
Bootstrapping User and Item Representations
for One-Class Collaborative Filtering

Dongha Lee1, SeongKu Kang1, Hyunjun Ju1, Chanyoung Park2, Hwanjo Yu1∗
1Pohang University of Science and Technology (POSTECH), South Korea

2Korea Advanced Institute of Science and Technology (KAIST), South Korea
{dongha.lee, seongku, hyunjunju, hwanjoyu}@postech.ac.kr, cy.park@kaist.ac.kr

ABSTRACT
The goal of one-class collaborative filtering (OCCF) is to identify
the user-item pairs that are positively-related but have not been
interacted yet, where only a small portion of positive user-item
interactions (e.g., users’ implicit feedback) are observed. For discrim-
inative modeling between positive and negative interactions, most
previous work relied on negative sampling to some extent, which
refers to considering unobserved user-item pairs as negative, as
actual negative ones are unknown. However, the negative sampling
scheme has critical limitations because it may choose “positive
but unobserved” pairs as negative. This paper proposes a novel
OCCF framework, named as BUIR, which does not require negative
sampling. To make the representations of positively-related users
and items similar to each other while avoiding a collapsed solu-
tion, BUIR adopts two distinct encoder networks that learn from
each other; the first encoder is trained to predict the output of the
second encoder as its target, while the second encoder provides
the consistent targets by slowly approximating the first encoder.
In addition, BUIR effectively alleviates the data sparsity issue of
OCCF, by applying stochastic data augmentation to encoder inputs.
Based on the neighborhood information of users and items, BUIR
randomly generates the augmented views of each positive inter-
action each time it encodes, then further trains the model by this
self-supervision. Our extensive experiments demonstrate that BUIR
consistently and significantly outperforms all baseline methods by
a large margin especially for much sparse datasets in which any
assumptions about negative interactions are less valid.

CCS CONCEPTS
• Information systems→ Collaborative filtering; • Comput-
ing methodologies→ Learning from implicit feedback; Unsuper-
vised learning.

KEYWORDS
One-class collaborative filtering, Bootstrapping-based representa-
tion learning, Self-supervised learning, Recommender systems

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462935

ACM Reference Format:
Dongha Lee1, SeongKu Kang1, Hyunjun Ju1, Chanyoung Park2, Hwanjo
Yu1. 2021. Bootstrapping User and Item Representations for One-Class Col-
laborative Filtering. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’21),
July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3404835.3462935

1 INTRODUCTION
Over the past decade, one-class collaborative filtering (OCCF) prob-
lems [13, 24] have been extensively researched to accurately infer
a user’s preferred items, particularly for the recommender systems
where only the users’ implicit feedback on items are observed (e.g.,
click, purchase, or browsing history). This problem has remained
challenging due to an extreme sparseness of such implicit feedback
(i.e., most users have interacted with only a few items among nu-
merous items), and also the non-existence of the negative labels
for user-item interactions (i.e., observed feedback is expressions of
positive interactions). Precisely, the goal of OCCF is to identify the
most likely positive user-item interactions among a huge amount of
unobserved interactions, by using only a small number of observed
(positively-labeled) interactions.

The most dominant approach to the OCCF problem is discrim-
inative modeling [11, 12, 15, 17, 27, 32], which explicitly aims to
distinguish positive user-item interactions from the negative coun-
terparts. They define the interaction score indicating how likely each
user interacts with each item, based on the similarity (e.g., inner
product) between the representation of a user and an item. From
matrix factorization [13, 27] to deep neural networks [11, 32], a va-
riety of techniques have been studied to effectively model this score.
Then, they optimize the scores by using the pointwise prediction
loss [11, 13] or the pairwise ranking loss [12, 27] to discriminate
between positive and negative interactions.

However, since the negative interactions are not available in
the OCCF problem, previous discriminative methods assume that
all unobserved interactions are negative. In other words, for each
user, the items that have not been interacted yet are regarded to
be less preferred to positive items. In this sense, they either use all
unobserved user-item interactions as negative or adopt a negative
sampling, which randomly samples unobserved user-item interac-
tions in a stochastic manner to alleviate the computational burden.
For better recommendation performance and faster convergence,
advanced negative sampling strategies [5, 26] are also proposed to
sample from non-uniform distributions.

Nevertheless, the negative sampling approach has critical limi-
tations in the following aspects. First, the underlying assumption

ar
X

iv
:2

10
5.

06
32

3v
1

 [
cs

.L
G

]
 1

3
M

ay
 2

02
1

https://doi.org/10.1145/3404835.3462935
https://doi.org/10.1145/3404835.3462935

about negative interactions becomes less valid as user-item inter-
actions get sparser. This is because as fewer positive interactions
are observed, the number of "positive but unobserved" interactions
increases, which consequently makes it even harder to sample
correct negative ones. Such uncertainty of supervision eventually
degrades the performance for top-𝐾 recommendation. Second, the
convergence speed and the final performance depend on the spe-
cific choice of distributions for negative sampling. For example,
sampling negative pairs from a non-uniform distribution [5, 26]
(e.g., the multinomial distribution which models the probability of
each interaction being actually negative) can improve the final per-
formance, but inevitably incurs high computational costs, especially
when a lot of users and items should be considered.

As a solution to the aforementioned limitations, this paper pro-
poses a novel OCCF framework, named as BUIR, which does not
require the negative sampling at all for training the model. The
main idea is, given a positive user-item interaction (𝑢, 𝑣), to make
representations for 𝑢 and 𝑣 similar to each other, in order to encode
the preference information into the representations. However, a
naive end-to-end learning framework that guides positive user-item
pairs to be similar to each other without any negative supervision
can easily converge to a collapsed solution – the encoder network
outputs the same representations for all the users and items.

We argue that the above collapsed solution is incurred by the si-
multaneous optimization of 𝑢 and 𝑣 within the end-to-end learning
framework of a single encoder. Hence, we instead adopt the student-
teacher-like network [6, 29] in which only the student’s output 𝑢
(and 𝑣) is optimized to predict the target 𝑣 (and 𝑢) presented by the
teacher. Specifically, BUIR directly bootstraps1 the representations
of users and items by employing two distinct encoder networks,
referred to as online encoder and target encoder. The high-level idea
is training only the online encoder for the prediction task between
𝑢 and 𝑣 , where the target for its prediction is provided by the target
encoder. That is, the online encoder is optimized so that its user
(and item) vectors get closer to the item (and user) vectors com-
puted by the target encoder. At the same time, the target encoder
is updated based on momentum-based moving average [6, 8, 29] to
slowly approximate the online encoder, which encourages to pro-
vide enhanced representations as the target for the online encoder.
By doing so, the online encoder can capture the positive relation-
ship between 𝑢 and 𝑣 into the representations, while preventing
the model from collapsing to the trivial solution without explicitly
using any negative interactions for the optimization.

Furthermore, we introduce a stochastic data augmentation tech-
nique to relieve the data sparsity problem in our framework. Moti-
vated by the recent success of self-supervised learning in various
domains [2, 4], we exploit augmented views of an input interaction,
which are generated based on the neighborhood information of
each user and item (i.e., the set of the items interacted with a user,
and the users interacted with an item). The stochastic augmentation
is applied to positive user-item pairs when they are passed to the
encoder, so as to produce the different views of the pairs. To be

1In this paper, the term “bootstrapping” is not used in the statistical meaning, but in
the idiomatic meaning [6]. Strictly speaking, it refers to using estimated values (i.e., the
output of networks) for estimating its target values, which serve as supervision for the
update. For instance, semi-supervised learning based on predicted pseudo-labels [29]
also can be thought as a bootstrapping method.

precise, by making our encoder use a random subset of a user’s
(and item’s) neighbors for the input features, it produces a similar
effect to increasing the number of positive pairs from the data itself
without any human intervention. In the end, BUIR is allowed to
learn various views of each positive user-item pair.

Our extensive evaluation on real-world implicit feedback datasets
shows that BUIR consistently performs the best for top-𝐾 recom-
mendation among a wide range of OCCF methods. In particular,
the performance improvement becomes more significant in sparser
datasets, with the help of utilizing augmented views of positive
interactions as well as eliminating the effect of uncertain negative
interactions. In addition, comparison results on a downstream task,
which classifies the items into their category, support that BUIR
learns more effective representations than other OCCF baselines.

2 RELATEDWORK
2.1 One-Class Collaborative Filtering
One-class collaborative filtering (OCCF) was firstly introduced to
handle the real-world recommendation scenario where only posi-
tive user-item interaction can be labeled [13, 24] as a form of users’
implicit feedback on items. That is, only the set of positive user-item
pairs, denoted by R, is given for training the model. The main chal-
lenge of OCCF is to find out the most likely positive interactions
among a large number of unobserved user-item pairs in which both
positive and negative interactions are mixed together. To handle the
absence of negatively-labeled interactions, most existing methods
have either treated all unobserved user-item pairs as negative, or
sampled some of them [11], assuming that the items that have not
been interacted yet are less preferred to positive items.

To be specific, discriminative methods [11, 12, 15, 17, 27, 32, 33]
train their model so that it can differentiate the scores between
positive and negative interactions. Pairwise learning, which is the
most popular approach to personalized ranking, explicitly utilizes
the pairs of positive and negative interactions for training. Formally,
the pairwise ranking loss optimizes the similarity for a positive
interaction to become larger than that for a negative one as follows.

L = −
∑︁

(𝑢,𝑣𝑝 ,𝑣𝑛) ∈O
𝜙 (𝑠𝑖𝑚(𝑢, 𝑣𝑝) > 𝑠𝑖𝑚(𝑢, 𝑣𝑛)), (1)

where O = {(𝑢, 𝑣𝑝 , 𝑣𝑛) | (𝑢, 𝑣𝑝) ∈ R, (𝑢, 𝑣𝑛) ∉ R}, and 𝜙 is a scoring
function to facilitate the optimization. For example, Bayesian per-
sonalized ranking [9, 15, 32] defines the similarity of a user and an
item by the inner product of their representations, and collabora-
tive metric learning [12, 17, 25] directly learns the latent space by
modeling their similarity as the Euclidean distance. However, all
these methods obtain the negative interactions from unobserved
user-item pairs, thus the convergence speed and final performance
largely depend on the negative sampling distribution [26].

On the other hand, generative methods [1, 18, 19, 31] aim to learn
the underlying latent distribution of users, usually represented by
binary vectors indicating their interacted items. They employ the
architecture of variational autoencoder (VAE) [18] or generative
adversarial networks (GAN) [1, 19, 31], in order to infer the users’
preference on each item based on the reconstructed (or generated)
user vectors. Rather than exploiting the negative sampling, most of

the generative methods implicitly assume that all unobserved user-
item pairs are negative in that they learn the partially-observed
binary vectors as their inputs. We remark that this assumption is
not strictly valid, which eventually leads to limited performance.

2.2 Self-supervised Contrastive Learning
Recently, a self-supervised learning approach has achieved a great
success in computer vision and natural language understanding [2,
4, 8]. Most of them basically adopt contrastive learning, which opti-
mizes the representations of positively-related (similar) instances to
be close, while those of negatively-related (dissimilar) ones far from
each other. Given an unlabeled dataset D = {𝑥1, . . . , 𝑥𝑁 }, positive
pairs for each instance (𝑥, 𝑥𝑝) is usually obtained from the data
itself (i.e., data augmentation), such as geometric transformations
on a target image. Note that it does not require any human annota-
tions or additional labels, thus this approach falls into the category
of self-supervised learning. The noise contrastive estimator (NCE)
loss [7, 23] mainly used for contrastive learning is defined by using
all the other instances except for 𝑥 as negative:

L = −
∑︁
𝑥 ∈D

log exp(𝑠𝑖𝑚(𝑥, 𝑥𝑝))
exp(𝑠𝑖𝑚(𝑥, 𝑥𝑝)) +∑𝑥𝑛 ∈D\{𝑥 } exp(𝑠𝑖𝑚(𝑥, 𝑥𝑛))

.

(2)
In case of large-scale datasets, the predefined number of negative
instances can be selected (i.e., negative sampling). For contrastive
learning, negative pairs must be considered for its optimization so
as to prevent the representations of all instances from being similar,
which is known as the problem of collapsed solutions.

Pointing out that the contrastive methods need to carefully treat
the negative instances during the training for effectiveness and
efficiency, the most recent work proposed a bootstrapping-based
self-supervised learning framework [3, 6], which is capable of avoid-
ing the collapsed solution without the help of negative instances.
Inspired by bootstrapping methods in deep reinforcement learn-
ing [21, 22], it directly bootstraps the representation of images by
using two neural networks that iteratively learn from each other.
This approach achieves the state-of-the-art performance for various
downstream tasks in computer vision, and also shows better robust-
ness to the choice of data augmentations used for self-supervision.

3 BUIR: PROPOSED FRAMEWORK
In this section, we present our OCCF framework, named as BUIR,
which learns the representations of users and items without any as-
sumptions about negative interactions. We first describe the overall
learning process with a simple encoder that takes the user-id and
item-id as its input (Section 3.2) and how to infer the interaction
score using the representations (Section 3.3). We also introduce a
stochastic data augmentation technique with an extended encoder
to further exploit the neighborhood information (Section 3.4).

3.1 Problem Formulation
LetU = {𝑢1, . . . , 𝑢𝑀 } andV = {𝑣1, . . . , 𝑣𝑁 } be the set of 𝑀 users
and 𝑁 items, respectively. Given a set of observed user-item in-
teractions R = {(𝑢, 𝑣) |user 𝑢 is interacted with item 𝑣}, the goal of
OCCF is to obtain the interaction (or preference) score 𝑠 (𝑢, 𝑣) ∈ R
indicating how likely the user 𝑢 interacts with (or prefers to) the

Figure 1: The overall BUIR framework.

item 𝑣 . Based on the interaction scores, we can recommend 𝐾 items
with the highest scores for each user, called as top-𝐾 recommenda-
tion. To define the interaction score by using the representations
of users and items, we focus on training the encoder network that
maps each user and item into a low-dimensional latent space where
the users’ preferences on the items are effectively captured.

3.2 Bootstrapping the Representations
Let 𝑓 be the encoder network to produce the representations of
users and items. The simplest architecture of the encoder is a single
embedding layer (i.e., embedding matrix); this maps each user-id
(or item-id) into a 𝐷-dimensional embedding vector that represents
the latent factors of the user (or item). Specifically, each encoder
consists of a user encoder and an item encoder, and they take a
one-hot vector indicating the user-id and item-id as their input.

BUIR makes use of two distinct encoder networks that have the
same structure: online encoder 𝑓𝜃 and target encoder 𝑓𝜉 . They are
parameterized by 𝜃 and 𝜉 , respectively. The key idea of BUIR is to
train the online encoder by using outputs of the target encoder as
its target, while gradually improving the target encoder as well.
The main difference of BUIR from existing end-to-end learning
frameworks is that 𝑓𝜃 and 𝑓𝜉 are updated in different ways. The
online encoder is trained to minimize the error between its output
and the target, whereas the target network is slowly updated based
on the momentum update [8] so as to keep its output consistent.

To be precise, for each observed interaction (𝑢, 𝑣) ∈ R, the BUIR
loss is defined based on the mean squared error of the prediction
against each other (i.e., representations of 𝑢 and 𝑣) using the pre-
dictor 𝑞𝜃 : R𝐷 → R𝐷 on top of the online encoder. It includes
two error terms: one is for updating the online user vector 𝑓𝜃 (𝑢) to
accurately predict the target item vector 𝑓𝜉 (𝑣), and the other is for
updating the online item vector 𝑓𝜃 (𝑣) to make its prediction as the
target user vector 𝑓𝜉 (𝑢). Finally, the loss is described as follows:

L𝜃,𝜉 (𝑢, 𝑣) = 𝑙2
[
𝑞𝜃 (𝑓𝜃 (𝑢)) , 𝑓𝜉 (𝑣)

]
+ 𝑙2

[
𝑞𝜃 (𝑓𝜃 (𝑣)) , 𝑓𝜉 (𝑢)

]
≈ −

𝑞𝜃 (𝑓𝜃 (𝑢))⊤ 𝑓𝜉 (𝑣)
∥𝑞𝜃 (𝑓𝜃 (𝑢))∥2∥ 𝑓𝜉 (𝑣)∥2

−
𝑞𝜃 (𝑓𝜃 (𝑣))⊤ 𝑓𝜉 (𝑢)
∥𝑞𝜃 (𝑓𝜃 (𝑣))∥2∥ 𝑓𝜉 (𝑢)∥2

,

(3)

where 𝑙2 [x, y] is the 𝑙2 distance between two normalized vectors x
and y; i.e., x = x/∥x∥2 and y = y/∥y∥2. Since the mean squared er-
rors between two normalized vectors are equivalent to the negative
value of their inner product (Equation (3)), we simply use the inner
product for the optimization. Note that BUIR updates 𝑓𝜃 (𝑢) to be
similar with 𝑓𝜉 (𝑣) instead of 𝑓𝜃 (𝑣) through the predictor, and vice
versa. This is because directly reducing the error between 𝑓𝜃 (𝑢)
and 𝑓𝜃 (𝑣) leads to the collapsed representations when negative
interactions are not considered at all for training the encoder.

To sum up, the parameters of the online encoder and target
encoder are optimized by

𝜃 ← 𝜃 − 𝜂 · ∇𝜃L𝜃,𝜉
𝜉 ← 𝜏 · 𝜉 + (1 − 𝜏) · 𝜃 . (4)

𝜂 is the learning rate for stochastic optimization, and 𝜏 ∈ [0, 1] is a
momentum coefficient (also called as target decay) for momentum-
based moving average. The online encoder 𝑓𝜃 (and the predictor
𝑞𝜃) is effectively optimized by the gradients back-propagated from
the loss (Equation (3)), while the target encoder 𝑓𝜉 is updated as the
moving average of the online encoder. By taking a large value of 𝜏 ,
the target encoder slowly approximates the online encoder. This
momentum-based updatemakes 𝜉 evolvemore slowly than 𝜃 , which
enables to bootstrap the representations by providing enhanced but
consistent targets to the online encoders [6, 8]. Figure 1 illustrates
the overall framework of BUIR with the simple one-hot encoders.
Bypassing the collapsed solution. It is obvious that the loss in
Equation (3) admits the collapsed solution with respect to 𝜃 and 𝜉 ,
which means both the encoders generate the same representations
for all users and items. For this reason, the conventional end-to-end
learning strategy, which optimizes both 𝑓𝜃 and 𝑓𝜉 to minimize the
loss (i.e., cross-prediction error), may easily lead to such collapsed
solution. In contrast, our proposed framework updates each of the
encoders in different ways. From Equation (4), the online encoder is
optimized to minimize the loss, while the target encoder is updated
to slowly approximate the online encoder. That is, the direction
of updating the target encoder (𝜃 − 𝜉) totally differs from that of
updating the online encoder (−∇𝜃L𝜃,𝜉), and this effectively keeps
both the encoders from converging to the collapsed solution. Several
recent work on bootstrapping-based representation learning [3, 6]
empirically demonstrated that this kind of dynamics (i.e., updating
two networks differently) allows to avoid the collapsed solution
without any explicit term to prevent it.

3.3 Top-K Preferred Item Prediction
To retrieve 𝐾 most preferred items for each user (i.e., user-item in-
teractions that are most likely to happen), we define the interaction
score 𝑠 (𝑢, 𝑣) by using the representations of users and items. As we
minimize the prediction error between 𝑢 and 𝑣 for each positive
interaction (𝑢, 𝑣), their positive relationship is encoded into the
𝑙2 distance between their representations (Equation (3)). In other
words, a smaller value of L𝜃,𝜉 (𝑢, 𝑣) indicates that the user-item
pair (𝑢, 𝑣) is more likely to be interacted, which means the loss be-
comes inversely proportional to the interaction score. To consider
the symmetric relationship between 𝑢 and 𝑣 , the interaction score
is defined based on the cross-prediction task; the prediction of 𝑣 by

Figure 2: The stochastic data augmentation technique of
BUIR based on the neighborhood information.

𝑢, and the prediction of 𝑢 by 𝑣 .2

𝑠 (𝑢, 𝑣) = 𝑞𝜃 (𝑓𝜃 (𝑢))⊤ 𝑓𝜃 (𝑣) + 𝑓𝜃 (𝑢)⊤𝑞𝜃 (𝑓𝜃 (𝑣)) . (5)
For the computation of the interaction scores, we use only the
representations obtained from the online encoder, with the target
encoder discarded. Since the online encoder and the target encoder
finally converge to equilibrium by the slow-moving average, it
is possible to effectively infer the interaction score only with the
online encoder. Considering the purpose of the target network,
which generates the target for training the online network, it does
make sense to leave the online encoder in the end.

Existing discriminative OCCF methods [12, 27] have tried to
optimize the latent space where the user-item interactions are di-
rectly encoded into their inner product (or Euclidean distance).
On the contrary, BUIR additionally uses the predictor to model
their interaction, which results in the capability of encoding the
high-level relationship between users and items into the representa-
tions. In conclusion, with the help of the predictor, BUIR accurately
computes the user-item interaction scores as well as optimizes the
representation without explicitly using negative samples.

3.4 Neighbor-based Data Augmentation
The another available source for OCCF is the neighborhood in-
formation of users and items. The neighbors of user 𝑢 and item
𝑣 , denoted byV𝑢 andU𝑣 , refer to the set of the items interacted
with 𝑢, and the users interacted with 𝑣 , respectively. From the per-
spective that user-item interactions can be considered as a bipartite
graph between user nodes and item nodes, each node’s neighbors
(or its local graph structure) can be a good feature to encode the
similarity among the nodes. To take advantage of these neighbors
as input features of users and items, we use a neighbor-based en-
coder [10, 15, 32] which additionally takes a given set of users
(or items) as its input. Namely, this encoder is able to learn such
set-featured inputs, represented as multi-hot vectors, capturing
both the co-occurrence of users (or items) and their relationship.
Adding the multi-hot inputs V𝑢 and U𝑣 to the one-hot inputs 𝑢
and 𝑣 within our framework, the neighbor-based user/item repre-
sentations, denoted by 𝑓𝜃 (𝑢,V𝑢) and 𝑓𝜃 (𝑣,U𝑣), can be effectively
2We empirically found that the normalized representations cannot take into account
the popularity of users and items, thus simply use the output of the online encoder.

optimized and utilized, instead of 𝑓𝜃 (𝑢) and 𝑓𝜃 (𝑣). In this case, the
online encoder parameters related to user 𝑢 (or item 𝑣) are shared
for computing 𝑓𝜃 (𝑢,V𝑢) and 𝑓𝜃 (𝑣,U𝑣), thus they are updated by
two types of supervision (i.e., optimized not only as a target but also
as one of the neighbors), which brings an effect of regularization.

For acquisition and exploitation of richer supervision, we ex-
tend our framework to consider much more user-item interactions
that are augmented based on their neighborhood information in
a self-supervised manner. To this end, we introduce a new aug-
mentation technique specifically designed for positive user-item
interactions; it does not statically increase the number of inter-
actions as a pre-processing step, rather be stochastically applied
to each input interaction during the training. This stochastic data
augmentation allows the encoder to learn slightly perturbed inter-
actions, referred to as augmented views of an interaction. By doing
so, BUIR can effectively learn the representations even in the case
that only a few positive user-item interactions are available for
training (i.e., highly sparse dataset). To this end, we first represent
each user and item as the pair of its identity and neighbors: (𝑢,V𝑢)
and (𝑣,U𝑣). Then, we apply the following augmentation function
𝜓 to the user and item before passing them to the neighbor encoder.

𝜓 (𝑢,V𝑢) = (𝑢,V𝑢 ′), whereV𝑢 ′ ∼ {S|S ⊆ V𝑢 },
𝜓 (𝑣,U𝑣) = (𝑣,U𝑣

′), whereU𝑣
′ ∼ {S|S ⊆ U𝑣}.

(6)

This augmentation function chooses one of the subsets of the
user’s neighbors (i.e.,V𝑢 ′) for an input user, and works in a sim-
ilar way for an input item. For each input interaction (𝑢, 𝑣), we
can make a variety of interactions containing small perturbations
(𝜓 (𝑢,V𝑢),𝜓 (𝑣,U𝑣)), and they produce a similar effect to increasing
the number of positive pairs from the data itself.

Similarly to Section 3.2, the online encoder is trained by mini-
mizing L𝜃,𝜉 (𝜓 (𝑢,V𝑢),𝜓 (𝑣,U𝑣)), and the target encoder is slowly
updated by the momentum mechanism. After the optimization is
finished, the interaction score is inferred by 𝑓𝜃 (𝑢,V𝑢) and 𝑓𝜃 (𝑣,U𝑣)
(Equation (5)). Figure 2 shows an example of our data augmentation
which injects a certain level of perturbations to the neighbors.

4 EXPERIMENTS
In this section, we describe the experimental results that support the
superiority of our proposed framework.We first present comparison
results with other OCCF methods for top-𝐾 recommendation (Sec-
tion 4.2), then validate the effectiveness of each component through
an ablation study (Section 4.3 and 4.4). We also evaluate the quality
of obtained representations for a downstream task (Section 4.5) and
finally provide the hyperparameter analysis (Section 4.6).

4.1 Experimental Settings

Datasets. In our experiments, we use three real-world datasets:
CiteULike [30], Ciao [28], and FourSquare [20]. For preprocessing
the datasets, we follow previous work [11, 14, 27, 32] which provide
the minimum count of user-item interactions for filtering long-
tail users/items, considering the property of each dataset (e.g., the
statistics or the domain where the implicit feedback is collected).3
Table 1 summarizes the statistics of the datasets.
3We remove users having fewer than 5 (CiteULike, Ciao) & 20 interactions (FourSquare),
and remove items having fewer than 5 (Ciao) & 10 interactions (FourSquare).

Table 1: The statistics of the datasets.

Dataset CiteULike Ciao FourSquare
#Users 5,219 7,265 19,465
#Items 25,181 11,211 28,593

#Interactions 125,580 149,141 1,115,108
Density 0.096% 0.183% 0.200%

Baselines. We compare the performance of BUIR with that of
baseline OCCF methods, including both discriminative and genera-
tive methods. They are re-categorized as either 1) the methods using
only the user-id/item-id or 2) the ones additionally using the neigh-
borhood information. Most of the methods in the first category
directly optimize the embedding vectors of users and items.

• BPR [27]: The Bayesian personalized ranking method for
OCCF. It optimizes matrix factorization (MF) based on the
pairwise ranking loss.
• NeuMF [11]: The neural network-based method that uses
the pointwise prediction loss. It combinesMF andmulti-layer
perceptron (MLP) to model the user-item interaction.
• CML [12]: A metric learning approach to the OCCF problem.
It optimizes the Euclidean distance between a user and an
item based on the pairwise hinge loss.
• SML [17]: The state-of-the-art OCCF method based on met-
ric learning. For symmetrization, it considers the Euclidean
distance among items as well as between a user and an item.

Next, the neighbor-based OCCF methods exploit the neighbor-
hood information of users and items to compute the representations.

• NGCF [32]: A neighbor-based method which encodes a
user’s (and item’s) neighbors by using graph convolutional
networks (GCN). It can consider multi-hop neighbors as well
based on a stack of GCN layers.
• LGCN [10]: The state-of-the-art method that further tailors
the GCN-based user (and item) encoder for the OCCF task.
It simplifies the GCN by using the light graph convolution.
• M-VAE [18]: The OCCF method based on a variational au-
toencoder that reconstructs partially-observed user vectors.
It enforces the latent distribution to approximate the prior,
assumed to be the normal distribution.
• CFGAN [1]: The state-of-the-art GAN-based OCCF method.
The discriminator is trained to distinguish between input
(real) user vectors and generated (fake) ones, while the gen-
erator is optimized to deceive the discriminator.

Among them, NGCF and LGCN are the discriminative methods that
optimize their model by using the pairwise loss based on the BPR
framework. On the contrary, M-VAE and CFGAN are the generative
methods that focus on learning the latent distribution of users,
represented by binary vectors indicating their interacted items.

We build two variants of BUIR using different encoder networks.

• BUIRid: The BUIR framework using a single embedding
layer as its encoder. It simply takes the user/item vectors
from the embedding matrix (Section 3.2).

• BUIRnb: The BUIR framework based on the LGCN encoder.
It computes the user/item representations by using the light-
weight GCN [10] that adopts the proposed neighbor aug-
mentation technique (Section 3.4).

Note that any types of user/item encoder networks, which are
originally optimized in a discriminative framework (e.g., BPR), can
be easily embedded into our framework.
Evaluation Protocols. For each dataset, we randomly split each
user’s interaction history into training/validation/test sets, with
various split ratios. In detail, to verify the effectiveness of BUIR
with varying levels of data sparsity, we build three training sets
that include a certain proportion of interactions for each user, i.e.,
𝛽 ∈ {10%, 20%, 50%},4 then equally divide the rest into the validation
set and the test set. We report the average value of five independent
runs, each of which uses different random seeds for the split.

As we focus on the top-𝐾 recommendation task for implicit
feedback, we evaluate the performance of each method by using
two widely-used ranking metrics [1, 17, 18]: Precision (P@𝐾) and
Normalized Discounted Cumulative Gain (N@𝐾).5 P@𝐾 measures
how many test items are included in the list of top-𝐾 items and
N@𝐾 assigns higher scores on the upper-ranked test items.
Implementation Details. We implement the proposed frame-
work and all the baselines by using PyTorch, and use the Adam
optimizer to train them. For BUIR, we fix the momentum coefficient
𝜏 to 0.995, and adopt a single linear layer for the predictor 𝑞𝜃 .6 The
augmentation function 𝜓 simply uses a uniform distribution for
drawing a drop probability 𝑝 ∼ U(0, 1), where each user’s (item’s)
neighbor is independently deleted with the probability 𝑝 .

For each dataset and baseline, we tune the hyperparameters us-
ing a grid search, which finds their optimal values that achieve
the best performance on the validation set: the dimension size of
representations 𝐷 ∈ {50, 100, 150, 200, 250}, the weight decay (i.e.,
coefficient for 𝐿2 regularization) 𝜆 ∈ {10−1, 10−2, 10−3, 10−4, 10−5},
the initial learning rate 𝜂 ∈ {10−1, 10−2, 10−310−4}, and the number
of negative pairs for each positive pair (particularly for discrim-
inative baselines) 𝑛 ∈ {1, 2, 5, 10, 20}. In case of baseline-specific
hyperparameters, we tune them in the ranges suggested by their
original papers. We set the maximum number of epochs to 500 and
adopt the early stopping strategy; it terminates when P@10 on the
validation set does not increase for 50 successive epochs.

4.2 Comparison with OCCF Methods
We first measure the top-𝐾 recommendation performance of BUIR
and the baseline methods. Table 2 presents the comparison results
on three different sparsity levels of datasets. In summary, BUIR
achieves the best performance among all the baselines, and espe-
cially shows the significant improvements in highly sparse datasets.
We analyze the results from various perspectives.

4This setting (high sparsity) is more difficult and practical than the traditional setting.
5As pointed out in [16], a sampled metric where only a smaller set of random items
and the relevant items are ranked (e.g., leave-one-out evaluation protocol [11]) cannot
correctly indicate the true performance of recommender systems. For this reason, we
instead consider the ranked list of all the items with no interaction.
6We empirically found that these hyperparameters hardly affect the final performance
of BUIR, and the sensitivity analysis on the parameters is provided in Section 4.6.

Figure 3: Comparison with discriminative methods (BPR
and CML) using various negative sampling strategies.

4.2.1 Effectiveness of BUIRid. For all the datasets, BUIRid shows
the substantially higher performance than the discriminative meth-
ods taking only user-id/item-id (i.e., BPR, NeuMF, CML, and SML).
In particular, the sparser the training set becomes, the larger the
performance improvement of BUIRid is achieved over the best base-
line (denoted by Improvid). It is obvious that BUIRid is more robust
to the extreme sparsity compared to the other baselines that are
more likely to explicitly use “positive but unobserved” interactions
as negative interactions when positive user-item interactions are
more rarely observed. BUIRid is not affected by such inconsistent
supervision from uncertain negative interactions because it directly
optimizes the representations of users and items by using only
positive interactions.

Furthermore, in terms of the number of retrieved items (denoted
by 𝐾), BUIR shows much larger performance improvements for
P@10 and N@10 compared to P@50 and N@50, respectively. In
other words, BUIR performs much better at predicting the top-
ranked items than the other baselines, which makes it practically
advantageous for real-world recommender systems that aim to
accurately provide the most preferred items to their users.

4.2.2 Effectiveness of BUIRnb. We also observe that BUIRnb sig-
nificantly outperforms all the other neighbor-based competitors,
including discriminative (i.e., NGCF and LGCN) and generative
methods (i.e., M-VAE and CFGAN). Similar to Section 4.2.1, there
exist a consistent trend on its performance gain (denoted by Im-
provnb), which becomes more significant as fewer interactions are
given for training. Specifically, the neighbor-based baselines im-
prove the recommendation performance over themethods not using
the neighborhood information, as they are able to cope with the

Table 2: The recommendation performances of a wide range of OCCF methods, varying the sparsity of the datasets. Improvid
and Improvnb respectively denote the improvement of BUIR over the best id/neighbor-based baseline. The superscripts *, **,
and *** indicate 𝑝 ≤ 0.05, 𝑝 ≤ 0.005, and 𝑝 ≤ 0.0005 for the paired t-test of BUIRnb vs. the best baseline on P@10.

Setting User/Item ID User/Item ID + Neighbor
Data 𝛽 Metric BPR NeuMF CML SML BUIRid Improvid NGCF LGCN M-VAE CFGAN BUIRnb Improvnb

Ci
te
UL

ik
e

10%***

P@10 0.0369 0.0350 0.0327 0.0279 0.0542 46.88% 0.0387 0.0518 0.0330 0.0437 0.0637 22.80%
P@20 0.0484 0.0474 0.0451 0.0409 0.0708 46.20% 0.0506 0.0676 0.0444 0.0589 0.0814 20.38%
P@50 0.0729 0.0785 0.0790 0.0685 0.1050 32.93% 0.0762 0.1010 0.0740 0.0968 0.1202 19.08%
N@10 0.0310 0.0311 0.0272 0.0222 0.0480 54.60% 0.0337 0.0465 0.0289 0.0382 0.0568 22.11%
N@20 0.0351 0.0349 0.0316 0.0266 0.0533 51.88% 0.0376 0.0516 0.0327 0.0433 0.0623 20.78%
N@50 0.0429 0.0441 0.0421 0.0350 0.0636 44.18% 0.0456 0.0619 0.0417 0.0548 0.0742 19.91%

20%***

P@10 0.0634 0.0422 0.0696 0.0515 0.0903 29.78% 0.0684 0.0835 0.0433 0.0730 0.0956 14.48%
P@20 0.0862 0.0565 0.0964 0.0717 0.1210 25.41% 0.0915 0.1097 0.0601 0.0979 0.1243 13.37%
P@50 0.1298 0.0847 0.1506 0.1145 0.1775 17.83% 0.1356 0.1607 0.0973 0.1237 0.1807 12.45%
N@10 0.0510 0.0358 0.0576 0.0424 0.0795 37.93% 0.0580 0.0727 0.0377 0.0566 0.0831 14.22%
N@20 0.0591 0.0407 0.0668 0.0494 0.0880 31.74% 0.0657 0.0812 0.0435 0.0631 0.0912 12.40%
N@50 0.0726 0.0493 0.0833 0.0627 0.1050 25.96% 0.0793 0.0966 0.0548 0.0754 0.1071 10.82%

50%**

P@10 0.1229 0.1138 0.1310 0.1195 0.1555 18.73% 0.1470 0.1561 0.1116 0.1389 0.1624 4.05%
P@20 0.1719 0.1512 0.1845 0.1690 0.2065 11.91% 0.1978 0.2110 0.1513 0.1863 0.2170 2.84%
P@50 0.2566 0.2162 0.2794 0.2545 0.2993 7.12% 0.2862 0.3056 0.2243 0.2677 0.3120 2.10%
N@10 0.0891 0.0877 0.0950 0.0899 0.1189 25.23% 0.1122 0.1189 0.0843 0.1052 0.1240 4.29%
N@20 0.1046 0.0994 0.1121 0.1055 0.1348 20.25% 0.1283 0.1360 0.0968 0.1201 0.1405 3.29%
N@50 0.1276 0.1174 0.1379 0.1287 0.1600 16.06% 0.1525 0.1617 0.1169 0.1425 0.1656 2.40%

Ci
ao

10%***

P@10 0.0289 0.0302 0.0422 0.0461 0.0598 29.67% 0.0336 0.0582 0.0434 0.0521 0.0664 14.05%
P@20 0.0346 0.0404 0.0603 0.0697 0.0787 12.97% 0.0430 0.0748 0.0573 0.0679 0.0831 11.07%
P@50 0.0508 0.0627 0.1021 0.1043 0.1123 7.59% 0.0669 0.1095 0.0843 0.0972 0.1177 7.47%
N@10 0.0278 0.0269 0.0369 0.0418 0.0535 27.96% 0.0313 0.0557 0.0391 0.0443 0.0628 12.75%
N@20 0.0289 0.0301 0.0433 0.0506 0.0588 16.16% 0.0339 0.0597 0.0434 0.0479 0.0675 12.99%
N@50 0.0337 0.0371 0.0566 0.0643 0.0695 8.02% 0.0415 0.0705 0.0519 0.0572 0.0784 11.17%

20%**

P@10 0.0478 0.0361 0.0505 0.0517 0.0608 17.62% 0.0440 0.0662 0.0501 0.0535 0.0724 9.37%
P@20 0.0623 0.0469 0.0728 0.0725 0.0817 12.19% 0.0580 0.0849 0.0656 0.0705 0.0911 7.30%
P@50 0.0940 0.0711 0.1126 0.1089 0.1210 7.44% 0.0886 0.1247 0.0993 0.1090 0.1322 5.98%
N@10 0.0436 0.0322 0.0432 0.0419 0.0539 23.68% 0.0403 0.0606 0.0445 0.0480 0.0670 10.52%
N@20 0.0481 0.0354 0.0514 0.0492 0.0598 16.17% 0.0447 0.0659 0.0491 0.0525 0.0725 10.08%
N@50 0.0578 0.0429 0.0666 0.0605 0.0726 8.98% 0.0546 0.0786 0.0596 0.0619 0.0854 8.71%

50%**

P@10 0.0679 0.0426 0.0533 0.0639 0.0786 15.83% 0.0576 0.0746 0.0481 0.0705 0.0812 8.79%
P@20 0.0909 0.0602 0.0875 0.0873 0.1005 10.53% 0.0831 0.1029 0.0676 0.0982 0.1092 6.10%
P@50 0.1370 0.0924 0.1579 0.1279 0.1642 3.99% 0.1302 0.1578 0.1000 0.1502 0.1673 6.02%
N@10 0.0563 0.0337 0.0394 0.0530 0.0641 13.86% 0.0463 0.0612 0.0391 0.0570 0.0679 10.98%
N@20 0.0633 0.0393 0.0516 0.0601 0.0706 11.43% 0.0546 0.0702 0.0456 0.0659 0.0766 9.18%
N@50 0.0767 0.0485 0.0725 0.0718 0.0824 7.54% 0.0685 0.0862 0.0551 0.0810 0.0932 8.17%

Fo
ur
Sq
ua
re

10%***

P@10 0.0561 0.0441 0.0451 0.0317 0.0890 58.70% 0.0658 0.0926 0.0451 0.0519 0.0999 7.84%
P@20 0.0696 0.0528 0.0623 0.0421 0.1020 46.65% 0.0793 0.1054 0.0534 0.0612 0.1127 6.97%
P@50 0.1173 0.0758 0.1180 0.0698 0.1573 33.32% 0.1305 0.1613 0.0746 0.0981 0.1695 5.06%
N@10 0.0619 0.0476 0.0451 0.0311 0.1023 65.27% 0.0732 0.1080 0.0483 0.0579 0.1161 7.44%
N@20 0.0665 0.0503 0.0531 0.0360 0.1045 57.27% 0.0771 0.1104 0.0508 0.0610 0.1171 6.05%
N@50 0.0865 0.0600 0.0769 0.0480 0.1277 47.52% 0.0985 0.1336 0.0598 0.0770 0.1409 5.46%

20%***

P@10 0.0752 0.0489 0.0754 0.0820 0.1099 34.11% 0.0872 0.1063 0.0658 0.0856 0.1142 7.43%
P@20 0.0941 0.0633 0.0988 0.0985 0.1281 29.75% 0.1065 0.1239 0.0779 0.1035 0.1323 6.82%
P@50 0.1573 0.1099 0.1714 0.1515 0.1997 16.47% 0.1733 0.1905 0.1220 0.1643 0.2043 7.24%
N@10 0.0829 0.0532 0.0785 0.0833 0.1273 52.77% 0.0973 0.1247 0.0725 0.1003 0.1328 6.47%
N@20 0.0898 0.0588 0.0888 0.0904 0.1312 45.07% 0.1036 0.1281 0.0760 0.1060 0.1363 6.42%
N@50 0.1161 0.0782 0.1195 0.1129 0.1607 34.48% 0.1313 0.1564 0.0949 0.1321 0.1660 6.17%

50%***

P@10 0.0894 0.0900 0.0843 0.1005 0.1125 12.00% 0.1064 0.1123 0.0838 0.0965 0.1204 7.25%
P@20 0.1249 0.1237 0.1202 0.1404 0.1546 10.16% 0.1469 0.1509 0.1226 0.1325 0.1595 5.71%
P@50 0.2059 0.2024 0.2025 0.2273 0.2502 10.07% 0.2373 0.2386 0.2086 0.2162 0.2531 6.09%
N@10 0.0898 0.0919 0.0830 0.1002 0.1152 14.96% 0.1071 0.1153 0.0796 0.1007 0.1211 5.01%
N@20 0.1046 0.1058 0.0979 0.1166 0.1324 13.55% 0.1241 0.1307 0.0962 0.1152 0.1361 4.12%
N@50 0.1341 0.1344 0.1279 0.1484 0.1672 12.70% 0.1571 0.1657 0.1274 0.1456 0.1709 3.14%

Table 3: Performances of BUIR that ablates each component.

Method Framework Predictor Neighbor Augment P@10
BPR BPR 0.1229 ± 0.0035

BPR ✓ 0.0752 ± 0.0027
LGCN BPR ✓ 0.1561 ± 0.0038
BUIRid BUIR ✓ 0.1555 ± 0.0029

BUIR ✓ ✓ 0.1592 ± 0.0028
BUIRnb BUIR ✓ ✓ ✓ 0.1624 ± 0.0032

high sparsity to some degree by leveraging the neighbors of users
and items. Nevertheless, most of them, except for LGCN, perform
worse than even BUIRid; this strongly indicates that their imperfect
assumption on negative interactions severely limits the capability
of capturing users’ preference on items even though they utilize
rich information sources as well as employ advanced neural ar-
chitectures. In short, for the OCCF problem where only a small
number of positive interactions are given, our BUIR framework is
effective regardless of the information sources used for training, in
that any assumption on negative interactions is not required.

In addition, the critical drawback of the generative methods is
the difficulty of stable optimization. For example, M-VAE should
carefully treat the annealing technique for minimizing Kullback-
Leibler (KL) divergence, and CFGAN needs to balance the adver-
sarial updates between the discriminator and generator for their
convergence to the equilibrium. In contrast, BUIR can easily train
the encoder without any advanced techniques for stable optimiza-
tion, which makes our framework much practical.

4.2.3 Comparison of different negative sampling strategies. To ex-
amine how much the choice of a negative sampling strategy affects
the recommendation performance, we measure P@10 and N@10 of
two discriminative methods (i.e., BPR and CML) that adopt differ-
ent strategies. We vary the number of negative pairs (sampled for
each positive pair) in the range of {20, 21, 22, 23, 24}, and consider
three different distributions for negative sampling [26]: 1) uniform
sampling, 2) static-and-global sampling which draws a pair based
on the item popularity, and 3) adaptive-and-contextual sampling
that uses the probability proportional to the interaction score.

In Figure 3, we observe that the performance of the discrimina-
tive methods largely depends on the sampling strategy, whereas
BUIRid consistently performs the best. To be specific, the sampling
strategies show different tendencies or have different optimal hy-
perparameter values, depending on each dataset or each method.
For instance, CML achieves marginal performance gains from the
adaptive-and-contextual sampling compared to the uniform sam-
pling, whereas BPR does not take any benefits from it. This is
because CML optimizes its model by the hinge loss, which can-
not produce the gradients to update the model parameters for too
easily-distinguishable negative pairs. In this case, the adaptive-
and-contextual sampling strategy can effectively select the hard-
negative pairs for training, which accelerates the convergence and
its final performance. We remark that this kind of sampling tech-
niques can improve the performance of the discriminative methods
to some extent, but the sampling operation requires a high compu-
tational cost itself as well as the process of hyperparameter tuning
for each dataset (and method) takes huge efforts. On the contrary,

Figure 4: Performance changes of BUIRnbwith respect to the
maximum drop probability for the augmentation.

as BUIRid does not rely on negative sampling, it always shows the
greater performance (plotted as a solid black line) compared to any
of the discriminative methods using various sampling techniques.
This result clearly validates the superiority of BUIR in that it is not
affected by the choice of the negative sampling strategy any longer.

4.3 Ablation Study
To validate the effectiveness of each component in our framework,
we measure the performance of the methods that ablate the fol-
lowing components: 1) modeling the interaction score based on
the predictor (i.e., cross-prediction score defined in Equation (5)),
2) the neighbor-based encoder that is able to capture the user’s
(item’s) neighborhood information, and 3) the stochastic neighbor
augmentation that produces various views of an input interaction.
In Table 3, we report P@10 on the CiteULike dataset (𝛽=50%).

First of all, the BPR framework that optimizes the cross-prediction
score, 𝑞 (𝑓 (𝑢))⊤ 𝑓 (𝑣) + 𝑓 (𝑢)⊤𝑞 (𝑓 (𝑣)), is not as effective as ours; it
is even worse compared to the conventional BPR, which optimizes
the inner-product score 𝑓 (𝑢)⊤ 𝑓 (𝑣). This implies that the perfor-
mance improvement of BUIR is mainly caused by our learning
framework rather than its score modeling based on the predictor. In
addition, even without the stochastic augmentation, the neighbor-
based encoder (i.e., LGCN) based on the BUIR framework beats
LGCN based on the BPR framework, which demonstrates that BUIR
successfully addresses the issue of incorrect negative sampling.
Lastly, our framework with the stochastic neighbor augmentation
further improves the performance by taking benefits from various
views of the positive user-item interactions for the optimization.

4.4 Effect of Neighbor Augmentation
For an in-depth analysis on the effect of our stochastic data aug-
mentation function𝜓 , we measure the performance of BUIRnb on
the CiteULike and Ciao datasets (𝛽=20%), with various magnitudes
of the perturbation added to the neighbors of users and items. We
modify the augmentation function to randomly select the drop
probability from a predefined interval, i.e., 𝑝 ∼ U(0, 𝑃) where 𝑃 is
the maximum drop probability, then increase 𝑃 from 0.0 to 1.0.

In Figure 4, our stochastic data augmentation (i.e., 𝑃 > 0) brings
a significant improvement compared to the case of using the fixed
neighborhood information (i.e., 𝑃 = 0) as encoder inputs. This result
shows that the augmented views of positive interactions encourage
BUIR to effectively learn users’ preference on items even in much
sparse dataset. Interestingly, in case of the Ciao dataset which is
less sparse than CiteULike, the benefit of our augmentation linearly

Figure 5: Evaluation on the quality of representations, by us-
ing a linear/non-linear classifier.

increases with the maximum drop probability. This is because there
is room for producing more various views (i.e., larger perturbation)
based on a relatively more number of neighbors, and it eventually
helps to boost the recommendation performance. To sum up, our
framework that adopts the neighbor augmentation function suc-
cessfully relieves the data sparsity issue of the OCCF problem, by
leveraging the augmented views of few positive interactions.

4.5 Evaluation on Representation Quality
To evaluate the quality of the obtained representations, we compare
the performance for a downstream task by using the representations
optimized by BUIR and the other baselines.7 We consider an item
classification task to evaluate how well each method encodes the
items’ characteristics or latent semantics into the representations.
We choose two datasets that offer the side information on items,
which are Ciao and FourSquare. Ciao provides the 28-category
label of each item (i.e., the products), and FourSquare contains the
GPS coordinates for each item (i.e., point-of-interest). In case of
FourSquare, we first perform 𝑘-means clustering on the coordinates
with 𝑘=100, and use the clustering results as the class labels. We
train a linear and non-linear classifier (i.e., a single-layer perceptron
and three-layer perceptron, respectively) to predict the class label
of each item by using the fixed item representations as the input.
Finally, we perform 10-fold cross-validation and report the average
result and standard deviation.

In Figure 5, BUIRid and BUIRnb achieve significantly higher clas-
sification accuracy than the others in each category. This shows
that the latent space induced by BUIR more accurately captures
the item’s characteristics (or their relationship) compared to the
space induced by the baseline methods. Another observation is that
the rank of each method for the downstream tasks is consistent
with that for top-𝐾 recommendation (in Table 2). It implies that the
observed user-item interactions are positively-correlated with the
latent semantic of the items, for this reason, effectively learning the
users’ implicit feedback eventually results in a good performance
in the downstream tasks as well.

4.6 Sensitivity Analysis
For the guidance of hyperparameter selection, we provide analy-
ses on the sensitivity of BUIR to its several hyperparameters. We
investigate the performance changes of BUIRid on the FourSquare

7In this comparison, we exclude the generative OCCFmethods as our baselines, because
they do not explicitly output the item representations.

Figure 6: Sensitivity analyses on the BUIR hyperparameters.

dataset (𝛽=50%) with respect to the dimension size 𝐷 , the momen-
tum coefficient 𝜏 ,8 and the number of layers in the predictor.

Figure 6 clearly shows that the performance is hardly affected
by 𝜏 in the range of [0.9, 1.0). In other words, any values of 𝜏 larger
than 0.9 allow the target encoder to successfully provide the target
representations to the online encoder, by slowly approximating
the online encoder; on the contrary, BUIR cannot learn the effec-
tive representations at all in case that the target encoder is fixed
(i.e., 𝜏 = 1). This observation is consistent with previous work on
momentum-based moving average [6, 8, 29] that showed all values
of 𝜏 between 0.9 and 0.999 can yield the best performance. Further-
more, BUIR performs the best with a single-layer predictor, because
a multi-layer predictor makes it difficult to optimize the relationship
between outputs of the two encoder networks. In conclusion, BUIR
is more powerful even with fewer hyperparameters, compared to
existing OCCF methods that include a variety of regularization
terms or modeling components.

5 CONCLUSION
This paper proposes a novel framework for learning the represen-
tations of users and items, termed as BUIR, to address the main
challenges of the OCCF problem: the implicit assumption about neg-
ative interactions, and high sparsity of observed (positively-labeled)
interactions. First, BUIR directly bootstraps the representations of
users and items by minimizing their cross-prediction error. This
makes BUIR use only partially-observed positive interactions for
training the model, and accordingly, it can eliminate the need for
negative sampling. In addition, BUIR is able to learn the augmented
views of each positive interaction obtained from the neighborhood
information, which further relieves the data sparsity issue of the
OCCF problem. Through the extensive comparison with a wide
range of OCCFmethods, we demonstrate that BUIR consistently out-
performs all the other baselines in terms of top-𝐾 recommendation.
In particular, the effectiveness of BUIR becomes more significant for
much sparse datasets in which the positively-labeled interactions
are not enough to optimize the model as well as the assumption
about negative interactions becomes less valid. Based on its great
compatibility with existing user/item encoder networks, we expect
that our BUIR framework can be a major solution for the OCCF
problem, replacing the conventional BPR framework.

ACKNOWLEDGMENTS
This work was supported by the NRF grant funded by the MSIT (No.
2020R1A2B5B03097210, 2021R1C1C1009081), and the IITP grant
funded by the MSIT (No. 2018-0-00584, 2019-0-01906).

8Considering that the target encoder should be slowly approximate the online encoder,
we investigate 𝜏 in the range of [0.9, 1.0], as done in previous work [6, 8].

REFERENCES
[1] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. Cfgan:

A generic collaborative filtering framework based on generative adversarial
networks. In CIKM. 137–146.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In ICML.

[3] Xinlei Chen and Kaiming He. 2021. Exploring Simple Siamese Representation
Learning. In CVPR.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL. 4171–4186.

[5] Jingtao Ding, Guanghui Yu, Xiangnan He, Fuli Feng, Yong Li, and Depeng Jin.
2019. Sampler design for bayesian personalized ranking by leveraging view data.
TKDE (2019).

[6] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,
Rémi Munos, andMichal Valko. 2020. Bootstrap your own latent: A new approach
to self-supervised learning. In NeurIPS. 21271–21284.

[7] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In AISTATS.

[8] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR.

[9] Ruining He and Julian McAuley. 2016. VBPR: visual Bayesian Personalized
Ranking from implicit feedback. In AAAI. 144–150.

[10] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[12] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In WWW. 193–201.

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[14] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. 2020. DE-
RRD: A Knowledge Distillation Framework for Recommender System. In CIKM.
605–614.

[15] Seunghyeon Kim, Jongwuk Lee, and Hyunjung Shim. 2019. Dual neural person-
alized ranking. In WWW. 863–873.

[16] Walid Krichene and Steffen Rendle. 2020. On Sampled Metrics for Item Recom-
mendation. In KDD. 1748–1757.

[17] Mingming Li, Shuai Zhang, Fuqing Zhu, Wanhui Qian, Liangjun Zang, Jizhong
Han, and Songlin Hu. 2020. Symmetric Metric Learning with Adaptive Margin
for Recommendation. In AAAI. 4634–4641.

[18] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In WWW. 689–698.

[19] Huafeng Liu, Jingxuan Wen, Liping Jing, and Jian Yu. 2019. Deep generative
ranking for personalized recommendation. In RecSys. 34–42.

[20] Yiding Liu, Tuan-Anh Nguyen Pham, Gao Cong, and Quan Yuan. 2017. An
Experimental Evaluation of Point-of-Interest Recommendation in Location-Based
Social Networks. PVLDB 10, 10 (jun 2017), 1010–1021.

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In ICML. 1928–1937.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[23] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[24] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In ICDM. 502–511.

[25] Chanyoung Park, Donghyun Kim, Xing Xie, and Hwanjo Yu. 2018. Collaborative
translational metric learning. In ICDM. 367–376.

[26] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In WSDM. 273–282.

[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[28] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: discerning multi-faceted
trust in a connected world. In WSDM. 93–102.

[29] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. In NeurIPS. 1195–1204.

[30] Hao Wang, Binyi Chen, and Wu-Jun Li. 2013. Collaborative topic regression with
social regularization for tag recommendation. In IJCAI.

[31] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In SIGIR. 515–524.

[32] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165–174.

[33] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-
tive denoising auto-encoders for top-n recommender systems. In WSDM.

	Abstract
	1 Introduction
	2 Related Work
	2.1 One-Class Collaborative Filtering
	2.2 Self-supervised Contrastive Learning

	3 BUIR: Proposed Framework
	3.1 Problem Formulation
	3.2 Bootstrapping the Representations
	3.3 Top-K Preferred Item Prediction
	3.4 Neighbor-based Data Augmentation

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparison with OCCF Methods
	4.3 Ablation Study
	4.4 Effect of Neighbor Augmentation
	4.5 Evaluation on Representation Quality
	4.6 Sensitivity Analysis

	5 Conclusion
	Acknowledgments
	References

