
AUGUST 2020 | VOL. 63 | NO. 8 | COMMUNICATIONS OF THE ACM 93

Scalable Linear Algebra on
a Relational Database System
By Shangyu Luo, Zekai J. Gao, Michael Gubanov, Luis L. Perez, Dimitrije Jankov, and Christopher Jermaine

DOI:10.1145/3405470

Abstract
As data analytics has become an important application for
modern data management systems, a new category of data
management system has appeared recently: the scalable
linear algebra system. We argue that a parallel or distrib-
uted database system is actually an excellent platform upon
which to build such functionality. Most relational systems
already have support for cost-based optimization—which is
vital to scaling linear algebra computations—and it is well
known how to make relational systems scalable.

We show that by making just a few changes to a parallel/
distributed relational database system, such a system can
become a competitive platform for scalable linear algebra.
Taken together, our results should at least raise the possibil-
ity that brand new systems designed from the ground up to
support scalable linear algebra are not absolutely necessary,
and that such systems could instead be built on top of exist-
ing relational technology.

1. INTRODUCTION
Data analytics, such as machine learning and large-scale sta-
tistical processing, is an important application domain, and
such computations often require linear algebra. As such, a
lot of recent efforts have been targeted at building distrib-
uted linear algebra systems, with the goal of supporting
large-scale data analytics. Unlike classical efforts in high-
performance computing such as ScaLAPACK6, such systems
may include support for storage/retrieval of data to/from
disk, buffering/caching of data, and automatic logical/physi-
cal optimizations of computations (automatic rewriting of
queries, pipelining, etc.). Such systems also typically offer
some form of recovery, as well as a domain-specific language.

One example of such a system is SystemML, developed
at IBM.12 Given deep learning’s reliance on arrays and array-
based operations such as matrix multiply, systems facili-
tating distributed deep learning, such as TensorFlow,3 can
also be included among such efforts. In the database area,
there has long been of interest in building array database
systems.17, 5 A motivating use case for these systems is dis-
tributed linear algebra. Moreover, there have also been sig-
nificant efforts targeted at using dataflow systems such as
Apache Spark20 to build distributed linear algebra dataflow
APIs (such as Spark’s mllib.linalg1).

Is a new type of system actually necessary? The hypothe-
sis underlying this paper is that building a new system from
scratch for distributed linear algebra may not be necessary.
Instead, we believe that with just a few changes, a classical,
parallel relational database is actually an excellent platform
for building a scalable linear algebra system. In practice,
there is a close correspondence between distributed linear

The original version of this paper was published in the
Proceedings of the IEEE 33rd International Conference on
Data Engineering, 2017, 523–534.

algebra and distributed relational algebra, the foundation
of modern database systems, meaning that it is easy to use a
database for scalable linear algebra. Relational database sys-
tems are highly performant, reaping the benefits of decades
of research and engineering efforts targeted at building effi-
cient systems. Further, relational systems already have soft-
ware components such as a cost-based query optimizer to
aid in performing efficient computations. In fact, much of
the work that goes into developing a scalable linear algebra
system from the ground up7 requires implementing func-
tionality that looks a lot like a database query optimizer.10

Given that much of the world’s data currently sits in rela-
tional databases, and that dataflow systems increasingly
provide at least some support for relational processing4, 19,
building linear algebra facility into relational systems would
mean that much of the world’s data would be sitting in sys-
tems capable of performing scalable linear algebra. This
would have several obvious benefits:

1. It would eliminate the “extract-transform-reload night-
mare”, particularly if the goal is performing analytics
on data already stored in a relational system. It is diffi-
cult and expensive (in terms of computing/network
costs and engineering dollars) to remove data from one
system and put it in another, and if a database came off-
the-shelf with the necessary functionality, there would
be no reason to undertake such an often arduous task.

2. It would obviate the need for practitioners to adopt yet
another type of data processing system in order to per-
form mathematical computations.

3. The design and implementation of high-performance
distributed and parallel relational systems is well-
understood. If it is possible to adapt such a system to the
task of scalable linear algebra, most or all of the science
performed over decades, aimed at determining how to
build a distributed relational system, is directly applicable.

Along those lines, in this paper, we ask the question:

can we make a very small set of changes to the relational model
and an RDBMS software to render them suitable for in-database
linear algebra?

The approach we examine is simple: we consider adding new
VECTOR, MATRIX, and LABELED_SCALAR data types to rela-
tional database systems. Technically, this seems to be a rather
minor change. After all, array has been available as a data type

http://dx.doi.org/10.1145/3405470
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3405470&domain=pdf&date_stamp=2020-07-22

research highlights

94 COMMUNICATIONS OF THE ACM | AUGUST 2020 | VOL. 63 | NO. 8

in most modern DBMSs—arrays can clearly be used to encode
vectors and matrices—and some database systems (such as
Oracle Database) offer a form of integration between arrays and
linear algebra libraries such as BLAS and LAPACK. However,
these previous ad-hoc approaches do not offer complete inte-
gration with the database system. The query optimizer, for
example, does not understand the semantics of the linear alge-
bra, and this results in losing opportunities for optimization.

In this paper, we evaluate our ideas, and we believe that
our results call into question the need to build yet another
special-purpose data management system for linear-algebra-
based analytics.

2. LA ON TOP OF RA
In this section of the paper, we discuss why a relational
database system might make an excellent platform for high-
performance, distributed linear algebra. We then discuss
the challenges in using a database system for linear algebra,
as well as our basic approach.

2.1. Linear and relational algebra
Development of distributed algorithms for linear algebra has
been an active area of scientific investigation for decades.
Figure 1(a) shows the example of performing a distributed
multiplication of two large, dense matrices, O ← L × R.

For efficiency and storage considerations, matrices in
a distributed system are typically “blocked” or “chunked”;
that is, they are divided into smaller matrices, which can then
be moved around in bulk to specific processors where high-
performance local computations are performed. Imagine
that the six blocks making up each of the two input matrices
L and R are distributed among three nodes as shown at the
left of Figure 1(b). The blocks from L are hash-partitioned
randomly, whereas the blocks from R are round-robin-
partitioned, based upon each block’s row identifier.

As a first step, we would shuffle the blocks from L so that
all of the blocks from L, column i, are co-located with all
of the blocks from R, row i. Then, at each node, a local join

(in this case, a cross product) is performed to iterate through
all (Lj.i, Ri.k) pairs that can be formed at the node. For each
pair, a matrix multiply is performed, so that Ii.j.k ← Lj.i×Ri.k.
Finally, all of the Ii.j.k blocks are again shuffled so that all
Ii.j.k blocks are co-located based upon their (j, k) values—
these blocks are then summed, so that the output block is
computed as Oj.k ← ∑iIi.j.k.

The key observation is that this is really just a relational
algebra computation over the blocks making up L and R. The
first two steps of the computation are a distributed join that
computes all (Lj.i, Ri.k) pairs, followed by a projection that
performs the matrix multiply. The next two steps—the shuf-
fle and summation—are nothing more than a distributed
grouping with aggregation.

The matrix multiplication example shows that distrib-
uted linear algebra computations are often nothing more
than distributed relational algebra computations. This fact
underlies our assertion that a relational database system
makes an excellent platform for distributed linear algebra.
Database researchers have spent decades studying efficient
algorithms for distributed joins and aggregations, and many
relational systems are mature and highly performant; there
is no need to reinvent the wheel.

A further benefit of using a distributed database system
as a linear algebra engine is that decades of work in query
optimization are directly applicable. In our example, we
decided to shuffle L because R was already partitioned
on the join key. Had L been pre-partitioned and not R, it
would have been better to shuffle R. This is exactly the sort
of decision that a modern query optimizer makes with
total transparency. Using a database as the basis for a lin-
ear algebra engine gives us the benefit of query optimiza-
tion for free.

2.2. The challenges
However, there are two main concerns associated with
implementing linear algebra directly on top of an exist-
ing relational system, without modification. First is the

R1.1 R1.2

R2.1 R2.2

R3.1 R3.2

L1.1 L1.2

L2.1 L2.2

L1.3

L2.3

× =

O1.1

O2.2

O1.2

O2.1

(a) Block matrix multiply.

R1.1 R1.2

R2.1 R2.2

R3.1 R3.2

L1.1

L1.2

L2.1

L2.2

L1.3

L2.3

R1.1 R1.2

R2.1 R2.2

R3.1 R3.2

L1.1

L2.3

L2.1

L1.3

L2.2 L1.2

I1.1.1 I1.1.2

I1.2.1 I1.2.2

I2.1.1 I2.1.2

I2.2.1 I2.2.2

I3.1.1 I3.1.2

I3.2.1 I3.2.2

×

×

×

I1.1.1

I1.1.2

I1.2.1

I1.2.2

I2.1.1

I2.1.2

I2.2.1

I2.2.2

I3.1.1

I3.1.2

I3.2.1

I3.2.2 O2.2

O1.1

O2.1

O1.2

+

+

+

+

Shuffle to match
L col, R row

1) Matrix multiply over
local cross product

2) Shuffle to match L
row, R column

3) Matrix sum over
each group

4)

Node 1

Node 2

Node 3

(b) Distributed processing.

Figure 1. Distributed processing of a block matrix multiply.

AUGUST 2020 | VOL. 63 | NO. 8 | COMMUNICATIONS OF THE ACM 95

complexity of writing linear algebra computations on top of
SQL. Consider a data set consisting of the vectors {x1, x2, …,
xn}, and imagine that our goal is to compute the distance

for a Riemannian metric16 encoded by the matrix A. We
might wish to compute this distance between a particular
data point xi and every other point x′ in the database. This
would be required in a kNN-based classification in the met-
ric space defined by A.

This distance computation can be implemented in SQL
as follows. Assume the set of vectors is encoded as a table:

data (pointID, dimID, value)

with the matrix A encoded as another table:

matrixA (rowID, colID, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, x1.value - x2.value
FROM data AS x1, data AS x2
WHERE x1.pointID = i AND x1.dimID = x2.dimID

SELECT x.pointID, SUM (firstPart.value * x.value)
FROM (SELECT x.pointID AS pointID, a.colID AS

colID, SUM (a.value * x.value) AS value
 FROM xDiff AS x, matrixA AS a
 WHERE x.dimID = a.rowID
 GROUP BY x.pointID, a.colID)

 AS firstPart, xDiff AS x
WHERE firstPart.colID = x.dimID

 AND firstPart.pointID = x.pointID
GROUP BY x.pointID

Although it is clearly possible to write such a code, it is not
necessarily a good idea. The first obvious problem is that
this is a very intricate specification, requiring a nested
subquery and a view—without the view it is even more
intricate—and it bears little resemblance to the original,
simple mathematics.

The second problem is perhaps less obvious from look-
ing at the code, but just as severe: performance. This code
is likely to be inefficient to execute, requiring three or four
joins and two groupings. Even more concerning in practice
is the fact that if the data is dense and the number of data
dimensions is large (that is, there are a lot of dimID values for
each pointID), then the execution of this query will move a
huge number of small tuples through the system, because a
million, thousand-dimensional vectors are encoded as a bil-
lion tuples. In the classical, iterator-based execution model,
there is a fixed cost incurred per tuple, which will translate to
a very high execution cost. Vector-based processing can alle-
viate this somewhat, but the fact remains that satisfactory
performance is unlikely. This fixed-cost-per-tuple problem
was often cited as the impetus for designing new systems,
specifically for vector- and matrix-based processing, or for
processing of more general-purpose arrays.

2.3. The solution
As a solution, we propose a very small set of changes to a
typical relational database system that includes adding new
LABELED_SCALAR, VECTOR, and MATRIX data types to the
relational model. Because these nonnormalized data types
cause the contents of vectors and matrices to be manipu-
lated as a single unit during query processing, the simple act
of adding these new types brings significant performance
improvements.

Further, we propose a very small number of SQL lan-
guage extensions for manipulating these data types and
moving between them. This alleviates the complicated-
code problem. In our Riemannian metric example, the two
input tables data and matrixA become data (pointID,
val) and matrixA (val), respectively, where data.val
is a vector, and matrixA.val is a matrix. The SQL code
to compute the pairwise distances becomes dramatically
simpler:

SELECT x2.pointID,
 inner_product (
 matrix_vector_multiply (
 a.val, x1.val - x2.val),
 x1.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID = i

In the next full section of the paper, we describe our pro-
posed extensions in detail.

3. OVERVIEW OF EXTENSIONS
3.1. New types
We propose adding VECTOR, MATRIX, and LABELED_
SCALAR column types to SQL and the relational model, as
well as implementing a useful set of operations over those
types (diag to extract the diagonal of a matrix, matrix_
vector_multiply to multiply a matrix and a vector,
matrix_matrix_multiply to multiply two matrices,
etc.). Overall, 22 various built-in functions over LABELED_
SCALAR, VECTOR, and MATRIX types are present in our
implementation. Each element of a VECTOR or a MATRIX is
a DOUBLE.

In this particular subsection, we focus on introducing the
VECTOR and MATRIX types; LABELED_SCALAR will be con-
sidered in detail in a subsequent subsection.

For a simple example of the use of VECTOR and MATRIX
types, consider the following table:

CREATE TABLE m (mat MATRIX[10][10],
 vec VECTOR[100]);

This code specifies a relational table, where each tuple
in the table has two attributes, mat and vec, of types
MATRIX and VECTOR, respectively. In our language
extensions, VECTORs and MATRIXes (as above) can
have specified sizes, in which case operations such as
matrix_vector_multiply are automatically type-
checked for size mismatches. For example, the follow-
ing query:

research highlights

96 COMMUNICATIONS OF THE ACM | AUGUST 2020 | VOL. 63 | NO. 8

returns a database table which stores the Hadamard prod-
uct of each matrix in m with itself.

As the standard arithmetic operations are all overloaded
to work with MATRIX and VECTOR types, it means that the
standard SQL aggregate operations all work as expected
automatically. The SUM aggregate over VECTOR type attri-
bute, for example, performs a + (entry-by-entry addition)
over each VECTOR in a relation. This can be very convenient
for implementing mathematical computations. For exam-
ple, imagine that we have a matrix stored as a relational table
of vectors, and we wish to perform a standard Gram matrix
computation (if the matrix X is stored as a set of columns
X = {x1, x2, …, xn}, then the Gram matrix of X is). This
computation can be implemented using our extensions as:

CREATE TABLE v (vec VECTOR[]);

SELECT SUM (outer_product (vec, vec))
FROM v

Arithmetic between a scalar value and a MATRIX or
VECTOR type performs the arithmetic operation between
the scalar and every entry in the MATRIX or VECTOR. In this
way, it becomes very easy to specify linear algebra compu-
tations of significant complexity using just a few lines of
code. For example, consider the problem of learning a linear
regression model. Given a matrix X = {x1, x2, …, xn} and a set
of outcomes {y1, y2, …, yn}, the goal is to estimate a vector
where for each i, . In practice, is typically computed
so as to minimize the squared loss . In this case,
the formula for is given as:

This can be coded as follows. If we have:

CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_i DOUBLE);

then the SQL code to compute is:

SELECT matrix_vector_multiply (
 matrix_inverse (

 SUM (outer_product (X.x_i, X.x_i))),
 SUM (X.x_i * y_i))

FROM X, y
WHERE X.i = y.i

Note the multiplication X.x_i * y_i between the vector
X.x_i and the scalar y_i, which multiplies y_i by each
entry in X.x_i.

3.3. Moving between types
By introducing MATRIX and VECTOR types, we then have
new, de-normalized alternatives for storing data. For exam-
ple, a matrix can be stored as a traditional relation:

mat (row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set
of column vectors using

SELECT matrix_vector_multiply (m.mat, m.vec)
 AS res

FROM m

will not compile because the number of columns in m.mat
does not match the number of entries in m.vec. However,
if the original table declaration had been:

CREATE TABLE m (mat MATRIX[10][10],
 vec VECTOR[10]);

then the aforementioned SQL query would compile and exe-
cute, and the output would be a database table with a single
attribute (called res) of type VECTOR[10].

Note that in our extensions, there is no distinction
between row and column vectors; whether or not a vector is
a row or a column vector is up to the interpretation of each
individual operation. matrix_vector_multiply inter-
prets a vector as a column vector, for example. To perform
a matrix-vector multiplication treating the vector as a row
vector, a programmer would first transform the vector into a
one-row matrix (this transformation is described in the subse-
quent subsection), and then call matrix_matrix_multiply.
Or, a programmer could transform the matrix first, and then
apply the matrix_vector_multiply function.

It is possible to create MATRIX and VECTOR types where
the sizes are unspecified:

CREATE TABLE m (mat MATRIX[10][10],
 vec VECTOR[]);

In this case, the aforementioned matrix_vector_
multiply SQL query would compile, but there could
possibly be a runtime error if one or more of the tuples in m
contained a vec attribute that did not have 10 entries.

It is possible to have a MATRIX declaration where
only one of the dimensionalities is given; for example,
MATRIX[10][]. However, it is generally a good idea for a
programmer to specify the sizes in the table declaration.
If a dimensionality is given, then the system ensures that
there can be no runtime failures due to size mismatches.
During the loading time, data is checked to ensure the cor-
rect dimensionality, and queries are type-checked to ensure
that proper dimensionalities are used and satisfied. Further,
if dimensions are known, it can help the optimization pro-
cess; a plan that uses a linear algebra operation that greatly
reduces the amount of data early on (a multiplication of two
“skinny” matrices, for example, which results in a small out-
put matrix) may be chosen as being optimal.

3.2. Built-in operations
In addition to a long list of standard linear algebra opera-
tions, the standard arithmetic operations +, −, * and /
(element-wise) are also defined over MATRIX and VECTOR
types. For example,

CREATE TABLE m (mat MATRIX[100][10]);

SELECT mat * mat
FROM m

AUGUST 2020 | VOL. 63 | NO. 8 | COMMUNICATIONS OF THE ACM 97

DOUBLE y_i. Then the VECTORIZE operation aggre-
gates the resulting values into a vector, adding each
LABELED_SCALAR value to the vector at the position
indicated by the label. Any “holes” (or entries in the vec-
tor for which no LABELED_SCALAR were found) in the
resulting vector are set to zero.

As stated above, VECTOR attributes implicitly have labels,
but they can be set explicitly, and those labels can be used
to construct matrices. For example, imagine that we want to
create a single tuple as a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)

We can do this with the following SQL code:

CREATE VIEW vecs (vec, row) AS
SELECT VECTORIZE (label_scalar (val, col))

AS vec, row
FROM mat
GROUP BY row

followed by:

SELECT ROWMATRIX (label_vector (vec, row))
FROM vecs

The first bit of code creates one vector for each row and
the second bit of code aggregates those vectors into a matrix,
using each vector as a row. It would have been possible to
create a column matrix by first using a GROUP BY col and
then SELECT COLMATRIX.

So far, we have discussed how to de-normalize relations
into vectors and matrices. It is equally easy to normalize
MATRIX and VECTOR types. Assuming the existence of a
table label (id) which simply lists the values 1, 2, 3, etc.,
one can move from the vectorized representation (found
in the vecs view defined above) to a purely-relational rep-
resentation using a join of the form:

SELECT label.id, get_scalar (vecs.vec, label.id)
FROM vecs, label

Code to normalize a matrix is written similarly.

4. IMPLEMENTATION
4.1. Underlying database
We have implemented all of these ideas on top of
the SimSQL distributed database system.9 SimSQL
is a prototype database system designed to perform
scalable numerical and statistical computations over
large data sets, written mostly in Java, with a C/C++ for-
eign function interface.

In this section, we describe some details regarding our
implementation. In building linear algebra capabilities into
SimSQL, our mantra was “incremental, not revolutionary”.
Our goal was to see whether, with a small set of changes, a
relational database system could be a reasonable platform
for distributed linear algebra.

4.2. Distributed matrices?
One of the very first questions that we had to ask ourselves
when architecting the changes to SimSQL to support vectors

row_mat (row INTEGER, vec_value VECTOR[])

or

col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple
having the whole matrix:

mat (value MATRIX [][])

It is of fundamental importance to be able to move
around between these various representations, for several
reasons. Most importantly, each representation has its own
performance characteristics and ease-of-use for various
tasks; depending upon a particular computation, one may
be preferred over another.

Reconsider the linear regression example. Had we stored
the data as:

CREATE TABLE X (mat MATRIX [][]);
CREATE TABLE y (vec VECTOR []);

then the SQL code to compute would have been:

SELECT matrix_vector_multiply (
 matrix_inverse (
 matrix_matrix_multiply(trans_matrix(mat),mat)),
 matrix_vector_multiply (
 trans_matrix (mat), vec))

FROM X, y

Arguably, this is a more straightforward translation of
the mathematics compared to the code that stores X as a
set of vectors. However, it may not perform as well because
it may be more difficult to parallelize on a shared-nothing
cluster of machines. In comparison to the vector-based
implementation, the matrix multiply XT X is implicit in the
relational algebra.

As different representations are going to have their own
merits, it may be necessary to construct (or deconstruct)
MATRIX and VECTOR types using SQL. To facilitate this,
we introduce the notion of a label. In our extension, each
VECTOR attribute implicitly or explicitly has an integer label
value attached to it (if the label is never explicitly set for a
particular vector, then its value is −1 by default). In addition,
we introduce a new type called LABELED_SCALAR, which
is essentially a DOUBLE with a label. Using those labels
along with three special aggregate functions (ROWMATRIX,
COLMATRIX, and VECTORIZE), it is possible to write SQL
code that creates MATRIX types and VECTOR types, respec-
tively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_i DOUBLE);

Imagine that we want to create a table with a single vector
tuple from the table y. To do this, we simply write:

SELECT VECTORIZE (label_scalar (y_i, i))
FROM y

Here, the label_scalar function creates an attribute
of type LABELED_SCALAR, attaching the label i to the

research highlights

98 COMMUNICATIONS OF THE ACM | AUGUST 2020 | VOL. 63 | NO. 8

Matrices, on the other hand, are stored as sparse lists of
vectors, using a run-length encoding scheme (missing vec-
tors are treated as consisting entirely of zeros). As described
previously, matrices can be stored as lists of column vectors
or lists of row vectors; the exact storage format is specified
during matrix construction (via either the ROWMATRIX or
COLMATRIX aggregate function).

4.4. Algebraic operations
SimSQL is written mostly in Java, which presented some-
thing of a problem for us when implementing linear algebra
operations: some readers of this paper will no doubt dis-
agree, but after much examination, we felt that Java linear
algebra packages still lag behind their C/FORTRAN contem-
poraries in terms of raw performance. Although a high-
performance C implementation is (in theory) available to
a Java system via JNI, passing through the Java/C barrier
typically requires a relatively expensive data copy.

The solution that we implemented is, in the end, a com-
promise. We decided not to use any Java linear algebra
package. The majority of SimSQL’s built-in linear algebra
operations (indeed, the majority of any linear algebra sys-
tem’s built-in operations), are simple and easy to implement
efficiently: extracting/setting the diagonal of a matrix, com-
puting the outer product of two vectors (which is of linear
cost in the size of the output matrix), scalar/matrix and
scalar/vector multiplication, etc. All such “simple” operations
are implemented in Java, directly on top of our in-memory
representation.

There is, however, another set of operations (matrix
inverse, matrix-matrix multiply, etc.) that are much more
challenging to implement in terms of achieving good perfor-
mance and dealing with numerical instabilities. For those
operations, we use SimSQL’s foreign function interface to
transform vector- and matrix-valued inputs into C++ objects,
where we then use BLAS implementations.

4.5. Aggregation
The extensions proposed in this paper require two new types
of aggregation. First, we must be able to perform standard
aggregate computations (SUM, AVERAGE, STD_DEV, etc.)
over vectors and matrices. As, in SimSQL, these standard
aggregate computations are all written in terms of basic
arithmetic operations (+, −, *, etc.), the standard aggregate
computations over vectors and matrices all happen “for
free” without any additional modifications.

Second, our extensions need a few new aggregate func-
tions with special semantics: VECTORIZE, ROWMATRIX,
and COLMATRIX. The first constructs a vector out of a set
of LABELED_SCALAR objects. The latter two construct a
matrix out of a set of vectors. All are implemented within the
system via hashing. For example, in the case of VECTORIZE,
all of the LABELED_SCALAR objects used to build the vec-
tor are collected in a hash table (in the case of a GROUP BY
clause, there would be many such hash tables). As aggrega-
tion is performed in a distributed manner, hash tables from
different machines that are being used to create the same
vector will need to be merged into a single hash table on a
single machine. Merging may also need to happen if there

and matrices was: should we allow individual matrices
stored in an RDBMS to be large enough to exceed the size of
RAM available on one machine?

After a lot of debate, we decided that, in keeping with
a traditional RDBMS design, SimSQL would enforce a
requirement that all vectors and matrices should be small
enough to fit into the RAM of an individual machine,
and that individual vectors and matrices would not be
distributed across multiple machines. As our mantra
was “incremental, not revolutionary,” we did not want to
replace database tables with new linear algebra types—
which would effectively give us an array database system.
Thus, vectors/matrices are stored as attributes in tuples.
And as distributing individual tuples or attributes across
machines (or having individual tuples larger than the RAM
available on a machine) is generally not supported by mod-
ern database systems, it seemed reasonable not to support
this in our system.

Of course, one might ask, what if one has a matrix that
is too large to fit into the RAM of an individual machine? This
might be a reasonably common use case, and it would be
desirable to support very large matrices. Fortunately, it
turns out that one can still handle efficient operations over
very large matrices using an RDBMS with our extensions.
For example, a large, dense matrix with 100,000 rows and
100,000 columns that require nearly a terabyte to store in all
can be stored as one hundred tuples in the table:

bigMatrix (tileRow INTEGER, tileCol INTEGER,
 mat MATRIX[10000][10000])

Efficient, distributed matrix operations are then easily pos-
sible via SQL. For example, to multiply bigMatrix with
anotherLargeMat:

anotherLargeMat (tileRow INTEGER,
tileCol INTEGER, mat MATRIX[10000][10000])

We would use:

SELECT lhs.tileRow, rhs.tileCol,
SUM (matrix_matrix_multiply (lhs.mat, rhs.mat))

FROM bigMatrix AS lhs, anotherLargeMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

The resulting, very efficient computation is identical to
what one would expect from a distributed matrix engine.

SELECT *
FROM matrix_matrix_multiply (bigMatrix, anotherLargeMat)

4.3. Storage
Given such considerations, storage for vectors and matri-
ces is quite simple. Vectors are stored in dense fashion, as
lists of double-precision values, along with an integer label
(because, as described in the previous section, all vectors are
labeled with a row or a column number so that they can be
used to construct matrices). This may sometimes represent
a waste if vectors are indeed sparse, but if necessary, vectors
can easily be compressed before being written to secondary
storage.

AUGUST 2020 | VOL. 63 | NO. 8 | COMMUNICATIONS OF THE ACM 99

covariance matrices. If we use a matrix X to store the
input vectors, then the Gram matrix G can be calcu-
lated as G = XT X.

(2) Least squares linear regression. Given a paired data
set {yi, xi}, i = 1, …, n, we wish to model each yi as a
linear combination of the values in xi. Let ,
where β is the vector of regression coefficients. The
most common estimator for β is the least squares
estimator: .

(3) Distance computation. We first compute the dis-
tance between each data point pair xi and

. Then, for each data point xi, we
compute the minimum value over all x′ ≠ xi.
Lastly, we select the data points which have the max
value among those minimums.

In our second set of experiments, we use a Wikipedia dump
of 4.86 million documents to learn how to predict the year
of the last edit to a Wikipedia article. There are 17 possible
labels in total. We pre-process the Wikipedia dump, repre-
senting each document as a 60,000-dimensional feature
vector, where each feature corresponds to the number of
times a particular unigram or bigram appears in the docu-
ment. This is input into a two-layer feed-forward neural
network (FFNN). In most of our experiments, we use 10,000
as the batch size, as recent results indicate that a relatively
large batch of this size is a reasonable choice for large-scale
learning.13

Implementation details. A SimSQL programmer uses que-
ries and built-in functions to implement computations. For
the first set of experiments for SimSQL, we implemented
each model using three different SQL codes. First, we wrote
a pure-tuple-based code (as on an existing, standard SQL-
based platform). Second, we wrote an SQL code where each
data point is stored as an individual vector. Third, we wrote an
SQL code where data points are grouped together in blocks,
and are stored as matrices so that they can be manipulated as
a group. For FFNN learning, we used only blocked matrices.

In SystemML, data is stored and processed as blocks, which
are square matrices. All code is written using SystemML’s
Python-like programming language. In Spark mllib.linalg,
we carefully tuned our implementation to answer questions
such as: should the input data be stored/processed as vec-
tors, or as matrices? And, if a matrix is used, should it be a
local matrix, or a distributed one? For example, for the Gram
matrix computation and linear regression, the vector-based
implementation is the fastest. Data in SciDB is partitioned
as chunks. We use 1000 as the chunk size for all arrays.

Experiment setup. We ran the first set of experiments on
10 Amazon EC2 r5d.2xlarge machines, each having eight
CPU cores, 64 GB of RAM, and a 300GB SSD drive. For Gram
matrix computation and linear regression, the number of
data points per machine was 105. For the distance compu-
tation, the number of data points per machine was 104. All
data sets were dense, and all the data was synthetic—as we
are only interested in running time; there is likely no prac-
tical difference between synthetic and real data. For each
computational task, we considered three data dimension-
alities: 10, 100, and 1000. We ran the FFNN experiments

are enough groups during aggregation so that memory is
exhausted; in this case, a partially-complete hash table may
need to be flushed to disk.

Once all of the LABELED_SCALAR objects for a vector
have been collected into a single hash table, the objects are
sorted based on the position labels, and are then converted
into a vector. Any missing entries are treated as zero, and
the length of the resulting vector is equal to the largest label
used to construct the vector.

Matrices are constructed similarly, with one change
being that the objects hashed to construct the matrix are
VECTOR objects, rather than LABELED_SCALAR objects.
Note that by definition, all VECTOR objects are labeled, and
it is those labels that are used to perform the aggregation.

5. EXPERIMENTS
In this section, we experimentally test whether these exten-
sions can, in fact, result in a performant distributed linear
algebra system. In the first set of experiments, we compare
the efficiency of our SimSQL linear algebra implementa-
tion with several alternative platforms, on a set of relatively
straightforward compilations. In the second set of experi-
ments, we evaluate the utility of our extensions for imple-
menting very large-scale deep learning.1

We stress that this is not a “which system is faster?” com-
parison. SimSQL is implemented in Java and runs on top
of Hadoop MapReduce, with the high latency that implies.
A commercial system would be much faster. Rather, our goal
is simply to ask: is an RDBMS a viable platform for running
distributed linear algebra?

Platforms tested. The platforms we evaluated are:

(1) SimSQL. We tested several different SimSQL imple-
mentations: Without vector/matrix support (the origi-
nal SimSQL implementation without our extensions),
with data stored as vectors, and with data stored as
vectors, then converted into blocks.

(2) SystemML. This is SystemML V1.2.0, which runs on
Spark-Batch mode. All computations are written in
SystemML’s DML programming language.

(3) SciDB. This is SciDB V18.1. All computations are writ-
ten in SciDB’s AQL language which is similar to SQL.

(4) Spark mllib.linalg. This is run on Spark V2.4 in
standalone mode. All computations are written in
Scala.

(5) TensorFlow. This is TensorFlow V0.12.0. All computa-
tions are written in Python.

Computations performed. In our first set of experiments,
we performed three different representative computations.

(1) Gram matrix computation. A Gram matrix is the
inner products of a set of vectors. It is a common
computational pattern in machine learning, and
is often used to compute the kernel functions and

1 Using RDBMS-based linear algebra for deep learning is considered in
detail in Jankov et al.15; the experimental results given here are taken from
that paper.

research highlights

100 COMMUNICATIONS OF THE ACM | AUGUST 2020 | VOL. 63 | NO. 8

matrix, the latter being considerably faster for the distance
computation). SimSQL was slower for the lower-dimensional
problems because as a prototype system, it is not engi-
neered for high throughput. Spark mllib and SciDB were
not competitive on the higher-dimensional data.

For FFNN learning (Figure 5), SimSQL was slower than
TensorFlow in most cases, but it scaled well, whereas
TensorFlow crashed (due to memory problems) on a
problem size of larger than 40,000 hidden neurons. In
TensorFlow, there is no automatic way to distribute matri-
ces across machines, and for the bigger problem sizes, the
weight matrices are very large (the problem with 160,000
hidden neurons uses 102 GB weight matrices). Although a
distributed database can easily handle data of this size by
distributing it across machines or using the local disk to
buffer data, TensorFlow lacks such capability.

Micro-benchmarks showed that for the 40,000-hidden-
neuron problem, all of the matrix operations required for
an iteration of FFNN learning took 6 min, 17 s (6:17) on a
single machine. Assuming a perfect speedup, the learning
should take just 1:15 per iteration on a five-machine cluster.
However, SimSQL took 8:30 and TensorFlow took 9:02. This
shows that both systems incur significant overhead, at least
at such a large model size. SimSQL, in particular, requires
a total of 61 s per FFNN iteration just starting up and tear-
ing down Hadoop jobs. Also in Hadoop, each intermediate
result that cannot be pipelined must be written to disk, and
it causes a significant amount of I/O. A faster database could
likely lower this overhead significantly.

One may wonder: how would TensorFlow have worked
were GPUs were used instead? Using a similar dollars-
per-hour budget, we ran TensorFlow on several AWS GPU
clusters (using a combination of p3.2xlarge and r5.4xlarge
machines). At the same cost-per-hour as the five-worker
CPU cluster, TensorFlow ran an iteration in 24 s for 10,000

on 5, 10, and 20 Amazon EC2 r5d.2xlarge machines, and
tested the neural network with different number of neurons
in the hidden layer.

Experiment results and discussion. The results of the first
set of experiments are shown in Figures 2–4, and the results
of the FFNN experiments are shown in Figure 5.

In the first set of experiments, we see that vector- and
block-based SimSQL clearly dominate the tuple-based
implementation for each of the three computations. The
results show that it is simply not possible to move enough
tuples through a database system to fulfill large-scale linear
algebra operations using only tuples.

For linear regression and Gram matrix, we see that the
vector-based computation was faster than block-based for
10- and 100-dimensional computations. This is because
our experiments counted the time of grouping vectors into
blocked matrices. This additional computation was not
worthwhile for less computationally expensive problems.
But for the 1000-dimensional computations, additional
time savings could be realized via blocking.

For the higher-dimensional problems, there was no clear
winner among block-based SystemML and SimSQL (the for-
mer being a tiny bit faster for linear regression and Gram

Gram Matrix Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:48 02:25 Fail
Vector SimSQL 00:18 00:23 02:48
Block SimSQL 00:39 00:41 01:13

SystemML 00:01 00:02 01:03
Spark mllib 00:15 00:44 15:00

SciDB 00:02 00:08 03:46

Figure 2. Gram matrix results. Format is MM:SS.

Linear Regression
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 02:11 03:48 Fail
Vector SimSQL 00:28 00:33 02:55
Block SimSQL 00:41 00:44 01:06

SystemML 00:01 00:02 01:04
Spark mllib 00:22 00:47 15:10

SciDB 00:06 00:16 04:41

Figure 3. Linear regression results. Format is MM:SS.

Distance Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL Fail Fail Fail
Vector SimSQL 03:19 03:56 11:31
Block SimSQL 01:09 01:09 01:21

SystemML 01:01 01:05 03:39
Spark mllib 01:43 02:00 05:51

SciDB 19:20 19:34 23:13

Figure 4. Distance computation results. Format is MM:SS.

FFNN
Hidden Layer Neurons RDBMS TensorFlow

Cluster with 5 workers
10000 05:39 01:36
20000 05:46 03:38
40000 08:30 09:02
80000 24:52 Fail

160000 Fail Fail
Cluster with 10 workers

10000 04:53 00:54
20000 05:32 02:00
40000 07:41 04:59
80000 17:46 Fail

160000 44:21 Fail
Cluster with 20 workers

10000 04:08 00:32
20000 05:40 01:12
40000 06:13 02:56
80000 12:55 Fail

160000 25:00 Fail

Figure 5. Average iteration time for FFNN learning, using various
CPU cluster and hidden layer sizes.

AUGUST 2020 | VOL. 63 | NO. 8 | COMMUNICATIONS OF THE ACM 101

neurons, and failed at all other sizes. At the same cost as
the 10-worker cluster, it ran an iteration in 15 s for 10,000
neurons, again failing at all other sizes. And at the same
cost as the 20-worker cluster, the time was 12 s, failing for
all other sizes. The reason for TensorFlow’s failure to run at
more than 10,000 neurons is the limited memory available
on a modern GPU. Again, TensorFlow does not page data
on and off of a GPU, and so it cannot easily be used to learn
larger models.

6. RELATED WORK
There has been recent interest in the construction of special
purpose data management systems for scalable linear alge-
bra. SystemML12 was evaluated in this paper. Another good
example is the Cumulon system14, which has the notable
capability of optimizing its own hardware settings in the
cloud. MadLINQ18, built on top of Microsoft’s LINQ frame-
work, can also be seen as an example of this. Other work
aims at scaling statistical/numerical programming lan-
guages such as R. Ricardo11 aims to support R programming
on top of Hadoop. Riot21 attempts to plug an I/O efficient
backend into R to bring scalability.

The idea of moving past relations onto arrays as a data-
base data model, particularly for scientific and/or numeri-
cal applications, has been around for a long time. One of
the most notable efforts is Baumann and his colleague’s
work on Rasdaman.5 In this paper, we have compared with
SciDB8, an array database for which linear algebra is a pri-
mary use case.

There is some support for linear algebra in modern,
commercial relational database systems (such as Oracle
Database). But that support is not well-integrated into the
declarative (SELECT-FROM-WHERE) interface of SQL, and is
generally challenging to use. For example, Oracle provides
the UTL_NLA2 package to support BLAS and LAPACK opera-
tions. To multiply two matrices using this package, and
assuming two input matrices m1 and m2 declared as type
utl_nla_array_dbl (and an output matrix res defined
similarly), a programmer would write:

utl_nla.blas_gemm(
transa => ’N’, transb => ’N’, m => 3, n => 3,
k => 3, alpha => 1.0, a => m1, lda => 3,
b => m2, ldb => 2, beta => 0.0, c => res,
ldc => 3, pack => R);

This code specifies details about the input matrices, as
well as details about the invocation of the BLAS library.

7. CONCLUSION
We conclude the paper by asking the question: have we
affirmed the hypothesis at the core of the paper, that a rela-
tional engine can be used with little modification to sup-
port efficient linear algebra processing? We feel that our
experimental evaluation did in fact confirm the hypoth-
esis. SimSQL was not exactly fast, but it was competitive
compared to all of the evaluated systems, at least for larger
and more complicated problems, even compared with
TensorFlow. And given the baked-in efficiencies associ-
ated with SimSQL—it is, after all, a Hadoop-based system,

written mostly in Java—the fact that SimSQL did reasonably
well argues that a high-performance RDBMS could be a very
effective engine for distributed linear algebra processing.

Acknowledgments
Material in this paper has been supported by the NSF
under grant nos. 1355998 and 1409543 and by the DARPA
MUSE program.

References
 1. Apache spark mllib: http://spark.

apache.org/docs/latest/mllib-data-
types.html.

 2. Oracle corporation: https://docs.oracle.
com/cd/B1930–6_01/index.htm.

 3. Abadi, M., Barham, P., Chen, J.,
Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M.,
et al. Tensorflow: A system for
large-scale machine learning. In
Proceedings of the 12th {USENIX}
Symposium on Operating Systems
Design and Implementation ({OSDI}
16, 2016), 265–283.

 4. Armbrust, M., Xin, R.S., Lian, C.,
Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A.,
et al. Spark sql: Relational data
processing in spark. In SIGMOD
(2015), ACM, 1383–1394.

 5. Baumann, P., Dehmel, A., Furtado, P.,
Ritsch, R., Widmann, N. The
multidimensional database system
rasdaman. In SIGMOD Record
(Volume 27, 1998), ACM, 575–577.

 6. Blackford, L.S., Choi, J., Cleary, A.,
D’Azevedo, E., Demmel, J., Dhillon, I.,
Dongarra, J., Hammarling, S., Henry, G.,
Petitet, A., et al. ScaLAPACK Users’
Guide, Volume 4. SIAM, 1997.

 7. Boehm, M., Burdick, D.R.,
Evfimievski, A.V., Reinwald, B.,
Reiss, F.R., Sen, P., Tatikonda, S.,
Tian, Y. Systemml’s optimizer: Plan
generation for large-scale machine
learning programs. IEEE Data Eng.
Bull. 3, 37 (2014), 52–62.

 8. Brown, P.G. Overview of SciDB: Large
scale array storage, processing and
analysis. In SIGMOD, 2010, 963–968.

 9. Cai, Z., Vagena, Z., Perez, L.L.,
Arumugam, S., Haas, P.J.,
Jermaine, C. Simulation of database-
valued Markov chains using SimSQL.
In SIGMOD, 2013, 637–648.

 10. Chaudhuri, S. An overview of query
optimization in relational systems. In
PODS (1998), ACM, 34–43.

 11. Das, S., Sismanis, Y., Beyer, K.S.,
Gemulla, R., Haas, P.J., McPherson, J.

Ricardo: integrating R and Hadoop.
In SIGMOD, 2010, 987–998.

 12. Ghoting, A., Krishnamurthy, R.,
Pednault, E., Reinwald, B.,
Sindhwani, V., Tatikonda, S., Tian, Y.,
Vaithyanathan, S. SystemML:
Declarative machine learning
on mapreduce. In ICDE, 2011,
231–242.

 13. Goyal, P., Dollár, P., Girshick, R.B.,
Noordhuis, P., Wesolowski, L.,
Kyrola, A., Tulloch, A., Jia, Y.,
He, K. Accurate, large minibatch sgd:
Training imagenet in 1 hour. CoRR,
2017, abs/1706.02677.

 14. Huang, B., Babu, S., Yang, J. Cumulon:
Optimizing statistical data analysis in
the cloud. In SIGMOD, 2013, 1–12.

 15. Jankov, D., Luo, S., Yuan, B.,
Cai, Z., Zou, J., Jermaine, C., Gao, Z.J.
Declarative recursive computation
on an rdbms, or, why you should use
a database for distributed machine
learning. PVLDB, 2019, 12.

 16. Lebanon, G. Metric learning for text
documents. IEEE PAMI 4, 28 (2006),
497–508

 17. Libkin, L., Machlin, R., Wong, L.
A query language for multidimensional
arrays: Design, implementation, and
optimization techniques. In SIGMOD
(1996), 228–239.

 18. Qian, Z., Chen, X., Kang, N., Chen, M.,
Yu, Y., Moscibroda, T., Zhang, Z.
Madlinq: large-scale distributed
matrix computation for the cloud. In
EuroSys (2012), ACM, 197–210

 19. Thusoo, A., Sarma, J.S., Jain, N.,
Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R. Hive: A
warehousing solution over a map-
reduce framework. VLDB 2, 2 (2009),
1626–1629.

 20. Zaharia, M., Chowdhury, M.,
Franklin M.J., Shenker, S., Stoica, I.
Spark: Cluster computing with
working sets. In USENIX HotCloud,
2010, 1–10.

 21. Zhang, Y., Zhang, W., Yang, J.
I/o-efficient statistical computing
with riot. In ICDE, 2010, 1157–1160.

Shangyu Luo, Zekai J. Gao, Luis L.
Perez, Dimitrije Jankov, and
Christopher Jermaine (sl45@rice.edu,
{jacobgao, lperezp, dimitrijejankov}@
gmail.com, cmj4@rice.edu)
Rice University, Houston, TX, USA.

Michael Gubanov {gubanov@cs.fsu.edu}
Florida State University, Tallahassee,
FL, USA.

© 2020 ACM 0001-0782/20/8 $15.00

