
Fast Spectral Graph Layout on Multicore Platforms
Ashirbad Mishra

Pennsylvania State University
University Park, Pennsylvania

amishra@psu.edu

Shad Kirmani
eBay Inc.

San Jose, California
skirmani@ebay.com

Kamesh Madduri
Pennsylvania State University
University Park, Pennsylvania

madduri@psu.edu

ABSTRACT
We present ParHDE, a shared-memory parallelization of the High-
Dimensional Embedding (HDE) graph algorithm. Originally pro-
posed as a graph drawing algorithm, HDE characterizes the global
structure of a graph and is closely related to spectral graph compu-
tations such as computing the eigenvectors of the graph Laplacian.
We identify compute- and memory-intensive steps in HDE and
parallelize these steps for efficient execution on shared-memory
multicore platforms. ParHDE can process graphs with billions of
edges in minutes, is up to 18× faster than a prior parallel imple-
mentation of HDE, and achieves up to a 24× relative speedup on a
28-core system. We also implement several extensions of ParHDE
and demonstrate its utility in diverse graph computation-related
applications.

CCS CONCEPTS
• Human-centered computing→ Graph drawings; • Comput-
ing methodologies→ Spectral methods; • Theory of compu-
tation→ Shared memory algorithms.

KEYWORDS
graph layout, graph embedding, breadth-first search, sparse matrix
vector multiplication, orthogonalization

ACM Reference Format:
Ashirbad Mishra, Shad Kirmani, and Kamesh Madduri. 2020. Fast Spec-
tral Graph Layout on Multicore Platforms. In 49th International Confer-
ence on Parallel Processing - ICPP (ICPP ’20), August 17–20, 2020, Edmonton,
AB, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3404397.3404471

1 INTRODUCTION
The area of spectral graph theory devises elegant solutions to com-
binatorial graph problems by relating them to eigenvalues and
eigenvectors of matrices associated with the underlying graph. Ef-
ficient spectral methods are known for several graph problems,
including connectivity, partitioning, and vertex ordering formu-
lations. In this work, we study parallelization of a fast spectral
method for graph layout. The objective of graph layout is to assign
coordinates to graph vertices such that a pre-specified cost function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404471

is optimized. The coordinates can also be used to generate a graph
drawing.

The algorithm we study is called High-Dimensional Embedding
(HDE) [31] and is considered one of the fastest algorithms for graph
layout. HDE is closely related to classical spectral graph drawing
algorithms. However, unlike the classical algorithms, HDE does
not solve an eigenproblem on the entire graph. Instead, it uses
the solution to a fixed-size eigenproblem in a principled manner
to generate an approximate solution to the original problem. A
sample HDE layout is shown in Figure 1, where the top figure,
generated using ParHDE—our implementation of HDE—captures
the global structure seen in the bottom figure. The main advantage
of HDE is that it can be orders-of-magnitude faster than the spectral
algorithm used to generate the bottom figure.

Figure 1: Drawings of the barth5 graph [10] (15606 vertices
and 45878 edges) using ParHDE (top) and using dominant
eigenvectors of the normalized adjacency matrix (bottom).

The primary contribution of this work is the new ParHDE imple-
mentation targeting shared-memory platforms. We identify three
main compute- and memory-intensive phases in HDE, and show
that ParHDE is significantly faster than a prior implementation of
HDE [27, 33]. We also extend ParHDE and demonstrate its utility
for several related graph computations.

https://doi.org/10.1145/3404397.3404471
https://doi.org/10.1145/3404397.3404471
https://doi.org/10.1145/3404397.3404471
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3404397.3404471&domain=pdf&date_stamp=2020-08-17

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ashirbad Mishra, Shad Kirmani, and Kamesh Madduri

2 BACKGROUND AND PRIORWORK
2.1 Preliminaries
We denote a graph as G(V ,E,W), where V = {1, . . . ,n} is the set
of vertices and E is the set of edges.m = |E |. We assume the graph
is undirected and has no self loops or parallel edges. An edge ⟨i, j⟩
can have a non-negative real edge weightW (i, j) representing the
similarity of vertices i and j. Note the interpretation of an edge
weight: heavier edges indicate greater levels of similarity. If two
vertices are not connected, then the similarity value is assumed to
be 0, i.e., the pair of vertices are dissimilar. For unweighted graphs,
the edge weights are all assumed to be the same and equal to one.
The weighted degree of a vertex is the sum of the weights of its
attached edges.

Let A denote the symmetric adjacency matrix corresponding to
the graph, with A(i, j) =W (i, j) if ⟨i, j⟩ ∈ E, and 0 otherwise. Let D
denote the degrees matrix, a diagonal matrix with D(i, i) set to the
weighted degree of vertex i . The degree normalized matrix D−1A is
called the transition matrix or the walk matrix. The Laplacian L is a
symmetric matrix given by D −A. The properties of the Laplacian
are well studied. We will state some of its properties relevant to
graph drawing in this section, but please refer to Koren’s paper [31]
and references therein for more details. Spielman’s book chapter
on spectral graph theory [38] is another good reference.

The p-dimensional layout of a graph is defined by p vectors
x1, . . . ,xp ∈ Rn , where xk (i) corresponds to the coordinate of
vertex i in the kth dimension. In practice, p is chosen to be 2 or
3 for screen layouts, and we assume p = 2 in this paper. To pro-
duce a node-link graph drawing, the two endpoints of an edge
can be connected by straight line. The Euclidean distance di j be-
tween vertices i and j in the p-dimensional layout is given by√√√ p∑

k=1
(xk (i) − xk (j))

2.

Given any vector y ∈ Rn , it can be shown that yT Ly equals∑
⟨i, j ⟩∈E

W (i, j) (y(i) −y(j))2. This fact is directly related to an opti-

mal layout of a graph. Additionally, the Laplacian satisfies many in-
teresting properties. Since L is symmetric and positive semidefinite,
all its n eigenvalues are real and nonnegative. 1n is an eigenvector
of L with a corresponding eigenvalue of 0. If the graph is connected
(as we assume in this paper), the multiplicity of the eigenvalue 0
is exactly 1. The eigenvalues of the Laplacian are by convention
ordered from low to high, 0 = λ1 < λ2 ≤ · · · ≤ λn .

GivenD and L, let the eigenpair (u, µ) be a solution to the general-
ized eigenproblem Lu = µDu. D-normalization is a way to uniquely
specify the uk eigenvectors: uTk Duk = 1, k = 1, . . . ,n. The vec-
tors uk are called degree-normalized eigenvectors. It can be easily
shown that the degree-normalized eigenvectors are also the (non-
generalized) eigenvectors of the transition matrix D−1A, using the
fact that L = D −A. The eigenvalues of this matrix are in reverse
order. Koren shows that the degree-normalized eigenvectors are
the optimal solution to a constrained minimization problem that is

closely related to graph drawing aesthetics:

minimize
x1, ...,xp

p∑
k=1

xTk Lxk

p∑
k=1

xTk Dxk

subject to xTk Dxl = δkl , k, l = 1, . . . ,p

xTk D1n = 0.

(1)

In the above equation, δkl is the Kronecker delta function, which
is 1 when k = l and 0 otherwise. Minimizing the numerator in the
above expression has the effect of placing similar vertices close to
each other, whereas maximizing the denominator scatters vertices.
The constraints impose D-orthogonality to the unit vector and to
each other. Eigen-projection or Hall’s algorithm [22] refers to the
use of p non-degenerate eigenvectors of the Laplacian for layout.
In contrast, Koren recommends using p degree-normalized eigen-
vectors [31]. Degree-normalized vectors are also used for image
segmentation [36] tasks, but with a different motivation. Using
degree-normalized eigenvectors instead of the Laplacian eigen-
vectors has the effect of treating a heavy edge (say, weight 50)
connecting two high-degree vertices (say, degree 500) in the same
manner as a light edge (say, weight 1) connecting two low-degree
vertices (say, degree 10). Both are drawn with equal length. How-
ever, when using the Laplacian’s eigenvectors, the heavier edge is
assigned a 50× shorter length and this pushes high-degree vertices
towards each other, which is undesirable. The objective function

reduces to
p∑

k=1
µk , where µk is the kth eigenvalue corresponding to

the degree-normalized eigenvector uk .

2.2 High-dimensional embedding (HDE)
The HDE algorithm is motivated by the high computational cost
of eigenvector calculations. For layout, iterative algorithms are
typically used to determine a few eigenvectors, and the convergence
rate of these approaches is heavily dependent on the graph structure
and the distribution of eigenvalues. The Laplacian eigenvectors or
the degree-normalized eigenvectors are chosen to be the axes in
eigen-projection schemes. Note that these could be arbitrary vectors
in Rn .

The key idea behind HDE is to constrain the axes to lie in a
subspace S ⊆ Rn . The subspace S can be defined by a matrix
B ∈ Rn×s whose columns span S. Koren recommends using graph-
theoretic distances to construct such a matrix B. Consider s pivot
vertices or viewpoints in the graph. s is chosen to be a small constant
(e.g., 50). The shortest path lengths from one of these vertices, say
v , to all other vertices (i.e., the single-source shortest paths or SSSP
problem) can be used as an axis to map the rest of the vertices.
Given s such vertices, we may be able to reduce vertex occlusion.
We would also want to pick vertices such that the shortest path
vectors are not correlated. One way to do this is to consider the set
of vertices that are a 2-approximation to the k-centers problem [19].
In the k-centers problem, we are asked to choose k vertices in a
graph such that the longest shortest path length from any vertex
to the k centers is minimized. The farthest-first 2-approximation
algorithm begins by randomly picking a vertex and then, in each

Fast Spectral Graph Layout on Multicore Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Algorithm 1 Eigen-projection in a subspace: high-dimensional
embedding (HDE).
Input: G, L (Laplacian), s (subspace dimension)
Output: x , y
1: Initialize S ∈ Rn×(s+1)
2: Initialize B ∈ Rn×s
3: s0 ← 1 ▷ Columns of S are indexed from 0
4: Normalize s0
5: v ← randomly-chosen start vertex
6: Initialize d ∈ Rn
7: for i ← 1, s do
8: bi ← SSSP(v) ▷ bi is ith column of B
9: si ← bi
10: Normalize si
11: for l ← 0, i − 1 do
12: si ← si − (sTl si)sl ▷ Orthogonalize

13: for j ← 1,n do
14: d(j) ← min (d(j),bi (j))
15: sv ← farthest vertex from previous sources
16: Drop 0th column of S (degenerate vector)
17: Ys×2 ← Top two eigenvectors of ST LS
18: [x ,y] ← BY

iteration, adding to the set of centers the vertex that is farthest
from the currently chosen centers. Ties are arbitrarily broken. Once
the shortest path vectors are determined, they are made linearly
independent using a Gram-Schmidt-like procedure and vectors that
are linearly dependent are discarded. Further, the resulting vectors
are ensured to be orthogonal to a unit vector. Denote this matrix as
S .

Koren then shows that bymodifying Equation 1, the eigenvectors
corresponding to the ST LS matrix can be considered as approxima-
tions to the eigenvectors of L. Since ST LS is a very small matrix (if
we choose s = 50), the running time for computing its eigenvectors
will be negligible. The steps of HDE are given in Algorithm 1, and
HDE is best thought of as Eigen-projection in a subspace.

2.3 Related Work
The HDE algorithm given in Algorithm 1 is a refined version and
successor to another algorithmwith the same name (HDE), designed
by Harel and Koren [23, 24]. To avoid this confusion, the older HDE
algorithm will be referred to as PHDE. Its pseudocode is given
in Algorithm 2. The interpretation of weights is the opposite of
HDE, ie., lower weights indicate closer vertices. Like HDE, PHDE
also uses graph-theoretic distances from s pivots to compute a
shortest paths matrix. However, in the next step, the principal
components analysis (PCA) dimensionality reduction strategy is
applied to a column-centered version of the path length matrix.
Column centering implies subtracting the mean of each column
from the entries of the column, and this has the effect of making
the column means zero. Next, the two dominant eigenvectors of
CTC are used as the drawing axes. Harel and Koren show that this
algorithm has the effect of maximizing the scatter of the nodes,
i.e., the denominator of Equation 1 (without the D-normalization).

Algorithm 2 PCA-based high-dimensional embedding (PHDE).
Input: G, s (subspace dimension)
Output: x , y
1: Initialize B ∈ Rn×s
2: v ← randomly-chosen start vertex
3: Initialize d ∈ Rn
4: for i ← 1, s do
5: bi ← SSSP(v) ▷ bi is ith column of B
6: for j ← 1,n do
7: d(j) ← min (d(j),bi (j))
8: sv ← farthest vertex from previous sources
9: C ← B after column centering ▷ (mean of each column is 0)
10: Ys×2 ← Top two eigenvectors of CTC
11: [x ,y] ← CY

HDE can be considered a more refined version of PHDE because
the information from the graph Laplacian is also captured, and the
link to eigenvectors of the Laplacian is clear.

PivotMDS [5] is another fast algorithm that is closely related to
PHDE. PivotMDS can be considered a fast approximation of the clas-
sical multidimensional scaling (MDS)-based [39] drawing algorithm.
The computational costs of PivotMDS and PHDE are identical, but
they differ in their derivation. SDE [8] is another method marrying
graph-theoretic distances and Laplacian eigenvectors. However, the
computational cost and memory requirements are quadratic and
comparable to classical MDS. SSDE [9] is a linear-time variant of
SDE and based on sampling.

Themultilevel paradigm is a common speedup heuristic for graph
computations. The class of force-directed layout algorithms, ex-
emplified by the Fruchterman-Reingold algorithm [15], are very
popular. Multilevel force-directed layout can also lead to linear-
time approaches [25]. Parallelizations of multilevel approaches are
also well studied [1, 35, 43], especially on Graphics Processing
Units [7, 13, 14, 18, 26].

In prior work, Kirmani and Madduri implemented HDE along
with several other spectral algorithms in a multilevel setup [27, 33].
They noted that HDE was significantly faster than other algorithms
and was also compatible with the multilevel approach.

3 SHARED-MEMORY PARALLELIZATION
We now give a high-level overview of ParHDE, explain design
choices, and mention key implementation details. Algorithm 3 gives
the pseudocode. We identify three compute-intensive phases in
ParHDE: the breadth-first search (BFS) phase where we perform s
traversals and compute distance vectors, the D-Orthogonalization
phase (also referred to as DOrtho in short) where we construct
an orthonormal matrix S given the s distance vectors, and finally
the step where we compute ST LS , which we refer to as TripleProd.
There are additionally some initialization steps and the eigensolve
on the s × s matrix, which take negligible time.

ComparingAlgorithms 1 and 3, we can notice threemain changes.
First, the BFS and the orthogonalization stages are decoupled in
ParHDE. This permits replacing the current approach of choosing
vertices (approximate solution to the k-centers problem) with alter-
natives (such as random selection). Second, notice that we perform

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ashirbad Mishra, Shad Kirmani, and Kamesh Madduri

Algorithm 3 ParHDE: high-level overview.
Input: G, s (subspace dimension)
Output: x , y
1: Initialize S ∈ Rn×(s+1)
2: Initialize B ∈ Rn×s ▷ Column-major format
3: s0 ← 1/

√
n ▷ Columns of S are indexed from 0

4: v ← randomly-chosen start vertex
5: for i ← 1, s do ▷ BFS phase
6: bi ← ParallelBFS(v)
7: si ← bi
8: sv ← farthest vertex from previous sources
9: for i ← 1, s do ▷ DOrtho phase
10: for j ← 0, i − 1 do

11: si ← si −

(
s ′jDsi

s ′jDsj

)
sj ▷ Vector ops

12: if ∥si ∥ ≤ 10−3 then
13: drop si
14: else
15: si ←

si
∥si ∥

16: Drop 0th column of S (degenerate vector)
17: P ← LS ▷ Step 1 of TripleProd phase
18: Z ← ST P ▷ Step 2 of TripleProd phase
19: Ys×2 ← Top two eigenvectors of Z ▷ Eigensolve
20: [x ,y] ← BY

Table 1: Asymptotic analysis of various steps of ParHDE.
dmax denotes the graph diameter and n

m ≤ γ ≤ 1 indicates
work reduction with direction-optimizing BFS. ‡ : assuming
m
n ≫ s, O(1) otherwise.

Phase Work Depth Arith. Extra
Int. Mem.

ParallelBFS s(dmaxn + γm) s max (dmax, logn) 1 sn
BFS: Other sn s logn 1 n

DOrtho s2n s2 logn 1 n

TripleProd: LS s(m + n) logn s‡ sn
TripleProd: matmul s2n logn s s2

D-orthogonalization instead of orthogonalization. The resulting
vectors can be considered to be approximations to the result of
the generalized eigenproblem Lx = µDx , where D is a diagonal
matrix of weighted vertex degrees. D-orthogonalization instead
of orthogonalization requires a very minor change. Third, instead
of SSSP calculations, the pseudocode and subsequent discussion
assume an unweighted graph and we use a parallel BFS. We also
support parallel SSSP for weighted graphs, but since most publicly
available and large-scale real-world graphs are unweighted, we
discuss this special case first.

Table 1 gives asymptotic bounds in the work-depth shared mem-
ory machine model for various steps, as well as additional memory
required for the step, and an estimate of the arithmetic intensity.
Arithmetic intensity is defined as the ratio of the operation count
to the sum of the sizes of input and output. An O(1) arithmetic
intensity indicates that there is not much opportunity to exploit

temporal locality, and higher arithmetic intensities mean that it
may be possible to improve data reuse by optimizations such as
tiling.

We use a level-synchronous parallel BFS algorithm for the BFS
step. Specifically, we use the direction-optimizing BFS [3, 42], an ap-
proach developed for traversing low-diameter graphs with skewed
degree distributions. Since there is a dependency between itera-
tions of the BFS phase loop, multiple BFSes cannot be performed in
parallel, and so the there is a multiplicative s term in the depth (or
span) bound. Also, the level-synchronous algorithm has a worst-
case O(n) depth (consider a linear chain of vertices). This has not
prevented its current widespread use. In future work, we will aug-
ment this step with a low diameter decomposition [11, 12, 37] to
improve the depth bounds. There is not much opportunity for reuse
if the searches are performed iteratively, but if the source selection
is decoupled from the traversal step, there could be possible op-
portunities for reuse and reducing memory traffic. Also, note the
significant O(sn) memory requirements, as the s distance vectors
need to be stored until the final step.

The “BFS: Other” step in Table 1 refers to the source selection
calculations. The multiplicative factor of s appears in both the work
and depth expressions. Since we need to determine the farthest
vertex from all visited sources, we currently use a loop similar to
lines 13-14 of Algorithm 1. This is not shown in Algorithm 3, but
the bounds correspond to the reduction with the max operator.

The DOrtho phase requires a Gram-Schmidt-like orthogonal-
ization procedure where we operate on O(n)-sized vectors in the
inner loop. There is an s2 multiplicative term in both the work and
depth expressions because of the loop-carried dependencies. We
parallelize the vector dot product and addition operations required
for line 11. The logn depth bound is because of the dot product
summation.

The TripleProd phase can be separated into two steps, calculating
P = LS first, and then computing Z = ST P . Alternately, we can
compute ST L first and then compute (ST L)S . The second step is a
product of two dense matrices of dimensions s × n and n × s , for
which library routines are readily available. The arithmetic intensity
is s for this step. Assumingm/n ≫ s , the first step will perform
more work. This step can be viewed as performing s sparse matrix
and dense vector multiplications (SpMVs), and so the corresponding
work and depth bounds are listed in Table 1. This step also requires
additional space to store the temporary product. The arithmetic
intensity of this step is generally O(1), but can be O(s)whenm/n ≫
s . Notice that the depth of both the TripleProd phase steps have no
dependence on s , which is a desirable feature.

3.1 Implementation Details
We store the graph in a compressed sparse row (CSR)-like format.
Because we consider only unweighted graphs, we do not store
weights or explicitly construct the Laplacian. We use double preci-
sion arithmetic for the eigenvector-related calculations.

We modify the direction-optimizing BFS [3] in the GAP Bench-
mark Suite [2, 4] for our purpose. Level-synchronous approaches
are typically comprised of top-down search phases, where unex-
plored adjacencies of vertices in the current frontier are marked

Fast Spectral Graph Layout on Multicore Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

and queued up for exploration. The direction-optimizing BFS addi-
tionally proposes a bottom-up traversal phase, where unexplored
vertices scan their adjacency lists to identify a possible parent ver-
tex and set them. Heuristically switching between top-down and
bottom-up strategies for different levels is shown to significantly
reduce the number of edges traversed for low-diameter graphs with
highly skewed degree distributions. While the GAP BFS maintains
a BFS tree by storing parents of reachable vertices, we further need
distances from the source vertex. We thus modify the GAP code
to compute distances in an atomic-free manner. Note that GAP
already uses the compare-and-swap atomic primitive for tracking
parent pointers and we do not introduce additional overhead.

For the vector operations in DOrtho phase, we experiment with
Basic Linear Algebra Subroutines (BLAS) routines in the Intel Math
Kernel Library (MKL) [41], as well as relevant functions in Eigen
C++ linear algebra library [20], but found our implementations to
be generally faster. So we use our own code with OpenMP pragmas
for portability and simplicity. In future work, we will look at elimi-
nating the s2 term in the depth using alternate parallel formulations
of the D-orthogonalization phase [32].

In the TripleProd phase, the LS calculation dominates running
time.We use the BLAS dgemm routine inMKL for the less expensive
ST (LS) calculation. We experimented with sparse matrix vector
multiplication routines in MKL, but again found our OpenMP code
with loop collapse pragmas to be faster. We note that performance
can be further improved for special cases such asm/n ≫ s or s ≫ 1.

3.2 Parallelization of PHDE and PivotMDS
PHDE is very similar to ParHDE, but does not have the LS product.
There is a column centering step which requires subtracting the
mean of every column from the column entries. We implement
this in a two-phase manner, computing the column means in the
first phase and performing the subtraction in the second phase.
PivotMDS requires double-centering of the distance matrix [5],
which is computationally similar to column centering. The matrix
multiplication and eigenvector computation steps in PivotMDS are
similar to PHDE.

3.3 Extension to weighted graphs
We also extend our work to weighted graphs by performing SSSP
instead of parallel BFS. We use the SSSP implementation from GAP,
which implements the ∆-stepping algorithm [34]. This algorithm
uses a bucketing data structure parameterized by the value ∆ and
partitions edges into two groups, heavy and light.

The GAP implementation creates two types of buckets, shared
buckets and thread-local buckets. Each iteration proceeds in two
phases. In the first phase each thread picks a vertex out of the
current shared bucket and tries to relax its neighbours. If they are
updated, the vertices are added to the thread-local bucket. In the
next phase, the threads add vertices in their local bucket to the
corresponding shared bucket. The implementation does not recycle
the buckets and ignores settled vertices to improve performance.
We modify GAP to work with our CSR-like data structure and to
retrieve the settled distances of the vertices.

4 EVALUATION
In this section, we evaluate the scalability and efficiency of ParHDE.
We also discuss simple extensions and applications beyond graph
drawing in Section 4.5.

4.1 Experimental Setup
Input. Table 2 gives details of the test graphs used. The number of
edges and the number of vertices are listed. We use the synthetic
graph generators in the GAP Benchmark Suite [2, 4] to generate
the urand27 and kron27 synthetic random graphs. The rest of the
graphs are based on matrices from the SuiteSparse matrix collec-
tion [10]. Since ParHDE expects a connected undirected simple
graph as input, we preprocess the matrices and graphs to remove
self loops and parallel edges. We also ignore edge direction for
directed graphs and extract the largest connected component. Be-
cause of this preprocessing, the vertex and edge counts might differ
from the ones reported in the original sources. We attempt to retain
the original vertex ordering as far as possible. When extracting the
largest connected component, we remove vertices not in the com-
ponent and renumber the vertices to be contiguous, but preserving
the original implied ordering.

Table 2: A collection of undirected graphs used for eval-
uating ParHDE. The first two graphs are generated using
the GAP Benchmark Suite [2], and the remaining graphs
listed are based on sparse matrices from the SuiteSparse ma-
trix collection [10]. We preprocess the graphs to extract the
largest connected component and relabel vertex identifiers.
The number of edges (m) and vertices (n) after preprocessing
are given.

Graph m n

urand27 2 147 483 376 134 217 728
kron27 2 111 622 405 63 045 458
sk-2005 1 810 050 743 50 634 118
twitter7 1 202 513 046 41 652 230
road_usa 28 854 312 23 947 347
cage14 12 812 282 1 505 785
CurlCurl_4 12 067 676 2 380 515
kkt_power 6 482 320 2 063 494
ecology1 1 998 000 1 000 000
pa2010 1 029 231 421 545

To shed more insight into performance results obtained, we show
in Figure 2 the distribution of adjacency list gaps using the Fibonacci
binning [40] technique. Suppose a vertex u has four adjacencies
v1, v2, v3, and v4. Assume that the adjacencies are stored in sorted
order, i.e., v1 < v2, v2 < v3, and v3 < v4. Then, we term v2 − v1,
v3−v2, andv4−v3 as the adjacency list gaps, or gaps in short. Gaps
are an indicator of memory locality: low values mean that nearby
memory locations are accessed when performing accesses of the
type S[v], where v ∈ Adj(u) and S is an array of size n. Figure 2 is a
histogram of gaps, with the histogram bin widths set to numbers in
the Fibonacci sequence. A point [xi , c] on the plot means that there
are c occurrences of gaps in the range [xi−1,xi). x0 = 0, x1 = 1,

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ashirbad Mishra, Shad Kirmani, and Kamesh Madduri

xi = xi−1 + xi−2 for i ≥ 2. Note that
∑
c = 2m − n. Further, note

that both the axes use a logarithmic scale. Use the trend line for the
uniform random graph urand27 as a guide to read the chart. Ideally,
we would like low gaps to occur more frequently. A linear chain of
n vertices with a linear vertex ordering would have a gap of just
2 occurring n − 2 times and is an example of an ideal case. The
urand27 ordering would show poor locality of memory reference
(again, for accesses of the type S[v], where v ∈ Adj(u)). The trend
for the kron27 graph is also as expected and similar to the urand27
trend, because the vertex identifiers are random shuffled in the
graph generator. For the remaining three real-world graphs, we
retain the ordering given in the source collection. Observe that
the distribution for sk-2005 has a favorable trend for enhancing
memory locality. If we randomly shuffle the vertex identifiers, we
lose this locality and the trend line for sk-2005 will nearly coincide
with the urand27 and kron27 lines.

10
0

10
2

10
4

10
6

10
8

10
10

10
0

10
2

10
4

10
6

10
8

10
10

Adjacency list gaps

F
re

q
u

e
n

c
y

urand27 kron27 sk−2005 twitter7 road_usa

Figure 2: Distribution of adjacency list gaps for five test
graphs.

Hardware.We report performance results primarily on a 28-core
compute node of the Pittsburgh Supercomputing Center Bridges su-
percomputer. This node from the regular shared memory partition
has two 14-core Intel Xeon E5-2695 v3 (Haswell) processors. Each
processor has 35 MB last level cache and each node has 128 GB
DDR4-2133 memory. In addition, we report some results on 80
cores of a 288-core compute node from the extreme shared memory
partition of Bridges. This node has 16 18-core Intel Xeon E7-8880 v3
(Haswell) processors. Each processor has 45 MB last level cache and
the node has 12 TB memory. Due to allocation limits, we could not
get dedicated access to this large memory node, and care should be
taken while comparing results on this system to the 28-core node
results.
Software. ParHDE is developed in C++ and OpenMP. We use
the Eigen library [20], GAP, and the Intel Math Kernel Library
(MKL) [41]. We use version 3.3.7 of Eigen for computing eigenval-
ues and eigenvectors of the small s×s matrix. Our BFS code is based
on the direction-optimizing BFS in GAP (version 1.2). We use Intel
MKL version 2018 Update 4 for the double-precision generalized

matrix multiply dgemm. To compile the code, we use the Intel C++
compiler version 18.0.4 with O2 optimization. OpenMP threads are
bound to cores using a compact thread pinning scheme and hyper-
threading is disabled. With these settings, we observed a STREAM
Triad bandwidth of 112 GB/s on the 28-core system. After obtaining
coordinates, we use an open-source Portable Network Graphics
(PNG) format file writer to create the drawings. Edges are drawn
as straight lines of fixed thickness and we have not experimented
with color. Note that the PNG file writing step is untimed.

4.2 Speedup over Prior Work
In Table 3, we report the speedup achieved over the fastest parallel
HDE implementation [27, 33] known to us. This approach uses the
Eigen library extensively and does not use parallel BFS. Further, in
the prior approach, the use of an Eigen function for constructing the
Laplacian matrix leads to a significant increase in the peak memory
footprint. Because of this, we were unable to execute this code for
the largest graphs in our collection on the 28-core 128 GB system,
and instead use 80 cores on the large memory node to get a full set
of results. Further, note that the subspace dimension value s is set
to 10 for this set of results. Unless noted otherwise, we will use 10
as the default setting for obtaining running time results.

Table 3: Execution times of ParHDE and the prior paral-
lel implementation from [33], and speedup achieved by
ParHDE. s = 10. Results on large mem node.

Graph Time (s) SpeedupParHDE Prior Par.

urand27 72 1301 18.0 ×
kron27 47 688 14.7 ×
sk-2005 18 131 7.3 ×
twitter7 34 372 10.9 ×
road_usa 13 36 2.9 ×

We observe speedup to be correlated with the graph size, with
larger graphs resulting in a higher speedup. The road_usa graph
has a much lower average vertex degree than the rest of the graphs
and a relatively higher diameter, and is not a good instance for
the direction-optimizing BFS. We do not expect substantial im-
provement over the prior sequential BFS, and this explains the
comparatively lower 2.9× speedup observed.

Since s = 50 is a common choice in HDE, ParHDE is able to pro-
cess billion-edge graphs in the order of a few minutes. Because of
HDE’s low work complexity, ParHDE is significantly faster than re-
cent parallelizations. For instance, MulMent [35] reports a running
time of 27 seconds for a graph with a million vertices and 3 million
edges on a large shared-memory server, whereas ParHDE is two or-
ders of magnitude faster for similar-sized graphs. The running time
of the ForceAtlas2 GPU implementation of Brinkmann et al. [7]
is in the order of several minutes for large graphs that fit in GPU
memory, and we estimate ParHDE to be an order-of-magnitude
faster.

Fast Spectral Graph Layout on Multicore Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

4.3 Running time Breakdown and Parallel
Scaling

Both ParHDE and the prior approach share three main stages: per-
forming s BFSes, computing the ST LS product, and orthogonal-
ization of the distance vectors obtained from BFS using a Gram
Schmidt-like procedure. In Figure 3, we show the percentage of time
spent in each of these stages for three different scenarios: parallel
28-core execution of ParHDE, sequential execution of ParHDE, and
parallel execution of the prior approach. Comparing these charts
lets us understand the reasons for the overall speedup. In all three
cases, the time for the BFS and the triple product steps dominate the
time for the D-orthogonalization. Further, the remainder of time
(eigenvector computation on the small matrix) is negligible. The
ratio of time spent in various stages varies across graph instances,
and depends on the edge count, vertex count, vertex ordering, and
vertex degree distribution. Comparing the left and middle charts, it
is apparent that TripleProd scales better than BFS for most graphs.
Comparing the right and left charts, it is clear that ParHDE benefits
from a much faster parallel BFS. Across all inputs, we note that
DOrtho constitutes a greater fraction of overall time for road_usa
and sk-2005. Also, looking for trends across all charts, we note
that urand27, kron27, and twitter7 have similar breakdown plots,
whereas sk-2005 and road_usa are somewhat different from these.
sk-2005 is the odd one out because we would expect its breakdown
profile to be similar to the other three low-diameter graphs. We
will look at the reason in the next subsection.

In Figure 4, we look at overall parallel scaling and the scaling
of individual stages for the five large inputs on the 28-core system.
The overall speedups are as expected. The uniform random graph
instance urand27 achieves the best speedup for all the steps that
are graph structure-dependent. This is because of good overall
parallel load balance (regular vertex degree distribution) and the
latency-bound nature of the computation (because vertex ordering
and other locality-enhancing optimizations will not help by design).
The LS step in the TripleProd phase is less structure-dependent
than BFS, and so the TripleProd phase shows better scaling than
BFS on all instances. urand27’s near-linear scaling for TripleProd
is due to the large number of random reads (i.e., random cache
line fetches) each thread makes, and the good overall load balance,
making it latency-bound. For the other graphs, the vertex ordering
and degree distributions affect overall scaling.

DOrtho becomes memory bandwidth-bound quickly and does
not show much improvement beyond 7 threads. Recall that DOrtho
performs O(s2) dot products, and each dot product of size O(n) is
parallelized across p threads. The need to orthogonalize against
previous vectors introduces a loop dependence and prevents dis-
tributing the O(s2n) work across threads.

Table 4 reports ParHDE execution times and relative speedup
(i.e., speedup over single-threaded run) for all the test graphs. The
speedups are also previously visualized in Figure 4 (left). Note the
relatively low running time for sk-2005 in comparison to twitter7.
Since the graphs are ordered by edge counts, it is expected that the
running time of sk-2005 to be higher than twitter7, and closer to
kron27. We note this trend even on the large memory node (see
running times in Table 3). In Table 5, we give the 28-core running
times and relative speedup of PHDE and PivotMDS for the five

largest graphs. In combination with Figure 6, it is clear that the
overall performance is dominated by the time taken for parallel
BFS.

Table 4: ParHDE execution time on 28-core system and rela-
tive speedup (speedup over 1-core time).

Graph Time (s) Rel. Speedup

urand27 52.5 24.5×
kron27 34.3 14.8×
sk-2005 9.9 11.3×
twitter7 23.8 11.0×
road_usa 4.6 7.1×
CurlCurl_4 0.6 5.8×
kkt_power 0.5 8.1×
cage14 0.3 9.1×
ecology1 0.3 4.2×
pa2010 0.1 4.2×

Table 5: PHDE and PivotMDS execution times on 28-core sys-
tem and relative speedup (speedup over 1-core time).

Graph PHDE PivotMDS
Time (s) Rel. Speedup Time (s) Rel. Speedup

urand27 12.5 23.7× 13.9 23.4×
kron27 4.8 12.4× 4.6 20.1×
sk-2005 4.6 9.2× 4.9 11.6×
twitter7 5.7 6.5× 5.8 9.1×
road_usa 3.1 6.1× 3.1 7.9×

4.4 Additional Performance Analysis
We next consider the impact of increasing the subspace dimen-
sion (or the number of source vertices) s . Recall that the BFS and
TripleProd phases scale linearly with s , whereas DOrtho phase
work scales quadratically. This is apparent in the breakdown chart
of Figure 5 (left), where DOrtho takes considerable longer across
all instances in comparison to Figure 3 (left).

Next, in Figure 5 (middle), we show the breakdown of time spent
in the BFS phase into actual traversal and other steps (such as find-
ing the farthest source). It is clear that the traversal time dominates.
In Figure 5 (right), we show the breakdown of the TripleProd phase
into the two constituent steps, the LS computation, followed by
the dgemm ST (LS) calculation. We note that urand27, kron27, and
twitter7 have a similar profile (negligible dgemm time), whereas
in sk-2005 and road_usa, the dgemm time is higher (or alternately
viewing this as LS time being lower).

We also run some experiments to understand the performance
of the SSSP-based implementation. When using unit weights for
road_usa, the SSSP approach is only 18% slower than the BFS-
based approach. However, for real or random integer weights, the
performance is dependent on the setting for ∆ and the slowdown
compared to unweighted BFS is 3.66× or more for road_usa. A
detailed analysis is left for future work.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ashirbad Mishra, Shad Kirmani, and Kamesh Madduri

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
er

ce
nt

ag
e

of
 ti

m
e

BFS TripleProd DOrtho Other

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
er

ce
nt

ag
e

of
 ti

m
e

BFS TripleProd DOrtho Other

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
er

ce
nt

ag
e

of
 ti

m
e

BFS TripleProd DOrtho Other

Figure 3: Component-wise breakdown of execution time: ParHDE on 28-core system (left), ParHDE on 1 core of 28-core system
(middle), prior work on large memory node.

Overall BFS TripleProd DOrtho

1 4 7 14 28 1 4 7 14 28 1 4 7 14 28 1 4 7 14 28
0

10

20

30

Cores

S
pe

ed
up

urand27 kron27 sk−2005 twitter7 road_usa

Figure 4: Relative scaling of ParHDE and constituent steps on the 28-core system.

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

BFS TripleProd DOrtho Other

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
er

ce
nt

ag
e

of
 ti

m
e

BFS Overhead

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
er

ce
nt

ag
e

of
 ti

m
e

LS S'(LS)

Figure 5: Analyzing ParHDE performance: execution time breakdown with 50 sources (left), breakdown of BFS stage into
traversal time and other steps (middle), breakdown of TripleProd step into constituent steps (right).

Fast Spectral Graph Layout on Multicore Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

BFS DblCntr MatMul Other

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

BFS DblCntr MatMul Other

0

25

50

75

100

urand27 kron27 sk−2005 twitter7 road_usa

Graph

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

BFS ColCenter MatMul Other

Figure 6: Analyzing PivotMDS and PHDE performance: PivotMDS execution time breakdown on 28 cores (left), PivotMDS
breakdown on 1 core (middle), PHDE breakdown on 28 cores (right).

We resolve the seemingly anomalous running time and scaling
behavior of sk-2005, and to some extent, road_usa. The overall time
of sk-2005 is lower than twitter7 because the LS calculation step is
considerably faster. LS can be viewed as s SpMVs. In a compressed
sparse row-based implementation of SpMV, possibly irregular ac-
cesses to the vector dominate running time. If there is good locality,
components of the vector are cached and the memory access time
is amortized. The accesses to the vector are dependent on the ad-
jacency list gap distribution. This is the reason we gave Figure 2.
Because of the locality-enhancing vertex ordering of sk-2005, the
LS step is much faster than expected. This is seen to some extent
in road_usa as well. If we use a randomly permuted ordering of
vertices, the time for LS increases by a factor of 6.8×, and the overall
time increases by a factor of 3.5×. This observation highlights the
benefits of locality-enhancing vertex orderings, and the need to
conduct performance evaluations with consistent baselines. Adddi-
tionally, we note that our LS implementation is consistently faster
than MKL’smkl_sparse_d_mm() routine, with an average speedup
of 2.50×. Further, MKL requires allocating a sparse Laplacian matrix
(an untimed step), which our implementation avoids by using a
dense degrees array to calculate the diagonal entry.

In addition to the approximate solution to the k-centers problem
for pivot selection, we experiment with a random pivot selection
strategy. Here, pivots are chosen uniformly at random without
repetition, and threads concurrently perform multiple BFSes. On
the other hand, for the default strategy, each BFS is parallelized. The
random pivots strategy has lower overhead for smaller graphs and
when the number of pivots is greater than the number of threads.
In Table 6, we compare the execution time of the BFS phase using
these two strategies when using 30 sources on the five smallest
graphs in our collection. We observe higher speedups with random
pivots for high-diameter graphs and for smaller graphs.

For orthogonalization, we use Modified Gram Schmidt (MGS)
with only Level 1 BLAS operations as the default option. However,
we also experiment with a Classical Gram Schmidt procedure us-
ing Level 2 BLAS operations (i.e., matrix-vector operations) and
summarize the results in Table 7. The CGS approach is consistently

Table 6: Performance Impact of using randomly-chosen piv-
ots on execution time of the BFS phase. Comparison on 28-
core system and with 30 sources.

Graph Default Alg. Rand. Pivots Rel.
Time (s) Time (s) Speedup

CurlCurl_4 0.91 0.33 2.8×
kkt_power 1.10 0.66 1.7×
cage14 0.66 0.47 1.4×
ecology1 0.88 0.09 10.1×
pa2010 0.42 0.05 9.1×

faster. However, the use of CGS requires all distance vectors to be
precomputed before the orthogonalization procedure is performed,
whereas the default procedure can also be executed with a cou-
pled BFS and D-orthogonalization steps. We did not observe any
significant change in drawing quality with this alternate procedure.

Table 7: Performance Impact of using Classical Gram
Schmidt on execution time of the D-Orthogonalization
phase. Comparison on 28-core system.

Graph Default Alg. (MGS) CGS Rel.
Time(s) Time (s) Speedup

urand27 5.9 2.7 2.2×
kron27 3.0 1.1 2.8×
sk-2005 2.0 0.8 2.5×
twitter7 1.8 0.7 2.5×
road_usa 0.8 0.4 2.1×

4.5 ParHDE Extensions and Applications
4.5.1 Other graph drawing algorithm variants. At least three other
algorithms can be viewed as special cases or trivial extensions
of HDE/ParHDE. If we just perform orthogonalization instead of

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ashirbad Mishra, Shad Kirmani, and Kamesh Madduri

D-orthogonalization (as shown in Algorithm 1), we get vectors
that are approximations to the eigenvectors of the Laplacian. For
graphs with uniform degree distributions, the results are more or
less identical. We can obtain the coordinates for this case with a
trivial change and a minor impact on running time. We discussed
performance of PHDE and PivotMDS in the prior sections. Because
the HDE algorithm designed by Koren [30, 31] (and as used in this
paper) was proposed after the original PHDE algorithm [23, 24],
nearly all papers mean PHDE when they refer to HDE (e.g., [6, 17,
21]). We do not include actual drawings in this submission, because
they have been comprehensively evaluated in prior work [6, 17, 21],
and we get similar drawings with our code. To provide a comparison
to the barth5 drawings shown in Figure 1, we give in Figure 7
drawings generated with ParHDE and randomly-chosen pivots
(top), with PHDE (middle), and with PivotMDS (bottom). All the
drawings capture global structure with four “holes”.

4.5.2 A “Zoom” feature for multilevel interactive visualization. Since
we have the capability of real-time layout for million-edge graphs,
we implemented a “zoom” feature in ParHDE. The idea is that
the user can select a vertex in the global layout, and a zoomed-
in visualization of the neighborhood can be shown. See Figure 8
for an example of a visualization of the 10-hop neighborhood of a
random vertex in the barth5 graph. This would be useful for future
browser-based interactive graph visualization.

4.5.3 Use as preprocessing step for iterative eigensolver. It was noted
in prior work by Kirmani et al. [27] that HDE followed by a light-
weight weighted centroid refinement step can closely approximate
the eigenvectors (i.e., one could go from the top drawing to the
bottom drawing in Figure 1). Further, in Table 6 of [27], it is shown
that this scheme is 22× to 131× than the power iteration across a
collection of test graphs. These results indicate that ParHDE could
be used as a preprocessing step for modern eigensolvers such as
LOBPCG [29].

4.5.4 Miscellaneous extensions. It is known that PHDE’s layout
serves as a good initialization for layout using stress majoriza-
tion [16]. We could consider replacing PHDE by ParHDE to see if
this speeds up this optimization problem. The vertex coordinates
from ParHDE can be used by geometric graph partitioners. The
ScalaPart [28] partitioner uses a force-directed layout to compute
coordinates. We can use ParHDE instead. Vertex coordinates can
also be used to reduce the work performed in the Kernighan-Lin
based refinement stages of graph partitioners.

We have used the layouts to visualize output of graph partition-
ing and clustering algorithms, by using different colors for intra-
and inter-partition edges. These visualizations shed insights into
the inner workings of partitioning/clustering algorithms.

5 CONCLUSIONS AND FUTUREWORK
We summarize key conclusions from the evaluation: (i) ParHDE’s
execution time is in the order of minutes for billion-edge graphs: in
specific, for four graphs with edge counts between 1.2 billion to 2.1
billion edges (and vertex counts between 42 million to 134 million),
the running time ranged from 10 seconds to 53 seconds. (ii) We
can organize ParHDE into three phases: a graph traversal phase, a

Figure 7: Various drawings of the barth5 graph (also see Fig-
ure 1) using ParHDE with randomly-chosen sources (top),
PHDE (middle), and PivotMDS (bottom).

sparse matrix vector multiplication (SpMV) phase, and an orthogo-
nalization phase. We observe that, as expected, the graph traversal
and the matrix multiplication phases have a linear dependence on
the number of source vertices, and the orthogonalization phase
has a quadratic dependence. (iii) We noted that the initial ordering
of vertex identifiers has a significant performance impact on the
SpMV step. In future work, we will adapt ParHDE to be compatible
with the multilevel approach and use ParHDE as a preprocessing
step for eigensolvers and geometric graph partitioning methods.

Fast Spectral Graph Layout on Multicore Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Figure 8: A zoomed drawing of the 10-hop neighborhood of
a vertex in the barth5 graph.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Founda-
tion (NSF) grants CCF-1439057 and OAC-1253881. The work also
used the Extreme Science and Engineering Discovery Environment
(XSEDE) Bridges supercomputer at the Pittsburgh Supercomput-
ing Center through allocations TG-SEE180003 and TG-SEE180004.
XSEDE is supported by NSF grant number ACI-1548562.

REFERENCES
[1] Alessio Arleo, Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. 2017.

Large graph visualizations using a distributed computing platform. Information
Sciences 381 (2017), 124 – 141.

[2] Scott Beamer. 2017. The GAP Benchmark Suite. https://github.com/sbeamer/
gapbs, last accessed June 2020.

[3] Scott Beamer, Krste Asanović, and David Patterson. 2013. Direction-Optimizing
Breadth-First Search. Scientific Programming 21, 3-4 (2013), 137–148.

[4] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark
Suite. https://arxiv.org/abs/1312.3749, last accessed June 2020.

[5] Ulrik Brandes and Christian Pich. 2007. Eigensolver Methods for Progressive Mul-
tidimensional Scaling of Large Data. In Proc. Graph Drawing (GD), M. Kaufmann
and D. Wagner (Eds.). Springer, Berlin, Heidelberg, 42–53.

[6] Ulrik Brandes and Christian Pich. 2009. An Experimental Study on Distance-
Based Graph Drawing. In Proc. Graph Drawing (GD), I. G. Tollis and M. Patrignani
(Eds.). Springer, Berlin, Heidelberg, 218–229.

[7] Govert G. Brinkmann, Kristian F.D. Rietveld, and FrankW. Takes. 2017. Exploiting
GPUs for Fast Force-Directed Visualization of Large-Scale Networks. In Proc.
Int’l. Conf. on Parallel Processing (ICPP). IEEE, Piscataway, NJ, 382–391.

[8] Ali Civril, Malik Magdon-Ismail, and Eli Bocek-Rivele. 2006. SDE: Graph Drawing
Using Spectral Distance Embedding. In Proc. Graph Drawing (GD), P. Healy and
N. S. Nikolov (Eds.). Springer, Berlin, Heidelberg, 512–513.

[9] Ali Çivril, Malik Magdon-Ismail, and Eli Bocek-Rivele. 2007. SSDE: Fast Graph
Drawing Using Sampled Spectral Distance Embedding. In Proc. Graph Drawing
(GD), M. Kaufmann and D. Wagner (Eds.). Springer, Berlin, Heidelberg, 30–41.

[10] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1 (2011), 1–25. https://sparse.tamu.edu/,
last accessed June 2020.

[11] Laxman Dhulipala. 2018. GBBS: Graph Based Benchmark Suite. https://github.
com/ldhulipala/gbbs, last accessed June 2020.

[12] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable. In Proc. Symp. on Parallelism
in Algorithms and Architectures (SPAA). ACM, New York, NY, 393–404.

[13] Niklas Elmqvist, Thanh-Nghi Do, Howard Goodell, Nathalie Henry, and Jean-
Daniel Fekete. 2008. ZAME: Interactive Large-Scale Graph Visualization. In Proc.
Pacific Visualization Symposium. IEEE, Piscataway, NJ, 215–222.

[14] Yaniv Frishman and Ayellet Tal. 2007. Multi-Level Graph Layout on the GPU.
IEEE Trans. on Visualization and Computer Graphics 13, 6 (Nov 2007), 1310–1319.

[15] Thomas M. J. Fruchterman and Edward M. Reingold. 1991. Graph drawing
by force-directed placement. Software: Practice and Experience 21, 11 (1991),
1129–1164.

[16] Emden R. Gansner, Yehuda Koren, and Stephen North. 2005. Graph Drawing by
Stress Majorization. In Proc. Graph Drawing (GD), J. Pach (Ed.). Springer, Berlin,
Heidelberg, 239–250.

[17] Helen Gibson, Joe Faith, and Paul Vickers. 2013. A survey of two-dimensional
graph layout techniques for information visualisation. Information Visualization
12, 3-4 (2013), 324–357.

[18] Apeksha Godiyal, Jared Hoberock, Michael Garland, and John C. Hart. 2009.
Rapid Multipole Graph Drawing on the GPU. In Proc. Graph Drawing (GD), I. G.
Tollis and M. Patrignani (Eds.). Springer, Berlin, Heidelberg, 90–101.

[19] Teofilo F. Gonzalez. 1985. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science 38 (1985), 293–306.

[20] Gaël Guennebaud, Benoıt Jacob, Philip Avery, Abraham Bachrach, and Sebastien
Barthelemy. 2010. Eigen v3. http://eigen.tuxfamily.org, last accessed June 2020.

[21] Stefan Hachul and Michael Jünger. 2006. An Experimental Comparison of Fast
Algorithms for Drawing General Large Graphs. In Proc. Graph Drawing (GD),
P. Healy and N. S. Nikolov (Eds.). Springer, Berlin, Heidelberg, 235–250.

[22] Kenneth M Hall. 1970. An r-dimensional quadratic placement algorithm. Man-
agement science 17, 3 (1970), 219–229.

[23] David Harel and Yehuda Koren. 2002. Graph Drawing by High-Dimensional
Embedding. In Proc. Graph Drawing (GD), M. T. Goodrich and S. G. Kobourov
(Eds.). Springer, Berlin, Heidelberg, 207–219.

[24] David Harel and Yehuda Koren. 2004. Graph Drawing by High-Dimensional
Embedding. Journal of Graph Algorithms and Applications 8, 2 (2004), 195–214.

[25] Yifan Hu and Lei Shi. 2015. Visualizing large graphs. Wiley Interdisciplinary
Reviews: Computational Statistics 7, 2 (2015), 115–136.

[26] Stephen Ingram, Tamara Munzner, and Marc Olano. 2009. Glimmer: Multilevel
MDS on the GPU. IEEE Trans. on Visualization and Computer Graphics 15, 2
(March 2009), 249–261.

[27] Shad Kirmani and Kames Madduri. 2018. Spectral Graph Drawing: Building
Blocks and Performance Analysis. In Proc. Workshop on Graph Algorithm Building
Blocks (GABB). IEEE, Piscataway, NJ, 269–277.

[28] Shad Kirmani and Padma Raghavan. 2013. Scalable parallel graph partitioning. In
Proc. Int’l. Conf. on high performance computing, networking, storage and analysis
(SC). ACM, New York, NY, 1–10.

[29] Andrew V. Knyazev. 2001. Toward the optimal preconditioned eigensolver:
Locally optimal block preconditioned conjugate gradient method. SIAM Journal
on Scientific Computing (SISC) 23, 2 (2001), 517–541.

[30] Yehuda Koren. 2004. Graph Drawing by Subspace Optimization. In Proc. Sixth
Joint Eurographics - IEEE TCVG Conf. on Visualization (VISSYM). Eurographics
Association, Goslar, DEU, 65–74.

[31] Yehuda Koren. 2005. Drawing graphs by eigenvectors: theory and practice.
Computers & Mathematics with Applications 49, 11 (2005), 1867–1888.

[32] Steven J. Leon, Åke Björck, and Walter Gander. 2013. Gram-Schmidt orthogonal-
ization: 100 years and more. Numerical Linear Algebra with Applications 20, 3
(2013), 492–532.

[33] Kamesh Madduri and Shad Kirmani. 2019. SpectralGraphDrawing. https://github.
com/kmadduri/SpectralGraphDrawing, last accessed June 2020.

[34] Ulrich Meyer and Peter Sanders. 2003. ∆-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms 49, 1 (2003), 114 – 152.

[35] Henning Meyerhenke, Martin Nöllenburg, and Christian Schulz. 2018. Draw-
ing Large Graphs by Multilevel Maxent-Stress Optimization. IEEE Trans. on
Visualization and Computer Graphics 24, 5 (May 2018), 1814–1827.

[36] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–
905.

[37] Julian Shun, Laxman Dhulipala, and Guy Blelloch. 2014. A Simple and Practical
Linear-work Parallel Algorithm for Connectivity. In Proc. Symp. on Parallelism in
Algorithms and Architectures (SPAA). ACM, New York, NY, 143–153.

[38] Daniel Spielman. 2012. Spectral Graph Theory. In Combinatorial Scientific
Computing, Uwe Naumann and Olaf Schenk (Eds.). CRC Press, Boca Raton, FL,
Chapter 18, 495–524.

[39] Warren S. Torgerson. 1965. Multidimensional scaling of similarity. Psychometrika
30, 4 (1965), 379–393.

[40] Sebastiano Vigna. 2013. Fibonacci Binning. https://arxiv.org/abs/1312.3749, last
accessed June 2020.

[41] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel Math Kernel Library. In High-Performance
Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC Architectures.
Springer International Publishing, Cham, 167–188.

[42] Yuichiro Yasui and Katsuki Fujisawa. 2017. Fast, Scalable, and Energy-Efficient
Parallel Breadth-First Search. In The Role and Importance of Mathematics in Inno-
vation, B. Anderssen, P. Broadbridge, Y. Fukumoto, N. Kamiyama, Y. Mizoguchi,
K. Polthier, and O. Saeki (Eds.). Springer, Singapore, 61–75.

[43] Enas Yunis, Rio Yokota, and Aron Ahmadia. 2012. Scalable Force Directed Graph
Layout Algorithms Using Fast Multipole Methods. In Proc. Int’l. Symp. on Parallel
and Distributed Computing (ISPDC). IEEE, Piscataway, NJ, 180–187.

https://github.com/sbeamer/gapbs
https://github.com/sbeamer/gapbs
https://arxiv.org/abs/1312.3749
https://sparse.tamu.edu/
https://github.com/ldhulipala/gbbs
https://github.com/ldhulipala/gbbs
http://eigen.tuxfamily.org
https://github.com/kmadduri/SpectralGraphDrawing
https://github.com/kmadduri/SpectralGraphDrawing
https://arxiv.org/abs/1312.3749

	Abstract
	1 Introduction
	2 Background and Prior Work
	2.1 Preliminaries
	2.2 High-dimensional embedding (HDE)
	2.3 Related Work

	3 Shared-memory Parallelization
	3.1 Implementation Details
	3.2 Parallelization of PHDE and PivotMDS
	3.3 Extension to weighted graphs

	4 Evaluation
	4.1 Experimental Setup
	4.2 Speedup over Prior Work
	4.3 Running time Breakdown and Parallel Scaling
	4.4 Additional Performance Analysis
	4.5 ParHDE Extensions and Applications

	5 Conclusions and Future Work
	Acknowledgments
	References

