
Propensity-scored Probabilistic Label Trees
Marek Wydmuch

Poznan University of Technology

Poznan, Poland

mwydmuch@cs.put.poznan.pl

Kalina Jasinska-Kobus
∗

ML Research at Allegro.pl

Poznan, Poland

kjasinska@cs.put.poznan.pl

Rohit Babbar

Aalto University

Helsinki, Finland

rohit.babbar@aalto.fi

Krzysztof Dembczyński
∗

Yahoo! Research

New York, USA

kdembczynski@cs.put.poznan.pl

ABSTRACT

Extreme multi-label classification (XMLC) refers to the task of

tagging instances with small subsets of relevant labels coming from

an extremely large set of all possible labels. Recently, XMLC has

been widely applied to diverse web applications such as automatic

content labeling, online advertising, or recommendation systems.

In such environments, label distribution is often highly imbalanced,

consisting mostly of very rare tail labels, and relevant labels can be

missing. As a remedy to these problems, the propensity model has

been introduced and applied within several XMLC algorithms. In

this work, we focus on the problem of optimal predictions under

this model for probabilistic label trees, a popular approach for

XMLC problems. We introduce an inference procedure, based on

the 𝐴∗
-search algorithm, that efficiently finds the optimal solution,

assuming that all probabilities and propensities are known. We

demonstrate the attractiveness of this approach in a wide empirical

study on popular XMLC benchmark datasets.

CCS CONCEPTS

• Computing methodologies → Supervised learning by clas-

sification.

KEYWORDS

extreme classification, multi-label classification, propensity model,

missing labels, probabilistic label trees, supervised learning, recom-

mendation, tagging, ranking

ACM Reference Format:

Marek Wydmuch, Kalina Jasinska-Kobus, Rohit Babbar, and Krzysztof Dem-

bczyński. 2021. Propensity-scored Probabilistic Label Trees. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3404835.3463084

∗
Also with Poznan University of Technology.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada, https://doi.org/10.1145/
3404835.3463084.

1 INTRODUCTION

Extreme multi-label classification (XMLC) is a supervised learning

problem, where only a few labels from an enormous label space,

reaching orders of millions, are relevant per data point. Notable

examples of problems where XMLC framework can be effectively

leveraged are tagging of text documents [8], content annotation

for multimedia search [9], and diverse types of recommendation,

including webpages-to-ads [5], ads-to-bid-words [2, 19], users-to-

items [23, 28], queries-to-items [17], or items-to-queries [7]. These

practical applications impose new statistical challenges, including:

1) long-tail distribution of labels—infrequent (tail) labels are much

harder to predict than frequent (head) labels due to the data imbal-

ance problem; 2) missing relevant labels in learning data—since it

is nearly impossible to check the whole set of labels when it is so

large, and the chance for a label to be missing is higher for tail than

for head labels [11].

Many XMLC models achieve good predictive performance by

just focusing on head labels [22]. However, this is not desirable

in many of the mentioned applications (e.g., recommendation and

content annotation), where tail labels might be more informative.

To address this issue Jain et al. [11] proposed to evaluate XMLC

models in terms of propensity-scored versions of popular measures

(i.e., precision@𝑘 , recall@𝑘 , and nDCG@𝑘). Under the propensity

model, we assume that an assignment of a label to an example is

always correct, but the supervision may skip some positive labels

and leave them not assigned to the example with some probability

(different for each label).

In this work, we introduce the Bayes optimal inference proce-

dure for propensity-scored precision@𝑘 for probabilistic classifiers

trained on observed data. While this approach can be easily applied

to many classical models, we particularly show how to implement it

for probabilistic label trees (PLTs) [12], an efficient and competitive

approach to XMLC, being the core of many existing state-of-the-art

algorithms (e.g., Parabel [18], extremeText [24], Bonsai [15],

AttentionXML [25], napkinXC [13], and PECOS that includes

XR-Linear [26] and X-Transformers [7] methods). We demon-

strate that this approach achieves very competitive results in terms

of statistical performance and running times.

2 PROBLEM STATEMENT

In this section, we state the problem. We first define extreme multi-

label classification (XMLC) and then the propensity model.

ar
X

iv
:2

11
0.

10
80

3v
1

 [
cs

.L
G

]
 2

0
O

ct
 2

02
1

https://doi.org/10.1145/3404835.3463084
https://doi.org/10.1145/3404835.3463084
https://doi.org/10.1145/3404835.3463084

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Marek Wydmuch, Kalina Jasinska-Kobus, Rohit Babbar, and Krzysztof Dembczyński

2.1 Extreme multi-label classification

Let X denote an instance space, and let L = [𝑚] be a finite set

of𝑚 class labels. We assume that an instance 𝒙 ∈ X is associated

with a subset of labels L𝒙 ⊆ L (the subset can be empty); this

subset is often called the set of relevant or positive labels, while
the complement L\L𝒙 is considered as irrelevant or negative for
𝒙 . We identify the set L𝒙 of relevant labels with the binary vector

𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑚), in which𝑦 𝑗 = 1 ⇔ 𝑗 ∈ L𝒙 . ByY = {0, 1}𝑚 we

denote the set of all possible label vectors. In the classical setting, we

assume that observations (𝒙,𝒚) are generated independently and

identically according to a probability distribution P(𝒙,𝒚) defined on
X×Y. Notice that the above definition concerns not onlymulti-label

classification, but also multi-class (when ∥𝒚∥1 = 1) and 𝑘-sparse

multi-label (when ∥𝒚∥1 ≤ 𝑘) problems as special cases. In case of

XMLC we assume𝑚 to be a large number (e.g., ≥ 10
5
), and ∥𝒚∥1 to

be much smaller than𝑚, ∥𝒚∥1 ≪𝑚.
1

The problem of XMLC can be defined as finding a classifier
𝒉(𝒙) = (ℎ1 (𝒙), ℎ2 (𝒙), . . . , ℎ𝑚 (𝒙)), from a function classH𝑚

: X →
R𝑚 , that minimizes the expected loss or risk:

𝐿ℓ (𝒉) = E(𝒙,𝒚)∼P(𝒙,𝒚) (ℓ (𝒚,𝒉(𝒙)) , (1)

where ℓ (𝒚, 𝒚̂) is the (task) loss. The optimal classifier, the so-called

Bayes classifier, for a given loss function ℓ is: 𝒉∗ℓ = argmin𝒉 𝐿ℓ (𝒉) .

2.2 Propensity model

In the case of XMLC, the real-world data may not follow the clas-

sical setting, which assumes that (𝒙,𝒚) are generated according

to P(𝒙,𝒚). As correct labeling (without any mistakes or noise) in

case of an extremely large label set is almost impossible, it is rea-

sonable to assume that positive labels can be missing [11]. Mathe-

matically, the model can be defined in the following way. Let 𝒚 be

the original label vector associated with 𝒙 . We observe, however,

𝒚̃ = (𝑦1, . . . , 𝑦𝑚) such that:

P(𝑦 𝑗 = 1 |𝑦 𝑗 = 1) = 𝑝 𝑗 , P(𝑦 𝑗 = 0 |𝑦 𝑗 = 1) = 1 − 𝑝 𝑗 ,

P(𝑦 𝑗 = 1 |𝑦 𝑗 = 0) = 0 , P(𝑦 𝑗 = 0 |𝑦 𝑗 = 0) = 1 ,
(2)

where 𝑝 𝑗 ∈ [0, 1] is the propensity of seeing a positive label when

it is indeed positive. All observations in both training and test sets

do follow the above model. The propensity does not depend on 𝒙 .
This means that for the observed conditional probability of label 𝑗 ,

we have:

𝜂 𝑗 (𝒙) = P(𝑦 𝑗 = 1 | 𝒙) = 𝑝 𝑗P(𝑦 𝑗 = 1 | 𝒙) = 𝑝 𝑗𝜂 𝑗 (𝒙) . (3)

Let us denote the inverse propensity by 𝑞 𝑗 , i.e. 𝑞 𝑗 =
1

𝑝 𝑗
. Thus, the

original conditional probability of label 𝑗 is given by:

𝜂 𝑗 (𝒙) = P(𝑦 𝑗 = 1 | 𝒙) = 𝑞 𝑗P(𝑦 𝑗 = 1 | 𝒙) = 𝑞 𝑗𝜂 𝑗 (𝒙) . (4)

Therefore, we can appropriately adjust inference procedures

of algorithms estimating 𝜂 𝑗 (𝒙) to act optimally under different

propensity-scored loss functions.

1
We use [𝑛] to denote the set of integers from 1 to 𝑛, and ∥𝒙 ∥1 to denote the 𝐿1 norm
of 𝒙 .

3 BAYES OPTIMAL DECISIONS FOR

PROPENSITY-SCORED PRECISION@K

Jain et al. [11] introduced propensity-scored variants of popular

XMLC measures. For precision@𝑘 it takes the form:

𝑝𝑠𝑝@𝑘 (𝒚̃,𝒉
@𝑘 (𝒙)) =

1

𝑘

∑︁
𝑗 ∈ ˆL𝒙

𝑞 𝑗 J𝑦 𝑗 = 1K , (5)

where
ˆL𝒙 is a set of 𝑘 labels predicted by 𝒉

@𝑘 for 𝒙 . Notice that
precision@𝑘 (𝑝@𝑘) is a special case of 𝑝𝑠𝑝@𝑘 if 𝑞 𝑗 = 1 for all 𝑗 .

We define a loss function for propensity-scored precision@𝑘 as

ℓ𝑝𝑠𝑝@𝑘 = −𝑝𝑠𝑝@𝑘 . The conditional risk for ℓ𝑝𝑠𝑝@𝑘 is then:

𝐿𝑝𝑠𝑝@𝑘 (𝒉@𝑘 | 𝒙) = E𝒚̃ ℓ𝑝𝑠𝑝@𝑘 (𝒚̃,𝒉@𝑘 (𝒙))

= −
∑︁
𝒚̃∈Y

P(𝒚̃ | 𝒙) 1
𝑘

∑︁
𝑗 ∈ ˆL𝒙

𝑞 𝑗 J𝑦 𝑗 = 1K

= − 1

𝑘

∑︁
𝑗 ∈ ˆL𝒙

𝑞 𝑗

∑︁
𝒚̃∈Y

P(𝒚̃ | 𝒙)J𝑦 𝑗 = 1K

= − 1

𝑘

∑︁
𝑗 ∈ ˆL𝒙

𝑞 𝑗𝜂 𝑗 (𝒙) .

The above result shows that the Bayes optimal classifier for

𝑝𝑠𝑝@𝑘 is determined by the conditional probabilities of labels

scaled by the inverse of the label propensity. Given that the propen-

sities or their estimates are given in the time of prediction, 𝑝𝑠𝑝@𝑘 is

optimized by selecting 𝑘 labels with the highest values of 𝑞 𝑗𝜂 𝑗 (𝒙).

4 PROPENSITY-SCORED PROBABILISTIC

LABEL TRESS

Conditional probabilities of labels can be estimated using many

types of multi-label classifiers, such as decision trees, k-nearest

neighbors, or binary relevance (BR) trained with proper composite

surrogate losses, e.g., squared error, squared hinge, logistic or ex-

ponential loss [1, 27]. For such models, where estimates of 𝜂 𝑗 (𝒙)
are available for all 𝑗 ∈ L, application of the Bayes decision rule

for propensity-scored measures is straightforward. However, in

many XMLC applications, calculating the full set of conditional

probabilities is not feasible. In this section, we introduce an algo-

rithmic solution of applying the Bayes decision rule for 𝑝𝑠𝑝@𝑘 to

probabilistic label trees (PLTs).

4.1 Probabilistic labels trees (PLTs)

We denote a tree by 𝑇 , a set of all its nodes by 𝑉𝑇 , a root node by

𝑟𝑇 , and the set of leaves by 𝐿𝑇 . The leaf 𝑙 𝑗 ∈ 𝐿𝑇 corresponds to the

label 𝑗 ∈ L. The parent node of 𝑣 is denoted by pa(𝑣), and the set of
child nodes by Ch(𝑣). The set of leaves of a (sub)tree rooted in node

𝑣 is denoted by 𝐿𝑣 , and path from node 𝑣 to the root by Path(𝑣).
A PLT uses tree 𝑇 to factorize conditional probabilities of labels,

𝜂 𝑗 (𝑥) = P(𝑦 𝑗 = 1|𝒙), 𝑗 ∈ L, by using the chain rule. Let us define an

event that L𝒙 contains at least one relevant label in 𝐿𝑣 : 𝑧𝑣 = (|{ 𝑗 :
𝑙 𝑗 ∈ 𝐿𝑣} ∩ L𝒙 | > 0). Now for every node 𝑣 ∈ 𝑉𝑇 , the conditional

probability of containing at least one relevant label is given by:

P(𝑧𝑣 = 1|𝒙) = 𝜂𝑣 (𝒙) =
∏

𝑣′∈Path(𝑣)
𝜂 (𝒙, 𝑣 ′) , (6)

Propensity-scored Probabilistic Label Trees SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

where 𝜂 (𝒙, 𝑣) = P(𝑧𝑣 = 1|𝑧
pa(𝑣) = 1, 𝒙) for non-root nodes, and

𝜂 (𝒙, 𝑣) = P(𝑧𝑣 = 1 | 𝒙) for the root. Notice that (6) can also be stated

as recursion:

𝜂𝑣 (𝒙) = 𝜂 (𝒙, 𝑣)𝜂
pa(𝑣) (𝒙) , (7)

and that for leaf nodes we get the conditional probabilities of labels:

𝜂𝑙 𝑗 (𝒙) = 𝜂 𝑗 (𝒙) , for 𝑙 𝑗 ∈ 𝐿𝑇 . (8)

To obtain a PLT, it suffices for a given 𝑇 to train probabilistic

classifiers fromH : R𝑑 ↦→ [0, 1], estimating 𝜂 (𝒙, 𝑣) for all 𝑣 ∈ 𝑉𝑇 .

We denote estimates of 𝜂 by 𝜂. We index this set of classifiers by

the elements of 𝑉𝑇 as 𝐻 = {𝜂 (𝑣) ∈ H : 𝑣 ∈ 𝑉𝑇 }.

4.2 Plug-in Bayes optimal prediction PLTs

An inference procedure for PLTs, based on uniform-cost search,

has been introduced in [12]. It efficiently finds 𝑘 leaves, with highest

𝜂 𝑗 (𝒙) values. Since inverse propensity is larger than one, the same

method cannot be reliably applied to find leaves with the 𝑘 highest

products of 𝑞 𝑗 and ˆ𝜂 𝑗 (𝒙). To do it, we modify this procedure to an

𝐴∗
-search-style algorithm. To this end we introduce cost function

𝑓 (𝑙 𝑗 , 𝒙) for each path from the root to a leaf. Notice that:

𝑞 𝑗 ˆ𝜂 𝑗 (𝒙) = exp

(
−

(
− log𝑞 𝑗 −

∑︁
𝑣∈Path(𝑙 𝑗)

log
ˆ𝜂 (𝒙, 𝑣)

))
. (9)

This allows us to use the following definition of the cost function:

𝑓 (𝑙 𝑗 , 𝒙) = log𝑞max − log𝑞 𝑗 −
∑︁

𝑣∈Path(𝑙 𝑗)
log

ˆ𝜂 (𝒙, 𝑣) , (10)

where 𝑞max = max𝑗 ∈L 𝑞 𝑗 is a natural upper bound of 𝑞 𝑗 ˆ𝜂 𝑗 (𝒙) for
all paths. We can then guide the A*-search with function

ˆ𝑓 (𝑣, 𝒙) =
𝑔(𝑣, 𝒙) + ℎ(𝑣, 𝒙), estimating the value of the optimal path, where:

𝑔(𝑣, 𝒙) = −
∑︁

𝑣′∈Path(𝑣)
log

ˆ𝜂 (𝒙, 𝑣 ′) (11)

is a cost of reaching tree node 𝑣 from the root, and:

ℎ(𝑣, 𝒙) = log𝑞max − log max

𝑗 ∈L𝑣

𝑞 𝑗 (12)

is a heuristic function estimating the cost of reaching the best leaf

node from node 𝑣 . To guarantee that 𝐴∗
-search finds the optimal

solution—top-𝑘 labels with the highest 𝑓 (𝑙 𝑗 , 𝒙) and thereby top-𝑘

labels with the highest 𝑞 𝑗 ˆ𝜂 𝑗 (𝒙)—we need to ensure that ℎ(𝑣, 𝒙) is
admissible, i.e., it never overestimates the cost of reaching a leaf

node [21]. We also would like ℎ(𝑣, 𝒙) to be consistent, making the

𝐴∗
-search optimally efficient, i.e., there is no other algorithm used

with the heuristic that expands fewer nodes [21]. Notice that the

heuristic function assumes that probabilities estimated in nodes in

a subtree rooted in 𝑣 are equal to 1. Since log 1 = 0, the heuristic

comes to finding the label in the subtree of 𝑣 with the largest value

of the inverse propensity.

Algorithm 1 outlines the prediction procedure for PLTs that

returns the top-𝑘 labels with the highest values of 𝑞 𝑗 ˆ𝜂 𝑗 (𝒙). We call

this algorithm Propensity-scored PLTs (PS-PLTs). The algorithm

is very similar to the original Uniform-Cost Search prediction

procedure used in PLTs, which finds the top-𝑘 labels with the

highest 𝜂 𝑗 (𝒙). The difference is that nodes in PS-PLT are evaluated

in the ascending order of their estimated cost values
ˆ𝑓 (𝑣, 𝒙) instead

of decreasing conditional probabilities 𝜂𝑣 (𝒙).

Theorem 1. For any 𝑇,𝐻, 𝒒, and 𝒙 the Algorithm 1 is admissible

and optimally efficient.

Proof. 𝐴∗
-search finds an optimal solution if the heuristic ℎ is

admissible, i.e., if it never overestimates the true value of ℎ∗, the
cost value of reaching the best leaf in a subtree of node 𝑣 . For node

𝑣 ∈ 𝑉 , we have:

ℎ∗ (𝑣, 𝒙) = log𝑞max − log max

𝑗 ∈L𝑣

𝑞 𝑗 −
∑︁

𝑣′∈Path(𝑙 𝑗)\Path(𝑣)
log

ˆ𝜂 (𝒙, 𝑣 ′) .

(13)

Since
ˆ𝜂 (𝒙, 𝑣) ∈ [0, 1] and therefore log

ˆ𝜂 (𝒙, 𝑣) ≤ 0, we have that

ℎ∗ (𝑣, 𝒙) ≥ ℎ(𝑣, 𝒙), for all 𝑣 ∈ 𝑉𝑇 , which proves admissibility.

𝐴∗
-search is optimally efficient if ℎ(𝑣, 𝒙) is consistent (mono-

tone), i.e., its estimate is always less than or equal to the estimate

for any child node plus the cost of reaching that child. Since we

have that max𝑗 ∈𝐿
pa(𝑣) 𝑞 𝑗 ≥ max𝑗 ∈𝐿𝑣 𝑞 𝑗 , and the cost of reaching

𝑣 from pa(𝑣) is − log(ˆ𝜂 (𝒙, 𝑣)) which is greater or equal 0, it holds

that ℎ(pa(𝑣), 𝒙) ≤ ℎ(𝑣, 𝒙) − log(ˆ𝜂 (𝒙, 𝑣)). □

The same cost function 𝑓 (𝑙 𝑗 , 𝒙) can be used with other tree

inference algorithms (for example discussed by Jasinska-Kobus et al.

[13]), including beam search [16], that is approximate method for

finding 𝑘 leaves with highest 𝜂 𝑗 (𝒙). It is used in many existing label

tree implementations such as Parabel, Bonsai, AttentionXML

and PECOS. We present beam search variant of PS-PLT in the

Appendix.

5 EXPERIMENTAL RESULTS

In this section, we empirically show the usefulness of the proposed

plug-in approach by incorporating it into BR and PLT algorithms

and comparing these algorithms to their vanilla versions and state-

of-the-art methods, particularly those that focus on tail-labels per-

formance: PFastreXML [11], ProXML [4], a variant of DiSMEC [3]

with a re-balanced and unbiased loss function as implemented in

PW-DiSMEC [20] (class-balanced variant), and Parabel [18]. We

conduct a comparison on six well-established XMLC benchmark

datasets from the XMLC repository [6], for which we use the origi-

nal train and test splits. Statistics of the used datasets can be found

in the Appendix. For algorithms listed above, we report results as

found in respective papers.

Since true propensities are unknown for the benchmark datasets,

as true 𝒚 is unavailable due to the large label space, for empirical

evaluation we model propensities as proposed by Jain et al. [11]:

𝑝 𝑗 = P(𝑦 𝑗 = 1 |𝑦 𝑗 = 1) = 1

𝑞 𝑗
=

1

1 +𝐶𝑒−𝐴 log(𝑁 𝑗+𝐵)
, (14)

where 𝑁 𝑗 is the number of data points annotated with label 𝑗 in the

observed ground truth dataset of size 𝑁 , parameters 𝐴 and 𝐵 are

specific for each dataset, and𝐶 = (log𝑁 − 1) (𝐵 + 1)𝐴 . We calculate

propensity values on train set for each dataset using parameter

values recommended in [11]. Values of 𝐴 and 𝐵 are included in

Table 1. We evaluate all algorithms with both propensity-scored

and standard precision@𝑘 .

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Marek Wydmuch, Kalina Jasinska-Kobus, Rohit Babbar, and Krzysztof Dembczyński

Algorithm 1 PS-PLT.PredictTopLabels(𝑇,𝐻, 𝒒, 𝒙, 𝑘)
1: 𝒚̂ = 0, 𝑞max = max𝑗∈L 𝑞 𝑗 , Q = ∅, ⊲ Initialize prediction 𝒚̂ vector to all zeros, 𝑞max and a priority queue Q, ordered ascending by

ˆ𝑓 (𝑣, 𝒙)
2: 𝑔 (𝑟𝑇 , 𝒙) = − log

ˆ𝜂̃ (𝒙, 𝑟𝑇) ⊲ Calculate cost 𝑔 (𝑟𝑇 , 𝒙) for the tree
3:

ˆ𝑓 (𝑟𝑇 , 𝒙) = 𝑔 (𝑟𝑇 , 𝒙) + log𝑞max − logmax𝑗∈L𝑟𝑇
𝑞 𝑗 ⊲ Calculate estimated cost

ˆ𝑓 (𝑟𝑇 , 𝒙) for the tree root
4: Q.add((𝑟𝑇 , 𝑔 (𝑟𝑇 , 𝒙), ˆ𝑓 (𝑟𝑇 , 𝒙)) ⊲ Add the tree root with cost 𝑔 (𝑟𝑇 , 𝒙) and estimation

ˆ𝑓 (𝑟𝑇 , 𝒙) to the queue

5: while ∥𝒚̂ ∥1 < 𝑘 do ⊲ While the number of predicted labels is less than 𝑘

6: (𝑣, 𝑔 (𝑣, 𝒙), _) = Q.pop() ⊲ Pop the element with the lowest cost from the queue (only node and corresponding probability)

7: if 𝑣 is a leaf then 𝑦̂𝑣 = 1 ⊲ If the node is a leaf, set the corresponding label in the prediction vector

8: else for 𝑣′ ∈ Ch(𝑣) do ⊲ If the node is an internal node, for all child nodes

9: 𝑔 (𝑣′, 𝒙) = 𝑔 (𝑣, 𝒙) − log
ˆ𝜂̃ (𝒙, 𝑣′) ⊲ Compute 𝑔 (𝑣′, 𝒙) using ˆ𝜂̃ (𝑣′, 𝒙) ∈ 𝐻

10:
ˆ𝑓 (𝑣′, 𝒙) = 𝑔 (𝑣′, 𝒙) + log𝑞max − logmax𝑗∈L𝑣′ 𝑞 𝑗 ⊲ Calculate estimation

ˆ𝑓 (𝑣′, 𝒙)
11: Q.add((𝑣′, 𝑔 (𝑣′, 𝒙), ˆ𝑓 (𝑣′, 𝒙))) ⊲ Add the node, computed cost 𝑔 (𝑣′, 𝒙) , and estimation

ˆ𝑓 (𝑣′, 𝒙) to the queue

12: return 𝒚̂ ⊲ Return the prediction vector

Table 1: PS-PLTs and PLTs compared to other state-of-the-art algorithms on propensity-scored and standard

precision@{1, 3, 5} [%]. The best result for each measure is in bold. The best result in the group of sub-linear methods

(the last 4 methods) is underlined.

Algorithm 𝑝𝑠𝑝@1 𝑝𝑠𝑝@3 𝑝𝑠𝑝@5 𝑝@1 𝑝@3 𝑝@5 𝑝𝑠𝑝@1 𝑝𝑠𝑝@3 𝑝𝑠𝑝@5 𝑝@1 𝑝@3 𝑝@5 𝑝𝑠𝑝@1 𝑝𝑠𝑝@3 𝑝𝑠𝑝@5 𝑝@1 𝑝@3 𝑝@5

EurLex-4K, 𝐴 = 0.55, 𝐵 = 1.5 AmazonCat-13K, 𝐴 = 0.55, 𝐵 = 1.5 Wiki10-31K, 𝐴 = 0.55, 𝐵 = 1.5

ProXML 45.20 48.50 51.00 86.50 68.40 53.20 results not reported results not reported

PW-DiSMEC 43.48 48.81 51.25 82.25 68.80 57.18 64.95 71.35 74.37 93.54 78.50 63.33 12.67 15.87 18.28 85.77 78.17 68.53

BR 36.67 44.54 49.05 81.91 68.85 57.83 51.54 64.16 71.20 92.89 78.35 63.69 12.03 13.24 14.07 84.49 72.50 63.23

PS-BR 46.13 49.60 51.78 78.45 68.01 57.62 66.00 71.28 74.08 86.55 76.22 63.15 19.24 17.69 17.60 80.61 69.70 61.86

PfastreXML 43.86 45.72 46.97 75.45 62.70 52.51 69.52 73.22 75.48 91.75 77.97 63.68 19.02 18.34 18.43 83.57 68.61 59.10

Parabel 36.36 44.04 48.29 81.73 68.78 57.44 50.93 64.00 72.08 93.03 79.16 64.52 11.66 12.73 13.68 84.31 72.57 63.39

PLT 36.00 43.30 47.31 81.77 68.33 57.15 50.02 63.15 71.24 93.37 78.90 64.18 12.77 14.45 15.12 85.54 74.56 64.48

PS-PLT 44.73 48.52 50.84 79.19 67.81 57.15 66.81 72.05 74.88 88.04 77.16 63.84 21.83 19.77 19.12 74.12 65.87 59.08

WikiLSHTC-325K, 𝐴 = 0.5, 𝐵 = 0.4 WikipediaLarge-500K, 𝐴 = 0.5, 𝐵 = 0.4 Amazon-670K, 𝐴 = 0.6, 𝐵 = 2.6

ProXML 34.80 37.70 41.00 63.60 41.50 30.80 33.10 35.00 39.40 68.80 48.90 37.90 30.80 32.80 35.10 43.50 38.70 35.30

PW-DiSMEC 37.12 40.36 43.57 65.27 42.68 31.48 30.32 31.56 33.52 66.38 45.69 35.85 31.24 33.27 35.51 41.70 37.81 34.92

PfastreXML 30.66 31.55 33.12 56.05 36.79 27.09 29.20 27.60 27.70 59.50 40.20 30.70 29.30 30.80 32.43 39.46 35.81 33.05

Parabel 26.76 33.27 37.36 65.04 43.23 32.05 28.80 31.90 34.60 67.50 48.70 37.70 25.43 29.43 32.85 44.89 39.80 36.00

PLT 26.00 31.93 35.62 63.87 42.25 31.34 26.28 30.93 34.15 67.50 48.26 37.74 26.31 30.22 33.83 45.01 40.21 36.72

PS-PLT 32.84 36.17 39.20 64.57 43.17 32.01 34.12 35.70 38.14 67.53 48.68 38.23 31.14 33.45 35.60 43.71 39.72 36.60

Table 2: PS-PLT and PLT average CPU train and prediction

time compared to other state-of-the-art algorithms.

Dataset ProXML PW-DiSMEC PfastreXML PLT PS-PLT

𝑡𝑡𝑟𝑎𝑖𝑛 [h]

WikiLSHTC-325K ≈ 151760 ≈ 1437 6.25 9.21

WikipediaLarge-500K ≈ 1595920 ≈ 16272 51.07 46.17

Amazon-670K ≈ 75160 ≈ 810 3.01 1.92

𝑡𝑡𝑒𝑠𝑡 /𝑁𝑡𝑒𝑠𝑡 [ms]

WikiLSHTC-325K ≈ 90 ≈ 82 4.10 4.96 12.40

WikipediaLarge-500K ≈ 496 ≈ 457 15.24 26.40 60.01

Amazon-670K ≈ 111 ≈ 103 9.96 12.06 20.40

We modified the recently introduced napkinXC [13] implemen-

tation of PLTs,
2
which obtains state-of-the-art results and uses the

Uniform-Cost Search as its inference method. We train binary

2
Repository with the code and scripts to reproduce the experiments: https://github.

com/mwydmuch/napkinXC

models in both BR and PLTs using the LIBLINEAR library [10] with

𝐿2-regularized logistic regression. For PLTs, we use an ensemble

of 3 trees built with the hierarchical 2-means clustering algorithm

(with clusters of size 100), popularized by Parabel [18]. Because

the tree-building procedure involves randomness, we repeat all

PLTs experiments five times and report the mean performance. We

report standard errors along with additional results for popular

𝐿2-regularized squared hinge loss and for beam search variant of

PS-PLT in the Appendix. The experiments were performed on an

Intel Xeon E5-2697 v3 2.6GHz machine with 128GB of memory.

The main results of the experimental comparison are presented

in Table 1. Propensity-scored BR and PLTs consistently obtain better

propensity-scored precision@𝑘 . At the same time, they slightly drop

the performance on the standard precision@𝑘 on four and improve

it on two datasets. There is no single method that dominates others

on all datasets, but PS-PLTs is the best sub-linear method, achieving

best results on 𝑝𝑠𝑝@{1, 3, 5} in this category on five out of six

datasets, at the same time in many cases being competitive to

ProXML and PW-DiSMEC that often require orders of magnitude

https://github.com/mwydmuch/napkinXC
https://github.com/mwydmuch/napkinXC

Propensity-scored Probabilistic Label Trees SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

more time for training and prediction than PS-PLT. In Table 2, we

show CPU train and test times of PS-PLTs compared to vanilla

PLTs, PfasterXML, ProXML and PW-DiSMEC on our hardware

(approximated for the last two using a subset of labels).

6 CONCLUSIONS

In this work, we demonstrated a simple approach for obtaining

Bayes optimal predictions for propensity-scored precision@𝑘 , which

can be applied to a wide group of probabilistic classifiers. Partic-

ularly we introduced an admissible and consistent inference algo-

rithm for probabilistic labels trees, being the underlying model of

such methods like Parabel, Bonsai, napkinXC, extremeText,

AttentionXML and PECOS.

PS-PLTs show significant improvementwith respect to propensity-

scored precision@𝑘 , achieving state-of-the-art results in the group

of algorithms with sub-linear training and prediction times. Fur-

thermore, the introduced approach does not require any retraining

of underlining classifiers if the propensities change. Since in real-

world applications estimating true propensities may be hard, this

property makes our approach suitable for dynamically changing en-

vironments, especially if we take into account the fact that many of

PLTs-based algorithms can be trained incrementally [12, 14, 24, 25].

ACKNOWLEDGMENTS

Computational experiments have been performed in Poznan Super-

computing and Networking Center.

REFERENCES

[1] Shivani Agarwal. 2014. Surrogate regret bounds for bipartite ranking via strongly

proper losses. Journal of Machine Learning Research 15, 1 (2014), 1653–1674.

[2] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. 2013. Multi-

label learning with millions of labels: Recommending advertiser bid phrases for

web pages. In 22nd International World Wide Web Conference, WWW ’13, Rio
de Janeiro, Brazil, May 13-17, 2013. International World Wide Web Conferences

Steering Committee / ACM, 13–24.

[3] Rohit Babbar and Bernhard Schölkopf. 2017. DiSMEC: Distributed Sparse Ma-

chines for Extreme Multi-label Classification. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, WSDM 2017, Cambridge,
United Kingdom, February 6-10, 2017. ACM, 721–729.

[4] Rohit Babbar and Bernhard Schölkopf. 2019. Data scarcity, robustness and

extreme multi-label classification. Machine Learning 108 (09 2019). https://doi.

org/10.1007/s10994-019-05791-5

[5] Alina Beygelzimer, John Langford, Yury Lifshits, Gregory B. Sorkin, and Alexan-

der L. Strehl. 2009. Conditional Probability Tree Estimation Analysis and Algo-

rithms. In UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009. AUAI Press, 51–58.

[6] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. 2016. The ex-

treme classification repository: Multi-label datasets and code. http://manikvarma.

org/downloads/XC/XMLRepository.html

[7] Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit S. Dhillon.

2020. Taming Pretrained Transformers for ExtremeMulti-label Text Classification.

In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020, Rajesh Gupta, Yan Liu, Jiliang

Tang, and B. Aditya Prakash (Eds.). ACM, 3163–3171. https://dl.acm.org/doi/10.

1145/3394486.3403368

[8] Ofer Dekel and Ohad Shamir. 2010. Multiclass-Multilabel ClassificationwithMore

Classes than Examples. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010 (JMLR Proceedings), Vol. 9. JMLR.org, 137–144.

[9] Jia Deng, Sanjeev Satheesh, Alexander C. Berg, and Fei-Fei Li. 2011. Fast and

Balanced: Efficient Label Tree Learning for Large Scale Object Recognition. In

Advances in Neural Information Processing Systems 24: 25th Annual Conference on
Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14
December 2011, Granada, Spain. 567–575.

[10] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

2008. LIBLINEAR: A Library for Large Linear Classification. Journal of Machine

Learning Research 9 (2008), 1871–1874.

[11] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. 2016. Extreme Multi-Label

Loss Functions for Recommendation, Tagging, Ranking and Other Missing Label

Applications. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 935–944. https:

//doi.org/10.1145/2939672.2939756

[12] Kalina Jasinska, Krzysztof Dembczynski, Róbert Busa-Fekete, Karlson

Pfannschmidt, Timo Klerx, and Eyke Hüllermeier. 2016. Extreme F-measure

Maximization using Sparse Probability Estimates. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings), Vol. 48.
JMLR.org, 1435–1444.

[13] Kalina Jasinska-Kobus, Marek Wydmuch, Krzysztof Dembczyński, Mikhail

Kuznetsov, and Róbert Busa-Fekete. 2020. Probabilistic Label Trees for Extreme

Multi-Label Classification. CoRR abs/2009.11218 (2020).

[14] Kalina Jasinska-Kobus, Marek Wydmuch, Devanathan Thiruvenkatachari, and

Krzysztof Dembczynski. 2021. Online probabilistic label trees. In Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics (Proceed-
ings of Machine Learning Research), Arindam Banerjee and Kenji Fukumizu (Eds.),

Vol. 130. PMLR, 1801–1809. http://proceedings.mlr.press/v130/wydmuch21a.html

[15] Sujay Khandagale, Han Xiao, and Rohit Babbar. 2019. Bonsai - Diverse and

Shallow Trees for ExtremeMulti-label Classification. CoRR abs/1904.08249 (2019).

[16] Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan.

2013. Beam search algorithms for multilabel learning. Machine Learning 92

(2013), 65–89.

[17] Tharun Kumar Reddy Medini, Qixuan Huang, Yiqiu Wang, Vijai Mo-

han, and Anshumali Shrivastava. 2019. Extreme Classification in Log

Memory using Count-Min Sketch: A Case Study of Amazon Search

with 50M Products. In Advances in Neural Information Processing Sys-
tems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,

E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 13265–13275.

http://papers.nips.cc/paper/9482-extreme-classification-in-log-memory-using-

count-min-sketch-a-case-study-of-amazon-search-with-50m-products.pdf

[18] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik

Varma. 2018. Parabel: Partitioned Label Trees for Extreme Classification with

Application to Dynamic Search Advertising. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27,
2018. ACM, 993–1002.

[19] Yashoteja Prabhu and Manik Varma. 2014. FastXML: a fast, accurate and stable

tree-classifier for extreme multi-label learning. In The 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,
NY, USA - August 24 - 27, 2014. ACM, 263–272.

[20] Mohammadreza Qaraei, Erik Schultheis, Priyanshu Gupta, and Rohit Babbar. 2021.

Convex Surrogates for Unbiased Loss Functions in Extreme Classification With

Missing Labels. In Proceedings of The Web Conference 2021 (Ljubljana, Slovenia)
(WWW ’21). Association for Computing Machinery, New York, NY, USA. https:

//doi.org/10.1145/3442381.3450139

[21] Stuart J. Russell and Peter Norvig. 2009. Artificial Intelligence: a modern approach
(3 ed.). Pearson.

[22] Tong Wei and Yu-Feng Li. 2018. Does Tail Label Help for Large-Scale Multi-Label

Learning. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence (Stockholm, Sweden) (IJCAI’18). AAAI Press, 2847–2853.

[23] Jason Weston, Ameesh Makadia, and Hector Yee. 2013. Label Partitioning For

Sublinear Ranking. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013 (JMLR Workshop and
Conference Proceedings), Vol. 28. JMLR.org, 181–189.

[24] Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and

Krzysztof Dembczynski. 2018. A no-regret generalization of hierarchical softmax

to extreme multi-label classification. In Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett (Eds.). Curran Associates, Inc., 6355–6366.

[25] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and

Shanfeng Zhu. 2019. AttentionXML: Label Tree-based Attention-Aware Deep

Model for High-Performance Extreme Multi-Label Text Classification. In Ad-
vances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,

Inc., 5812–5822.

[26] Hsiang-Fu Yu, Kai Zhong, and Inderjit S Dhillon. 2020. PECOS: Prediction for

Enormous and Correlated Output Spaces. arXiv preprint arXiv:2010.05878 (2020).
[27] Tong Zhang. 2004. Statistical behavior and consistency of classification methods

based on convex risk minimization. Ann. Statist. 32, 1 (02 2004), 56–85. https:

//doi.org/10.1214/aos/1079120130

[28] Jingwei Zhuo, Ziru Xu, Wei Dai, Han Zhu, Han Li, Jian Xu, and Kun Gai. 2020.

Learning Optimal Tree Models under Beam Search. In Proceedings of the 37th
International Conference on Machine Learning. PMLR, Vienna, Austria.

https://doi.org/10.1007/s10994-019-05791-5
https://doi.org/10.1007/s10994-019-05791-5
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://dl.acm.org/doi/10.1145/3394486.3403368
https://dl.acm.org/doi/10.1145/3394486.3403368
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
http://proceedings.mlr.press/v130/wydmuch21a.html
http://papers.nips.cc/paper/9482-extreme-classification-in-log-memory-using-count-min-sketch-a-case-study-of-amazon-search-with-50m-products.pdf
http://papers.nips.cc/paper/9482-extreme-classification-in-log-memory-using-count-min-sketch-a-case-study-of-amazon-search-with-50m-products.pdf
https://doi.org/10.1145/3442381.3450139
https://doi.org/10.1145/3442381.3450139
https://doi.org/10.1214/aos/1079120130
https://doi.org/10.1214/aos/1079120130

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Marek Wydmuch, Kalina Jasinska-Kobus, Rohit Babbar, and Krzysztof Dembczyński

A DATASETS

Table 3: The number of unique features, labels, examples in train and test splits, and the average number of true labels per

example in the benchmark data sets and corresponding 𝐴, 𝐵 parameters for empirical propensity modeling.

Dataset dimX dimY (𝑚) 𝑁train 𝑁test avg. |L𝒙 | 𝐴 𝐵

EurLex-4K 5000 3993 15539 3809 5.31 0.55 1.5

AmazonCat-13K 203882 13330 1186239 306782 5.04 0.55 1.5

Wiki10-31K 101938 30938 14146 6616 18.64 0.55 1.5

WikiLSHTC-325K 1617899 325056 1778351 587084 3.19 0.5 0.4

WikipediaLarge-500K 2381304 501070 1813391 783743 4.77 0.5 0.4

Amazon-670K 135909 670091 490449 153025 5.45 0.6 2.6

B PS-PLT WITH BEAM SEARCH INFERENCE

Beam search is a greedy search method that on each level of the tree keeps only 𝑏 nodes with the highest probability estimates and discards

the rest. Therefore it may not find the actual top 𝑘 labels and may suffer regret for precision@𝑘 [28], but it guarantees logarithmic time and

performs prediction level-by-level, which allows for easier implementation and memory management in large models. In Algorithm 2 we

present beam search variant of PS-PLT. The presented algorithm assumes that tree 𝑇 is balanced.

Algorithm 2 PS-PLT.PredictTopLabelsWithBeamSearch(𝑇,𝐻, 𝒒, 𝒙, 𝑘, 𝑏)
1: 𝒚̂ = 0, 𝑞max = max𝑗∈L 𝑞 𝑗 , B = ∅, ⊲ Initialize prediction 𝒚̂ vector to all zeros, 𝑞max and a list B
2: 𝑔 (𝑟𝑇 , 𝒙) = − log

ˆ𝜂̃ (𝒙, 𝑟𝑇) ⊲ Calculate cost 𝑔 (𝑟𝑇 , 𝒙) for the tree
3:

ˆ𝑓 (𝑟𝑇 , 𝒙) = 𝑔 (𝑟𝑇 , 𝒙) + log𝑞max − logmax𝑗∈L𝑟𝑇
𝑞 𝑗 ⊲ Calculate estimated cost

ˆ𝑓 (𝑟𝑇 , 𝒙) for the tree root
4: B.add((𝑟𝑇 , 𝑔 (𝑟𝑇 , 𝒙), ˆ𝑓 (𝑟𝑇 , 𝒙)) ⊲ Add the tree root with cost 𝑔 (𝑟𝑇 , 𝒙) and estimation

ˆ𝑓 (𝑟𝑇 , 𝒙) to the list

5: for 𝑑 = 0; 𝑑 < depth of𝑇 ; 𝑑 = 𝑑 + 1 do ⊲ For each level of the tree𝑇

6: B′ = SelectTopNodes(B, 𝑏) ⊲ Select 𝑏 nodes from B′
with highest values of

ˆ𝑓 (𝑣′, 𝒙)
7: B = ∅ ⊲ Initialize list of nodes of the next level of the tree

8: for (𝑣, 𝑔 (𝑣, 𝒙), _) ∈ B′
do ⊲ Iterate over elements on the list B′

(nodes and corresponding probabilities)

9: for 𝑣′ ∈ Ch(𝑣) do ⊲ For all child nodes

10: 𝑔 (𝑣′, 𝒙) = 𝑔 (𝑣, 𝒙) − log
ˆ𝜂̃ (𝒙, 𝑣′) ⊲ Compute 𝑔 (𝑣′, 𝒙) using ˆ𝜂̃ (𝑣′, 𝒙) ∈ 𝐻

11:
ˆ𝑓 (𝑣′, 𝒙) = 𝑔 (𝑣′, 𝒙) + log𝑞max − logmax𝑗∈L𝑣′ 𝑞 𝑗 ⊲ Calculate estimation

ˆ𝑓 (𝑣′, 𝒙)
12: B.add((𝑣′, 𝑔 (𝑣′, 𝒙), ˆ𝑓 (𝑣′, 𝒙))) ⊲ Add the node, computed cost 𝑔 (𝑣′, 𝒙) , and estimation

ˆ𝑓 (𝑣′, 𝒙) to the list B
13: for (𝑣, _, _) ∈ SelectTopNodes(B, 𝑘) do 𝑦̂𝑣 = 1 ⊲ Select 𝑘 leaves from B with highest values of

ˆ𝑓 (𝑣′, 𝒙) and set the corresponding labels in 𝒚̂

14: return 𝒚̂ ⊲ Return the prediction vector

C DETAILED RESULTS OF DIFFERENT VARIANTS OF PS-PLTS

In Table 4 we report the detailed results of PLT with nodes trained using logistic loss (𝑙𝑜𝑔) and squared hinge loss (ℎ2) and PS-PLT with

A*-search (𝐴∗
) presented in Algorithm 1 as well as with beam search version (𝑏𝑒𝑎𝑚) presented in Algorithm 2. For beam search variant we

use 𝑏 = 10 which is default value in many popular implementations, since it provides good trade off between predictive and computational

performance when predicting top-5 labels. All variants use the ensemble of 3 trees and the same tree structures, built with the hierarchical

2-means clustering algorithm (with clusters of size 100). This means that the difference between variants is only in learning node classifiers

and inference (tree search) methods.

The results show that all variants of PL-PLTs consistently obtain better propensity-scored precision@𝑘 . PS-PLTs trained with logistic

loss achieves greater improvement in terms of 𝑝𝑠𝑝@{1, 3, 5} over vanilla PLT than variant trained with squared hinge loss. While PS-PLTs

trained with squared hinge loss suffer a small drop in the performance on the standard precision@𝑘 . For both losses, beam search variant

allows for further decrease of inference time at the cost of an only minor decrease in terms of predictive performance.

Propensity-scored Probabilistic Label Trees SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

Table 4:Meanperformancewith standard errors, rounded to two decimal places, of different variants of PS-PLTs onpropensity-

scored and standard precision@{1, 3, 5} [%], train time [ℎ] and inference timeper example [𝑚𝑠]. The best result for eachmeasure

is in bold.

𝑝𝑠𝑝@1 𝑝𝑠𝑝@3 𝑝𝑠𝑝@5 𝑝@1 𝑝@3 𝑝@5 𝑇𝑡𝑟𝑎𝑖𝑛 𝑇𝑡𝑒𝑠𝑡 /𝑁𝑡𝑒𝑠𝑡

EurLex-4K

PLT𝑙𝑜𝑔 36.00 ± 0.07 43.30 ± 0.09 47.31 ± 0.09 81.77 ± 0.09 68.33 ± 0.11 57.15 ± 0.08  0.04 ± 0.00

2.83 ± 0.10

PS-PLT𝑙𝑜𝑔+𝐴∗ 44.73 ± 0.06 48.52 ± 0.11 50.84 ± 0.11 79.19 ± 0.09 67.81 ± 0.07 57.15 ± 0.09 5.66 ± 0.14

PS-PLT𝑙𝑜𝑔+𝑏𝑒𝑎𝑚 44.72 ± 0.07 48.48 ± 0.11 50.77 ± 0.12 79.19 ± 0.09 67.78 ± 0.06 57.12 ± 0.11 1.75 ± 0.12

PLTℎ2 36.21 ± 0.05 44.01 ± 0.12 48.41 ± 0.16 81.66 ± 0.14 68.75 ± 0.15 57.54 ± 0.14  0.02 ± 0.00

1.83 ± 0.07

PS-PLTℎ2+𝐴∗ 44.21 ± 0.05 48.51 ± 0.12 50.60 ± 0.15 80.72 ± 0.14 67.99 ± 0.10 56.20 ± 0.14 2.60 ± 0.17

PS-PLTℎ2+𝑏𝑒𝑎𝑚 44.21 ± 0.08 48.49 ± 0.13 50.57 ± 0.13 80.69 ± 0.14 67.97 ± 0.12 56.22 ± 0.11 1.65 ± 0.02

AmazonCat-13K

PLT𝑙𝑜𝑔 50.02 ± 0.01 63.15 ± 0.03 71.24 ± 0.06 93.37 ± 0.02 78.90 ± 0.04 64.18 ± 0.05  3.14 ± 0.06

1.74 ± 0.07

PS-PLT𝑙𝑜𝑔+𝐴∗ 66.81 ± 0.03 72.05 ± 0.04 74.88 ± 0.05 88.04 ± 0.05 77.16 ± 0.04 63.84 ± 0.03 3.71 ± 0.37

PS-PLT𝑙𝑜𝑔+𝑏𝑒𝑎𝑚 66.78 ± 0.03 72.01 ± 0.04 74.85 ± 0.04 88.04 ± 0.05 77.16 ± 0.04 63.84 ± 0.03 1.19 ± 0.09

PLTℎ2 50.91 ± 0.01 63.89 ± 0.03 71.94 ± 0.06 93.00 ± 0.04 79.06 ± 0.04 64.43 ± 0.04  1.01 ± 0.05

1.20 ± 0.04

PS-PLTℎ2+𝐴∗ 65.97 ± 0.03 71.96 ± 0.06 74.76 ± 0.11 88.76 ± 0.05 77.75 ± 0.06 63.75 ± 0.08 2.31 ± 0.04

PS-PLTℎ2+𝑏𝑒𝑎𝑚 65.96 ± 0.03 71.94 ± 0.07 74.84 ± 0.12 88.77 ± 0.06 77.75 ± 0.06 63.84 ± 0.09 0.92 ± 0.03

Wiki10-31K

PLT𝑙𝑜𝑔 12.77 ± 0.02 14.45 ± 0.01 15.12 ± 0.01 85.54 ± 0.07 74.56 ± 0.05 64.48 ± 0.03  0.46 ± 0.01

25.08 ± 0.39

PS-PLT𝑙𝑜𝑔+𝐴∗ 21.83 ± 0.07 19.77 ± 0.03 19.12 ± 0.04 74.12 ± 0.09 65.87 ± 0.13 59.08 ± 0.15 74.37 ± 1.08

PS-PLT𝑙𝑜𝑔+𝑏𝑒𝑎𝑚 21.14 ± 0.06 19.02 ± 0.05 18.43 ± 0.07 74.33 ± 0.12 66.20 ± 0.23 59.62 ± 0.24 5.63 ± 0.05

PLTℎ2 11.68 ± 0.01 12.84 ± 0.02 13.79 ± 0.02 84.31 ± 0.13 72.90 ± 0.06 63.75 ± 0.04  0.28 ± 0.01

10.91 ± 0.13

PS-PLTℎ2+𝐴∗ 18.51 ± 0.02 17.61 ± 0.04 18.04 ± 0.05 83.06 ± 0.07 71.19 ± 0.14 62.66 ± 0.11 33.06 ± 0.70

PS-PLTℎ2+𝑏𝑒𝑎𝑚 18.33 ± 0.02 17.36 ± 0.04 17.65 ± 0.05 83.03 ± 0.07 71.17 ± 0.14 62.58 ± 0.13 4.81 ± 0.21

WikiLSHTC-325K

PLT𝑙𝑜𝑔 26.00 ± 0.08 31.93 ± 0.11 35.62 ± 0.13 63.87 ± 0.19 42.25 ± 0.13 31.34 ± 0.10  9.21 ± 0.10

4.96 ± 0.16

PS-PLT𝑙𝑜𝑔+𝐴∗ 32.84 ± 0.18 36.27 ± 0.24 39.38 ± 0.27 64.47 ± 0.43 43.19 ± 0.29 32.08 ± 0.21 12.40 ± 0.74

PS-PLT𝑙𝑜𝑔+𝑏𝑒𝑎𝑚 32.76 ± 0.18 36.09 ± 0.25 39.08 ± 0.31 64.38 ± 0.44 43.05 ± 0.30 31.91 ± 0.23 1.21 ± 0.04

PLTℎ2 26.71 ± 0.08 33.14 ± 0.16 37.06 ± 0.22 64.69 ± 0.18 42.95 ± 0.16 31.82 ± 0.15  6.35 ± 0.10

2.31 ± 0.06

PS-PLTℎ2+𝐴∗ 33.16 ± 0.12 36.39 ± 0.29 38.14 ± 0.42 65.87 ± 0.23 42.68 ± 0.27 30.46 ± 0.26 5.00 ± 0.64

PS-PLTℎ2+𝑏𝑒𝑎𝑚 33.11 ± 0.12 36.23 ± 0.28 37.92 ± 0.39 65.82 ± 0.23 42.58 ± 0.27 30.41 ± 0.25 1.13 ± 0.06

WikipediaLarge-500K

PLT𝑙𝑜𝑔 26.28 ± 0.09 30.93 ± 0.12 34.15 ± 0.14 67.50 ± 0.27 48.26 ± 0.20 37.74 ± 0.15  46.17 ± 0.32

26.40 ± 0.64

PS-PLT𝑙𝑜𝑔+𝐴∗ 34.12 ± 0.10 35.70 ± 0.12 38.14 ± 0.13 67.53 ± 0.21 48.68 ± 0.15 38.23 ± 0.12 60.01 ± 5.58

PS-PLT𝑙𝑜𝑔+𝑏𝑒𝑎𝑚 34.11 ± 0.11 35.65 ± 0.13 38.06 ± 0.15 67.54 ± 0.23 48.63 ± 0.17 38.17 ± 0.14 4.81 ± 0.13

PLTℎ2 26.71 ± 0.08 31.62 ± 0.14 34.91 ± 0.19 68.28 ± 0.23 49.13 ± 0.20 38.33 ± 0.18  27.05 ± 0.19

10.21 ± 0.07

PS-PLTℎ2+𝐴∗ 33.77 ± 0.11 35.64 ± 0.21 37.37 ± 0.31 68.54 ± 0.23 48.45 ± 0.26 37.03 ± 0.27 21.20 ± 4.31

PS-PLTℎ2+𝑏𝑒𝑎𝑚 33.75 ± 0.15 35.60 ± 0.29 37.33 ± 0.41 68.57 ± 0.32 48.44 ± 0.36 37.07 ± 0.36 4.91 ± 0.37

Amazon-670K

PLT𝑙𝑜𝑔 26.31 ± 0.06 30.22 ± 0.08 33.83 ± 0.10 45.01 ± 0.12 40.21 ± 0.11 36.72 ± 0.10  1.92 ± 0.01

12.06 ± 0.05

PS-PLT𝑙𝑜𝑔+𝐴∗ 31.14 ± 0.07 33.45 ± 0.09 35.60 ± 0.11 43.71 ± 0.10 39.72 ± 0.09 36.60 ± 0.10 20.40 ± 0.45

PS-PLT𝑙𝑜𝑔+𝑏𝑒𝑎𝑚 30.95 ± 0.07 33.13 ± 0.11 35.14 ± 0.14 43.48 ± 0.11 39.40 ± 0.11 36.21 ± 0.13 1.57 ± 0.15

PLTℎ2 26.22 ± 0.08 29.89 ± 0.12 33.12 ± 0.16 44.78 ± 0.17 39.75 ± 0.16 35.97 ± 0.16  1.44 ± 0.01

4.56 ± 0.14

PS-PLTℎ2+𝐴∗ 29.92 ± 0.09 32.23 ± 0.12 34.21 ± 0.17 43.57 ± 0.15 38.95 ± 0.13 35.33 ± 0.16 6.59 ± 0.04

PS-PLTℎ2+𝑏𝑒𝑎𝑚 29.82 ± 0.09 32.02 ± 0.12 33.91 ± 0.17 43.45 ± 0.15 38.75 ± 0.14 35.08 ± 0.16 1.17 ± 0.04

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Extreme multi-label classification
	2.2 Propensity model

	3 Bayes optimal decisions for Propensity-scored Precision@k
	4 Propensity-scored Probabilistic label tress
	4.1 Probabilistic labels trees (PLTs)
	4.2 Plug-in Bayes optimal prediction PLTs

	5 Experimental results
	6 Conclusions
	References
	A Datasets
	B PS-PLT with beam search inference
	C Detailed results of different variants of PS-PLTs

