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ABSTRACT
Click-through rate (CTR) prediction is one of the most central tasks
in online advertising systems. Recent deep learning-based models
that exploit feature embedding and high-order data nonlinearity
have shown dramatic successes in CTR prediction. However, these
models work poorly on cold-start ads with new IDs, whose embed-
dings are not well learned yet. In this paper, we propose GraphMeta
Embedding (GME) models that can rapidly learn how to generate
desirable initial embeddings for new ad IDs based on graph neural
networks and meta learning. Previous works address this prob-
lem from the new ad itself, but ignore possibly useful information
contained in existing old ads. In contrast, GMEs simultaneously
consider two information sources: the new ad and existing old ads.
For the new ad, GMEs exploit its associated attributes. For exist-
ing old ads, GMEs first build a graph to connect them with new
ads, and then adaptively distill useful information. We propose
three specific GMEs from different perspectives to explore what
kind of information to use and how to distill information. In par-
ticular, GME-P uses Pre-trained neighbor ID embeddings, GME-G
uses Generated neighbor ID embeddings and GME-A uses neighbor
Attributes. Experimental results on three real-world datasets show
that GMEs can significantly improve the prediction performance in
both cold-start (i.e., no training data is available) and warm-up (i.e.,
a small number of training samples are collected) scenarios over
five major deep learning-based CTR prediction models. GMEs can
be applied to conversion rate (CVR) prediction as well.
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1 INTRODUCTION
Click-through rate (CTR) prediction plays an important role in
online advertising systems. It aims to predict the probability that
a user will click on a specific ad. The predicted CTR impacts both
the ad ranking strategy and the ad charging model [28, 57]. For
example, the ad ranking strategy generally depends on CTR × bid,
where bid is the benefit the system receives if an ad is clicked.
Moreover, according to the cost-per-click (CPC) or the optimized
cost-per-click (oCPC) charging model, advertisers are only charged
once their ads are clicked by users. Therefore, in order to maintain a
desirable user experience and to maximize the revenue, it is crucial
to estimate the CTR accurately.

CTR prediction has attracted lots of attention from both academia
and industry [7, 14, 29, 36, 45, 50, 55, 57]. In recent years, deep
learning-based models such as Deep Neural Network (DNN) [7],
Product-basedNeural Network (PNN) [37],Wide&Deep [7], DeepFM
[11], xDeepFM [21] and AutoInt [45] are proposed to automatically
learn latent feature representations and complicated feature inter-
actions in different manners. These models generally follow an
Embedding and Multi-layer perceptron (MLP) paradigm, where an
embedding layer transforms each raw input feature into a dense
real-valued vector representation in order to capture richer seman-
tics and to overcome the limitations of one-hot encoding [26].

Despite the remarkable success of these models, it is extremely
data demanding to well learn the embedding vectors. It has been
widely known that a well-learned embedding for an ad ID can
largely improve the CTR prediction accuracy [7, 11, 15, 28, 37, 57].
When a new ad is added to the candidate pool, its ID is never seen
in the training data and therefore no embedding vector is available.
A randomly generated ID embedding is unlikely to lead to good
prediction performance. Moreover, for ads with a small number of
training samples, it is hard to train their embeddings as good as
those with abundant training data. These difficulties are known as
the cold-start problem in CTR prediction.

In the domain of cold-start recommendation, some methods
propose to use side information, e.g., user attributes [40, 43, 54]
and/or item attributes [41, 42, 47]. However, in the CTR prediction
task, side information is already used. The aforementioned CTR
prediction models are all feature-rich models, which already take
user attributes and ad attributes as input.

Another possible way to tackle this problem is to actively collect
more training data in a short time. For example, [20, 27, 44, 46] use
contextual-bandit approaches and [10, 12, 34, 58] design interviews
to collect specific information with active learning. However, these
approaches still cannot lead to satisfactory prediction performance
before sufficient training data are collected.

We tackle the cold-start problem for new ads from a different
perspective, which is to generate desirable initial embeddings for
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new ad IDs in a meta learning framework, even when the new ads
have no training data at all. Along this line, Pan et al. propose the
Meta-Embedding model [32] by exploiting the associated attributes
of the new ad. However, this model only considers the new ad
itself, but ignores possibly useful information contained in existing
old ads that may help boost the prediction performance. Another
meta learning-based model MeLU [19] is proposed to estimate
a new user’s preferences with a few consumed items. It locally
updates a user’s decision-making process based on the user’s item-
consumption pattern. This model does not apply to our problem
and it also considers the target user alone.

In this paper, we propose Graph Meta Embedding (GME) models
to learn how to generate desirable initial embeddings for new ad IDs
based on graph neural networks and meta learning. GMEs contain
two major components: 1) embedding generator (EG) and 2) graph
attention network (GAT) [48], where the aim of EG is to generate
an ID embedding and the aim of GAT is to adaptively distill infor-
mation. The main idea of GMEs is to simultaneously consider two
information sources: 1) the new ad itself and 2) existing old ads. For
the new ad, GMEs exploit its associated attributes. For existing old
ads, GMEs first build a graph to connect them with new ads, and
then utilize the GAT to adaptively distill useful information. This
process is non-trivial, and we propose three specific GMEs from dif-
ferent perspectives. In particular, GME-P uses Pre-trained neighbor
ID embeddings, GME-G uses Generated neighbor ID embeddings
and GME-A uses neighbor Attributes. In other words, although the
three GME models all exploit the GAT, they differ in what kind of
information to use and how to distill information.

In order to train GMEs, we use a gradient-based meta learning
approach [32], which generalizes Model-Agnostic Meta-Learning
(MAML) [9]. We view the learning of ID embedding of each ad
as a task. We use meta learning because the number of unique
ads is much smaller than the number of samples and we need fast
adaptation. The loss function considers two aspects: 1) cold-start
phase: when a new ad comes in, one should make predictions with
a small loss and 2) warm-up phase: after observing a small number
of labeled samples, one should speed up the model fitting to reduce
the loss for subsequent prediction. As a result, GMEs can improve
the CTR prediction performance on new ads in both the cold-start
phase (i.e., no training data is available) and the warm-up phase
(i.e., a small number of training samples are collected).

The main contributions of this work are summarized as follows:

• We address the cold-start CTR prediction problem for new
ads from a different perspective. The main idea is to build an
ad graph and learn to generate desirable initial embeddings
for new ad IDs by taking into account of both the new ad
itself and other related old ads over the graph.

• We propose three specific Graph Meta Embedding (GME)
models to generate initial embeddings for new ad IDs from
different perspectives. In particular, GME-P uses Pre-trained
neighbor ID embeddings, GME-G uses Generated neighbor
ID embeddings and GME-A uses neighbor Attributes. We
make the implementation code publicly available1.

1https://github.com/oywtece/gme

Table 1: Each row is an instance for CTRprediction. The first
column is the label (1 - clicked, 0 - unclicked). Each of the
other columns is a field. Instantiation of a field is a feature.

Label User ID User Age Ad Title
1 2135147 24 Beijing flower delivery
0 3467291 31 Nike shoes, sporting shoes
0 1739086 45 Female clothing and jeans

Ad ID Ad attributes Other features

Ad ID 
embedding

Multi-layer Perceptron

Prediction

Ad attribute 
embeddings

Other feature 
embeddings

Figure 1: Illustration of typical deep CTR predictionmodels.

• We conduct experiments on three large-scale real-world
datasets. Experimental results show that GMEs can signifi-
cantly improve the prediction performance in both cold-start
and warm-up scenarios over five major deep learning-based
CTR prediction models.

2 BACKGROUND
2.1 Problem Formulation
The task of CTR prediction in online advertising is to build a
prediction model to estimate the probability of a user clicking on a
specific ad. Each instance can be described by multiple fields such as
user information (“User ID”, “City”, “Age”, etc.) and ad information
(“Ad ID”, “Category”, “Title”, etc.). The instantiation of a field is a
feature. For example, the “User ID” field may contain features such
as “2135147” and “3467291”. Table 1 shows some examples.

During model training, we learn parameters corresponding to
training features. After that, we make predictions on test data by
using these learned parameters. However, new ads have features
that are not seen in the training data, e.g., the ad ID. This causes the
cold-start CTR prediction problem of new ads, where we need
to make predictions in the absence of certain model parameters.
We will make this problem more concrete in the context of deep
CTR prediction models introduced below.

2.2 Typical Deep CTR Prediction Models
Typical deep learning-based CTR prediction models such as Deep
Neural Network (DNN) [7], Product-based Neural Network (PNN)
[37], Wide&Deep [7], DeepFM [11], xDeepFM [21] and AutoInt
[45] all follow an Embedding and MLP paradigm (Figure 1). We
present the modules of DNN below as an example.

Input: The input to the model is feature indices {𝑖}.
Embedding layer: 𝑖 → e𝑖 . This module encodes the input into

dense vector representations (i.e., embeddings) e𝑖 through an em-
bedding matrix E (to be learned). The 𝑖th column of the embedding



Table 2: List of notations.

Notation Meaning
𝐼𝐷0 ID of the new ad
x0 associated attributes of the new ad
z0 concatenated embedding vector acc. to x0
z̃0 refined embedding vector w.r.t. z0
g0 generated (preliminary) ID emb. of the new ad
r0 initial ID emb. of the new ad in CTR prediction
𝐼𝐷𝑖 ID of the 𝑖th ngb. (𝑖 = 1, · · · , 𝑁 )
x𝑖 associated attributes of the 𝑖th ngb.
z𝑖 concatenated embedding vector acc. to x𝑖
p𝑖 pre-trained ID embedding of the 𝑖th ngb.
g𝑖 generated ID embedding of the 𝑖th ngb.

matrix E holds the embedding vector for the 𝑖th feature. The em-
bedding vector e𝑖 for feature index 𝑖 is given by e𝑖 = E[:, 𝑖].

Concatenation layer: {e𝑖 } → s. This module concatenates the
embeddings of all the input features as a long embedding vector
s = [e1∥e2∥e3∥ · · · ], where ∥ is the concatenation operator.

Hidden layers: s → s′. This module transforms the long em-
bedding vector s into a high-level representation vector s′ through
several fully-connected (FC) layers to exploit data nonlinearity and
high-order feature interactions. In particular, s′ = 𝑓𝐿 (· · · 𝑓2 ((𝑓1 (s)))),
where 𝐿 is the number of FC layers and 𝑓𝑗 is the 𝑗th FC layer.

Prediction layer: s′ → 𝑦. Thismodule predicts the click-through
probability 𝑦 ∈ [0, 1] of the instance based on the high-level repre-
sentation vector s′ through a sigmoid function.

Model training: The model parameters are learned through the
cross-entropy loss on a training data set Y. The loss function is

𝑙𝑜𝑠𝑠 =
1
|Y|

∑︁
𝑦∈Y

[−𝑦 log𝑦 − (1 − 𝑦) log(1 − 𝑦)], (1)

where 𝑦 ∈ {0, 1} is the true label corresponding to 𝑦.
When a new ad comes in, its ID has not been trained yet and

the model cannot find its embedding in the embedding matrix. In
order to predict the CTR, a commonly used approach is to randomly
generated an embedding for the new ad ID. However, this approach
usually leads to poor prediction performance.

3 MODEL DESIGN
In the following, we propose Graph Meta Embedding (GME) mod-
els to learn how to generate desirable initial embeddings (i.e., not
random) for new ad IDs based on graph neural networks and meta
learning. These initial embeddings can lead to improved CTR pre-
diction performance in both cold-start and warm-up scenarios.

3.1 Overview
For ease of presentation, we list the notations used in Table 2.

The proposed GME models are only activated for new ads. We
illustrate the difference of ID embeddings for old ads and new ads
in Figure 2. When an ad ID is given, we first lookup the trained
embedding matrix. If the ID’s embedding can be found, then it is an
old ad and we use the found embedding [Figure 2(a)]. Otherwise,
it is a new ad and we activate a GME model to generate an initial
embedding for the ID by using the attributes of the new ad and
information from its graph neighbors [Figure 2(b)].

Embedding 
look-up

Ad ID

ID embedding

Ad ID

Ad attributes

ID embedding

Neighbors

Embedding 
generation

(a) Old ad (b) New ad

Figure 2: Illustration of ID embedding of old and new ads.

ID

category

brand title

New ad

Old ads Old ads

Old ads

ID

ID ID

Figure 3: Illustration of the ad graph. Connections between
ads are established based on their shared features. The
dashed circle illustrates an adwith the ID and three attribute
features (e.g., category, brand and title) shown.

GMEs contain two major components: 1) embedding generator
(EG) and 2) graph attention network (GAT) [48], where the aim
of EG is to generate an ID embedding and the aim of GAT is to
adaptively distill information. GME models differ in what kind of
information to use and how to distill information.

For convenience, we use the same notations for model param-
eters (W, V and a) in the following. Parameters with the same
notation in different models have the same functionality, but possi-
bly different dimensions (which are clear in each specific context).

3.2 Graph Creation
As the GME models utilize both the new ad and related old ads, the
first step is to build a graph to connect them. However, unlike social
networks where exist follower-followee or friendship relationships,
there is no natural graph on ads. One possible way is to exploit the
co-click relationships, but this approach is clearly not suitable for
new ads. In this paper, we build connections between ads based on
their features (illustrated in Figure 3).

Typically, one can use an adjacency matrix A [4], where the 𝑖th
row represents a new ad 𝑖 , the 𝑗th column represents an existing
old ad 𝑗 and [A]𝑖 𝑗 is the adjacency score between 𝑖 and 𝑗 . This
approach is highly time-consuming because it needs to repeatedly
scan the whole set of existing old ads for each new ad.

Instead, we use the following approach for fast graph creation.
Given a new ad, we obtain its ID and associated attributes (e.g.,
category, brand and title). For each attribute, we can retrieve old
ads which have the same attribute. The union of these old ads then
form the graph neighbors of the new ad.



ID:1, category:1, brand:1
ID:2, category:1, brand:2
ID:3, category:2, brand:2
ID:4, category:2, brand:3

category:1 -> ID:1, ID:2
category:2 -> ID:3, ID:4
brand:1 -> ID:1
brand:2 -> ID:2, ID:3
brand:3 -> ID:4

From category:1 -> ID:1, ID:2
From brand:2 -> ID:2, ID:3

Neighbors of ID:5 ->
ID:2 (2), ID:1 (1), ID:3 (1)

ID:5, category:1, brand:2

1) Get training data

2) Build reverse index dicts
(key: attribute, val: IDs)

3) Get new ad data

4) Retrieve neighbors

5) Score and rank neighbors

Figure 4: Illustration of fast graph creation.

In particular, we implement this idea as follows (summarized in
Figure 4, where Steps 1-2 are performed only once for old ads).

• Build a reverse index dictionary, where the key is the at-
tribute and the value is the set of ad IDs which have this
attribute. For example, “category:1→ ID:1, ID:2”; “brand:2
→ ID:2, ID:3”.

• Given a new ad, retrieve its neighbors based on each attribute.
For example, the new ad is “ID:5, category:1, brand:2”, we
then retrieve its neighbors based on the two attributes. The
retrieved neighbors are ID:1, ID:2 and ID:3.

• Calculate the similarity score w.r.t. each neighbor and keep
the top-𝑁 neighbors (break the tie randomly). We define the
score as the number of attributes that the neighbor can be
retrieved from. For example, ID:2 has a score as 2 because
it can be retrieved from 2 attributes. This step can keep the
most useful neighbors for subsequent processing.

The above approach is much faster because we only need to
scan the set of old ads once (to build the reserve index dictionary)
instead of multiple times. Without loss of generality, we denote the
new ad as 𝐼𝐷0 and the set of its graph neighbors as N = {𝐼𝐷𝑖 }𝑁𝑖=1.

3.3 GME-P: Using Pre-trained Neighbor ID
Embeddings

The first GME model we present is GME-P, which exploits the
attributes of the new ad and the pre-trained ID embeddings of
neighboring old ads. We illustrate its structure in Figure 5(a).

The idea is that: As we have obtained the pre-trained ID embed-
dings {p𝑖 } of neighboring old ads by themain CTR predictionmodel
(e.g. DNN in §2.2), we would like to exploit useful information in
these embeddings. However, we only have attribute embeddings
rather than ID embedding of the new ad. Therefore, we first gen-
erate a preliminary ID embedding g0 for the new ad by using its
associated attributes. As both {p𝑖 } and g0 are ID embeddings, we
can then leverage useful information contained in {p𝑖 } to improve
g0 and obtained a refined ID embedding r0 for the new ad. Formally,
GME-P contains the following two steps.

3.3.1 ID Embedding Generation. We generate a preliminary
ID embedding for a cold-start ad by using its associated attribute
features (such as category, brand and title) instead of randomly.
Formally, let’s denote the features of an instance as [𝐼𝐷0, x0, o0],
where 𝐼𝐷0 is the identity of the new ad, x0 is the ad attribute

features, and o0 is other features which do not necessarily relate to
the ad such as user features and context features.

Although 𝐼𝐷0 of the new ad is not seen in the training data, the
associated ad attributes x0 are usually observed. We then lookup
the embeddings corresponding to x0 and obtain a long concate-
nated embedding vector z0. Based on z0, we generate a preliminary
embedding g0 for 𝐼𝐷0 through an embedding generator (EG) which
implements g0 = 𝑓 (z0). We use a simple instantiation of the EG as

g0 = 𝛾 tanh(Wz0), (2)

where W is the parameter (to be learned) of a fully connected
layer, tanh is the activation function and 𝛾 ∈ (0, 1] is a scaling
hyperparameter. We use 𝛾 to restrict the range of g0 in [−𝛾,𝛾].

3.3.2 ID Embedding Refinement. We then generate a refined
ID embedding r0 for the new ad based on its preliminary ID em-
bedding g0 and pre-trained ID embeddings {p𝑖 } of its neighbors.

A simple way is to take the average of these ID embeddings and
obtain r0 = average(g0, p1, p2, · · · , p𝑁 ). But this is clearly not a
wise choice because some old ads may not be quite informative.

Alternatively, we resort to the Graph Attention Network (GAT)
[48], which is proposed to operate on graph-structured data and to
learn high-level data representations. It allows for assigning differ-
ent importances to different graph nodes within a neighborhood
through the attention mechanism [2] while dealing with different
sized neighborhoods.

We first compute the attention coefficient between g0 and p𝑖 as

𝑐0𝑖 = F (Vg0,Vp𝑖 ),
where F is a function to implement the attention mechanism and
V is a shared weight parameter which transforms the input into
higher-level features and obtains sufficient expressive power. We
also compute the attention coefficient for the new ad itself as

𝑐00 = F (Vg0,Vg0).
To make coefficients easily comparable across different nodes,

we normalize them using the softmax function. We implement the
attention mechanism F using a single-layer feedforward neural
network, parameterized by a weight vector a, and applying the
LeakyReLU nonlinearity (with negative input slope 0.2) [48]. The
normalized coefficients 𝛼0𝑖 can then be expressed as

𝛼0𝑖 =
exp(𝑐0𝑖 )∑𝑁
𝑗=0 exp(𝑐0𝑗 )

=

exp
(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Vg0∥Vp𝑖 ])

)
∑𝑁

𝑗=0 exp
(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Vg0∥Vp𝑗 ])

) ,
where we define p0 ≜ g0 for notational simplicity. LeakyReLU
allows to encode both positive and small negative signals [24].

Note that the index 𝑗 ranges from 0 to 𝑁 . That is, the summation
includes the new ad itself (index 0) and its neighbors (index 1 to 𝑁 ).

We then compute a weighted sum of the preliminary ID embed-
ding g0 of the new ad (with importance 𝛼00) and the pre-trained
ID embeddings {p𝑖 } of neighbors (with importance 𝛼0𝑖 ), to serve
as the refined ID embedding r0 for the new ad as

r0 = 𝐸𝐿𝑈

(
𝑁∑︁
𝑖=0

𝛼0𝑖Vp𝑖

)
,

where ELU is the exponential linear unit activation function [48],
it also allows to encode both positive and small negative signals.



Pre-trained ad ID embedding (by the main prediction model)

Generated (preliminary) ad ID embedding

Pre-trained ad attribute feature embeddings

Pre-trained other feature embeddings
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Embedding generatorAd graph

GAT

Graph attention network
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GAT

EG
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GAT
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Initial ID embedding of the new ad used in CTR prediction
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(a) GME-P (b) GME-G (c) GME-A

old

EG
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Refined, higher-level ad attribute feature embeddings
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p1

p2

p3

r0

g0

g1

g2

g3

r0 r0

z0

z1

z2

z3

z0

Figure 5: Graph Meta Embedding (GME) models (best viewed in color). Please refer to §3.3 to §3.5 for more details.

3.3.3 Analysis. GME-P seems reasonable. However, the pre-training
process (e.g., based on the DNN model) does not impose any con-
straint between attributes and the ID embedding as in Eq. (2) and
all the embeddings are randomly initialized. It is possible that given
the same attributes, the corresponding p0 and g𝑖 are quite differ-
ent (because they correspond to two different IDs). It makes the
attention computation between p0 and g𝑖 meaningless.

3.4 GME-G: Using Generated Neighbor ID
Embeddings

To overcome the limitation of GME-P, we propose GME-G in this
section. Instead of using pre-trained ID embeddings of old ads,
GME-G reuses the EG for the new ad, and generates ID embeddings
{g𝑖 } for old ads using their corresponding attributes as well. We
illustrate its structure in Figure 5(b).

3.4.1 ID Embedding Generation. We use the same EG to gen-
erate the preliminary ID embedding g0 for the new ad and the ID
embeddings {g𝑖 } for existing old ads as

g0 = 𝛾 tanh(Wz0), g𝑖 = 𝛾 tanh(Wz𝑖 ) .
By doing so, we can guarantee that when ad attributes are the

same (i.e., z𝑖 = z0), we have g𝑖 = g0. Subsequently, the attention
computation between g𝑖 and g0 makes more sense.

3.4.2 ID Embedding Refinement. The attention coefficients be-
tween the new ad and the 𝑖th neighboring old ad is then given by

𝛼0𝑖 =
exp

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Vg0∥Vg𝑖 ])

)
∑𝑁

𝑗=0 exp
(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Vg0∥Vg𝑗 ])

) .
Finally, the refined ID embedding r0 for the new ad is given by a

linear combination of the generated ID embedding of the new ad
and those of the neighboring old ads as

r0 = 𝐸𝐿𝑈

(
𝑁∑︁
𝑖=0

𝛼0𝑖Vg𝑖

)
.

3.4.3 Analysis. GME-G does overcome the limitation of GME-P
and it makes the attention coefficients between the new ad and old
ads meaningful. However, GME-G repeatedly performs ID embed-
ding generation for old ads. As the generated ID embedding could
contain certain noise, the repetition can spread the noise.

3.5 GME-A: Using Neighbor Attributes
Given the limitation of GME-G, we further propose GME-A in this
section, whose structure is shown in Figure 5(c). GME-A reverses
the order of the “generation” step and the “refinement” step. More-
over, GME-A refines the attribute representation rather than the
preliminary ID embedding.

3.5.1 Attribute Embedding Refinement. GME-A first obtains
a refined attribute representation of the new ad, which aggregates
useful information from the new ad itself and its neighboring old ads
on the attribute level. Formally, the attention coefficients between
the new ad and the 𝑖th neighboring old ad is computed based on
attribute embedding vectors z0 and z𝑖 as

𝛼0𝑖 =
exp

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Vz0∥Vz𝑖 ])

)
∑𝑁

𝑗=0 exp
(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [Vz0∥Vz𝑗 ])

) .
We then obtain a refined, high-level attribute embedding vector

z̃0 for the new ad by performing a linear combination of the original
embedding vectors as

z̃0 = 𝐸𝐿𝑈

(
𝑁∑︁
𝑖=0

𝛼0𝑖Vz𝑖

)
.

3.5.2 ID Embedding Generation. Given this refined attribute
representation, we then generate the initial ID embedding of the
new ad as

r0 = 𝛾 tanh(Wz̃0) .

3.5.3 Analysis. GME-A directly compares the attributes of the
new ad and neighboring old ads, thus avoiding the “incomparable”



problem between the generated ID embedding and the pre-trained
ID embeddings in GME-P. GME-A only uses the EG once, thus also
avoiding the “repetition” issue in GME-G.

3.6 Model Learning
We first train a main model (e.g., DNN) for CTR prediction using
old ads. We then obtain the model parameters Θ, including the
embedding vectors of features and other weight parameters. As Θ
is usually trained with a large amount of data, we are confident
about its effectiveness. Therefore, when training the GME models,
we freeze Θ and only learn the parameters Ψ ≜ {W,V, a} that are
specific to these models.

As can be seen, the number of unique ad IDs matters in the
training of parameters Ψ. As the number of unique ad IDs is much
smaller than the number of samples, we resort to meta learning
for fast adaptation. We view the learning of ID embedding of each
ad as a task and use a gradient-based meta learning approach [32],
which generalizes Model-Agnostic Meta-Learning (MAML) [9].

The loss consider two aspects: 1) the error of CTR prediction for
the new ad should be small and 2) after a small number of labeled
examples are collected, a few gradient updates should lead to fast
learning. This is achieved by combining the following two losses 𝑙𝑎
and 𝑙𝑏 .

For a given training old ad 𝐼𝐷0, we randomly select two disjoint
minibatches of labeled data D𝑎 and D𝑏 , each with𝑀 samples. We
first make predictions using the initial ID embedding r0 produced
by a GME model on the first minibatch D𝑎 . For the 𝑗 th sample, we
obtain its prediction as 𝑦𝑎𝑗 . The average loss over these samples is
given by

𝑙𝑎 =
1
𝑀

𝑀∑︁
𝑗=1

[−𝑦𝑎𝑗 log𝑦𝑎𝑗 − (1 − 𝑦𝑎𝑗 ) log(1 − 𝑦𝑎𝑗 )],

where 𝑦𝑎𝑗 is the true label.
Next, by computing the gradient of 𝑙𝑎 w.r.t. the initial embed-

ding and taking a step of gradient descent, we get a new adapted
embedding

r′0 = r0 − [
𝜕𝑙𝑎

𝜕r0
,

where [ > 0 is the step size of gradient descent.
We then test this new adapted embedding r′0 on the second

minibatch D𝑏 , and obtain the average loss

𝑙𝑏 =
1
𝑀

𝑀∑︁
𝑗=1

[−𝑦𝑏 𝑗 log𝑦𝑏 𝑗 − (1 − 𝑦𝑏 𝑗 ) log(1 − 𝑦𝑏 𝑗 )] .

The final loss for learning the parameters Ψ is given by

𝑙 = 𝛽𝑙𝑎 + (1 − 𝛽)𝑙𝑏 ,

where 𝛽 ∈ [0, 1] is a coefficient to balance the two losses that
consider the aforementioned two aspects.

4 EXPERIMENTS
4.1 Datasets
We evaluate the performance of the proposed GMEmodels on three
real-world datasets, whose statistics are listed in Table 3.

(1) MovieLens-1M (ML-1M) dataset2. It is one of the most
well-known benchmark dataset. This dataset contains 1 million
movie rating instances over thousands of movies and users. Each
movie has an ID and can be seen as an ad in our scenario. The
associated attribute features include year of release, title and genres.
Other features include user ID, gender, age and occupation. We
convert the ratings that are at least 4 to label 1 and others to label
0. This is a common practice for evaluation in implicit feedback
scenarios such as CTR prediction [13].

(2) Taobao ad dataset3. It is gathered from the traffic logs in
Taobao [23] and is originally used for the conversion rate (CVR)
prediction task. Each ad has an ID and the associated attribute
features include category ID, shop ID, brand ID and intention node
ID. Other features include user features and context features such
as user ID, gender, age and categorical ID of user profile.

(3)News feed ad dataset. It is gathered from an industrial news
feed advertising system and is used for CTR prediction. Each ad
has an ID and the associated attribute features include industry ID,
source ID, account ID and title. Other features include user features
and context features such as user ID, gender, age and OS.

4.2 Experimental Settings
4.2.1 Main CTR Prediction Models. Because GMEs are model-
agnostic (they only generate initial embeddings for new ad IDs),
they can be applied upon various existing CTR prediction models
that require feature embeddings. We conduct experiments on the
following representative CTR prediction models:

(1) DNN. Deep Neural Network in [7]. It contains an embedding
layer, several FC layers and an output layer.

(2) PNN. Product-based Neural Network in [37]. It introduces a
production layer into DNN.

(3) Wide&Deep. Wide&Deep model in [7]. It combines logistic
regression (LR) and DNN.

(4) DeepFM. DeepFM model in [11]. It combines factorization
machine (FM) [38] and DNN.

(5) AutoInt. AutoInt model in [45]. It consists of a multi-head
self-attentive network with residual connections and DNN.

There are other CTR prediction models that take additional in-
formation into consideration. For example, Deep Interest Network
(DIN) [57] models user interest based on historical click behavior.
Deep Spatio-Temporal Network (DSTN) [28] jointly exploits contex-
tual ads, clicked ads and unclicked ads for CTR prediction. As most
datasets do not contain behavior sequence information or position
information, we do not include these models in our experiments.

4.2.2 Cold-Start ID Embedding Models. For each main CTR
prediction model, we evaluate the following cold-start ID embed-
ding models, which generate initial embeddings for new ad IDs.

(1) RndEmb. It uses a randomly generated embedding for the
new ad ID.

(2) MetaEmb. MetaEmbedding model in [32]. It uses the at-
tributes x0 of the new ad to generate an initial embedding
of the new ad ID. MetaEmb serves as a baseline which only
considers the new ad.

2http://www.grouplens.org/datasets/movielens/
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=408



Table 3: Statistics of experimental datasets.

Dataset # fields # old
ad IDs

# samples to train
the main predic-
tion model

# old
ad IDs

# samples to train the
cold-start ID embed-
ding model

# new
ad IDs

# samples
for warm
up training

# samples
for testing

ML-1M 8 1,058 765,669 1,058 42,320 1,127 67,620 123,787
Taobao 23 62,209 835,450 3,177 254,160 531,593 808,806 896,615
News feed 30 5,563 3,088,542 1,761 352,000 8,379 603,335 1,346,504

(3) NgbEmb. It uses pre-trained ID embeddings of neighboring
old ads to generate an initial ID embedding of the new ad
as 𝛾 tanh(W 1

𝑁

∑𝑁
𝑖=1 p𝑖 ). NgbEmb serves as a baseline which

only considers neighbor information.
(4) GME-P. Graph Meta Embedding model which uses Pre-

trained ID embeddings {p𝑖 } of neighboring old ads and the
attributes x0 of the new ad to generate an initial embedding
of the new ad ID. It is described in §3.3.

(5) GME-G. GraphMeta Embeddingmodel which uses Generated
ID embeddings {g𝑖 } of the neighboring old ads and the at-
tributes x0 of the new ad to generate an initial embedding
of the new ad ID. It is described in §3.4.

(6) GME-A. Graph Meta Embedding model which uses the
Attributes {x𝑖 } of neighboring old ads and the attributes
x0 of the new ad to generate an initial embedding of the new
ad ID. It is described in §3.5.

4.2.3 Parameter Settings. We set the dimension of the embed-
ding vector for each feature as 10, the balancing parameter as
𝛽 = 0.1 and the number of graph neighbors for each ad as 𝑁 = 10.
For an ad ID, if the number of labeled instances is larger than a
threshold, we regard it as an old ad. This threshold is set to 300,
40 and 100 for the three datasets respectively. Old ads are used to
train the main CTR prediction model. We further sample old ads
to train the cold-start ID embedding models, where each old ad
has 20, 40 and 100 samples in each minibatch for the three datasets
respectively. For the new ads, we hold out a proportion for warm
up training (also serve as validation data) and use the remaining for
testing. Details are listed in Table 3. All the models are implemented
in Tensorflow [1] and optimized by the Adam algorithm [17]. We
run each model 3 times and report the average result.

4.2.4 Evaluation Metrics.
(1) AUC: Area Under the ROC Curve over the test set. It is a

widely used metric for CTR prediction. It reflects the proba-
bility that a model ranks a randomly chosen positive instance
higher than a randomly chosen negative instance. The larger
the better. A small improvement in AUC is likely to lead to
a significant increase in online CTR [7, 11, 28, 57].

(2) Loss: the value of Eq. (1) of the main prediction model over
the test set. The smaller the better.

4.3 Performance Comparison
4.3.1 Effectiveness in the Cold-Start Phase. Table 4 lists the
performance of various ID embedding models based on different
CTR prediction models in the cold-start phase. It is observed that
MetaEmb performs better than RndEmb, showing that using asso-
ciated attributes of the new ad can contribute useful information

and alleviate the cold-start problem. NgbEmb sometimes performs
better and sometimes performs worse than MetaEmb, showing
that simply considering the average of pre-trained neighbor ID
embeddings is not quite effective.

GME-P leads to marginal performance improvement or even
degraded performance compared with MetaEmb. It is because the
pre-trained neighbor ID embeddings and the generated ID embed-
ding from ad attributes are incomparable. As a consequence, GAT
in GME-P cannot well extract useful information from neighbors.

In contrast, GME-G performs much better than MetaEmb. Dif-
ferent from GME-P, GME-G uses generated rather than pre-trained
neighbor ID embeddings. As the preliminary ID embedding of the
new ad is also generated from ad attributes, these embeddings are
comparable. GAT can thus distill informative signals from neighbor
ID embeddings and improve the new ad’s ID embedding. GME-A
further outperforms GME-G in most cases. It is because GME-A
directly aggregates useful information from the neighbors on the
attribute level and avoids the “repetition” issue in GME-G.

These results demonstrate that considering neighbor information
and appropriately distilling useful information from them could
help alleviate the cold-start problem of new ads.

4.3.2 Effectiveness in the Warm-up Phase. Figure 6 plots the
performance of various models in the warm-up phase. We perform
two rounds of warm-up training. In the first warm-up training, we
provide a small number of training examples (related to new ads)
to the main CTR models, but with different initial ID embeddings
given by different embedding generation models. In the second
warm-up training, we provide another small number of training
examples (related to new ads) to the main CTR models, but based
on different ID embeddings learned after the first warm-up training.
It is observed that a model that results in good performance in
the cold-start phase generally leads to good performance in the
warm-up phase. GME-A not only performs best in the cold-start
phase, but also in the two warm-up rounds.

4.4 Ablation Studies
4.4.1 Effect of the Scaling Parameter. Figure 7 plots the AUC
of various models vs. the value of the scaling parameter 𝛾 . On the
ML-1M dataset, it is observed that GME-P is relatively insensitive
to 𝛾 . Differently, GME-G and GME-A perform much better when
𝛾 is large. On the Taobao dataset, GME-P performs better when 𝛾
is small while GME-G and GME-A perform better when 𝛾 is large.
GME-A performs well on a relatively wide range of 𝛾 values.

4.4.2 Effect of the Number of Neighbors. Figure 8 plots the
AUC of various models vs. the number of graph neighbors. It is
observed that generally when more neighbors are available, the



Table 4: Test AUC and Loss. Pred. model: Prediction model.
Emb. model: ID embedding generationmodel. AUC (↑) is the
larger the better. Loss (↓) is the smaller the better.

ML-1M Taobao News Feed
Pred.
model

Emb.
model

AUC Loss AUC Loss AUC Loss

DNN

RndEmb 0.7107 0.6491 0.6289 .03177 0.7350 .03602
MetaEmb 0.7144 0.6439 0.6291 .03177 0.7362 .03578
NgbEmb 0.7131 0.6442 0.6294 .03177 0.7356 .03601
GME-P 0.7146 0.6437 0.6295 .03177 0.7358 .03602
GME-G 0.7217 0.6389 0.6323 .03172 0.7371 .03562
GME-A 0.7232 0.6368 0.6336 .03168 0.7389 .03553

PNN

RndEmb 0.7162 0.6260 0.6325 .03172 0.7334 .03681
MetaEmb 0.7164 0.6256 0.6327 .03172 0.7365 .03669
NgbEmb 0.7163 0.6254 0.6330 .03171 0.7329 .03684
GME-P 0.7164 0.6258 0.6330 .03172 0.7352 .03672
GME-G 0.7172 0.6261 0.6343 .03166 0.7381 .03623
GME-A 0.7198 0.6233 0.6354 .03161 0.7392 .03617

Wide&
Deep

RndEmb 0.7122 0.6509 0.6305 .03164 0.7368 .03565
MetaEmb 0.7149 0.6510 0.6306 .03164 0.7381 .03561
NgbEmb 0.7125 0.6512 0.6306 .03165 0.7354 .03567
GME-P 0.7149 0.6510 0.6306 .03166 0.7375 .03529
GME-G 0.7166 0.6487 0.6332 .03142 0.7404 .03514
GME-A 0.7179 0.6425 0.6338 .03143 0.7413 .03503

DeepFM

RndEmb 0.7143 0.6462 0.6294 .03174 0.7315 .03584
MetaEmb 0.7146 0.6484 0.6297 .03171 0.7352 .03538
NgbEmb 0.7142 0.6467 0.6299 .03171 0.7321 .03585
GME-P 0.7146 0.6478 0.6298 .03175 0.7346 .03541
GME-G 0.7195 0.6457 0.6337 .03157 0.7378 .03524
GME-A 0.7206 0.6449 0.6345 .03160 0.7389 .03517

AutoInt

RndEmb 0.7152 0.6322 0.6331 .03193 0.7381 .03685
MetaEmb 0.7167 0.6224 0.6336 .03166 0.7401 .03672
NgbEmb 0.7154 0.6251 0.6335 .03164 0.7377 .03691
GME-P 0.7168 0.6262 0.6335 .03167 0.7394 .03676
GME-G 0.7204 0.6245 0.6402 .03154 0.7416 .03659
GME-A 0.7223 0.6218 0.6411 .03151 0.7432 .03647

performance of various GME models also improves. But the perfor-
mance may become flattened with enough number of neighbors,
e.g., the performance of GME-G does not change much when the
number of neighbors ranges from 6 to 10 on the Taobao dataset.
Moreover, some GME models may not outperform MetaEmb when
the number of neighbors is too small (e.g., 2 neighbors on the Taobao
dataset). This is possibly because the neighbors also contain noisy
information and it is hard to extract enough useful information from
too few neighbors. Therefore, an enhanced approach to retrieving
graph neighbors may lead to further improved performance.

4.4.3 Effect of theGAT. Table 5 lists the AUC of the GMEmodels
with and without the GAT component. When GAT is not used, we

(a) ML-1M (b) Taobao

Figure 6: Performance in the warm-up phase. Main predic-
tion model: DNN.

(a) ML-1M (b) Taobao

Figure 7: Effect of the scaling parameter. Main prediction
model: DNN.

(a) ML-1M (b) Taobao

Figure 8: Effect of the number of neighbors. Main prediction
model: DNN.

Table 5: Effect of the GAT. Main prediction model: DNN.

ML-1M Taobao News Feed
Emb. Model AUC Loss AUC Loss AUC Loss
GME-P\GAT 0.7131 0.6447 0.6282 .03208 0.7343 .03636
GME-P 0.7146 0.6437 0.6295 .03177 0.7358 .03602
GME-G\GAT 0.7154 0.6435 0.6301 .03176 0.7355 .03598
GME-G 0.7217 0.6389 0.6323 .03172 0.7371 .03562
GME-A\GAT 0.7156 0.6434 0.6304 .03176 0.7358 .03596
GME-A 0.7232 0.6368 0.6336 .03168 0.7389 .03553

aggregates the corresponding representations using average pool-
ing. It is observed that the inclusion of GAT can highly boost the
AUC. For example, on the ML-1M dataset, GME-A performs much
better than GME-A\GAT. Moreover, GME-A\GAT only slightly out-
performs GME-G\GAT. But GME-A largely outperforms GME-G.
These results show that GAT can better extract useful information
from neighbors than simple average pooling by assigning different
importance according to different neighbors’ properties. Moreover,
applying GAT on ad attributes leads to better performance than
applying GAT on generated ID embeddings.



4.5 Lessons Learned
We discuss some lessons learned during the experimentation with
GME models.

(1) Importance of ad IDs. One would apply the GME models
onlywhen themissing of ad IDs impacts the prediction performance
significantly. It depends on the property of each specific dataset. In
other words, if the exclusion of ad IDs does not degrade the AUC
significantly, there is no need to generate better initial embeddings
for these IDs.

(2) Intrinsic ad attributes. Ad attributes used to create the ad
graph and to generate initial ID embeddings should be intrinsic ad
attributes. That is to say, given an ad ID, the associated ad attributes
should not change in different samples. Otherwise, we use some
changing attributes to generate a fixed ID embedding vector, the
model would not be well trained. For example, a specific ad may
be displayed at position 1 in one impression and then at position
2 in another impression. Ad position thus can not be used in the
aforementioned processes.

(3) Positive samples.When training the ID embedding models
with meta learning, there should be some positive samples in most
minibatches. One can set the number 𝑀 larger for datasets with
a small proportion of positive samples, perform random sampling
multiple times and train the model multiple rounds.

5 RELATEDWORK
CTR prediction. The task of CTR prediction in online advertising
is to estimate the probability of a user clicking on a specific ad.

As generalized linear models such as Logistic Regression (LR)
[39] and Follow-The-Regularized-Leader (FTRL) [25] lack the ability
to learn sophisticated feature interactions [5], Factorization Ma-
chine (FM) [3, 38], Field-aware FM [15] and Field-weighted FM [33]
are proposed to address this limitation.

In recent years, deep learning-based models such as Deep Neural
Network (DNN) [7], Product-based Neural Network (PNN) [37],
Wide&Deep [7], DeepFM [11], xDeepFM [21] and AutoInt [45] are
proposed to automatically learn latent feature representations and
complicated feature interactions in different manners. Deep Match-
ing and Prediction (DeepMP) model [30] combines two subnets to
learn more representative feature embeddings for CTR prediction.

Some other models exploit auxiliary information. For example,
Deep Interest Network (DIN) [57] and Deep Interest Evolution
Network (DIEN) [56] model user interest based on historical click
behavior. Xiong et al. [51] and Yin et al. [53] consider various
contextual factors such as ad interaction, ad depth and query diver-
sity. Deep Spatio-Temporal Network (DSTN) [28] jointly exploits
contextual ads, clicked ads and unclicked ads for CTR prediction.
Mixed Interest Network (MiNet) [31] models long- and short-term
interests in the news and ads for cross-domain CTR prediction.

However, these models do not specifically address the cold-start
problem and they usually have unsatisfactory performance on new
ads whose IDs are not seen in the training data.

Cold-start recommendation / Cold-start CTR prediction.
Recommender systems aim to model users’ preference on items
based on their past interactions. Popular recommendation tech-
niques such as matrix factorization (MF) [18], neural matrix factor-
ization (NeuMF) [13] and their families only utilize user IDs and

item IDs. Some methods thus propose to use side information for
the cold-start scenario, e.g., using user attributes [40, 43, 54] and/or
item attributes [41, 42, 47, 54]. However, in the CTR prediction
task, side information is already used. The aforementioned CTR
prediction models are all feature-rich models, which already take
user and ad attributes as input.

Another way to tackle this problem is to actively collect more
training data in a short time. For example, [20, 27, 44, 46] use
contextual-bandit approaches and [10, 12, 34, 58] design interviews
to collect specific information with active learning. However, these
approaches still cannot lead to satisfactory prediction performance
before sufficient training data are collected.

We tackle the cold-start CTR prediction problem for new ads
from a different perspective, which is to generate desirable initial
embeddings for new ad IDs in a meta learning framework, even
when the new ads have no training data at all. Along this line,
Pan et al. propose the Meta-Embedding model [32] by exploiting
the associated attributes of the new ad. However, this model only
considers the new ad itself, but ignores possibly useful information
contained in existing old ads. Another meta learning-based model
MeLU [19] is proposed to estimate a new user’s preferences with
a few consumed items. This model does not apply to our problem
and it also considers the target user alone.

Meta Learning.Meta learning intends to designmodels that can
learn new skills or adapt to new environments rapidly with a few
training examples. It has been successfully applied in various areas
such as recommendation [19, 22, 49], natural language processing
[6, 16, 52] and computer vision [8, 9, 35].

There are three common meta learning approaches: 1) metric-
based: learn an efficient distance metric, 2) model-based: use (recur-
rent) networkswith external or internalmemory, and 3) optimization-
based: optimize the model parameters explicitly for fast learning.
The meta learning approach we used to train GMEs is optimization-
based, which generalizes Model-Agnostic Meta-Learning (MAML)
[9]. We view the learning of ID embedding of each ad as a task.
We use meta learning because the number of unique ads is much
smaller than the number of samples and we need fast adaptation.

6 CONCLUSION
In this paper, we address the cold-start CTR prediction problem for
new ads whose ID embeddings are not well learned yet. We propose
Graph Meta Embedding (GME) models that can rapidly learn how
to generate desirable initial embeddings for new ad IDs based on
graph neural networks and meta learning. Unlike previous works
that consider the new ad itself, GMEs simultaneously consider
two information sources: the new ad and existing old ads. GMEs
build a graph to connect new ads and old ads, and adaptively distill
useful information from neighboring old ads w.r.t. each given new
ad. We propose three specific GMEs from different perspectives.
Experimental results show that GMEs can significantly improve the
prediction performance in both cold-start and warm-up scenarios
over five major deep learning-based CTR prediction models. GME-
A which uses neighbor attributes performs best in most cases. In
the future, we would consider enhanced approaches to retrieving
more informative graph neighbors and alternative ways to distilling
more representative information from neighbors.
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