
AUTOMATED GRAPH LEARNING VIA POPULATION BASED SELF-TUNING GCN

Ronghang Zhu∗, Zhiqiang Tao†, Yaliang Li‡, Sheng Li∗(�)

∗Department of Computer Science, University of Georgia, Athens, GA
†Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA

‡Alibaba Group, Bellevue, WA
{ronghangzhu, sheng.li}@uga.edu, ztao@scu.edu, yaliang.li@alibaba-inc.com

ABSTRACT

Owing to the remarkable capability of extracting effective
graph embeddings, graph convolutional network (GCN) and
its variants have been successfully applied to a broad range of
tasks, such as node classification, link prediction, and graph
classification. Traditional GCN models suffer from the issues
of overfitting and oversmoothing, while some recent tech-
niques like DropEdge could alleviate these issues and thus
enable the development of deep GCN. However, training GCN
models is non-trivial, as it is sensitive to the choice of hyper-
parameters such as dropout rate and learning weight decay,
especially for deep GCN models. In this paper, we aim to
automate the training of GCN models through hyperparameter
optimization. To be specific, we propose a self-tuning GCN ap-
proach with an alternate training algorithm, and further extend
our approach by incorporating the population based training
scheme. Experimental results on three benchmark datasets
demonstrate the effectiveness of our approaches on optimiz-
ing multi-layer GCN, compared with several representative
baselines.

Index Terms— Graph Neural Networks, Graph Learning,
Hyperparameter Optimization.

1. INTRODUCTION

Graph-structured data are ubiquitous in various real-world ap-
plications, which promotes the demand of expanding deep
learning techniques to graphs [1]. Many approaches have been
proposed to learn node feature representations by investigating
graph convolutional networks (GCN) [2, 3, 4, 5]. However,
these GCN models are usually no deeper than three or four lay-
ers. Recently, several attempts have been proposed to explore
deeper GCN models, such as incorporating residual/dense
connections and dilated convolutions to build deeper GCN
models [6, 7], and adopting the idea of DropEdge [8] to solve
overfitting and oversmoothing problems in deeper GCN. Most
of these approaches focus on designing an appropriate deeper
GCN structure yet ignoring the importance of hyperparameter
choices to train deeper GCN models.

Recently, automatically optimizing hyperparameters has
yielded remarkable results on many machine learning tasks.
There are mainly two categories: One is hyperparameter con-
figuration search, like random search [9], grid search [10] and
Hyperband [11], which optimizes hyperparameters in fixed
values during training process. The other is hyperparameter
schedule search such as self-tuning networks (STN) [12] and
population based training (PBT) [13], which enable hyperpa-
rameters to change in each training iteration. To the best of
our knowledge, the hyperparameter optimization problem for
graph neural networks has not been studied yet.

In this paper, we propose a novel automated graph learning
algorithm to investigate deeper GCN models. Different from
existing works on graph neural architecture search [14, 15, 16],
our work focuses on automatically tuning hyperparameters
with given GCN architectures. The major contributions of this
paper are summarized as follows.

• We propose to solve the automated graph learning prob-
lem from a new perspective, i.e., through hyperparam-
eter optimization, which provides a complementary di-
rection to graph neural architecture search.

• We design and develop self-tuning GCN (ST-GCN) by
incorporating hypernets [12] in each graph convolu-
tional layer, enabling a joint optimization over GCN
model parameters and its hyperparameters. The pro-
posed approach can be flexibly extended to many exist-
ing GCN models [17, 3, 4].

• We further adopt a population based training framework
to self-tuning GCN, which alleviates local minima prob-
lem by exploring hyperparameter space globally.

• We conduct extensive experiments to demonstrate the
effectiveness of the proposed approaches on three bench-
mark datasets.

2. RELATED WORK

Graph Neural Networks (GNNs) have been a mainstream
technique to squeeze complex graph-structured data into com-

ar
X

iv
:2

10
7.

04
71

3v
1

 [
cs

.L
G

]
 9

 J
ul

 2
02

1

pact and low-dimensional embedding representations [1, 17,
18, 19, 20]. Roughly, it could be separated into two categories:
spectral-based GNNs [21, 2] and spatial-based GNNs [3, 4].
The former develops graph convolution operations in the vein
of spectral graph theory; the latter instantiates convolution
on spatial domain, relying more on neighborhood sampling,
message passing, and feature aggregation. To name a few,
graph convolutional networks (GCN) [2] and graph attention
networks (GAT) [3] are two representative spectral and spatial-
based methods, respectively, which are widely used as building
modules in other graph learning frameworks. In this paper, we
focus our study on the first category, with a particular interest
in the impact of hyperparameters on GCN.

Hyperparameter Optimization (HPO) [22] lies in the
core task of AutoML, which aims to optimize the model per-
formance by automatically searching feasible hyperparame-
ter configurations or schedules. Some representative HPO
methods, yet not limited to, include grid/random search [9],
Hyperband and successive halving [11], hypergradient based
method [23], and Bayesian optimization [24]. Recent re-
search [8] has shown that different hyperparameters, such
as learning rates, dropout, weight decay, etc., largely impact
the model performance of various GNN architectures. Thus,
it is a promising direction to incorporate HPO into GNNs
to enable automated learning. In light of this, we develop
a Self-tuning GCN (ST-GCN) model with population-based
training, inspired by the recent hyperparameter scheduling
methods [13, 12, 25]. To our best knowledge, this is the first
attempt to propose a GNN-specific hyperparameter optimiza-
tion algorithm.

Automated Graph Learning has emerged as an impor-
tant research problem that combines AutoML and GNNs. Sim-
ilar to neural architecture search (NAS), existing automated
graph learning methods mainly target to explore an optimal
GNN architecture from a pre-defined network configuration
space [14, 15]. The searching space is generally defined by
GNN structures, including network depth, aggregation and
activation functions, etc., and the search processing is gov-
erned by a controller model to optimize the performance on
the validation set. Following this line, a series of graph neu-
ral architecture search (GNAS) methods have been proposed
recently, implemented by reinforcement learning [14, 15, 16]
and evolution algorithm [26, 27]. Unlike GNAS, the proposed
ST-GCN studies “automation” from a new perspective, i.e.,
hyperparameter optimization, which automatically tunes hy-
perparameters for pre-defined network architecture, and thus
serves as a complementary direction towards automated graph
learning.

3. METHODOLOGY

3.1. Preliminary

Let G = (V, E) denote an undirected graph with N nodes vi ∈
V (i = 1, · · · , N) and a number of edges (vi, vj) ∈ E . The
adjacency matrix of graph G is denoted by A ∈ RN×N , where
Aij = 1 if there is an edge between vi and vj . We consider
the node classification task [28] on graph G, and use Y with
yi ∈ R (i = 1, · · · , N) to denote the node labels. Moreover,
we define a graph learning model (e.g., GCN) as f(·; θ, λ) :
V → Y , which is parameterized by the model parameters
θ ∈ Rp (e.g., weights ans biases) and hyperparameters λ ∈ Rq
(e.g., dropout rate and weight decay).

For node classification, the graph learning model f(·; θ, λ)
can be optimized by solving:

L(θ, λ) = E(v,y)∈D
[
`(f(v; θ, λ), y)

]
, (1)

where `(·, ·) refers to a loss function and D represents a train-
ing set Dtrn or a validation set Dval. Upon Eq. equation 1, we
can see the loss value depends on both the model parameters
θ and the hyperparameters λ. Traditionally, the selection of
hyperparameters λ is an iterative manner with trial and error
required profound knowledge of machine learning algorithms
and statistics. In this paper, we aim to design an approach
to automatically choose optimal hyperparameters for graph
learning models.

The model f(v; θ, λ) in Eq. equation 1 could be imple-
mented by various graph learning approaches, such as the
traditional graph embedding methods and the recent graph
neural networks. In this paper, we focus on graph convolu-
tional networks (GCN) [2]. However, it is worth noting that,
the proposed hyperparameter optimization method can be eas-
ily adapted to other graph neural networks. Given an input
graph characterized by a normalized adjacency matrix Â and
a node feature matrix H(0) = X , GCN updates the node
embeddings by using the following layer-wise propagation
rule:

H(l+1) = σ
(
ÂH(l)W (l)

)
, (2)

where Â = D̂−1/2(A+ I)D̂−1/2 is the normalized adjacency
matrix, I is an identity matrix, and D̂ is the degree matrix
of A + I . W (l) ∈ RMl×Ml+1 is the learnable weight matrix
in the l-th layer with Ml refers to the feature dimension of
H(l). H(l) = {h(l)1 , h

(l)
2 , . . . , h

(l)
N } is the hidden feature ma-

trix with h(l)i as the hidden feature for node vi. σ(·) denotes
an activation function such as the ReLu function.

Then, the graph learning model with two-layer GCN for
node classification is defined as

f(V; θ, λ) = softmax
(
ÂReLu

(
ÂVW (0)

)
W (1)

)
. (3)

As mentioned in [2], overfitting is one of the main ob-
stacles to build deep GCN model for node classification. To

2

alleviate this issue, DropEdge [8] is proposed to randomly
drop out a certain part of edges in the graph, which is defined
as

Adrop = A−A′. (4)

Here A′ denotes a random subset of edges from original A,
Adrop refers to the resulting adjacency matrix after dropped
edges. Replaced Â with Âdrop in deep GCN model for prop-
agation can prevent overfitting problem, where Âdrop is the
re-normalized Adrop. In the following, we consider four-layer
and eight-layer GCN models with DropEdge [8] for node clas-
sification on a graph.

3.2. Self-Tuning GCN

We propose a self-tuning GCN (ST-GCN) approach to guide
the hyperparameter search of GCN models. In particular, we
define θ̂(λ) : Rq → Rp as the response function of hyperpa-
rameter λ to approximate the GCN model parameter θ, i.e.,
θ̂(λ) is a mapping from λ to optimal parameters. For a given
GCN layer with the weight matrix W ∈ RMin×Mout and bias
b ∈ RMout , we define the affine transformation of hyperpa-
rameters λ as

Ŵ (λ) =W +Wλ�rowCW (λ) and b̂(λ) = b+bλ�Cb(λ),
(5)

where the dimensions of Wλ and bλ are the same as W and
b, respectively. CW (λ) ∈ RMout and Cb(λ) ∈ RMout are
scaled embeddings by linearly transforming λ, i.e., Cw(λ) =
ewλ and Cb(λ) = ebλ. �row denotes the row-wise rescaling
and � indicates element-wise multiplication. Thus the total
parameters of the GCN model are θ̂(λ) = {Ŵ (λ), b̂(λ)}.

As θ̂(λ) captures changes such as shifting and scaling in θ
induced by λ, we reformulate Eq. equation 1 with θ̂(λ) as

L(θ̂(λ), λ) = Eλ∼P (λ),(v,y)∈D

[
`(f(v; θ̂(λ), λ), y)

]
. (6)

Here, P (λ) = P (λ|ε) represents a log-uniform distribution
over hyperparameter λ. ε control the sccale of the hyperpa-
rameter distribution, which contains the bounds of the ranges
of λ. θ̂(λ) can capture the best-response over the samples and
the shape locally around the hyperparameter values. We vary
the distribution P (λ|ε) with training iterations. To prevent
P (λ|ε) from collapsing to a degenerate distribution, we add
an entropy regularization item H[·] weighted by τ ∈ R+. The
objective function in Eq. equation 6 becomes:

L(θ̂(λ), λ) = Eλ∼P (λ|ε),(v,y)∈D

[
`(f(v; θ̂(λ), λ), y)

]
−τH[P (λ|ε)].

(7)

3.3. Alternate Training Algorithm

To optimize the objective functions of ST-GCN in Eq. equa-
tion 6 and Eq. equation 7, we follow the alternate train-
ing procedure proposed by [12], which includes two steps,

Algorithm 1 Self-Tuning GCN

Require: Hyperparameter λ, GCN model parameter θ, distri-
bution scale ε response function θ̂(·), learning rate ηλ, ηθ
and ηε.

Ensure: GCN model parameter θ, hyperparameter λ
1: while not converged do
2: for i = 1, . . . , Ttrn do
3: θ ← θ − ηθ ∂Ltrn

∂θ
4: end for
5: for i = 1, . . . , Tval do
6: λ← λ− ηλ ∂Lval

∂λ , ε← ε− ηε ∂Lval

∂ε , ε ∈ P (λ|ε)
7: end for
8: end while
9: return θ, λ

i.e., ModelTraining and HyperTraining. In particular,
we use Ltrn to denote the ModelTraining loss on training
set Dtrn following Eq. equation 6, and use Lval to denote
the HyperTraining loss on validation set Dval following
Eq. equation 7.

In the ModelTraining step, we adopt a stochastic gra-
dient update of θ to minimize Eq. equation 6 with sampling
λ ∼ P (λ|ε). Specifically, θ is updated by

θ(t) ← θ̂(t−1)(λ(t−1))− ηθ∇θ, (8)

where ηθ is the learning rate, ∇θ = ∂Ltrn

∂θ is the gradient of
model parameter.

In the HyperTraining step, we make a stochastic gradi-
ent update of λ and ε to minimize Eq. equation 7. In detail, λ
is updated by

λ(t) ← λ̂(t−1) − ηλ∇λ, (9)

where ηλ is the learning rate, and ∇λ is the hypergradient
given by

∇λ =
∂Lval(θ̂(λ), λ)

∂θ

∂θ

∂λ
+
∂Lval(θ̂(λ), λ)

∂λ
. (10)

The computation in Eq. equation 10 is mainly determined
by response function θ̂(λ), which is memory-efficient and
flexible to compute [12]. We summarize the procedures of
ST-GCN in Algorithm 1.

3.4. Population based Self-Tuning GCN

Our ST-GCN approach mainly focuses on computing hyper-
gradients by designing a differentiable response function for
hyperparameter, which is a non-convex optimization problem
and may get into local minima [25]. To address this potential
issue with ST-GCN, we propose a population based self-tuning
GCN (PST-GCN) approach, inspired by the recent success of
population based training [13, 25]. The population based train-
ing (PBT) could supply abundant multiplicity to globally seek
hyperparameters throughout the hyperparameter space, which

3

Algorithm 2 Population based Self-Tuning GCN

Require: An initialized population of GCN models S ={
sk
}K
k=1

, where sk = f(·; θk, λk).
Ensure: GCN model parameter θ, hyperparameter λ

1: for (θ, λ, s, t) ∈ S (asynchronously in parallel) do
2: while not end of training step do
3: θ ←ModelTraining(Dtrn; θ, λ)
4: (λ, ε)← HyperTraining(Dval; θ, λ)
5: accs ← eval(Dval, s)
6: if ready(s, t,S) then
7: (θ′, λ′)← Exploitation(θ, λ, s,S)
8: if θ 6= θ′ then
9: (θ, λ) ← Exploration(θ′, λ′), accs ←

eval(Dval, s)
10: end if
11: end if
12: update S with new (θ, λ, s, t+ 1)
13: end while
14: end for
15: return θ, λ with the highest accs of s in S

employs a population of agent models to search different hy-
perparameter combinations and update hyperparameters with a
mutation operation. PBT is a good complementary to ST-GCN,
as it could help overcome the local minima issue.

Given a population of agent models S(t) =
{
sk(t)
}K
k=1

at the t-th training step, where sk(t) denotes the k-th agent
model w.r.t f(·; θ, λ), and K refers to the population size. The
searching process of Population based Self-Tuning GCN (PST-
GCN) includes three types of operations as follows:

• Training step evaluates the accuracy on the validation
dataset, eval

(
Dval, sk(t)

)
, and updates θk(t−1) to θk(t),

λk(t−1) to λk(t) and εk(t−1) to εk(t). The training step has
a fixed number of epochs. After the training step, the
agent sk(t) is ready for exploitation and exploration.

• Exploitation operation exploits the population of agent
models S(t) by dividing it into three subsets of top,
middle and bottom in terms of the accuracy of valida-
tion. The parameters and hyperparameters in the bottom
agent models are replaced by the top ones.

• Exploration operation maintains the top and middle
agents unchanged, and randomly perturb the hyperpa-
rameters of bottom agents.

With the above three operations, the proposed PST-GCN
can have a balance between local and global search to over-
come the potential local minima issue in ST-GCN. Algorithm 2
summarizes the main procedures of our PST-GCN approach.

4. EXPERIMENTS

Datasets. We employ three benchmark citation network
datasets for experiments, including Cora, Citeseer and
Pubmed [29]. Each document contains a sparse bag-of-words
feature vector, and there is a list of citation links between doc-
uments. We treat the documents as nodes and citation links
as undirected edges. The statistics of these three datasets are
summarized in Table 1. Label rate denotes the percentage of
labeled nodes among all nodes for model training. We follow
the settings in [2] and use the full-supervised training fashion
on all datasets in experiments.

Table 1: Statistics of three benchmark graph datasets.

Dataset Nodes Edges Classes Features Label Rate

Cora 2,708 5,429 7 1,433 0.052
Citeseer 3,327 4,732 6 3,703 0.036
Pubmed 19,717 44,338 3 500 0.003

Experiment Setting. We adopt two different backbones of
GCN with 4 layers and 8 layers separately. The hyperparame-
ters considered in our experiments include variational dropout
rates for hidden state, edge dropout rate [8] and weight decay.
The numbers of hyperparameters are 5 and 9 for the 4-layer
and 8-layer GCN model, respectively.
Baselines. We compare the proposed methods ST-GCN and
PST-GCN with three representative baselines including: (1)
random search (RS): the best single model after 200 trials; (2)
Hyperband (HB) [11]: the best single model after 200 trials;
and (3) PBT [13]: the best single model in 200 agent models.
Implementation Details. We train the 4-layer and 8-layer
GCN models with 128 hidden units per layer with all the
above methods. Each model is trained for a maximum of 400
epochs. For PBT and PST-GCN, we set 200 epochs as warm
up and 200 epochs as training iterations. After warm-up, we
take one training epoch as one training step, and then perform
exploitation and exploration after each training step. For ST-
GCN and PST-GCN, we use an alternating training schedule to
update the model parameters for two epochs on the Dtrn and
then update the hyperparameters for one epoch on the Dval.
We adopt the Adam optimizer for model training. For fixed
hyperparameter baselines, i.e., RS and HB, the learning rate is
set to 0.01 on the Cora and Pubmed datasets, and 0.09 on the
Citeseer dataset, which follows the same settings in [8]. For
the hyperparameter schedule baseline PBT and our approaches,
we set the learning rate to 0.0005 on the Cora and Citeseer
datasets, and 0.005 on the Pubmed dataset. The search spaces
for the hyperparameters are as follows: dropout rates are in the
range [0, 0.9], edge dropout rates [8] are in the range [0, 0.9],
and weight decay is in the range [10−6, 10−2].
Results and Analysis. Performance metric is the classifica-
tion accuracy on testing set in percent, and results are summa-
rized in Table 2. From it, we can observe that the proposed
methods, ST-GCN and PST-GCN, obtain the best accuracy in

4

Table 2: Node classification accuracy (in percentage) of our approaches (ST-GCN and PST-GCN) and three baselines (RS, HB
and PBT) on Core, Citeseer and Pubmed datasets.

Dataset Layer Method

RS HB PBT ST-GCN PST-GCN

Cora 4 85.3 84.5 82.9 86.2 86.9
8 83.5 82.9 84.4 85.6 87.0

Citeseer 4 76.3 76.5 74.3 79.3 79.0
8 74.9 74.8 73.8 78.1 78.6

Pubmed 4 90.0 89.3 88.4 89.6 89.8
8 87.4 86.5 88.2 89.4 90.4

5 out of 6 experiments. Furthermore, compared with baselines
on 4-layer and 8-layer GCN models, ST-GCN and PST-GCN
have better advantages on 8-layer GCN models, which is due
to the mighty power of gradient-based HPO in sophisticated
hyperparameter space. Note that comparing with ST-GCN,
PST-GCN can boost performance significantly on 8-layer GCN
models, showing that population-based training can help alle-
viate the local minima problem in ST-GCN. Further, Fig. 1(a)
and Fig. 1(b) show the validation accuracy and loss of ST-GCN
over training epochs on 8-layer GCN model. We can observe
that the validation accuracy is continuously improved along
with the training epoch, while the validation loss curves are
continuously decreased, even after a large number of epochs,
which validates the effect of ST-GCN on alleviating overfitting
in deeper GCN models.

0 50 100 150 200 250 300 350 400
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy

Cora
Citeseer
Pubmed

(a) Accuracy

0 50 100 150 200 250 300 350 400
Epoch

100

101

Va
lid

at
io

n
Lo

ss

Cora
Citeseer
Pubmed

(b) Loss

Fig. 1: Experiments on Core, Citeseer and Pubmed dataset
with 8-layer GCN. (a) The validation accuracy of ST-GCN
over training epochs. (b) The validation loss of ST-GCN over
training epochs.

5. CONCLUSIONS

In this paper, we study the automation of graph learning from
the perspective of hyperparameter optimization, which is com-
plementary to the existing GNN architecture search. To fulfill
this goal, we propose a self-tuning GCN by jointly optimizing
GCN model parameters and the hyperparameters, which can
alleviate the overfitting in deeper GCN models. We further
incorporate the population-based training to alleviate the local

minima problem in ST-GCN, which provides a global hyper-
parameter search. Experimental results on three benchmark
datasets demonstrate the benefit of the proposed population
based self-tuning GCN method.

6. REFERENCES

[1] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun, “Graph
neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[2] Thomas N Kipf and Max Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” in ICLR, 2017.

[3] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio, “Graph attention
networks,” in ICLR, 2018.

[4] Will Hamilton, Zhitao Ying, and Jure Leskovec, “Inductive
representation learning on large graphs,” in NeurIPS, 2017.

[5] Xiaodong Jiang, Ronghang Zhu, Pengsheng Ji, and Sheng Li,
“Co-embedding of nodes and edges with graph neural networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

[6] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem,
“Deepgcns: Can gcns go as deep as cnns?,” in CVPR, 2019.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and
Yaliang Li, “Simple and deep graph convolutional networks,”
in ICML, 2020.

[8] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang,
“Dropedge: Towards deep graph convolutional networks on
node classification,” in ICLR, 2020.

[9] James Bergstra and Yoshua Bengio, “Random search for hyper-
parameter optimization.,” Journal of machine learning research,
vol. 13, no. 2, 2012.

[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al., “Scikit-
learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[11] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar, “Hyperband: A novel bandit-
based approach to hyperparameter optimization,” The Journal
of Machine Learning Research, vol. 18, no. 1, pp. 6765–6816,
2017.

5

[12] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud,
and Roger Grosse, “Self-tuning networks: Bilevel optimization
of hyperparameters using structured best-response functions,”
in ICLR, 2019.

[13] Max Jaderberg, Valentin Dalibard, Simon Osindero, Woj-
ciech M Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals,
Tim Green, Iain Dunning, Karen Simonyan, et al., “Pop-
ulation based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

[14] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu,
“Graph neural architecture search,” in IJCAI, 2020.

[15] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu,
“Auto-gnn: Neural architecture search of graph neural networks,”
arXiv preprint arXiv:1909.03184, 2019.

[16] Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu,
“Policy-gnn: Aggregation optimization for graph neural net-
works,” in SIGKDD, 2020.

[17] Xiaodong Jiang, Pengsheng Ji, and Sheng Li, “Censnet: Con-
volution with edge-node switching in graph neural networks,”
in IJCAI, 2019.

[18] Saed Rezayi, Handong Zhao, Sungchul Kim, Ryan Rossi,
Nedim Lipka, and Sheng Li, “EDGE: Enriching knowledge
graph embeddings with external text,” in NAACL, 2021.

[19] Ronghang Zhu, Xiaodong Jiang, Jiasen Lu, and Sheng Li,
“Transferable feature learning on graphs across visual domains,”
in ICME, 2021.

[20] Heng-Shiou Sheu and Sheng Li, “Context-aware graph embed-
ding for session-based news recommendation,” in ACM RecSys,
2020.

[21] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun,
“Spectral networks and locally connected networks on graphs,”
in ICLR, 2014.

[22] Matthias Feurer and Frank Hutter, Hyperparameter Optimiza-
tion, pp. 3–33, Springer International Publishing, 2019.

[23] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massim-
iliano Pontil, “Forward and reverse gradient-based hyperparam-
eter optimization,” in ICML, 2017.

[24] Stefan Falkner, Aaron Klein, and Frank Hutter, “BOHB: Robust
and efficient hyperparameter optimization at scale,” in ICML,
2018.

[25] Zhiqiang Tao, Yaliang Li, Bolin Ding, Ce Zhang, Jingren Zhou,
and Yun Fu, “Learning to mutate with hypergradient guided
population,” in NeurIPS, 2020.

[26] Min Shi, David A. Wilson, Xingquan Zhu, Yu Huang, Yuan
Zhuang, Jianxun Liu, and Yufei Tang, “Evolutionary archi-
tecture search for graph neural networks,” arXiv preprint
arXiv:2009.10199, 2020.

[27] Shengli Jiang and Prasanna Balaprakash, “Graph neural net-
work architecture search for molecular property prediction,”
arXiv preprint arXiv:2008.12187, 2020.

[28] Smriti Bhagat, Graham Cormode, and S Muthukrishnan, “Node
classification in social networks,” in Social network data ana-
lytics, pp. 115–148. 2011.

[29] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad, “Collective classification
in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

6

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminary
	3.2 Self-Tuning GCN
	3.3 Alternate Training Algorithm
	3.4 Population based Self-Tuning GCN

	4 Experiments
	5 Conclusions
	6 References

