
DebuggingQUIC andHTTP/3 with qlog and qvis
Robin Marx

robin.marx@uhasselt.be
Hasselt University – tUL – EDM

Diepenbeek - Belgium

Maxime Piraux
maxime.piraux@uclouvain.be

UCLouvain
Louvain-la-Neuve - Belgium

Peter Quax∗
Wim Lamotte

Hasselt University – tUL
EDM - *Flanders Make
Diepenbeek - Belgium

ABSTRACT
The QUIC and HTTP/3 protocols are powerful but complex
and difficult to debug and analyse. Our previous work pro-
posed the qlog format for structured endpoint logging to aid
in taming this complexity. This follow-up study evaluates the
real-world implementations, uses and deployments of qlog
and our associated qvis tooling in academia and industry. Our
survey among 28 QUIC experts shows high community in-
volvement, while Facebook confirms qlog can handle Internet
scale. Lessons learned from researching 16 QUIC+HTTP/3
and five TCP+TLS+HTTP/2 implementations demonstrate
thatqlog andqvis are essential tools for performing root-cause
analysis when debugging modernWeb protocols.

CCS CONCEPTS
•Networks→Transportprotocols;Protocol testingand
verification;Network protocol design.

KEYWORDS
QUIC; HTTP/3; Transport Protocol; Logging; Visualization
ACMReference Format:
RobinMarx,MaximePiraux, PeterQuax, andWimLamotte. 2020.De-
buggingQUICandHTTP/3withqlogandqvis. InAppliedNetworking
ResearchWorkshop (ANRW ’20), July 2020, Online, Spain.ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3404868.3406663

1 INTRODUCTION&MOTIVATION
The new QUIC and HTTP/3 (H3) protocols [16, 43] provide a
large number of exciting features (such as zero Round-Trip-
Time (RTT) handshakes and connection migration), but with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of thisworkownedbyothers than the author(s)must behonored.Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANRW ’20, July 2020, Online (Meetecho), Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-8039-3/20/07. . . $15.00
https://doi.org/10.1145/3404868.3406663

great power comes great complexity. Spread over 440 pages
in ten documents [86], the protocols are challenging to un-
derstand and implement. In 2018, by working on our own
implementations [28, 57, 67], it became evident that the QUIC
community would need extensive tooling to help debug and
validate their systems. These tools would ideally be re-usable
across codebases, in turn requiring a common input data
format. Looking at tools for established protocols like the
TCP+TLS+HTTP/2 (H2) stack (e.g., Wireshark, tcptrace, and
captcp [10, 62, 65]), we see they ingest the protocols’ wire im-
age directly (e.g., via (decrypted) packet capture (pcap) files).
While this can work for QUIC, it is suboptimal, as the wire
image lacks pieces of internal state crucial to debugging com-
plex components (e.g., congestion control variables, why a
packet was marked lost). This state was at that time available
only at the endpoints in ad-hoc command line logs, which are
implementation-specific and difficult to interpret and parse.

To combat this issue, we proposed qlog, a structured, JSON-
based logging format forQUIC+H3endpoints [55]. It standard-
izes how typical protocol events and internal implementation
state should be logged. This is done in an extensible manner:
each qlog event is defined by a timestamp, a category (e.g.,
“transport”), an event type (e.g., “packet_sent”) and some type-
specific data (e.g., the size of the sent packet and its header
fields). Events are listed in per-connection traces, and traces
frommultiple endpoints (e.g., from the client, load balancer,
edge node, origin server) can be grouped into a single qlog
file. Further information on qlog can be found online [58], but
is not necessary for the rest of this discussion. To prove the
worth of a structured logging format,we implemented several
tools that can directly ingest and visualize qlog files in our
open-source qvis toolsuite [52]. Using a few general-purpose
tools (e.g., a sequence diagram, high-level statistics overview),
users can form a hypothesis of the potential problem. More
focused tools (e.g., for congestion control, multiplexing and
packetization, see §3) can then be used to drill deeper.
While at that time we were of course convinced of the

usefulness of our proposed approach, it was firstly difficult
to estimate how essential these tools would really be for
QUIC debugging. Secondly and subsequently, it was unclear
ifQUICdeveloperswerewilling to adopt qlog. These are
two of the three questions this follow-upwork aims to answer.

https://doi.org/10.1145/3404868.3406663
https://doi.org/10.1145/3404868.3406663

ANRW ’20, July 2020, Online (Meetecho), Spain Marx and Piraux, et al.

The third question is whether qlog can scale, and can be
used not only to debug the initial implementations, but also to
analyse issues in their ensuing real-world deployments. This
is needed as more traditional methods to handle this use case
are difficult or impossible to use for QUIC [46]. To understand
this, first consider that live deployment troubleshooting is
typically done by two types of actors. Firstly, the ‘endpoint
owners’, who manage load balancers, Content Delivery Net-
work (CDN) nodes, origin servers, etc. Secondly, the ‘network
operators’, who maintain the intermediate network infras-
tructure. For analysing deployments, lower-layer tooling is
prevalent (e.g., ipfix, netflow [22, 23]), yet to debug complex
issues, insight at especially the transport layer is often needed.
For TCP, most approaches again rely on capturing its wire
image, either at endpoints or from passive on-path measure-
ments. Core network health metrics, like latency and packet
loss rate, are deduced from TCPmetadata (e.g., by correlating
TCP sequence and acknowledgement numbers) and used to
localize network issues [18, 32, 47, 79]. Crucially however,
these latter methods no longer work for QUIC, as it end-to-
end encrypts most of this transport-level metadata [77]. As
such, QUIC trafficwould either have to be decrypted live or be
stored fully encrypted for post-hoc decryption and analysis.
The latter could lead to huge storage requirements for QUIC,
whereas for TCP ‘frame snapshots’ can be used [88], storing
just the first 100 or so bytes of each packet. More problematic
however, are the privacy and security implications of such a
scheme. Storing the per-connection decryption keys undoes
many of their ephemeral benefits and decrypting QUIC traffic
not only reveals transport metadata, but also full application
layer payloads. Aggravating matters, to make this usable for
network operators, endpoint owners would have to actively
share the decryption keys or decrypted traces.
One solution to this issue is to add unencrypted metadata

to QUIC packet headers. This has however been met with
trepidation from theQUICworking group, and even the inclu-
sion of a single ‘spin bit’ for latencymeasurementwas heavily
debated [2, 3]. Another solution, especially for the endpoint
owners, could be touseqlogs, as they can easily be constructed
to only contain the necessary metadata, saving storage and
bypassing many privacy issues. They can also contain inter-
nal application state, allowing for deeper root-cause analysis.
Yet, for this to be feasible, we first need to determine if qlog’s
JSON-based endpoint logging indeed scales.
In the rest of this text, we address these three questions,

starting with qlog’s and qvis’ adoption and scalability in §2.
We show a high investment from the QUIC community, with
12 out of 18 active QUIC stacks [4] supporting the format
(notably including Cloudflare, Mozilla, Node.js [5, 7, 8]). Face-
book’s [6] use of qlog and qvis at Internet scale (to fine-tune
their QUIC+H3 deployment for their mobile applications),
gives us insight into qlog’s scalability, as they log over 30

billion qlog events per day. We then discuss in §3 how tools
like our qvis visualizations have been used by us and others to
debug issues encountered with multiplexing, packetization,
congestion control and multipath extension design. We con-
clude in §4 that our approach indeed delivers on its potential,
but that there is still a way to go towards practical use at scale.

2 QLOGANDQVIS USAGE IN PRACTICE
To assess qlog and qvis’ adoption and use by others we use
a two-pronged approach. Firstly, we conduct a month long
(March2020) expert online surveyamongQUIC implementers
and researchers. We inquire after (reasons for) logging for-
mat availability, debugging practices and future plans in this
space. A total of 28 participants was recruited via the IETF
QUIC mailing list and via direct requests. Our respondents
include at least one core developer from all but 2 of the 18
active QUIC implementations, in addition to 6 academic re-
searchers, which we consider a representative sample of the
IETF QUIC community. The survey questions and full results
are omitted here for space considerations, but are available
on our website [56]. Secondly, as Facebook is the first party to
use qlog and qvis at a large scale, we conduct a 1.5 hour long
semi-structured interviewwith a senior Facebook engineer
on the QUIC team.We inquire after reasons for choosing qlog,
deployment and scalability details and encountered issues.
Our survey results show a high uptake of qlog and qvis in

the community, with 12 of 18 stacks outputting the format
and 18 of 28 participants using qvis. Per our survey, this broad
adoption isdrivenby twomain factors:firstly, theability touse
and create tools and visualizations for debugging (which we
discuss in §3), and secondly, the flexibility of the qlog format,
which is leveraged in four main ways:

Firstly, there is the ability to easily define custom events.
Due to qlog’s use of JSON, new event categories, types and
metadata can triviallybeadded,modifiedandextended,which
manydevelopershavedone for implementation-specificevents.
It also helped in debugging new QUIC features such as the
ACKfrequency,DatagramandLossBitsextensions[33,42,64],
as well as Multipath (§3.4). In qvis, most visualizations also
show these custom events, preventing users from having to
wait for a qlog or qvis update. Conversely, implementers can
choose not to log certain event types, allowing them to reduce
file sizes or implement only the events they need.
Secondly, this flexibility goes beyond just QUIC+H3, as

qlog can support additional network protocols. Some have
already done this for DNS-over-QUIC [40], while others en-
vision utilizing it for WebTransport, MASQUE and QUIC
tunnel [66, 71, 84]. We ourselves have laid the groundwork
for supporting TCP+TLS+H2 in qlog and qvis [9]. In this case,
most of the basic events are obtained by transforming packets
from (decrypted) pcap files into their qlog event counterparts.
Fine-grained internal TCP state (e.g., congestion window,

Debugging QUIC and HTTP/3 with qlog and qvis ANRW ’20, July 2020, Online (Meetecho), Spain

RTT estimates) is retrieved by injecting eBPF probes inside
the Linux kernel [34, 69], an approach that others have used as
well [44, 78]. Both types of data are then spliced together into
a single qlog trace. Eventually, we will also extract internal
H2 state [1, 80], but even without this we have successfully
analysed several TCP+TLS+H2 deployments with the same
tools we use for QUIC+H3 (see §3.1 - §3.3).
Thirdly, the ability to aggregate connection traces (e.g.,

from multiple endpoints) into a single qlog file has much
potential. It makes it easier to evaluate end-to-end behaviour
in complex multi-tier setups, something which Facebook is
experimenting with and which several companies indicate
they do not even have for their TCP+TLS+H2 setups. The qvis
sequence diagram (see §3.4) can also visualize these complex
interactions across endpoints, showing accurate packet loss,
reordering and RTT interplays.
A fourth and final aspect is that qlog’s machine readable

format allows other uses besides logging and visualizing. For
example, some implementers utilize it as part of their (unit)
testing pipeline, validating protocol behaviour by observing
events in the qlog output [6, 48]. QUIC-Tracker and QUIC-
Network-Simulator [67, 73] are also considering using it to
verify interoperability testing results. Another example is
Facebook, which stores all qlog events in a relational data-
base. This allows them to easily query for traces with specific
behaviour (e.g., high percentage of ‘packet_lost’ events).

KnowingnowwhymostQUIC implementers choose to sup-
port qlog, we should consider why some (6/18) do not. In the
survey, some largecompanies suchasGoogleandMicrosoft in-
dicate their preference for an in-house format. Others hesitate
assigning qlog a high priority, waiting for a student developer
or on the availability of libraries [53, 63], despite also indi-
cating they suffer from the lack of additional debuggability.
They also fear that both the initial implementation and its
later maintenance entail a considerable time investment. This
is somewhat contradicted by our own experiences: our qlog
integration in PQUIC [28] is isolated andmade flexible so that
additional plugins can easily inject new events (§3.4).

A final argument heard against qlog is that its use of JSON
might not scale [72]. We chose JSON because it is flexible,
has excellent built-in support in most programming environ-
ments, and allowsplaintext search.However, especially larger
companies fear the format is too verbose (leading to large file
sizes) and too slow to (de)serialize to use in production. They
advocate using a more optimized binary format [29, 83], even
though these typically lack many of JSON’s benefits. Face-
book, the only party with experience deploying qlog at scale,
posits a more nuanced view. They find qlog is indeed two to
three times as large, and takes 50% longer to serialize, than
their previous in-house binary format. However, this over-
head is manageable on the server-side. They qlog close to
10% of all QUIC connections, selected via random sampling,

scaling to over 30 billion daily qlog events [11]. Contrarily, on
the client-side, the large size does often prevent them from
uploading full-length qlogs via the users’ often constrained
cellular links. Still, they would not want to move to a binary
format if it meant losing flexibility and feel the CPU overhead
can be reduced by developing a qlog-specific JSON serializer.
It is clear that qlog would benefit from a solution which

balances flexibility and efficiency. After evaluating several
options [50, 72], we settled on adding a two-pronged “op-
timized mode”. Firstly, we employ logical compression by
replacing repeated valueswith an index into a dynamic dictio-
nary (akin to H3’s QPACK [45]). Secondly, we use CBOR [17]
to encode this smaller qlog and its dictionary. CBOR is JSON’s
direct binary counterpart, compresseswell and retainsflexibil-
ity [31, 68]. For reference, the qlog file for a 500MB download
is normally 276MB, but only 91MB in optimized mode, which
easily compresses down to 15MB, while the optimized (but
less flexible) binary protobuf equivalent [29] ends at a com-
pressed 14MB. In contrast, even the compressed pcap exceeds
500MB, showing this alternative is indeedmuchmore difficult
to scale. Finally, note that even web-based tools like qvis scale
to loading hundreds of MB of JSON.

3 VISUALIZATIONCASE STUDIES
The behaviours and cross-layer interactions of network pro-
tocols can be difficult to discern from textual logs, but even
a simple visualization often provides immediate insight into
a problem. Per our survey, one of the main reasons to use a
structured and standardized format like qlog is indeed the abil-
ity to both easily create custom tools, and re-use existing ones
like qvis [52]. We have extended qvis substantially since its
introduction, implementing five powerful tools in over 10.000
lines of open source TypeScript code [51]. This section shows
new examples of how we and others [21, 54, 75] have used
qlog-based tools tofindbugs and inefficiencies in 16QUIC+H3
stacks and five TCP+TLS+H2 implementations, and to val-
idate our own protocol improvements. As interactive tools
can be challenging to illustrate in screenshots, readers are
encouraged to explore the discussed examples (and more) in
qvis via our web page https://qlog.edm.uhasselt.be/anrw [56].

3.1 StreamMultiplexing and Prioritization
Modern protocol stacks oftenmultiplex data from several par-
allel “streams” onto one connection (e.g., HTML, CSS and im-
age fileswhen loading aweb page). Thismultiplexing canhap-
pen in variousways (e.g., files are sent sequentially as awhole
or are scheduled via Round-Robin (RR) after being subdi-
vided in chunks) and is typically steered using a prioritization
system (i.e., H2’s complex dependency tree [15]). However,
correctly implementing H2 prioritization is difficult, which
has lead to degradedWeb page load performance [25, 60, 87].

https://qlog.edm.uhasselt.be/anrw

ANRW ’20, July 2020, Online (Meetecho), Spain Marx and Piraux, et al.

Figure 1: Multiplexing behaviour across three different QUIC stacks when downloading 10 1MB files in parallel.
Each small colored rectangle is one payload frame belonging to a file. Black areas indicate which frames above

them contain retransmitted data. Data arrives from left to right.

Figure 2: Traces from four different TCP/QUIC servers visualized in the packetization diagram. The x-axis is in
bytes received. Alternating colors on each row indicate the switch to a new TCP/QUIC packet, TLS record,

QUIC/HTTP frame or HTTP stream. Elements that align vertically are packed into the lower layer’s payload.

Partially due to a lack of tooling, these issues were only dis-
covered years after H2’s standardisation [26, 87] (and remain
to this day [74]), which prompted a redesign of priorities in
H3 [54, 61]. Several H3 developers are nowusing the qvismul-
tiplexing diagram (Figure 1) to verify their implementations
of this simplified setup. Given a receiver-side trace, it shows
H2/H3’s response payload carrying frames, appended on a
horizontal line with coloring to discriminate the stream each
belongs to. By looking at color patterns, the multiplexing be-
haviour can quickly be deduced: RR schemes show frequent
color changes (1 , 2),while long contiguous swaths (3)mean
sequential transfers. It is also easy to see abnormalities: 1
normally uses RR but has a long sequential period at the start
(which turned out to be due to unexpected interactions with
flow control), while 3 unintentionally sent data in Last-In
First-Out order, theworst-case forweb performance [76] (this
bug was subsequently fixed [39]). For QUIC, the diagram also
highlights retransmissions. While lost TCP packets are al-
ways retransmitted with the highest priority in the original
packet order, QUIC’s independent streams [43] give it more
freedom. For example,while 3 is similar toTCP (later streams
are interrupted with retransmissions of earlier ones), 2 in-
stead interleaves retransmissions with new data, and 1 even
changes its multiplexing behaviour from RR to sequential for
lost data (so individual streams canmake as much progress as

possible). Even though none of the stacks do this today, QUIC
retransmissions can be coupled to H3 prioritization (i.e., new
highpriority data couldprecede lowpriority retransmissions),
potentially leading to improvedWeb performance. As this ap-
proach can incur high scheduling variability, themultiplexing
diagram is important to verify correct behaviour.

3.2 Packetization and Framing
Themultiplexing diagram in §3.1 was mainly concerned with
the high-level ordering of HTTP DATA frames. Yet in the
lower layers, theseandotherHTTPframesare subdivided into
smaller protocol units for transport. H2 frames are packed in
one or more TLS records, which are in turn distributed across
TCP packets. QUIC foregoes TLS records [77], instead pack-
ing H3 frames in QUIC STREAM frames, and finally QUIC
packets [43]. How these units are sized and combined can sig-
nificantly impact the protocol’s efficiency, as each subdivision
adds some bytes of overhead (e.g., packet, record, and frame
headers). Additionally, it can also carry security risks: if the
edges of HTTP frames align directly with lower layer edges,
attackers could in some cases derive HTTP resource sizes,
usable in fingerprinting and CRIME-style attacks [30, 82].

The qvis packetization diagram (Figure 2) reveals the data
packing particularities by vertically aligning each protocol
layer’s units. It clearly distinguishes payloads from overhead

Debugging QUIC and HTTP/3 with qlog and qvis ANRW ’20, July 2020, Online (Meetecho), Spain

(making the latter show up as vertical white areas) and alter-
nates colors to show unit edges. The top row (“Stream IDs”)
is similar to the multiplexing diagram (see Figure 1, §3.1).
Zoomed out, this setup shows macro-level trends. For ex-

ample, the blue H2 frames in A are the same size as the red
TLS records they are packed in, as their edges align exactly.
The connection also starts with small TLS records (hence the
blurriness in the screenshot), but after about 1.1MB it switches
to larger records (which aremore efficient to encrypt [35, 36]).
Additionally, each file (top row) ends on a much smaller TLS
record, making file sizes easier to estimate by an attacker.

Zoomed in, lower level details can be discerned. In B , the
H2 layer strangely forces a flush of all outstanding data into a
new TLS record whenever a new 9-byte H2 frame header is
written. This is not only highly inefficient, it can also again
reveal resource sizes. Our H3 stress test in C requests 1000
small files of 10 bytes each. We expect the implementation
to bundle as many of them as possible in one packet, which
it fails to do at times, unintentionally generating some tiny
QUIC packets. This result caused the developers to revise
their bundling logic. In D , a few smaller than average packets
can be seen after approximately 10 and 30 sent QUIC pack-
ets. This is because per specification [41], QUIC’s congestion
window (cwnd) is not expressed in packets (as it is in TCP)
but in bytes. D ’s implementation aggressively fills its byte-
allowance completely, even if that means generating smaller
packets. Interestingly, our tests revealed that contrary to the
specification, almost half of all QUIC implementations bypass
this inefficiency and round up their cwnd to full-sized packets
(similar to TCP). After we pointed this out to D ’s developer,
he decided to switch to this alternate approach as well [81].

For the future, examiningpacketizationwill beuseful forde-
bugging new application protocols (e.g., DNS-over-QUIC [40]
or DNS-over-HTTP/3) andwhen using QUIC as an encrypted
tunnel (e.g., MASQUE, QUIC tunnel [37, 66, 71]).

3.3 Congestion Control
Evenafterdecadesofevolution, congestioncontrolapproaches
(CCs) are still a topic of active research and innovation [13, 85].
Bugs are still being found (e.g., Google found a decade-old bug
in the Cubic CCwhen implementing QUIC [49]), CCs are still
being fine tuned [70] and new CCs are being developed (e.g.,
COPA, BBRv2 [14, 20]). This is only expected to continue and
even increase with QUIC, which is more open to experimen-
tation than TCP due to its user-space implementations [49].
Yet, this experimentation might be stifled by the fact that

the CC is one of the most complex components to implement
correctly. This was also echoed in our survey, where debug-
ging CCs was quoted as the main reason to create custom
visualizations based on qlog. Several participants have cre-
ated ad-hoc tools, implemented in amatter of minutes, to plot
CC-related variables to observe their evolution over time.

Figure 3: Detail of the congestion control graph.

The qvis suite includes amore comprehensive congestion con-
trol graph, partly shown in Figure 3. Like tcptrace’s [62] Time-
Sequence Diagram, it plots data sent, acknowledgements re-
ceived and flow control limits on a timeline. However, if given
a full sender-side qlog file, it can also plot accurate internal
state typically not available for TCP traces (e.g., congestion
window, exact bytes in flight, employed RTTmeasurements,
when and why packets were determined lost). Figure 3 shows
how this rich qlog data can be used to verify the CC behaviour
with and without pacing enabled. Pacing is the practice of
spreading out packets across an RTT instead of sending them
in short bursts, and is thought to reduce packet loss [12].With
pacing, the bytes in flight grow slowly over time as data is
spread out, while without pacing, it jumps up quickly.

Using both qvis and custom tools, several bugs were found.
As an example, Facebook diagnosed their BBR code not enter-
ing the probeRTT state at the right time. They also identified
large-scale pacing issues between their transatlantic data cen-
ters due to errors in RTTmeasurement. Cloudflare used qvis
to debug their Cubic CCwith ‘hystart’ implementation [21].
Others mention finding bugs in QUIC’s retransmission logic
during its complex handshake.While developing PQUIC [28],
we ourselves found the network emulation tool “mininet”
to queue up an infinite amount of packets when using the
default settings (ignoring the max_queue_size parameter).
This was visible as a slow start phase and an ever-increasing
RTT spanned the entire transfer. Additionally, we detected
very short kernel freezes that were clearly visible as a narrow
notch in the congestion graph.We also used the tool to vali-
date our implementation of new CCs such asWestwood and
BBR [19, 59] in PQUIC.

ANRW ’20, July 2020, Online (Meetecho), Spain Marx and Piraux, et al.

Figure 4: Sequence diagram of a partial MP-QUIC uni-
flow establishment, with reordering and packet loss.

3.4 Multipath QUIC
One key feature of QUIC is its ability to migrate a connection
from one set of IP addresses and ports to another [43]. Mul-
tipath QUIC (MP-QUIC) is a proposed extension improving
this mechanism by allowing the simultaneous use of several
network paths by modelling them as “uniflows” [24, 27]. An
MP-QUIC implementation utilizes four new key components
(see below), that each add significant complexity to QUIC’s
packet sending and processing logic, and thus require insight
into large amounts of internal state to properly debug.
To this end, when developing the Multipath extension in

our Pluginized QUIC (PQUIC) implementation [28], we have
leveraged qlog’s flexibility and substantially extended it. We
added custom qlog events for the newmultipath-related state
and re-scoped existing connection-level events to the path
level by adding a “uniflow ID”. Subsequently, as most of the
qvis tools available todaywere still under development at that
time, we developed two custommultipath-enabled tools. The
first is a simplifiedversionofqvis’ sequencediagram(Figure4).
By correlating both client and server-side qlogs (a feature
missing frommany TCP-centric tools), it can accurately show
packet loss, RTT, and reordering and it uses colored arrows
to indicate separate uniflows. A packet’s full content can be
viewed by hovering over its summary text. The second is a
general timeline tool allowing the visualization of any qlog
event data, selected through the use of a simple grammar (e.g.,
it plots congestion control state per path, providing similar
functionality to mptcptrace [38]). We have used these two
tools to debug the four key MP-QUIC components:
First, the path manager, which decides which potential

network paths are actually usable at any time by using a link
failure detection heuristic. Bymatching the time at which our
experiments triggered a link failurewith the timeweobserved
the path manager retiring a uniflow and probing another one,
we detected and corrected false positives in this heuristic.

Second, the packet scheduler, which decides which of
several uniflows should be chosen for sending a packet. In the

sequence diagram tool, we observed packets being re-injected
into uniflows that were not validated after a link failure. The
per-uniflowcolors revealed these issues in amatter of seconds.
Third, the frame scheduler, which composes a packet

from a series of frames based on the selected uniflow. By
observing the Stream IDs of STREAM frames sent on each
path using the timeline tool, we were able to quickly assess
the correctness of our path-aware frame scheduler.

Fourth, the congestion controller, which was adapted to
retain separate state for each network path. By plotting the
RTT estimates for each path in an asymmetric path scenario,
we found MP_ACK frames being incorrectly handled. The
timeline plot clearly exhibited twomodes in the raw RTT esti-
mates, showing signals from both paths beingmixed together.
This finding partly motivated the change from bidirectional
paths to uniflows in the latest MP-QUIC design [24].

4 CONCLUSION&CHALLENGES
With this work, we feel we have adequately answered two
of the three open questions listed in the introduction. Firstly,
it is clear that a substantial part of the QUIC community
(including Facebook, Mozilla, and Cloudflare) has adopted
qlog and qvis, both for debugging initial implementations
and for supporting (planned) deployments at scale (60% of
participants from large companies).

Secondly, what we discussed in this work was only a small
selection of the results and insights we and others obtained
by using qlog and qvis. Still, we hope the reader will agree
that these examples show that our approach indeed radically
improves the ability to implement, debug and evolve not
just QUIC+H3, but other protocols as well. Additionally, we
and our survey participants feel the ability to easily observe
QUIC’s complex behaviour will be central in bringing it to
the wider masses, helping to educate newcomers, as well as
facilitating further academic research.

The last question, whether the structured endpoint logging
approach could scale and replace packet captures in large
deployments, has however only been partially answered. We
feel we have shown that it is indeed feasible for endpoint
owners, as also evidenced by Facebook’s deployment.We also
intend to add changes (§2) to qlog to make it easier, though
their effectiveness will also have to be proven. However, it
is difficult to see how this can work directly for network
operators, as they lack the ability to easily produce qlogs.
Potentially, endpoint owners could share (aggregated/limited
versions of) qlogswith these intermediaries, but this would
require additional infrastructure for log transport, storage,
aggregation and,most importantly, access control andprivacy
ensurance. As such, we hope our results will aid further IETF
discussion on comparing our approachwith the alternative of
adding additional plaintextmetadata toQUIC’s packet header
for the network operator use case. Finally, we hope the IETF
can help us explore applying qlog to more protocols.

Debugging QUIC and HTTP/3 with qlog and qvis ANRW ’20, July 2020, Online (Meetecho), Spain

ACKNOWLEDGMENTS
Robin Marx is a SB PhD fellow at FWO, Research Foundation
Flanders, #1S02717N. Maxime Piraux’s contribution is par-
tially supported by funding from theWalloon Government
(DGO6) within theMQUIC project. The authors would like to
thank our shepherd Simone Ferlin for her helpful insight and
suggestions. We also appreciate the help of Olivier Bonaven-
ture, LucasPardue,MarianoDiMartino, JorisHerbots,Wouter
Vanmontfort, Jens Bruggemans, Pallieter Verlinden, Jimmy
Cleuren, and Quentin De Coninck in reviewing earlier ver-
sions of this work and Jonas Reynders, Jeremy Lainé, Marten
Seemann, Christian Huitema, Matt Joras, Nick Banks, Dmitri
Tikhonov, Jana Iyengar, Mirja Kühlewind, Brian Trammell,
and many other members of the QUIC community for their
efforts on this topic in general.

REFERENCES
[1] 2012. NetLog: Chrome’s network logging system. https://www.

chromium.org/developers/design-documents/network-stack/netlog.
[2] 2018. IETF 101 - spin bit discussion. https://github.com/quicwg/wg-

materials/blob/master/ietf101/minutes.md.
[3] 2018. IETF 103 - spin bit discussion. https://github.com/quicwg/wg-

materials/blob/master/ietf103/minutes.md.
[4] 2020. Active QUIC implementations. https://github.com/quicwg/base-

drafts/wiki/Implementations.
[5] 2020. Cloudflare quiche. https://github.com/cloudflare/quiche.
[6] 2020. Facebook mvfst. https://github.com/facebookincubator/mvfst.
[7] 2020. Mozilla neqo. https://github.com/mozilla/neqo.
[8] 2020. Node.js QUIC. https://github.com/nodejs/quic.
[9] 2020. qlog for TCP+TLS+HTTP/2 proof of concept.

https://github.com/quiclog/qvis/blob/master/visualizations/src/
components/filemanager/pcapconverter/qlog_tcp_tls_h2.ts.

[10] 2020. Wireshark. https://www.wireshark.org/.
[11] LiorAbraham, JohnAllen,OleksandrBarykin,VinayakBorkar,Bhuwan

Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu
Subramanian, et al. 2013. Scuba: diving into data at Facebook. Proceed-
ings of the VLDB Endowment 6, 11 (2013), 1057–1067.

[12] Amit Aggarwal, Stefan Savage, and Thomas Anderson. 2000. Under-
standing the performance of TCP pacing. In Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. IEEE,
1157–1165.

[13] Rasool Al-Saadi, Grenville Armitage, Jason But, and Philip Branch. 2019.
A survey of delay-based and hybrid TCP congestion control algorithms.
IEEE Communications Surveys & Tutorials 21, 4 (2019), 3609–3638.

[14] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based
congestion control for the internet. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’18). 329–342.

[15] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. RFC Editor. https://www.rfc-editor.org/
rfc/rfc7540.txt

[16] Mike Bishop. 2020. Hypertext Transfer Protocol Version 3 (HTTP/3).
Internet-Draft draft-ietf-quic-http-27. IETF Secretariat. https://tools.
ietf.org/html/draft-ietf-quic-http-27

[17] C. Bormann and P. Hoffman. 2013. Concise Binary Object Representation
(CBOR). RFC 7049. RFC Editor.

[18] Fabio Bulgarella, Mauro Cociglio, Giuseppe Fioccola, Guido Marchetto,
and Riccardo Sisto. 2019. Performance measurements of QUIC commu-
nications. In Proceedings of the Applied Networking ResearchWorkshop.
8–14.

[19] Neal Cardwell, Yuchung Cheng, Soheil Yeganeh, and Van Jacobson.
2017. BBR Congestion Control. Internet-Draft draft-cardwell-iccrg-bbr-
congestion-control-00. IETF Secretariat. https://tools.ietf.org/html/
draft-cardwell-iccrg-bbr-congestion-control-00

[20] N Cardwell, Yuchung Cheng, S Hassas Yeganeh, Ian Swett, Victor
Vasiliev, Priyaranjan Jha, Yousuk Seung,MattMathis, andVan Jacobson.
2019. BBRv2: A Model-Based Congestion Control. In Presentation in
ICCRG at IETF 104th meeting.

[21] Junho Choi. 2020. CUBIC and HyStart++ Support in quiche. https:
//blog.cloudflare.com/cubic-and-hystart-support-in-quiche/.

[22] B. Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC
3954. RFC Editor.

[23] B. Claise, B. Trammell, and P. Aitken. 2013. Specification of the IP Flow
Information Export (IPFIX) Protocol. RFC 7011. RFC Editor.

[24] Quentin De Coninck, François Michel, and Olivier Bonaventure. 2020.
Multipath Extensions for QUIC (MP-QUIC). Internet-Draft draft-
deconinck-quic-multipath-04. IETF Secretariat. https://tools.ietf.org/
html/draft-deconinck-quic-multipath-04

[25] Andy Davies. 2019. Preloading Fonts and the Puzzle of Priori-
ties. https://andydavies.me/blog/2019/02/12/preloading-fonts-and-
the-puzzle-of-priorities/.

[26] AndyDavies andPatrickMeenan. 2018. TrackingHTTP/2Prioritization
Issues. https://github.com/andydavies/http2-prioritization-issues.

[27] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC:
Design and Evaluation. In Proceedings of the 13th International Con-
ference on emerging Networking EXperiments and Technologies. ACM,
160–166.

[28] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Ro-
chet, Thomas Given-Wilson, Axel Legay, Olivier Pereira, and Olivier
Bonaventure. 2019. PluginizingQUIC. In Proceedings of the ACMSpecial
Interest Group on Data Communication. ACM, 59–74.

[29] Google Developers. 2020. Protocol Buffers. https://developers.google.
com/protocol-buffers.

[30] Mariano Di Martino, Peter Quax, andWim Lamotte. 2019. Realistically
Fingerprinting Social MediaWebpages in HTTPS Traffic. In Proceed-
ings of the 14th International Conference on Availability, Reliability and
Security (ARES ’19). 10. https://doi.org/10.1145/3339252.3341478

[31] J. Dickinson, J. Hague, S. Dickinson, T. Manderson, and J. Bond. 2019.
Compacted-DNS (C-DNS): A Format for DNS Packet Capture. RFC 8618.
RFC Editor.

[32] A. Ferrieux, I. Hamchaoui, I. Lubashev, and D. Tikhonov. 2020.
Packet Loss Signaling for Encrypted Protocols. Internet-Draft draft-
ferrieuxhamchaoui-quic-lossbits-03. IETF Secretariat. https://tools.ietf.
org/html/draft-ferrieuxhamchaoui-quic-lossbits-03

[33] Alexandre Ferrieux, Isabelle Hamchaoui, Igor Lubashev, and Dmitri
Tikhonov. 2020. Packet Loss Signaling for Encrypted Protocols. Internet-
Draft draft-ferrieuxhamchaoui-quic-lossbits-03. IETFSecretariat. https:
//tools.ietf.org/html/draft-ferrieuxhamchaoui-quic-lossbits-03

[34] Matt Fleming. 2017. A thorough introduction to eBPF. LinuxWeekly
News (December 2017). https://lwn.net/Articles/740157/.

[35] John Graham-Cumming. 2016. Optimizing TLS over TCP to reduce la-
tency. https://blog.cloudflare.com/optimizing-tls-over-tcp-to-reduce-
latency.

[36] Ilya Grigorik. 2013. Optimizing TLS Record Size and Buffering La-
tency. https://www.igvita.com/2013/10/24/optimizing-tls-record-size-
and-buffering-latency.

[37] Russell Harkanson, Yoohwan Kim, Ju-Yeon Jo, and Khanh Pham. 2019.
Effects of TCP Transfer Buffers and Congestion Avoidance Algorithms

https://www.chromium.org/developers/design-documents/network-stack/netlog
https://www.chromium.org/developers/design-documents/network-stack/netlog
https://github.com/quicwg/wg-materials/blob/master/ietf101/minutes.md
https://github.com/quicwg/wg-materials/blob/master/ietf101/minutes.md
https://github.com/quicwg/wg-materials/blob/master/ietf103/minutes.md
https://github.com/quicwg/wg-materials/blob/master/ietf103/minutes.md
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/cloudflare/quiche
https://github.com/facebookincubator/mvfst
https://github.com/mozilla/neqo
https://github.com/nodejs/quic
https://github.com/quiclog/qvis/blob/master/visualizations/src/components/filemanager/pcapconverter/qlog_tcp_tls_h2.ts
https://github.com/quiclog/qvis/blob/master/visualizations/src/components/filemanager/pcapconverter/qlog_tcp_tls_h2.ts
https://www.wireshark.org/
https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc7540.txt
https://tools.ietf.org/html/draft-ietf-quic-http-27
https://tools.ietf.org/html/draft-ietf-quic-http-27
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/
https://tools.ietf.org/html/draft-deconinck-quic-multipath-04
https://tools.ietf.org/html/draft-deconinck-quic-multipath-04
https://andydavies.me/blog/2019/02/12/preloading-fonts-and-the-puzzle-of-priorities/
https://andydavies.me/blog/2019/02/12/preloading-fonts-and-the-puzzle-of-priorities/
https://github.com/andydavies/http2-prioritization-issues
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/3339252.3341478
https://tools.ietf.org/html/draft-ferrieuxhamchaoui-quic-lossbits-03
https://tools.ietf.org/html/draft-ferrieuxhamchaoui-quic-lossbits-03
https://tools.ietf.org/html/draft-ferrieuxhamchaoui-quic-lossbits-03
https://tools.ietf.org/html/draft-ferrieuxhamchaoui-quic-lossbits-03
https://blog.cloudflare.com/optimizing-tls-over-tcp-to-reduce-latency
https://blog.cloudflare.com/optimizing-tls-over-tcp-to-reduce-latency
https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency
https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency

ANRW ’20, July 2020, Online (Meetecho), Spain Marx and Piraux, et al.

on the End-to-End Throughput of TCP-over-TCP Tunnels. In 16th Inter-
national Conference on Information Technology-New Generations (ITNG
2019). Springer, 401–408.

[38] Benjamin Hesmans and Olivier Bonaventure. 2014. Tracing multi-
path TCP connections. In Proceedings of the 2014 ACM Conference on
SIGCOMM. 361–362.

[39] Christian Huitema. 2020. Files are being sent LIFO. https://github.com/
private-octopus/picoquic/issues/768.

[40] ChristianHuitema,Melinda Shore,AllisonMankin, SaraDickinson, and
Jana Iyengar. 2019. SpecificationofDNSoverDedicatedQUICConnections.
Internet-Draft draft-huitema-quic-dnsoquic-06. IETF Secretariat. https:
//tools.ietf.org/html/draft-huitema-quic-dnsoquic-06

[41] Jana Iyengar and Ian Swett. 2020. QUIC Loss Detection and Congestion
Control. Internet-Draft draft-ietf-quic-recovery-27. IETF Secretariat.
https://tools.ietf.org/html/draft-ietf-quic-recovery-27

[42] Jana Iyengar and Ian Swett. 2020. Sender Control of Acknowledgement
Delays inQUIC. Internet-Draft draft-iyengar-quic-delayed-ack-00. IETF
Secretariat. https://tools.ietf.org/html/draft-iyengar-quic-delayed-
ack-00

[43] Jana Iyengar and Martin Thomson. 2020. QUIC: A UDP-Based Multi-
plexed and Secure Transport. Internet-Draft draft-ietf-quic-transport-27.
IETF Secretariat. https://tools.ietf.org/html/draft-ietf-quic-transport-
27

[44] Keertan Kini. 2017. Vessel: a lightweight container for network analysis.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[45] Charles Krasic, Mike Bishop, and Alan Frindell. 2020. QPACK: Header
Compression for HTTP/3. Internet-Draft draft-ietf-quic-qpack-14. IETF
Secretariat. https://tools.ietf.org/html/draft-ietf-quic-qpack-14

[46] Mirja Kuehlewind and Brian Trammell. 2020. Manageability of the
QUIC Transport Protocol. Internet-Draft draft-ietf-quic-manageability-
06. IETF Secretariat. https://tools.ietf.org/html/draft-ietf-quic-
manageability-06

[47] Mirja Kühlewind, Tobias Bühler, Brian Trammell, Stephan Neuhaus,
RomanMüntener, and Gorry Fairhurst. 2017. A path layer for the Inter-
net: Enabling network operations on encrypted protocols. In 2017 13th
International Conference on Network and Service Management (CNSM).
IEEE, 1–9.

[48] Jeremy Lainé. 2020. aioquic. https://github.com/aiortc/aioquic.
[49] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles

Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The QUIC transport protocol: Design and internet-
scale deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 183–196.

[50] RobinMarx. 2020. qlog format converters. https://github.com/quiclog/
pcap2qlog/tree/binary/src/converters.

[51] RobinMarx. 2020. qvis toolsuite code. https://github.com/quiclog/qvis.
[52] Robin Marx. 2020. qvis toolsuite live. https://qvis.edm.uhasselt.be.
[53] Robin Marx. 2020. TypeScript qlog implementation. https://github.

com/quiclog/qlog/tree/master/TypeScript.
[54] Robin Marx., Tom De Decker., Peter Quax., andWim Lamotte. 2019. Of

the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC.
In Proceedings of the 15th International Conference onWeb Information
Systems and Technologies - Volume 1: WEBIST,. INSTICC, SciTePress,
130–143. https://doi.org/10.5220/0008191701300143

[55] Robin Marx, Wim Lamotte, Jonas Reynders, Kevin Pittevils, and Peter
Quax. 2018. TowardsQUICdebuggability. InProceedingsof theWorkshop
on the Evolution, Performance, and Interoperability of QUIC. 1–7.

[56] Robin Marx andMaxime Piraux. 2020. Artefacts for this paper. https:
//qlog.edm.uhasselt.be/anrw.

[57] Robin Marx and Kevin Pittevils. 2019. quicker, a QUIC implementation
in TypeScript. https://github.com/rmarx/quicker.

[58] Robin Marx, Marten Seemann, and Jeremy Lainé. 2019. The IETF I-D
documents for the qlog format. https://github.com/quiclog/internet-
drafts.

[59] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and
RenWang. 2001. TCPWestwood: Bandwidth estimation for enhanced
transport over wireless links. In Proceedings of the 7th annual interna-
tional conference on Mobile computing and networking. 287–297.

[60] Patrick Meenan. 2019. Better HTTP/2 Prioritization for a Faster
Web. https://blog.cloudflare.com/better-http-2-prioritization-for-
a-faster-web/.

[61] Kazuho Oku and Lucas Pardue. 2020. Extensible Prioritization Scheme
for HTTP. Internet-Draft draft-ietf-httpbis-priority-00. IETF Secretariat.
https://tools.ietf.org/html/draft-ietf-httpbis-priority-00

[62] Shawn Ostermann. 2005. Tcptrace.
[63] Lucas Pardue. 2020. qlog Rust crate. https://crates.io/crates/qlog.
[64] Tommy Pauly, Eric Kinnear, and David Schinazi. 2020. An Unre-

liable Datagram Extension to QUIC. Internet-Draft draft-ietf-quic-
datagram-00. IETF Secretariat. https://tools.ietf.org/html/draft-ietf-
quic-datagram-00

[65] Hagen Paul Pfeifer. 2013. Captcp. http://research.protocollabs.com/
captcp/.

[66] Maxime Piraux and Olivier Bonaventure. 2020. Tunneling Internet
protocols inside QUIC. Internet-Draft draft-piraux-quic-tunnel-01. IETF
Secretariat. https://tools.ietf.org/html/draft-piraux-quic-tunnel-01

[67] Maxime Piraux, Quentin De Coninck, and Olivier Bonaventure. 2018.
Observing the evolution of QUIC implementations. In Proceedings of the
Workshop on the Evolution, Performance, and Interoperability of QUIC.
8–14.

[68] Shahid Raza, Joel Hoeglund, Goeran Selander, John Mattsson, and
Martin Furuhed. 2019. CBOR Profile of X.509 Certificates. Internet-
Draft draft-raza-ace-cbor-certificates-03. IETF Secretariat. https:
//tools.ietf.org/html/draft-raza-ace-cbor-certificates-03

[69] Jonas Reynders. 2020. QUICSim. https://github.com/moonfalir/
quicSim-docker.

[70] Jan Rüth, Ike Kunze, and Oliver Hohlfeld. 2019. An empirical view on
content provider fairness. In 2019 Network Traffic Measurement and
Analysis Conference (TMA). IEEE, 177–184.

[71] David Schinazi. 2020. The MASQUE Protocol. Internet-Draft draft-
schinazi-masque-protocol-01. IETF Secretariat. https://tools.ietf.org/
html/draft-schinazi-masque-protocol-01

[72] Marten Seemann. 2019. Consider moving qlog to a binary format.
https://github.com/quiclog/internet-drafts/issues/30.

[73] Marten Seemann and Jana Iyengar. 2020. Network Simulator for QUIC
benchmarking. https://github.com/marten-seemann/quic-network-
simulator.

[74] James Snell. 2020. Node.js does not support HTTP/2 priorities. https:
//twitter.com/jasnell/status/1245410283582918657.

[75] Daniel Stenberg. 2020. qlog with curl. https://daniel.haxx.se/blog/
2020/05/07/qlog-with-curl/.

[76] Ian Swett and Robin Marx. 2019. HTTP Priority design team update
- IETF 107. https://github.com/httpwg/wg-materials/blob/gh-pages/
ietf106/priorities.pdf.

[77] Martin Thomson and Sean Turner. 2020. Using TLS to Secure QUIC.
Internet-Draft draft-ietf-quic-tls-27. IETF Secretariat. https://tools.ietf.
org/html/draft-ietf-quic-tls-27

[78] OlivierTilmansandOlivierBonaventure. 2019. COP2:ContinuouslyOb-
serving Protocol Performance. arXiv preprint arXiv:1902.04280 (2019).

[79] B. Trammell and M. Kuehlewind. 2018. The QUIC Latency Spin Bit.
Internet-Draft draft-ietf-quic-spin-exp-01. IETF Secretariat. https:
//tools.ietf.org/html/draft-ietf-quic-spin-exp-01

[80] Tatsuhiro Tsujikawa. 2015. Nghttp2: HTTP/2 C library and tools. https:
//github.com/nghttp2/nghttp2.

https://github.com/private-octopus/picoquic/issues/768
https://github.com/private-octopus/picoquic/issues/768
https://tools.ietf.org/html/draft-huitema-quic-dnsoquic-06
https://tools.ietf.org/html/draft-huitema-quic-dnsoquic-06
https://tools.ietf.org/html/draft-ietf-quic-recovery-27
https://tools.ietf.org/html/draft-iyengar-quic-delayed-ack-00
https://tools.ietf.org/html/draft-iyengar-quic-delayed-ack-00
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-qpack-14
https://tools.ietf.org/html/draft-ietf-quic-manageability-06
https://tools.ietf.org/html/draft-ietf-quic-manageability-06
https://github.com/aiortc/aioquic
https://github.com/quiclog/pcap2qlog/tree/binary/src/converters
https://github.com/quiclog/pcap2qlog/tree/binary/src/converters
https://github.com/quiclog/qvis
https://qvis.edm.uhasselt.be
https://github.com/quiclog/qlog/tree/master/TypeScript
https://github.com/quiclog/qlog/tree/master/TypeScript
https://doi.org/10.5220/0008191701300143
https://qlog.edm.uhasselt.be/anrw
https://qlog.edm.uhasselt.be/anrw
https://github.com/rmarx/quicker
https://github.com/quiclog/internet-drafts
https://github.com/quiclog/internet-drafts
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://tools.ietf.org/html/draft-ietf-httpbis-priority-00
https://crates.io/crates/qlog
https://tools.ietf.org/html/draft-ietf-quic-datagram-00
https://tools.ietf.org/html/draft-ietf-quic-datagram-00
http://research.protocollabs.com/captcp/
http://research.protocollabs.com/captcp/
https://tools.ietf.org/html/draft-piraux-quic-tunnel-01
https://tools.ietf.org/html/draft-raza-ace-cbor-certificates-03
https://tools.ietf.org/html/draft-raza-ace-cbor-certificates-03
https://github.com/moonfalir/quicSim-docker
https://github.com/moonfalir/quicSim-docker
https://tools.ietf.org/html/draft-schinazi-masque-protocol-01
https://tools.ietf.org/html/draft-schinazi-masque-protocol-01
https://github.com/quiclog/internet-drafts/issues/30
https://github.com/marten-seemann/quic-network-simulator
https://github.com/marten-seemann/quic-network-simulator
https://twitter.com/jasnell/status/1245410283582918657
https://twitter.com/jasnell/status/1245410283582918657
https://daniel.haxx.se/blog/2020/05/07/qlog-with-curl/
https://daniel.haxx.se/blog/2020/05/07/qlog-with-curl/
https://github.com/httpwg/wg-materials/blob/gh-pages/ietf106/priorities.pdf
https://github.com/httpwg/wg-materials/blob/gh-pages/ietf106/priorities.pdf
https://tools.ietf.org/html/draft-ietf-quic-tls-27
https://tools.ietf.org/html/draft-ietf-quic-tls-27
https://tools.ietf.org/html/draft-ietf-quic-spin-exp-01
https://tools.ietf.org/html/draft-ietf-quic-spin-exp-01
https://github.com/nghttp2/nghttp2
https://github.com/nghttp2/nghttp2

Debugging QUIC and HTTP/3 with qlog and qvis ANRW ’20, July 2020, Online (Meetecho), Spain

[81] Tatsuhiro Tsujikawa. 2020. Round up cwnd left to the maximum
UDP packet size. https://github.com/ngtcp2/ngtcp2/commit/
0a28514bbbb37d85dc6e2622357687166669192a.

[82] Mathy Vanhoef and TomVan Goethem. 2016. HEIST: HTTP Encrypted
Information can be Stolen through TCP-windows. In Black Hat US
Briefings, Location: Las Vegas, USA.

[83] Kenton Varda. 2020. Cap’n Proto. https://capnproto.org/.
[84] Victor Vasiliev. 2019. TheWebTransport Protocol Framework. Internet-

Draft draft-vvv-webtransport-overview-01. IETF Secretariat. https:
//tools.ietf.org/html/draft-vvv-webtransport-overview-01

[85] RanyshaWare, Matthew KMukerjee, Srinivasan Seshan, and Justine
Sherry. 2019. Beyond Jain’s Fairness Index: Setting the Bar For The

Deployment of Congestion Control Algorithms. In Proceedings of the
18th ACMWorkshop on Hot Topics in Networks. 17–24.

[86] QUIC wg. 2020. QUIC Working Group adopted documents. https:
//datatracker.ietf.org/wg/quic/documents/.

[87] MaartenWijnants, Robin Marx, Peter Quax, andWim Lamotte. 2018.
HTTP/2 Prioritization and Its Impact onWeb Performance. In Proceed-
ings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18).
1755–1764. https://doi.org/10.1145/3178876.3186181

[88] Wireshark. 2010. Frame snapshot length. https://wiki.wireshark.org/
SnapLen.

https://github.com/ngtcp2/ngtcp2/commit/0a28514bbbb37d85dc6e2622357687166669192a
https://github.com/ngtcp2/ngtcp2/commit/0a28514bbbb37d85dc6e2622357687166669192a
https://capnproto.org/
https://tools.ietf.org/html/draft-vvv-webtransport-overview-01
https://tools.ietf.org/html/draft-vvv-webtransport-overview-01
https://datatracker.ietf.org/wg/quic/documents/
https://datatracker.ietf.org/wg/quic/documents/
https://doi.org/10.1145/3178876.3186181
https://wiki.wireshark.org/SnapLen
https://wiki.wireshark.org/SnapLen

	Abstract
	1 Introduction & Motivation
	2 qlog and qvis usage in practice
	3 Visualization case studies
	3.1 Stream Multiplexing and Prioritization
	3.2 Packetization and Framing
	3.3 Congestion Control
	3.4 Multipath QUIC

	4 Conclusion & Challenges
	References

