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ABSTRACT
Recent AI research has witnessed increasing interests in automat-
ically designing the architecture of deep neural networks, which
is coined as neural architecture search (NAS). The automatically
searched network architectures via NAS methods have outper-
formed manually designed architectures on some NLP tasks. How-
ever, training a large number of model configurations for efficient
NAS is computationally expensive, creating a substantial barrier
for applying NAS methods in real-life applications. In this paper,
we propose to accelerate neural architecture search for natural lan-
guage processing based on knowledge distillation (called KD-NAS).
Specifically, instead of searching the optimal network architecture
on the validation set conditioned on the optimal network weights
on the training set, we learn the optimal network by minimizing
the knowledge loss transferred from a pre-trained teacher network
to the searching network based on Earth Mover’s Distance (EMD).
Experiments on five datasets show that ourmethod achieves promis-
ing performance compared to strong competitors on both accuracy
and searching speed. For reproducibility, we submit the code at:
https://github.com/lxk00/KD-NAS-EMD.
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1 INTRODUCTION
Deep neural networks (DNNs) have enabled remarkable progress
over the last years in a variety of natural language processing (NLP)
tasks. One crucial aspect for this progress is to manually design
a DNN architecture that effectively captures the syntax and se-
mantics of texts. However, the design of the network architecture
often relies heavily on the researchers’ prior knowledge and tedious
trials. In recent years, NAS has emerged, which aims to design a
network architecture with the best performance automatically with
as little human intervention as possible [28]. So far, the automati-
cally searched network architectures via NAS have outperformed
manually designed architectures on some NLP tasks [16, 23].

Despite its remarkable empirical performance, most NAS meth-
ods are computationally expensive. In particular, obtaining a state-
of-the-art architecture with reinforcement learning (RL) [2, 17, 28]
and evolutionary algorithms [14, 20] often consumes hundreds
of GPU days or even more computing resources. For example, a
popular reinforcement learning based NAS method [28] on CIFAR-
10 requires 2000 GPU days, while the evolution method [18] on
CIFAR-10 requires 3150 GPU days. This huge amount of calcula-
tion creates a substantial barrier to the wide application of NAS in
NLP. Therefore, it is critical to accelerate the search of the network
architecture while maintaining the promising accuracy.

Recently, there are many works being proposed to reduce the
amount of calculation and accelerate the architecture search [15, 17],
of which the gradient-based NAS methods [4, 13, 15, 24] are consid-
ered to be able to provide a practical way. The main idea is to formu-
late gradient-based methods as a bilevel optimization problem [5],
where the optimal neural architecture on the validation set depends
on the optimal network weights on the training set. For example,
DARTS [15] is considered a typical work of the gradient-based NSA,
which continuously relaxes the originally discrete search space and
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makes it possible to use gradients to efficiently optimize the search
space of the architecture based on bilevel optimization.

Although previous gradient-based NAS methods reduce the in-
ference time and achieve excellent performances on a variety of
tasks [24, 25], they still suffer from certain inherent challenges. First,
most gradient-based methods, such as DARTS [15], adopt second-
order approximation to solve bilevel optimization. However, the
evaluation based on the undertrained network parameters cannot
correctly rank the candidate models. In particular, the architecture
that achieves the best performance at early training stage cannot
defend its top ranking when convergence is obtained. Second, pre-
vious gradient-based NAS methods search the optimal network
architecture on the validation set conditioned on the optimal net-
work weights on the training set. Specifically, in the search stage, a
NAS algorithm is employed to find the architecture with the highest
validation accuracy. However, as revealed in [3, 11], the validation
accuracy of the model is not predictive to its true performance.

In this paper, we exploit knowledge distillation to accelerate
neural architecture search for natural language processing based
on Earth Mover’s Distance (denoted as KD-NAS). Specifically, in-
stead of searching the optimal architecture on the validation set
conditioned on the optimal network weights on the training set, we
search the optimal network architecture by minimizing the knowl-
edge loss transferred from a pre-trained teacher network to the
searching network based on Earth Mover’s Distance (EMD). Each
searching layer can adaptively learn from different hidden layers of
the teacher model for different NLP tasks. In addition, we introduce
an AddNorm operation to relieve the collapse problem in gradient-
based NAS methods, which normalizes the NAS framework after
concatenating the hidden nodes at each layer.

We summarize our contributions as follows. (1) To our knowl-
edge, we are the first to exploit knowledge distillation to accelerate
NAS based on EMD. We use the hidden representations of the
pre-trained teacher model to supervise our architecture search via
many-to-many layer mapping, where each intermediate searching
layer has the chance to learn from all the intermediate layers of
the teacher model. (2) Experiments show that KD-NAS consistently
outperforms strong NAS methods across multiple NLP tasks. In par-
ticular, on the RTE [22] language inference task, KD-NAS achieves
54.93% accuracy with 0.09 GPU hours, which is 35.9 times faster
than DARTS [15] with 0.5% higher accuracy and 8.1 times faster
than SNAS [24] with 0.6% higher accuracy.

2 METHODOLOGY
2.1 Overview
The goal of this work is to automatically search an optimal student
architecture based on a large pre-trained teacher model. As illus-
trated in Figure 1, we leverage knowledge distillation to accelerate
NAS for NLP tasks, which learns the optimal student network con-
taining a stack of searched cells by minimizing the knowledge loss
transferred from the pre-trained teacher network to the searching
network based on Earth Mover’s Distance (EMD).

2.2 Teacher Model
Weadopt BERT as the teachermodel due to its superior performance
on various NLP tasks. The architecture of BERT is a multi-layer
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Figure 1: The overall framework of our method.

bidirectional Transformer encoder, which is composed of a stack
of 𝑁 identical blocks. Each block consists of two sub-layers, where
the first layer is a multi-head self-attention mechanism and the
second layer is a simple fully connected feed-forward network.
The residual connection is applied to each of the two continuous
sub-layers, followed by layer normalization [1].

2.3 Student Model
We learn the student network using NAS techniques rather than
assigning a fixed structure in advance by humans. In this paper,
we propose a micro search strategy to find an optimal network
architecture from the search space formed by the operation sets.

2.3.1 Search Space. We modularize the large search space of the
deep model into cells to reduce its complexity. In the training phase,
we only need to search for a few cell structures and then repeatedly
stack such cells to form the final student architecture, following the
DARTS model [15]. Specifically, each searched cell is represented
as a directed acyclic graph consisting of an ordered sequence of 𝑀
nodes, where each node 𝑥𝑖 denotes a latent state h𝑖 . We represent
each edge from node 𝑖 to node 𝑗 as 𝑜𝑖, 𝑗 , indicating the operation to
transform node 𝑖 into node 𝑗 . We compute each intermediate node
𝑥 𝑗 based on all of its predecessors in the directed acyclic graph:

𝑜𝑖, 𝑗 (𝑥) =
∑
𝑜∈O

exp(𝛼𝑜
𝑖,𝑗
)∑

𝑜′∈O exp (𝛼𝑜′
𝑖, 𝑗
)
· 𝑜 (𝑥) (1)

𝑥 𝑗 =
∑
𝑖< 𝑗

𝑜𝑖, 𝑗 (𝑥𝑖 ) (2)

where 𝑜 (·) ∈ O denotes a operation from a set of candidate op-
erations O (e.g., convolution, max pooling, skip, zero). 𝛼𝑜

𝑖,𝑗
is a

|O|-dimensional vector representing network weights of the ar-
chitecture, which is trainable during the training phase. Here, we
use the softmax operation over all possible operations to make the
search space continuous. In this way, the task of neural architecture
search reduces to learn each continuous variable 𝛼𝑜

𝑖,𝑗
.
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Inspired by the success of residual connection and layer normal-
ization in many deep neural networks, we also employ a residual
connection to each of the two continuous cells, followed by layer
normalization [1]. The output hidden states 𝐻𝑘 of the 𝑘-th cell can
be computed as:

𝐻𝑘 = LayerNorm( [𝑥𝑘2 ; . . . ;𝑥𝑘𝑀 ] + 𝜎 (𝐻𝑘−1)), (3)

where 𝜎 is a convolutional neural network with unit kernel, which
makes the size of input and output be the same. 𝑥𝑘

𝑖
defines the

𝑖-th node of the 𝑘-th cell.𝑀 denotes the total number of nodes in
each cell. The introduction of this LayerNorm operation can greatly
reduce the collapse of the model.

After the architecture search process, we can obtain a discrete
architecture by replacing each weight parameter 𝛼𝑖, 𝑗 with the most
likely operation, i.e., 𝑜𝑖, 𝑗 = argmax𝑜∈O𝛼𝑜𝑖,𝑗 . We assume there is a
topological order among𝑀 intermediate nodes, the search space
A is thus formalized as:

A = [𝑜0,1, 𝑜0,2, 𝑜1,2, . . . , 𝑜𝑖, 𝑗 , . . . , 𝑜𝑀−1,𝑀 ] (4)

2.3.2 Operation Set. In this work, we adopt the lightweight CNN-
based operations as candidates given that they have shown both
competitive accuracy and superior efficiency in various NLP tasks.
The candidate operation set O is composed of four kinds of opera-
tions: convolution, pooling, skip and zero operation. The convolution
operations include the 1D dilated convolution and standard con-
volution (without dilation) with kernel size {3, 5, 7}. The pooling
operations include max pooling and average pooling with kernel
size 3. The skip operation is leveraged to construct residual connec-
tions. The zero operation helps to forget the past knowledge.

2.4 Knowledge Distillation for NAS
Instead of searching the optimal architecture on the validation set
conditioned on the optimal network weight on the training set
as in DARTS [15], we learn the optimal network architecture by
minimizing the knowledge loss transferred from the pre-trained
teacher network to the searching student network. Since there
are different kinds of hidden layers in teacher and student models,
conventional one-to-one layer mapping algorithms [8, 9, 27] cannot
be applied directly. Inspired by [10], we leverage Earth Mover’s
Distance (EMD) for knowledge distillation, which enables each
intermediate layer of student to learn from any other intermediate
layers of the teacher model.

Formally, letH𝑇
𝑖
andH𝑆

𝑗
be hidden states of the 𝑖-th teacher layer

and the 𝑗-th student layer, respectively. Different from the standard
knowledge distillation where the teacher and student networks
share similar layer structures, our search cells are composed of
convolution, pooling and skip, zero operations, making it difficult
to directly calculate the difference between hidden layers of teacher
and student models. In this paper, we employ self-attention mecha-
nism to learn the self-attention matrices A𝑇

𝑖
and A𝑆

𝑗
capturing the

global document features of teacher hidden layer H𝑇
𝑖
and student

hidden layer H𝑆
𝑗
in a shared space:

A𝑇𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
H𝑇
𝑖
(H𝑇
𝑖
)⊤

√
𝑙𝑇

), A𝑆𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
H𝑆
𝑗
(H𝑆

𝑗
)⊤

√
𝑙𝑆

), (5)

Table 1: The statistics of datasets.

Dataset Task Metrics #Train #Dev

SST-2 sentiment classification ACC 67350 873
MRPC textual similarity F1 4077 409
WikiQA question answering MAP/MRR 20359 2733
RTE language inference ACC 2490 277
TREC semantic matching ACC 5452 500

Table 2: Experimental results on five datasets.

MRPC SST WikiQA RTE TREC AVE

VDCNN 81.51 83.77 66.46/66.88 54.03 90.46 75.29
Transformer 81.23 82.68 67.1/67.82 53.61 90.60 75.12

DARTS 81.77 85.53 68.20/68.91 54.63 92.70 76.64
SNAS 81.54 85.43 68.18/68.86 54.57 92.83 76.58

PC-DARTS 81.78 85.81 68.43/68.96 54.87 93.23 76.88
ENAS 81.46 83.60 67.49/68.03 54.27 90.80 75.58
Ours 82.00 86.10 69.55/70.50 54.93 94.33 77.48

where 𝑙𝑇 and 𝑙𝑆 represent the dimensions of hidden representations
H𝑇
𝑖
and H𝑆

𝑗
, respectively.

We define a “ground” distance matrix D =
[
𝑑𝑖 𝑗

]
, where 𝑑𝑖 𝑗

indicates the cost of transferring knowledge from H𝑇
𝑖
to H𝑆

𝑗
. We

employ the mean square error (MSE) to calculate the distance 𝑑𝑖 𝑗
as follows:

𝑑𝑖 𝑗 = MSE(A𝑆𝑗 ,A
𝑇
𝑖 ) (6)

Then, we learn a mapping flow matrix F = [𝑓𝑖 𝑗 ] to minimize
the cumulative cost for transferring knowledge from H𝑇 to H𝑆 ,
where 𝑓𝑖 𝑗 denotes the mapping flow between H𝑇

𝑖
and H𝑆

𝑗
. Once the

optimal mapping flow F is learned, we can define the Earth Mover’s
Distance as the work normalized by the total flow:

EMD(H𝑆 ,H𝑇 ) =
𝑃∑
𝑖=1

𝑁∑
𝑗=1

𝑓𝑖 𝑗𝑑𝑖 𝑗 (7)

where 𝑃 and 𝑁 denote the number of hidden layers in the student
and teacher networks, respectively. The objective function L𝐾𝐷
for EMD based knowledge distillation can be defined as:

L𝐾𝐷 = EMD(H𝑆 ,H𝑇 ) (8)

2.5 Model Optimization
Different from previous NAS methods that search the optimal ar-
chitecture on the validation set conditioned on the optimal network
weight on the training set, we first pre-train the teacher model and
then search for the student structure under the supervision of the
pre-trained teacher model. Specifically, we combine the knowledge
distillation loss LKD w.r.t the pre-trained teacher model and the
cross-entropy loss (L𝐶𝐸 ) w.r.t ground-truth labels from the train-
ing data to assist the searching process. The model optimization is
defined as follows:

min
𝛼

LKD (𝑤∗ (𝛼), 𝛼)

s.t. 𝑤∗ (𝛼) = arg min
𝑤

LKD (𝑤, 𝛼)
(9)

where 𝛼 represents the searching architecture and𝑤 indicates the
weights. During the optimization process, we first fix the architec-
ture 𝛼 and update the weights 𝑤 according to the cross-entropy
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Table 3: The comparison of running speed of different models. #ep denotes the number of epochs for searching the best
architecture; ep/s denotes the average running time in seconds per epoch; total denotes the total running time in hour.

MRPC SST WikiQA RTE TRECModel #ep ep/s total/h #ep ep/s total/h #ep ep/s total/h #ep ep/s total/h #ep ep/s total/h
DARTS 59 292 4.79 70 5220 101.50 63 1581 27.67 57 204 3.23 51 432 6.12
SNAS 57 69 1.09 66 1270 23.28 36 372 3.72 56 47 0.73 59 101 1.66

PC-DARTS 44 100 1.22 69 1711 32.79 52 517 7.46 54 67 1.01 49 148 2.01
Ours 10 74 0.21 9 1306 3.27 7 392 0.76 6 51 0.09 12 109 0.36

loss on the training set. Then, we fix the weights 𝑤 and update
the architecture 𝛼 according to the distillation loss. By alterna-
tively updating the architecture 𝛼 and weight parameters 𝑤 , the
optimal architecture can be obtained through the gradient descent
algorithm.

3 EXPERIMENTAL SETUP
Datasets. To evaluate the effectiveness of our method, we con-

duct extensive experiments on five benchmark datasets, including
SST-2 [19] for sentiment classification, MRPC [7] for textual similar-
ity calculation, WikiQA [26] for question answering, RTE [22] for
language inference, TREC [12] for semantic matching. The statistics
of these five datasets are provided in Table 1.

Implementation Details. The number of layers in the student
model is set to be 4. The number of inner nodes in each search
cell is set to be 3. The learning rate for the operation parameters
𝑤 is chosen from {2e-2, 1e-3, 1e-4}, while the learning rate for the
structure parameters 𝛼 is chosen from {1e-3, 5e-4, 1e-4}. The size of
the hidden state in the student model is set to be 128. We optimize
the model parameters with SGD optimizer. The batch size is set to
be 32 in both searching and re-training stages. The max length of
the input sequence is set to be 128. We adopt pre-trained BERT to
initialize the word embeddings.

Baselines. We compare our method with several state-of-the-art
NAS approaches, including DARTS [15], PC-DARTS [25], SNAS
[24], ENAS [17]. We adopt the same candidate operations for all the
baseline models. In addition, we also compare our model with two
manually designed networks, including VDCNN [6] and 12-layer
Transformers [21].

4 EXPERIMENTAL RESULTS
4.1 Main Results
To ensure the stability of our KD-NAS model, we run KD-NAS
three times, and report the average results in Table 2. From the
results, we can observe that our method outperforms the compared
baselines on all the five datasets. In particular, on the TREC dataset,
the accuracy of our method increase by 1.17% over the best baseline
(e.g., PC-DARTS).

Since the aim of this work is to accelerate neural architecture
search with knowledge distillation, we also report the running time
of different models in Table 3. Specifically, we report the number of
epochs for different approaches to obtain the best architecture and
the average time for each epoch in searching step. Here, we do not
provide the running time of ENAS since it pre-defines the number
of steps within each epoch, while the other methods depend on
the size of training data. From the results, we can observe that our

Table 4: Ablation test results on MRPC, SST and RTE.

Model MRPC SST RTE
ACC #ep ACC #ep ACC #ep

Full Model 82.00 10 86.10 9 54.93 6
- w/o EMD 81.77 41 85.26 41 54.45 13
- w/o Add&Norm 81.93 15 85.23 14 54.57 10

method is at least 17x faster than the popular DARTS model, while
maintaining slightly better performances. This is because our KD
guided NAS method simplifies the searching target with the help
of the teacher model.

4.2 Ablation Study
To better understand the impact of different components of our
method on effectiveness and searching speed, we perform ablation
study in terms of removing EMD (denoted as w/o EMD) and the
residual connection followed by layer normalization (denoted as
w/o Add&Norm). We summarize the experimental results in Table 4.
We observe that each component contributes to both the accuracy
and the speed of our method. In particular, the EMD-based knowl-
edge distillation algorithm greatly reduces the number of epochs
required for learning the best architecture. The improvement of
the residual connection and layer normalization is also significant.
It is no surprise that combining all the factors achieves the best
performance on all the experimental datasets.

5 CONCLUSION
In this paper, we propose a novel NAS method for natural lan-
guage processing with knowledge distillation, which automatically
searches the optimal network architecture byminimizing the knowl-
edge loss transferred from a pre-trained teacher network to the
searching network based on Earth Mover’s Distance(EMD). Exper-
iments on five NLP tasks demonstrate that our method achieves
considerably better performance than strong baselines while sig-
nificantly accelerating searching speed.
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