around one week [32]). We then identify the room for cost
reduction according to the current CSP pricing policy.

In Figure 2, we plot the histogram of daily request frequency
standard deviations for all data files in the trace. The standard

deviation S for each data file is calculated by:

S =

√√√
1

T − 1

T∑
i
(ri − r̄)

2 (i = 0, 1, 2...) (1)

whereT is the number of days, ri is ith day’s data request frequency
for a data file and r̄ is its average request frequencies inT days. We
can see that the data files with standard deviations between 0 and
0.1 (i.e., low request frequency variabilities) constitute around 85%
of the total number of data files. However, there are still a large
number of data files (in the order of 105) with very high request
frequency variabilities (> 0.8) although they only constitute around
0.75% of the total number of data files. The rest of data files which
occupy around 15% have certain request frequency variabilities
ranging from 0.1 to 0.8. Therefore, the trace contains both stationary
files (low deviation value) and non-stationary files (high deviation
value). For a data file, when it has different amounts of request
frequencies over time, it should be assigned to different storage
types in order to reduce money cost. If we can optimally change
the types of storage for the data files over time, we can potentially
achieve substantial cost savings.

Since the files with high request frequency variabilities consti-
tute a small percentage of the total number of data files, we want to
see if changing the types of storage only for these files can generate
a high cost saving, and also if changing the types of storage for files
with request frequency variabilities can generate a high cost saving
or not. We then explore the potential of cost savings for different
standard deviation using Microsoft Azure Block Storage Pricing Pol-
icy [3]. Figure 3 shows the potential saved money in dollars versus
the standard deviation of daily request frequency. In order to get the
potential saved money, we first compute the total payment charged
by the CSP if the customer assigns all data files as either hot or
cold, depending on which one yields a lower cost. We then apply an
offline brutal-force method (explore all the possible types of storage
and then select the onewith theminimum cost) on the trace to deter-
mine the optimal storage allocation. The potential saved money is
the difference between the two values from the above two methods.

It is interesting to observe that although there are two orders
of magnitudes (107 versus 105) more data files with low request
frequency standard deviations (0 to 0.1) than with high standard
deviations (> 0.8), those files with high request frequency variabili-
ties actually lead to more cost savings (around $4000 versus $3000),

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Haoyu Wang∗ , Haiying Shen∗ , Qi Liu∗ , Kevin Zheng∗ , Jie Xu♯

which means the money saved per data file is much higher than the
data files with low standard deviations. However, the data files with
low request frequency standard deviations still generate a high cost
saving due to a large number of files. The rest of data files which
occupy around 15% can save around $2000-$4000. Therefore, proper
data storage type adjustment for a data file with a high request
frequency variability over time leads to more potential cost savings.
Also, a cloud customer should have proper data storage type selec-
tion for all data files (regardless of the request frequency variability)
in order to reduce the total cost; since changing of storage type also
generates cost and the cost savings of a data file with a low request
frequency variability is relatively low, the decision for such a file’s
data storage type adjustment must be carefully made.

We use the popular time-series prediction model ARIMA [2, 15]
that uses the first two months data to predict the daily request
frequency within the next 7 days. In another word, the prediction
model generates 7 predicted daily request frequencies for each data
file. Figure 4 shows the 1%, median and 99% of prediction errors for
all data files. The prediction error is calculated by (True value −
Predicted value)/True value . We observe that the prediction errors
are considerably higher for data files with high request frequency
variabilities (the bars on the right) which is hard to predict by
ARIMA. However, as observed in Figure 3, these data files have the
most potential for cost savings. Therefore, in order to minimize the
total cost for cloud storage, it is a challenge to identify data files
with high standard deviations according to the variable request
frequencies to adjust the data storage type.

3.2 Challenges
Our trace data analysis demonstrates the potential of cost minimiza-
tion by leveraging the different prices of storage types and properly
assign data files into different types of storage. However, the trace
data analysis also reveals that the data storage type assignment
system faces challenges. We explain the challenges below.

Data file request frequencies can vary significantly for different
time periods. This complicates the task of determining an optimal
data type assignment plan since different features of data files
requires different data storage type assignment plans. To handle
this problem, we can dynamically adjust the data storage type
assignment plan periodically over time. However, the change of
data storage type can increase the cost. For example, when deciding
if the storage type of one data file should be changed from hot
to cold, we must consider the possibility of the request frequency
going up significantly in the future, which will then require the
change of the storage type back to hot from cold. Because of the cost
of data storage type change, the total payment cost may actually go
up. Therefore, the data storage type assignment system needs long-
term file request frequency prediction and then specifies the type
of storage accordingly, instead of trying to chasing for the short-
term cost savings like a typical greedy algorithm (simply select the
storage type with the minimum money cost only for the next day)
would do. In the following, we introduce our proposed MiniCost
data storage type assignment system to handle the challenges.

4 MDP-BASED PROBLEM FORMULATION
4.1 System Model
To address the aforementioned challenges, we present a Markov
Decision Process (MDP) problem formulation that minimizes a
cloud customer’s total payment cost to the CSP. All of the data files
of the web application of a cloud customer are stored in the cloud
storage. Those data files are distributed among one or multiple
CSPs’s datacenters denoted by the set Ds . Each datacenter has its
own pricing policy for different data storage type.

Number of requests

Data size

Storage type

State

Agent
ActionNeural Network

Environment

Reward
Reward function related to long-term cost

Environment observation and measurement

Cloud Storage

Figure 5: Applying reinforcement learning to minimize
cloud storage cost.

One read/write request can be defined as the request originating
from a user of the web application or the web application itself
(e.g., data reallocation). According to the Azure pricing model [5],
data storage service is charged in the pay-as-you-go manner based
on the number of read/write operations, data file sizes, and the
duration that data files occupy storage. The total payment made to
the CSPs by the cloud customer would vary under different data
storage type assignment plans. MiniCost helps a cloud customer
to assign the data files to different types of storage over time to
achieve the minimized total payment cost.

4.2 Problem Formulation
The problem handled by MiniCost is: given several features (e.g.,
request frequency, storage type, and data size) of the data files stored
in cloud storage, find the data cloud storage type assignment plan
periodically that minimizes the total payment to the CSPs. Since
the information (including the request frequency, storage type, and
data size) can be observed by MiniCost of the cloud customer from
the cloud storage directly, it has all the features needed to make
an optimal decision [16], we can formulate this cost minimization
problem into MDP denoted byM = (S,A, P ,R). S denotes the state,
A denotes the action, P denotes the probability between each two
states and R denotes the reward. When an action is taken in a state,
the state is transferred to another state with a certain probability
and corresponding reward is received. A reinforcement learning
(RL) agent, which is responsible for generating the data storage type
assignment plan periodically, is deployed on a server belongs to the
web application. It monitors the request frequencies, changes of
data storage types and the change of data size. We define an action
as generating a data storage type assignment plan. The agent selects
a possible action at ∈ A(st) at time step t where A(st) refers to
the set of all possible actions in the current state st ; R(s,a) denotes
the reward obtained by doing action a at state s . When the agent

A Reinforcement Learning Based System for Minimizing Cloud Storage Service Cost ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

makes a decision for a data file that determines the data storage
type of the data file in the next time step, the data file is assigned
to the storage type with certainty. Thus, P(s ′ |s,a), the transition
probability from state s ∈ S to state s ′ ∈ S after taking an action
a ∈ A is always 1. According to the cost minimization problem, the
objective function is to find a policy of actions that minimizes the
total cost. Below, we introduce the elements inM = (S,A, P ,R) of
the MDP.

4.2.1 State Space. The state space S consists of the information on
read request frequencies, sizes, write (or update) frequencies, and
storage types of data files. It is defined as follows:

S = {s = (Fr , Fw ,D, Γ)} (2)

where Fr , Fw ,D denote read frequencies, write frequencies, and
size of the data files. The cardinality of the type of storage set Γ
is determined by the CSP’s policy. For example, in this paper, the
number of storage types on Microsoft Azure is Γ = 3, including hot,
cold and archive. Noted that, Γ can be easily adjusted for multiple
CSPs since multiple CSPs have more number of storage types.

4.2.2 Action Space. The action space A is defined as

A = {a = (a0...aN)|ai ∈ {1, ..., Γ}, i = 1, . . . ,N } (3)

where N is the number of data files under consideration, and ai
is the action to assign ith data file to one data storage type. For
example, in this paper, the possible options for one action ai is 3,
corresponding to keep the file in the same storage type or assign it
to either of the other two storage types. The action space is 3 ∗ N .
According to Figure 2, over 80% of files in the trace have 0-0.1
standard deviation value, so these files will stay in one storage type.
We focus on one single CSP though our model can be used for
multiple CSPs.

4.2.3 Reward. The main goal of the agent is to make an optimal
data type assignment decision at each decision period, e.g., one
week in this paper (the typical cycle time for request frequency of
data file [32]), to minimize the total cost. Thus, we define the reward
function R(st ,at) given an action at at the state st as follows:

R(st ,at) =
α

C(st ,at)
+ ∆ (4)

where C(st ,at) is the total money cost of taking action at at state
st . We introduce two parameters α and ∆ here which can be set
manually. Our principle of the reward function is setting a higher
reward for the action that decreases the total money cost.

The total money cost includes the cost of storage, the cost of
changing data storage type, and the cost of read/write operations,
which are denoted by Cs ,Cc ,Cr ,Cw respectively. The total cost
incurred by the web application is given by:

C(st ,at) = Cs +Cc +Cr +Cw . (5)

The storage cost in a datacenter is the product of the data size
and the unit storage price within each datacenter. Then, for the ith
data file di stored in j storage type pj , the storage cost is calculated
by:

Cs =
∑

X
dl ,t
Pj
∗ upj ∗ Ddl , (6)

where Ddi denotes the size of data item di , upj denotes the unit
storage price of storage type pj , and Xdi ,t

Pj
a binary variable: it is 1

if di is stored in pj during time step t and 0 otherwise.
The read/write cost is the sum of the payment made to the

CSP for the read/write operations and can be calculated by:

Cr =
∑

F tr ∗ (ur f + ur s ∗ Ddi), (7)

Cw =
∑

F tw ∗ (uwf + uws ∗ Ddi), (8)

where F tr and F tw denote the read/write frequencies at time step
t . ur f and uwf denote the unit price (e.g., 10000 in Azure) per
operations. ur s and uws denote the read/write data size unit price
per GB.

The cost of changing data storage type is a one-time cost. If
the data storage type of one data file is changed, the state of this
data st is not the same with the state st−1 in the last time step. Thus,
we use a binary variable Θdi to denote whether the data storage
type of data di is changed and utran to denote the one time cost
for changing data storage type. The cost of data transmission is the
product of the unit price and the size when Θdi = 1.

Cc =
∑

Θdi ,t ∗ utran ∗ Ddi . (9)

5 MAIN METHODOLOGY
5.1 Deep Q-Network based Algorithm
To solve the minimizing cloud storage service cost problem for-
mulated by the MDP, we propose a reinforcement learning (RL)
based method because RL is a widely-used technique to solve the
MDP problem [19, 35]. An RL agent observes previous environment
states and rewards, and then decides an action in order to maximize
the calculated reward. RL can react to different complex environ-
ments immediately and efficiently [12]. In this paper,MiniCost uses
a widely-used RL-based training algorithm, Asynchronous Advan-
tage Actor Critic (A3C) [29], which is a state-of-the-art RL method
involved training two Deep Q-Networks (DQNs). DQN has been
successfully used to solve large-scale RL tasks [26, 27, 30, 36].

Environment

Cloud Storage

State

State Q-value
𝑉𝜋𝜂(𝑆𝑡)

Policy
𝜋𝜂 𝑠𝑡 , 𝑎𝑡

Action

Critic network

Actor network

Update actor network

Actor-critic
algorithm

Figure 6: The A3C algorithm used inMiniCost.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Haoyu Wang∗ , Haiying Shen∗ , Qi Liu∗ , Kevin Zheng∗ , Jie Xu♯

As shown in Figure 6, A3C includes two types of DQN which
are actor network and critic network. The actor network selects
actions according to the probability distribution. The critic network
generates the reward depending on the action generated by the
actor network. The actor network finally updates the probability
distribution according to the reward from the critic network. We
define π (st ,at) as the probability that one action at taken for state
st and π : π (st ,at) as the probability distribution. Finally, given st ,
the agent takes an action based on this probability distribution; that
is, it takes action at with probability π (st ,at). The actor network
uses policy gradient method [39] to gradient ascent to convergence
but the critic network can tell the actor network if the direction of
gradient ascent is correct or not. Thus, the performance of A3C is
better than the typical RL methods as indicated in [14, 38].

In the following, we briefly introduce the mathematical deriva-
tion of the A3C algorithm used inMiniCost. For more details, please
refer to [27, 39]. Before the DQN is trained, the agent uses the
data type specified by the cloud customer for training. For training
the DQN, the agent takes the real-time data or historical data as
input and then outputs the actions with the reward calculated in
Equation (4). The process of the DQN recording the relationship
among the reward value, the different input states and the different
output actions is the learning process of the agent. The following
mathematical derivation shows us how to update the parameters
in DQN in the training process.

Under variable request frequencies for different data files, for the
input state st , we first define the total expected reward from state
st is V π (st) and the total reward from taking at in st as Qπ (st ,at).
Thus, the advantage function is:

Aπ (st ,at) = Q
π (st ,at) −V

π (st) (10)

which can represent how much better of the action selection at . Us-
ing policy gradient method [38], the gradient of cumulative reward
with gradient parameter η is:

∇η J (η) ≈ ∇ηloдπη (st ,at)A
π (st ,at) (11)

where J (η) is the cumulative reward function, πη (st ,at) is the proba-
bility that actionat is taken in state st with actor network parameter
η, and η can be updated by:

η ← η + α∇η J (η) (12)

where α is the learning rate. The direction in Equation (11) deter-
mines how to change the policy parameter η and then improve the
policy πη (st ,at). Note that, there are no shared features between
actor network and critic network. The critic network only evalu-
ates the worthwhile of the action selected by the actor network
and the actor network will select actions according to the updated
policy distribution. The advantage of this RL method is unbiased
and stable results.

After the DQN is trained, we deploy the trained DQN in the
agent server. The agent keeps track of all the necessary information
of all data files. Everyday, the trained agent runs one time for all
data files, generates the action for each data files in the next day.
The data file will be maintained in the same storage type or changed
to other types according to the action made by the agent. The DQN
is kept being trained all the time. The pseducode of the DQN-based
decision making process is shown in Algorithm 1.

Algorithm 1: Pseducode of the DQN-based decision mak-
ing algorithm.
1 Initialize memory for Neural Network, several default

parameters
2 for t=1,2,... do
3 Observe current state st
4 Select action at : with πη (st ,at)

5 Execute the action for one data file as at and observe
reward rt = R(st , rt) and the next state st+1

6 Update Aπη (st ,at)
7 Randomly select a set of actions (st ,at , rt , st+1) from the

memory of neural network
8 Train the neural network based on gradient calculated

and updated in Equation (12)
9 end for

The algorithm first initializes the memory of neural network,
several default parameters using in RL (line 1). The RL agent ob-
serves the state st via monitoring the several features of all the
data files (line 3). The agent selects the action at according to the
policy distribution πη (st ,at) (line 4). Then, the agent executes the
selected actions and then calculate the reward in Equation (4) for
training (line 5). Finally, the neural network updates the advantage
function, determines the direction of gradient and then finally up-
dates the policy distribution for the next time step (lines 6-8). Since
the decision making process replies on the policy distribution, the
data type assignment decision can be made in O(1) time. Therefore,
for all the data files, the time complexity is O(n) where n is the
number of data files.

5.2 Concurrent Requested Data Files
Aggregation

For a web application, some data files are usually requested concur-
rently. For example, different data files, linked to one webpage, are
usually requested concurrently. Based on this key observation, we
propose to aggregate two or more data files that are often requested
concurrently into another data file to reduce the total request fre-
quencies and thus may help decrease the total cost determined by
multiple features of data files and the storage types.

Not all concurrently requested files should be aggregated because
the new aggregated data file replica takes extra storage and thus also
increases cost. If the increase cannot be offset by the decrease in cost
due to reduced request frequencies, aggregation may backfire. For
instance, consider data file d1 and d2 with the number of concurrent
request frequencies denoted by rdc . The total number of requests
are rd1 and rd2 respectively. In this case, aggregation would reduce
the number of total requests for these two data files from rd1 + rd2
to rd1 + rd2 − rdc . However, the storage size of these two data files
will be doubled with a replica containing the aggregated d1 and d2.
So the storage cost will double and the increase can be more than
the reduction in read/write cost caused by aggregation. Therefore,
we must carefully evaluate the tradeoff before aggregating data
files with concurrent requests.

A Reinforcement Learning Based System for Minimizing Cloud Storage Service Cost ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

In the following, we describe how to find the suitable concurrent
requested data files to combine. For n data files with rdc concurrent
read requests (all the requests from the same clients and also to
the same data files) and rdi total read requests for data files from
i (i = 1, . . . ,n), according to Equation (6), (7) and (8), the total
money costMn is

Mn =

n∑
i=1
(upj ∗ Ddi + rdi (ur f + ur s ∗ Ddi)) (13)

Where Ddi is the data size of di and rdi is the request frequencies
of data file di .

If we aggregate these n data files into one data file, then the total
money costM ′n is

M ′n =
n∑
i=1
(upj ∗ Ddi + (rdi − rdc)(ur f + ur s ∗ Ddi))

+upj

n∑
i=1

Ddi + rdc ∗ (ur f + ur s ∗
n∑
i=1

Ddi)

(14)

In order to reduce the money cost, we need to guaranteeM ′n <
Mn . So the number of concurrent requests rdc needs to satisfy:

rdc >
upj

∑n
i=1 Ddi

(n − 1) ∗ ur f
. (15)

Using the above equation, the server hosting the data file storage
type assignment algorithm first collects the historical data from a
time period (e.g., one week) for all the concurrent requests. Since
the number of requests for all the data files is variable, we use
the average number of concurrent requests within one week to
determine which data files need to be aggregated. We define the
data file aggregation coefficient Ω as:

Ω =
(n − 1)rdc∑n

i=1 Ddi
−
upj

ur f
(16)

If Ω > 0, we can benefit from data file aggregation; otherwise, there
is no benefit from data file aggregation. Furthermore, the group of
data files with a higher Ω can achieve a higher cost reduction in to-
tal cost from data file aggregation. Next, we will introduce how to
deploy this data file aggregation enhancement. Algorithm 2 shows
the pseudocode of the concurrent requested data files aggregation
algorithm. The server hosting the data file storage type assignment
algorithm first collects the request information (including the num-
ber of concurrent requests and the related group of data files) from
a period of historical data. The server then selects the groups of data
files which satisfy Equation (15) and then generates a list containing
these selected groups. The server calculates the data file aggregation
coefficient Ω for each group of data files in the list, and sorts the
list in descending order. The server then selects the top manually
set Ψ (which can control the number of data files selected to deploy
the data files aggregation) which is manually set, groups of data
files to generate the aggregated data files. The concurrent requested
data file aggregation procedure runs periodically (e.g., one week) to
update the list of the aggregated data files. The overhead of aggregat-
ing two 1MB files is in milisecond level and the response time of the
aggregated file is similar to that for a non-aggregated file aaccording
to our experiment. Furthermore, in order to avoid the situation that
concurrent request frequencies drop down substantially after data

Algorithm 2: Pseducode of the concurrent requested data
files aggregation algorithm.
1 for Collect the concurrent requests information of all the data

files;
2 do
3 for each group of data files;
4 do
5 Calculate the data file aggregation coefficient Ω

according to Equation 16);
6 Sort the group of data files in descending order according

to Ω;
7 Select top Ψ groups of data files to generate the

aggregated data files;
8 if Ω of one group of data files is smaller than 0 then
9 Delete the aggregated data file related to this group

10 end for

11 end for

files aggregation, which would reduce or even nullify the benefit of
data file aggregation, we delete an aggregated data file replica if Ω
is lower than 0 for a long-term period (e.g., two consecutive weeks).

6 PERFORMANCE EVALUATION
6.1 Experiment Setup
We use a machine with Intel i7-8700k, 32GB memory and two
NVIDIA 1080ti graphic card to train our DQN.We use theWikipedia
trace and send it to DQN with 128 filters, each of size 4 with stride 1.
Results from these layers are then aggregated with other inputs in a
hidden layer that uses 128 neurons. We set the default learning rate
0.0027 and use a greedy rate ϵ = 0.1 throughout the experiment,
unless we explicitly mention other settings for these parameters
in experiments. We implemented this architecture using Tensor-
Flow [7]. For compatibility, we leveraged the TFLearn deep learning
library’s TensorFlow API to define the neural network during both
training and testing.

The trace used in the experiment is Wikipedia trace same to
Section 3 which consists the request information of 4000000 data
files. We re-formated the trace data into daily request frequencies
because the payment made to CSP is calculated by days. Meanwhile,
unless otherwise noted, we used a random sample of 80% of our
collected trace data as a training set for MiniCost; we used the
remaining 20% as a test set for MiniCost and other comparison
methods. The pricing policy used in all the experiments is from
Microsoft Azure [3]. For all the plots in this section, we ran the
experiments 10 times independently.

Since there is no previous work on the problem handled in this
paper, we compare MiniCost with four other data storage type
assignment algorithms. Noted that, MiniCost in Section 6.2 and 6.3
don’t have the enhancement method. The comparison methods
are: Hot: we always put data files into the hot storage type; Cold:
we always put data files into cold storage type; Greedy: we use an
offline greedy algorithm for each day. The algorithm calculates the
cost difference between putting files into cold and hot including the
cost of change the data storage type. Then it assigns the data file

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Haoyu Wang∗ , Haiying Shen∗ , Qi Liu∗ , Kevin Zheng∗ , Jie Xu♯

into the storage type with lower total cost. Optimal (Offline-brutal-
force method): in the simulation, since we know all the request
frequency change for all the data files, we can always calculate
the total money cost for all the data files in one week for all the
possible data storage type assignment plans, and then select the
planwith theminimum total money cost. Therefore,Optimal, which
can generate the best data storage assignment plan, sets the lower
bound of the total money cost for all online optimization methods.
We use Optimal as a baseline to compare our method with the best
offline solution.

Our experimental results answer the following questions: 1) How
doesMiniCost compare to the comparison algorithms in terms of the
total payment on cloud storage for time-varying usage profiles? We
find that, comparedwithOptimal,MiniCost is able to outperform the
best scheme and the closest to the lower bound (Section 6.2, Figure 7
and 8). 2) How sensitive isMiniCost to various algorithm parameters
such as the neural network architecture, the learning rate and the
greedy rate? Our experiment results provide suggested parameter
settings to achieve the best performance between final performance
(monetary cost saving) and the convergence speed (Section 6.3). 3)
How doesMiniCost compare to the comparison algorithms in terms
of the computing overhead? We find that MiniCost can achieve
similar computing overhead but much better cost minimization
performance compared with Greedy algorithm (Section 6.4). 4) How
does the data aggregation method enhance the performance of
MiniCost? Our results show that the enhancement with data file
aggregation can lead to substantial improvement in cost savings
by balancing the between data file sizes and the number of request
frequencies (Section 6.5).

6.2 Performance of MiniCost
Figure 7 shows the normalized money cost per data file (set the
money cost per data file from Optimal for 7 days as 1) versus the
number of days. We see that the cost per data file from using the
above four algorithms follow the Cold>Hot>Greedy>MiniCost>
Optimal. Although the difference between each method is small for
each data file, since the number of data file is as large as millions

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

7 14 21 28 35

To
ta

l m
o

n
e

ta
ry

 c
o

st
 f

o
r

a
ll

d

a
ta

 f
il

e
s

($
)

Number of days

Hot Cold
Greedy MiniCost
Optimal

Figure 7: Comparison of total costs.

level, the total saved money can be several grants per day.
Both Hot and Cold assign all the data files into the same storage

type. Since the request frequencies of data files are highly variable
(see Figure 2), the costs incurred by the cloud customer using Hot
and Cold are always higher than other methods. Greedy makes the
decision only based on the cost incurred during one day. Conse-
quently, Greedy cannot achieve long-term cost minimization. We

observe that it has lower cost compared with Hot and Cold but
higher than MiniCost. As previously discussed, Optimal performs
an exhaustive offline search and is the optimal solution for any on-
line algorithms. It is encouraging to see that the total costs achieved
by MiniCost is closest to the lower bound from Optimal, demon-
strating the effectiveness of the RL-based approach that makes the
data assignment decisions.

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

1.E+05

0-0.1 0.1-0.3 0.3-0.5 0.5-0.8 >0.8

D
ai

ly
 m

o
n

e
ta

ry
 c

o
st

 f
o

r
al

l
d

at
a

fi
le

 (
$

)

Standard deviation distribution of daily
read/write frequencies

Hot Cold Greedy

MiniCost Optimal

Figure 8: Cost per data file by standard devia-
tions of daily request frequencies.

Figure 8 shows the money cost per data file versus the stan-
dard deviations of daily request frequencies for all the data file. We
see that the costs follow the order Cold>Hot>Greedy>MiniCost
>Optimal. Meanwhile, forHot, Cold and Greedy, costs are higher for
data files with larger request frequency variabilities. Obviously, Hot
and Cold are expected to perform poorly for data files with large
request frequency variabilities over time. While Greedy performs
better than Hot and Cold for data files with large request frequency
variabilities, it doesn’t consider the long-term effect of a storage
type assignment decision. In general, the optimal decision for each
single day may not be the optimal decision over the long-term
(e.g., one week). Thus, Greedy cannot achieve close performance to
Optimal. In comparison,MiniCost, with the trained DQN, generates
a data storage type assignment plan that not only considers the
cost in the next day, but also considers the total cost in the next
seven days. Therefore, MiniCost can achieve the best performance,
which is the closest to the lower bound from Optimal.

6.3 Performance of RL with Different
Parameter Settings and Overhead

Figure 9 plots the number of step for the RL algorithm to achieve
RL convergence versus the different learning rate. We see that the
reinforcement learning agent makes the same decision as Optimal
does in 14 days, as a function of learning rates ranging from 0.00001
to 0.0055. The learning rate represents the speed of that an agent
accumulates learned information. We can see that it takes more
steps to converge if the learning rate is set too high or too low. The
ideal learning rate, in this case, is around 0.0028. When we set a
smaller learning rate (from 0.00001 to 0.0028), the agent needs to
take more steps to arrive at the optimal decision. For larger learning
rate (from 0.0028 to 0.0055), since the size of each single step is
large, it may take even more steps for the agent to zigzag towards
the optimal decision.

Figure 10 shows the optimal action rate versus the number of
steps. The optimal action rate measures the percentage of times

A Reinforcement Learning Based System for Minimizing Cloud Storage Service Cost ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

0

5000

10000

15000

20000

25000

30000

0.00
01

0.00
04

0.00
07

0.00
1

0.00
13

0.00
16

0.00
19

0.00
22

0.00
25

0.00
28

0.00
31

0.00
34

0.00
37

0.00
4

0.00
43

0.00
46

0.00
49

0.00
52

0.00
55

N
um

be
r

of
 s

te
ps

Learning rate

Figure 9: The convergence speed for different
learning rates.

that the agent can take the same action as Optimal in 14 days. The
optimal action rate is the ratio between the actions made by the RL

0

0.2

0.4

0.6

0.8

1

O
p

ti
m

a
l a

ct
io

n
 r

a
te

Number of steps

ε=0.001
ε=0.01
ε=0.1

Figure 10: The performance for different greedy
rates.

agent and the actions fromOptimal. It shows the convergence speed
of the RL algorithm. We can see that the convergence speed results
follow ϵ = 0.1 < ϵ = 0.01 < ϵ = 0.001. The final performance
results follow the opposite order ϵ = 0.1 > ϵ = 0.01 > ϵ = 0.001.
Recall that ϵ in RL determines the probability of an agent taking
a random decision for the next step. The larger ϵ value lead to a
higher exploration rate (the possibility of the agent doesn’t select
the optimal actions from the neural network), which tends to slow
down initial progress but can achieve better final performance.
In contrast, the smaller ϵ values lead to a lower exploration rate
or equivalently more exploitation. The agent tends to select the
decision that has returned higher rewards in the past, and thus
makes fast progress. But the final performance may be sub-optimal
due to a lack of exploration.

Figure 11 shows the effect of the number of filters and hidden
neurons inMiniCost learning architecture versus the optimal action
rate. One neural network consists many neurons and filters and the
number of them can highly affect the performance of RL. For each
setting, we repeat the experiment 10 times, and the error bars for
the measured optimal action rates are also given in Figure 11. We
observe that the performance begins to stabilize once the number
of filters and neurons reaches 32. When the number of neurons and
filters reaches 64, we observe that the variance of the optimal action
rate becomes negligible. Obviously, compared with a small number
of filters and neurons (e.g., 4), using a large number (e.g., 64) of
neurons and filters can better approximate a more complex value

0.7

0.75

0.8

0.85

0.9

0.95

1

4 16 32 64 128

O
pt

im
al

 a
ct

io
n

ra
te

Number of neurons and filters

Figure 11: The performance for different num-
ber of neurons and filters.

function and thus delivers better and more consistent performance
(95% optimal action rate).

6.4 Overhead Performance
Figure 12 shows the computing overhead of each online method for
each day in 34 days. We didn’t show the computing overhead of Op-
timal since it is an offline method which is not comparable to other

0

5

10

15

20

25

30

35

40

1 4 7 10 13 16 19 22 25 28 31 34

T
im

e
 c

o
st

 (
m

in
)

Time (day)

Hot Cold Greedy MiniCost

Figure 12: Overhead.

online methods. We can see that the total computing overhead for
Greedy and MiniCost is in the range from 28 minutes to 36 minutes
and the computing overhead for Hot and Cold is around 1 minute.
Hot and Cold produce very small computing overhead, which is
only for checking each data storage type. ForMiniCost, the average
time cost for one data file storage type assignment per day is less
than 1 millisecond (ms) which is much smaller than the most data
transmission latency (10 ms to several hundred ms.) Therefore, the
computing overhead ofMiniCost is negligible and will not affect the
data transmission.MiniCost can achieve much better cost minimiza-
tion performance than Greedy with similar computing overhead.

6.5 Performance Enhancement via Data File
Aggregation

We now compare the performance of MiniCost with and without
data file aggregation. In Figure 13, we plot the normalized cost per
data file versus the number of days which is how long the cloud
customer uses the cloud storage service. We use MiniCost w/ E to
denoteMiniCost with the enhancement, and useMiniCost to denote
MiniCost without the enhancement. Because of Equation 16, the
enhancement can always achieve a better tradeoff between extra
storage cost and the reduced cost caused by request frequencies.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Haoyu Wang∗ , Haiying Shen∗ , Qi Liu∗ , Kevin Zheng∗ , Jie Xu♯

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

7 14 21 28 35

T
o

ta
l

m
o

n
e

ta
ry

 c
o

st
 f

o
r

a
ll
 d

a
ta

 f
il
e

s
 (

$
)

Number of days

Greedy MiniCost
MiniCost w/ E Optimal

Figure 13: The performance with and without
data file aggregation.

We observe that data aggregation leads to further performance
improvement and brings the total cost even closer to Optimal.

7 CONCLUSION
Minimizing the money cost for cloud storage is important, however,
there is no previous work on the data storage type assignment
to reduce the total money cost even for a long-term period. In
this paper, we first present an analysis of the Wikipedia trace to
demonstrate that substantial request frequency variabilities may
make it cost-inefficient for a cloud storage service customer. We
thenmodel the cost minimization problem using a streamlinedMDP
formulation. To solve this problem, we introduce an RL based data
storage type assignment algorithm that generates data storage type
assignment plans periodically according to the request frequencies
and CSP pricing policy tominimize the total payment to CSP in long-
term. Furthermore, we introduce an effective method to enhance
the performance by aggregating data files sharing a large number
of concurrent requests. Finally, the results from the trace-driven
experiments show that our online RL based method can achieve
significant cost savings. In the future, we will extend the method
to address a suite of cloud services running on virtual machines.

ACKNOWLEDGMENTS
This researchwas supported in part by U.S. NSF grants NSF-1827674,
CCF-1822965, OAC-1724845, and Microsoft Research Faculty Fel-
lowship 8300751, and AWS Machine Learning Research Awards.

REFERENCES
[1] [n.d.]. Amazon S3. https://aws.amazon.com/cn/s3/, [accessed in Jan. 2020].
[2] [n.d.]. ARIMA model for Time Series Forecasting.

https://machinelearningmastery.com/arima-for-time-series-forecasting-
with-python/, [accessed in Jan. 2020].

[3] [n.d.]. Azure Storage Pricing Policy. https://azure.microsoft.com/en-
us/pricing/details/storage/blobs/ , [accessed in Jan. 2020].

[4] [n.d.]. Google Cloud Storage. https://cloud.google.com/storage/, [accessed in Jan.
2020].

[5] [n.d.]. Microsoft Azure. https://azure.microsoft.com/en-us/, [accessed in Jan.
2020].

[6] [n.d.]. Page View statistics from Wikimedia Projects.
https://dumps.wikimedia.org/other/pagecounts-ez/, [accessed in Jan. 2020].

[7] Martín A., Paul B., Jianmin C., Zhifeng C., Andy D., Jeffrey D., Matthieu D., Sanjay
G., Geoffrey I., and Michael I. 2016. Tensorflow: a system for large-scale machine
learning.. In Proc. of OSDI.

[8] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. 2010. RACS: a case for
cloud storage diversity. In Proc. of SOCC.

[9] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. Howell, J.
Lorch, M. Theimer, and R. Wattenhofer. 2002. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment. ACM SIGOPS Operating
Systems Review (2002).

[10] G. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-Szendy, R. Golding, A. Mer-
chant, M. Spasojevic, A. Veitch, and J. Wilkes. 2001. Minerva: An automated
resource provisioning tool for large-scale storage systems. Trans. on TOCS (2001).

[11] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch. 2002.
Hippodrome: Running Circles Around Storage Administration.. In Proc. of FAST.

[12] L. Chen, J. Lingys, K. Chen, and F. Liu. 2018. Auto: Scaling deep reinforcement
learning for datacenter-scale automatic traffic optimization. In Proc. of SIGCOM.

[13] J. E, Y. Cui, M. Ruan, Z. Li, and E. Zhai. 2019. HyCloud: Tweaking Hybrid Cloud
Storage Services for Cost-Efficient Filesystem Hosting. In Proc. of INFOCOM.

[14] J. Gao, H. Wang, and H. Shen. 2020. Smartly Handling Renewable Energy Insta-
bility in Supporting A Cloud Datacenter. In Proc. of IPDPS.

[15] S. Hillmer and G. Tiao. 1982. An ARIMA-model-based approach to seasonal
adjustment. J. Amer. Statist. Assoc. (1982).

[16] R. Howard. 1964. Dynamic programming and Markov processes. (1964).
[17] H. Jin, H. Guo, L. Su, K. Nahrstedt, and X. Wang. 2019. Dynamic Task Pricing in

Multi-Requester Mobile Crowd Sensing with Markov Correlated Equilibrium. In
Proc. of INFOCOM.

[18] Ana K., Heiner L., and Christos K. 2018. Selecta: heterogeneous cloud storage
configuration for data analytics. In Proc. of USENIX ATC.

[19] Leslieb K. and Andrew L., Michaeland M. 1996. Reinforcement learning: A survey.
Journal of artificial intelligence research (1996).

[20] R. Kotla, L. Alvisi, and M. Dahlin. 2007. SafeStore: A durable and practical storage
system. In Proc. of ATC.

[21] Yang L., Li G., Akara S., and Yike G. 2014. Enabling performance as a service for
a cloud storage system. In Proc. of CLOUD.

[22] H. Li, L. Zhong, J. Liu, B. Li, and K. Xu. 2011. Cost-effective partial migration of
VoD services to content clouds. In Proc. of Cloud.

[23] M. Li, C. Qin, J. Li, and P. Lee. 2016. CDStore: Toward reliable, secure, and
cost-efficient cloud storage via convergent dispersal. Prof. of ATC (2016).

[24] G. Liu, H. Shen, and H. Wang. 2017. An economical and SLO-guaranteed cloud
storage service across multiple cloud service providers. Trans. on TPDS (2017).

[25] H. Madhyastha, J. McCullough, G. Porter, R. Kapoor, S. Savage, A. Snoeren,
and A. Vahdat. 2012. scc: cluster storage provisioning informed by application
characteristics and SLAs.. In Proc. of FAST.

[26] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. 2016. Resource management
with deep reinforcement learning. In Proc. of HotNet.

[27] H. Mao, R. Netravali, and M. Alizadeh. 2017. Neural adaptive video streaming
with pensieve. In Proc. of SIGCOM.

[28] W. Mao, Z. Zheng, and F. Wu. 2019. Pricing for revenue maximization in iot data
markets: An information design perspective. In Proc. of INFOCOM.

[29] V. Mnih, P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves,
M. Riedmiller, A. Fidjeland, and G. Ostrovski. 2015. Human-level control through
deep reinforcement learning. Nature (2015).

[31] Di Niu, Hong Xu, and Baochun Li. 2012. Quality-assured cloud bandwidth
auto-scaling for video-on-demand applications.. In Proc. of INFOCOM.

[32] B. Plaza. 2011. Google Analytics for measuring website performance. Tourism
Management (2011).

[33] Z. Pooranian, K. Chen, C. Yu, and M. Conti. 2018. RARE: Defeating side channels
based on data-deduplication in cloud storage. In Proc. of INFOCOM workshop.

[34] H. Roh, C. Jung,W. Lee, and D. Du. 2013. Resource pricing game in geo-distributed
clouds. In Proc. of INFOCOM.

[35] Richard S., Doina P., and Satinder S. 1999. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. AI (1999).

[36] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, and V. Panneershelvam. 2016. Mastering the game
of Go with deep neural networks and tree search. nature (2016).

[37] Y. Song, M. Zafer, and K. Lee. 2012. Optimal bidding in spot instance market. In
Proc. of INFOCOM.

[38] R. Sutton, A. Barto, and F. Bach. 1998. Reinforcement learning: An introduction.
[39] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. 2000. Policy gradient methods

for reinforcement learning with function approximation. In Proc. of ANIPS.
[40] Zhe W., Curtis Y., and Harsha V M. 2015. CosTLO: Cost-Effective Redundancy

for Lower Latency Variance on Cloud Storage Services.. In Proc. of NSDI.
[41] F. Wang, J. Liu, and M. Chen. 2012. CALMS: Cloud-assisted live media streaming

for globalized demands with time/region diversities. In Proc. of INFOCOM.
[42] H. Wang and H. Shen. 2018. Proactive incast congestion control in a datacenter

serving web applications. In Proc. of INFOCOM.
[43] B. Wickremasinghe and R. Buyya. 2009. CloudAnalyst: A CloudSim-based tool

for modelling and analysis of large scale cloud computing environments. Prof. of
MEDC (2009).

[44] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. 2012. Orchestrating the De-
ployment of Computations in the Cloud with Conductor.. In Proc. of NSDI.

[45] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. Madhyastha. 2013.
Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services.
In Proc. of SOSP.

	Abstract
	1 Introduction
	2 Related Work
	3 Trace Analysis: Request Frequency Variabilities
	3.1 Data Analysis
	3.2 Challenges

	4 MDP-based Problem Formulation
	4.1 System Model
	4.2 Problem Formulation

	5 Main Methodology
	5.1 Deep Q-Network based Algorithm
	5.2 Concurrent Requested Data Files Aggregation

	6 Performance Evaluation
	6.1 Experiment Setup
	6.2 Performance of MiniCost
	6.3 Performance of RL with Different Parameter Settings and Overhead
	6.4 Overhead Performance
	6.5 Performance Enhancement via Data File Aggregation

	7 Conclusion
	Acknowledgments
	References

