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ABSTRACT

Neural passage retrieval is a new and promising approach in open
retrieval question answering. In this work, we stress-test the Dense
Passage Retriever (DPR)—a state-of-the-art (SOTA) open domain
neural retrieval model—on closed and specialized target domains
such as COVID-19, and find that it lags behind standard BM25 in
this important real-world setting. To make DPR more robust under
domain shift, we explore its fine-tuning with synthetic training ex-
amples, which we generate from unlabeled target domain text us-
ing a text-to-text generator. In our experiments, this noisy but fully
automated target domain supervision gives DPR a sizable advan-
tage over BM25 in out-of-domain settings, making it a more viable
model in practice. Finally, an ensemble of BM25 and our improved
DPR model yields the best results, further pushing the SOTA for
open retrieval QA on multiple out-of-domain test sets.
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1 INTRODUCTION

Open retrieval question answering (ORQA) finds a short answer
to a natural language question in a large document collection [4,
9, 26]. Most ORQA systems employ (i) an information retrieval
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(IR) component that retrieves relevant passages from the given cor-
pus [14, 26, 35] and (ii) a machine reading comprehension (MRC)
component that extracts the final short answer from a retrieved
passage [2, 29, 33]. Recent work on ORQA by Karpukhin et al.
[21] shows that distant supervision for neural passage retrieval
can be derived from annotated MRC data, yielding a superior ap-
proach [17, 28] to classical term matching methods like BM25 [9,
34]. Concurrent advances in tools like FAISS [19] that support effi-
cient similarity search in dense vector spaces have also made this
approach practical: when queried on an index with 21 million pas-
sages, FAISS processes 995 questions per second (qps). BM25 pro-
cesses 23.7 qps per CPU thread in a similar setting [21].

Crucially, all training and test instances for the Dense Passage
Retrieval (DPR) model in [21] were derived from open domain
Wikipedia articles. This is a rather limited experimental setting, as
many real-world ORQA use cases involve distant target domains
with highly specialized content and terminology, for which there
is no labeled data. On COVID-19, for example, a large body of sci-
entific text is available [38], but practically no annotated QA data
for model supervision.1 In this paper, we closely examine neural
IR—DPR to be specific—in out-of-domain ORQA settings, where
we find that its advantage over BM25 diminishes or disappears al-
together in the absence of target domain supervision.

Domain adaptation is an active area of investigation in super-
vised learning; existing techniques for different target scenarios
include instance weighting [18], training data selection using rein-
forcement learning [30] and transfer learning from open domain
datasets [39]. For pre-trained language models, fine-tuning on un-
labeled target domain text has also been found to be a useful inter-
mediate step [13, 40], e.g., with scientific [7] and biomedical text
[3, 25]. To address the performance degradation of DPR in low-
resource out-of-domain settings, we explore another approach: fine-
tuningwith synthetically generated examples in the target domain.
Our example generator is trained using open domain (Wikipedia)
MRC examples [33]. It is then applied to target domain (biomed-
ical) documents to generate synthetic training data for both re-
trieval and MRC. Despite being trained on generic open domain
annotations, our generator yields target domain examples that sig-
nificantly boost results in those domains. It should be noted here
that unlike most existing work in the QA literature where human
annotated training examples are used to fine-tune a synthetically

1The handful of existing COVID-19 QA datasets [24, 32, 37] are quite small in size and
can only be used for evaluation.

http://arxiv.org/abs/2204.09248v1
https://doi.org/10.1145/3404835.3463085
https://doi.org/10.1145/3404835.3463085


Passage Synthetic Question-Answer pairs

... Since December 2019, when the first patient with a confirmed case of COVID-19
was reported in Wuhan, China, over 1,000,000 patients with confirmed cases have
been reported worldwide. It has been reported that the most common symptoms
include fever, fatigue, dry cough, anorexia, and dyspnea. Meanwhile, less common
symptoms are nasal congestion ...

Q: What are the most common symptoms of COVID-19?
A: fever, fatigue, dry cough, anorexia, and dyspnea

Q: How many people have been diagnosed with COVID-19?
A: over 1,000,000

Table 1: Synthetic MRC examples generated by our generator from a snippet in the CORD-19 collection.

pre-trained model [1, 11, 12, 36], we rely on only synthetic exam-
ples in the target domain.

The contributions of this paper are as follows:

• We empirically show the limitations of open domain neural
IR (DPR) when applied zero shot to ORQA in distant target
domains.

• We present a solution to this problem that relies on auto-
matic text-to-text generation to create target domain syn-
thetic training data. Our synthetic examples improve both

IR and end-to-end ORQA results, in both original and related

target domains, requiring no supervision with human anno-

tated examples.
• We also show that ensembling over BM25 and our improved
neural IR model yields the best results—which underscores
the complementary nature of the two approaches—further
pushing the state of the art for out-of-domainORQAonmul-
tiple benchmarks.

2 METHOD

This section describes our methods for generating synthetic exam-
ples in the target domain and their application to both IR and MRC
to construct the final ORQA pipeline.

2.1 Generating Synthetic Training Examples

Let (?,@, 0) be an MRC example comprising a passage ? , a ques-
tion @, and its short answer 0 in ? . Let B be the sentence in ? that
contains the answer 0. In what follows, we train an example gen-
erator to produce the triple (B, 0, @) given ? . The answer sentence
B is subsequently used to locate 0 in ? , as a short answer text (e.g.,
a named entity) can generally occur more than once in a passage.

To train the generator, we fine-tune BART [27]—a pre-trained
denoising sequence-to-sequence generation model—with MRC ex-
amples from open domain datasets like SQuAD [33]. The genera-
tor 6 with parameters \6 learns to maximize the conditional joint
probability % (B, 0, @ |? ;\6). In practice, we (i) only output the first
(B5 ) and the last (B; ) word of B instead of the entire sentence for
efficiency, and (ii) use special separator tokens to mark the three
items in the generated triple.

Given a target domain passage ? at inference time, an ordered
sequence (B5 , B; , [(�%], 0, [(�%], @) is sampled from 6 using top-:
top-? sampling [15], which has been shown to yield better train-
ing examples than greedy or beam search decoding due to greater
sample diversity [36]. From this generated sequence, we create pos-
itive synthetic training examples for both passage retrieval: (@, ?)
and MRC: (?,@, 0), where B5 and B; are used to locate 0 in ? . Table 1
shows two examples generated by our generator from a passage in
the CORD-19 collection [38].

2.2 Passage Retrieval

As stated before, we use DPR [21] as our base retrieval model.
While other competitive methods such as ColBERT [22] exist, DPR
offers a number of advantages in real-time settings as well as in
our target scenario where retrieval is only a component in a larger
ORQA pipeline. For example, by compressing each passage down
to a single vector representation, DPR can operate with signifi-
cantly less memory. It is also a faster model for several reasons,
including not having a separate re-ranking module.

For target domain supervision of DPR, we fine-tune its off-the-
shelf open domain instance with synthetic examples. At each iter-
ation, a set of questions is randomly sampled from the generated
dataset. Following Karpukhin et al. [21], we also use in-batch nega-
tives for training. We refer the reader to their article for details on
DPR supervision. We call this final model the Adapted DPR model.

2.3 Machine Reading Comprehension

ForMRC, we adopt the now standard approach of Devlin et al. [10]
that (i) starts from a pre-trained transformer language model (LM),
(ii) adds two pointer networks atop the final transformer layer to
predict the start and end positions of the answer phrase, and (iii)
fine-tunes the entire network with annotated MRC examples. We
choose RoBERTa [31] as our base LM. Given our out-of-domain
target setting, we fine-tune it in two stages as follows.

First, the RoBERTa LM is fine-tuned on unlabeled target domain
documents, which is known to be a useful intermediate fine-tuning
step [13]. This target domain model is then further fine-tuned for
MRC, where we use both human annotated open domain MRC ex-
amples and target domain synthetic examples, as detailed in Sec-
tion 3. Additionally, we denoise the synthetic training examples
using a roundtrip consistency [1] filter: an example is filtered out
if its candidate answer score, obtained using anMRCmodel trained
on SQuAD 2.0 and NQ, is lower than a threshold C (C tuned on a
validation set).

2.4 Open Retrieval Question Answering

Using the described retrieval and MRC components, we construct
our final ORQA system that executes a four-step process at infer-
ence time. First, only the  highest scoring passages returned by
IR for the input question are retained ( tuned on a validation set).
Each passage is then passed along with the question to the MRC
component, which returns the respective top answer and its MRC
score. At this point, each answer has two scores associated with it:
itsMRC score and the IR score of its passage. In the third step, these
two scores get normalized using the Frobenius norm and combined
using a convex combination. The weight in the combination op-
eration is tuned on a validation set. Finally, the answer with the
highest combined score is returned.



Model Open-COVID-QA-2019 COVID-QA-111
Dev Test Test

M@20 M@40 M@100 M@20 M@40 M@100 M@20 M@40 M@100
BM25 22.4 24.9 29.9 29.9 33.4 39.7 48.7 60.4 64.9
DPR-Multi 14.4 18.4 22.9 13.8 17.5 21.4 51.4 57.7 66.7
ICT 16.6 21.6 25.5 18.1 23.0 29.6 52.8 59.8 67.6
Adapted DPR 28.0 31.8 39.0 34.8 40.4 47.2 58.6 64.6 74.2
BM25 + DPR-Multi 23.4 27.9 32.3 29.5 33.2 38.9 58.6 65.8 69.4
BM25 + Adapted DPR 31.8 36.0 42.6 43.2 48.2 53.7 60.4 68.2 76.9

Table 2: Performance of different IR systems on (a) the open retrieval version of COVID-QA-2019, and (b) COVID-QA-111.

3 EXPERIMENTAL SETUP

We evaluate the proposed systems on out-of-domain retrieval, MRC,
and end-to-end ORQA against SOTA open domain baselines.

3.1 Retrieval Corpus and Datasets

We select COVID-19 as our primary target domain, an area of criti-
cal interest at the point of the writing. We use 74,059 full text PDFs
from the June 22, 2020 version of CORD-19 [38] document col-
lection on SARS-CoV-2–and related coronaviruses as our retrieval
corpus. Each document is split into passages that (a) contain no
more than 120words, and (b) alignwith sentence boundaries, yield-
ing around 3.5 million passages.

We utilize three existing datasets for COVID-19 target domain
evaluation. The first one, used to evaluate retrieval and MRC re-
sults separately aswell as end-to-end ORQAperformance, isCOVID-
QA-2019[32]—a dataset of question-passage-answer triples created
from COVID-19 scientific articles by volunteer biomedical experts.
We split the examples into Dev and Test subsets of 203 and 1,816, re-
spectively. Since end-to-end ORQAexamples consist of only question-
answer pairs with no passage alignments, we also create a version
of this dataset for ORQA evaluation (Open-COVID-QA-2019 hence-
forth) wherein duplicate questions are de-duplicated and different
answers to the same question are all included in the set of correct
answers, leaving 201 Dev and 1,775 Test examples.

Our second dataset—COVID-QA-147 [37]—is a QA dataset ob-
tained from Kaggle’s CORD-19 challenge, containing 147 question-
article-answer triples with 27 unique questions and 104 unique ar-
ticles. Due to the small number of unique questions in this dataset,
we only use it for out-of-domain MRC evaluation.

Finally, COVID-QA-111 [24] contains queries gathered from dif-
ferent sources, e.g., Kaggle and the FAQ sections of the CDC and
the WHO. It has 111 question-answer pairs with 53 interrogative
and 58 keyword-style queries. Since questions are not aligned to
passages in this dataset, we use it only to evaluate IR and ORQA.

3.2 Synthetic Example Generation

We fine-tune BART for three epochs on the open domain MRC
training examples of SQuAD1.1 [33] (lr=3e-5). Synthetic training
examples are then generated for COVID-19 from the CORD-19 col-
lection. We split the articles into chunks of at most 288 wordpieces
and generate fiveMRC examples from each of the resulting 1.8 mil-
lion passages. For top-: top-? sampling, we use :=10 and ?=0.95.
Overall, the model generates about 7.9 million examples.

3.3 Retrieval and MRC

We use the DPR-Multi systemfrom [21] as our primary neural IR
baseline. DPR-Multi comes pre-trained on open-retrieval versions
of several MRC datasets: Natural Questions (NQ) [23], WebQues-
tions [8], CuratedTrec [6] and TriviaQA [20]. We fine-tune it for
six epochswith COVID-19 synthetic examples to train ourAdapted
DPR model (lr=1e-5, batch size=128). We also evaluate the Inverse
Cloze Task (ICT) method [26] as a second neural baseline, which
masks out a sentence at random from a passage and uses it as a
query to create a query-passage training pair. We use ICT to fine-
tune DPR-Multi on the CORD-19 passages of Section 3.2, which
makes it also a synthetic domain adaptation baseline. Finally, for
each neural IR model, we also evaluate its ensemble with BM25
that computes a convex combination of normalized neural and
BM25 scores. Theweight for BM25 in this combination is 0.3 (tuned
on Open-COVID-QA-2019 Dev).

Our baseline MRC model is based on a pre-trained RoBERTa-
Large LM, and is fine-tuned for three epochs on SQuAD2.0 and
then for one epoch on NQ. It achieves a short answer EM of 59.4
on the NQ dev set, which is competitive with numbers reported
in [29]. For target domain training, we first fine-tune a RoBERTa-
Large LM on approximately 1.5GB of CORD-19 text containing 225
million tokens (for 8 epochs, lr=1.5e-4). The resulting model is then
fine-tuned for MRC for three epochs on SQuAD2.0 examples and
one epoch each on roundtrip-consistent synthetic MRC examples
and NQ. For roundtrip consistency check, we use a threshold of
C=7.0, which leaves around 380k synthetic examples after filtering.

3.4 Metrics

We evaluate IR usingMatch@: , for: ∈ {20, 40, 100} [21]. For MRC,
we use standard ExactMatch (EM) and F1 score. Finally, end-to-end
ORQA accuracy is measured using Top-1 and Top-5 F1.

4 RESULTS AND ANALYSIS

Wefirst report results separately for IR andMRC. Thenwe evaluate
ORQA pipelines that must find a short answer to the input ques-
tion in the CORD-19 collection. Reported numbers for all trained
models are averages over three random seeds.

4.1 Passage Retrieval

Table 2 shows performances of different IR systems onOpen-COVID-
QA-2019 and COVID-QA-111. BM252 demonstrates robust results

2Lucene Implementation. BM25 parameters 1 = 0.75 (document length normaliza-
tion) and :1 = 1.2 (term frequency scaling) worked best.

https://lucene.apache.org


Model Open-COVID-QA-2019 COVID-QA-111
Dev Test Test

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
BM25→ Baseline MRC 21.7 31.8 27.1 38.7 24.1 39.3
(BM25 + DPR-Multi) → Baseline MRC 21.4 30.9 25.2 37.2 24.4 43.2
(BM25 + Adapted DPR) → Baseline MRC 24.2 35.6 29.5 44.2 25.0 45.9
(BM25 + Adapted DPR) → Adapted MRC 27.2 37.2 30.4 44.9 26.5 47.8

Table 3: End-to-endF1 scores achieved by differentOpen retrievalQA systems.The best system (last row) utilizes target domain

synthetic training examples for both IR and MRC supervision.

relative to the neural baselines. While DPR-multi is competitive
with BM25 on COVID-QA-111, it is considerably behind on the
larger Open-COVID-QA-2019. ICT improves over DPR-multi, in-
dicating that even weak target domain supervision is useful. The
proposed Adapted DPR system achieves the best single system re-
sults on both datasets, with more than 100% improvement over
DPR-Multi on the Open-COVID-QA-2019 Test set. Finally, ensem-
bling over BM25 and neural approaches yields the best results. The
BM25+Adapted DPR ensemble is the top system across the board,
with a difference of at least 14 points with the best baseline on
the Open-COVID-QA-2019 Test set (all metrics), and 8 points on
COVID-QA-111.

Upon closer examination, we find that BM25 and Adapted DPR
retrieve passages that are very different. ForOpen-COVID-QA-2019,
for example, only 5 passages are in common on average between
the top 100 retrieved by the two systems. This diversity in retrieval
results explains why they complement each other well in an ensem-
ble system, leading to improved IR performance.

4.2 Machine Reading Comprehension

Table 4 shows results on the two COVID-19 MRC datasets. Input to
each model is a question and an annotated document that contains
an answer. Our proposed model achieves 2.0–3.7 F1 improvements
on the Test sets over a SOTA open domain MRC baseline. On the
COVID-QA-2019 Dev set, we see incremental gains from applying
the two domain adaptation strategies.

Model COVID-QA-2019 COVID-QA-147
Dev Test Test

EM F1 EM F1 EM F1
Baseline MRC 34.0 59.4 34.7 62.7 8.8 31.0
+ CORD-19 LM 35.5 60.2 - - - -
+ Syn. MRC training 38.6 62.8 37.2 64.7 11.3 34.7

Table 4: MRC performances on COVID-19 datasets. The last

row refers to the proposed model that is trained on unla-

beled CORD-19 text as well as synthetic MRC examples.

4.3 Open Retrieval Question Answering

Using different pairings of the above IR andMRC systems, we build
several ORQA pipelines. Each computes a convex combination of
its component IR and MRC scores after normalization, with the IR
weight being 0.7 (tuned on Open-COVID-QA-2019 Dev). We ob-
serve that retrieving  =100 passages is optimal when IR is BM25
only, while  =40 works best for BM25+Neural IR.

Table 3 shows end-to-end F1 scores of the different ORQApipelines.
Adapted MRC refers to the best system of Section 4.2 (Table 4 Row

3). Crucially, the best system in Table 3 (last row) uses synthetic tar-
get domain supervision for both IR and MRC. In a paired C-test [16]
of the Top-5 F1 scores, we find the differences with the baseline
(Row 1) to be statistically significant at ?<0.01.

4.4 Zero Shot Evaluation on BioASQ

To investigate if our synthetically fine-tuned COVID-19 models
can also help improve performance in a related target domain, we
evaluate them zero shot on the BioASQ [5] task. BioASQ contains
biomedical questions with answers in the PubMed abstracts. For
evaluation, we use the factoid questions from the Task 8b training
and test sets, totaling 1,092 test questions. As our retrieval corpus,
we use around 15M abstracts from Task 8a. We pre-process them
as described in Section 3.1 to end up with around 37.4M passages.

Model M@20 M@40 M@100
BM25 42.1 46.4 50.5
DPR-Multi 37.6 42.8 48.1
Adapted DPR 42.4 48.9 55.9

Table 5: IR results on BioASQ Task 8B factoid questions.

Table 5 shows the BioASQ retrieval results, where the proposed
Adapted DPR model outperforms both baselines. Table 6 summa-
rizes the evaluation on the end-to-end ORQA task, where we see
similar gains from synthetic training. These results show that syn-
thetic training on theCORD-19 articles transfers well to the broader
related domain of biomedical QA.

Model Top-1 Top-5
BM25→ Baseline MRC 30.6 45.5
DPR-Multi→ Baseline MRC 28.6 43.0
Adapted DPR → Baseline MRC 32.1 49.4
Adapted DPR → Adapted MRC 32.9 49.5

Table 6: ORQA F1 scores on BioASQ 8B factoid questions.

5 CONCLUSION

Low-resource target domains can present significant challenges for
supervised language processing systems. In this paper, we show
that synthetically generated target domain examples can support
strong domain adaptation of neural open domain open retrieval
QAmodels, which can further generalize to related target domains.
Crucially, we assume zero labeled data in the target domain and
rely only on open domain MRC annotations to train our generator.
Future work will explore semi-supervised and active learning ap-
proaches to examine if further improvements are possible with a
small amount of target domain annotations.
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