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Abstract
As data analytics has become an important application for 
modern data management systems, a new category of data 
management system has appeared recently: the scalable 
linear algebra system. We argue that a parallel or distrib-
uted database system is actually an excellent platform upon 
which to build such functionality. Most relational systems 
already have support for cost-based optimization—which is 
vital to scaling linear algebra computations—and it is well 
known how to make relational systems scalable.

We show that by making just a few changes to a parallel/
distributed relational database system, such a system can 
become a competitive platform for scalable linear algebra. 
Taken together, our results should at least raise the possibil-
ity that brand new systems designed from the ground up to 
support scalable linear algebra are not absolutely necessary, 
and that such systems could instead be built on top of exist-
ing relational technology.

1. INTRODUCTION
Data analytics, such as machine learning and large-scale sta-
tistical processing, is an important application domain, and 
such computations often require linear algebra. As such, a 
lot of recent efforts have been targeted at building distrib-
uted linear algebra systems, with the goal of supporting 
large-scale data analytics. Unlike classical efforts in high-
performance computing such as ScaLAPACK6, such systems 
may include support for storage/retrieval of data to/from 
disk, buffering/caching of data, and automatic logical/physi-
cal optimizations of computations (automatic rewriting of 
queries, pipelining, etc.). Such systems also typically offer 
some form of recovery, as well as a domain-specific language.

One example of such a system is SystemML, developed 
at IBM.12 Given deep learning’s reliance on arrays and array-
based operations such as matrix multiply, systems facili-
tating distributed deep learning, such as TensorFlow,3 can 
also be included among such efforts. In the database area, 
there has long been of interest in building array database 
systems.17, 5 A motivating use case for these systems is dis-
tributed linear algebra. Moreover, there have also been sig-
nificant efforts targeted at using dataflow systems such as 
Apache Spark20 to build distributed linear algebra dataflow 
APIs (such as Spark’s mllib.linalg1).

Is a new type of system actually necessary? The hypothe-
sis underlying this paper is that building a new system from 
scratch for distributed linear algebra may not be necessary. 
Instead, we believe that with just a few changes, a classical, 
parallel relational database is actually an excellent platform 
for building a scalable linear algebra system. In practice, 
there is a close correspondence between distributed linear 
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algebra and distributed relational algebra, the foundation 
of modern database systems, meaning that it is easy to use a 
database for scalable linear algebra. Relational database sys-
tems are highly performant, reaping the benefits of decades 
of research and engineering efforts targeted at building effi-
cient systems. Further, relational systems already have soft-
ware components such as a cost-based query optimizer to 
aid in performing efficient computations. In fact, much of 
the work that goes into developing a scalable linear algebra 
system from the ground up7 requires implementing func-
tionality that looks a lot like a database query optimizer.10

Given that much of the world’s data currently sits in rela-
tional databases, and that dataflow systems increasingly 
provide at least some support for relational processing4, 19, 
building linear algebra facility into relational systems would 
mean that much of the world’s data would be sitting in sys-
tems capable of performing scalable linear algebra. This 
would have several obvious benefits:

1. It would eliminate the “extract-transform-reload night-
mare”, particularly if the goal is performing analytics 
on data already stored in a relational system. It is diffi-
cult and expensive (in terms of computing/network 
costs and engineering dollars) to remove data from one 
system and put it in another, and if a database came off-
the-shelf with the necessary functionality, there would 
be no reason to undertake such an often arduous task.

2. It would obviate the need for practitioners to adopt yet 
another type of data processing system in order to per-
form mathematical computations.

3. The design and implementation of high-performance 
distributed and parallel relational systems is well- 
understood. If it is possible to adapt such a system to the 
task of scalable linear algebra, most or all of the science 
performed over decades, aimed at determining how to 
build a distributed relational system, is directly applicable.

Along those lines, in this paper, we ask the question:

can we make a very small set of changes to the relational model 
and an RDBMS software to render them suitable for in-database 
linear algebra?

The approach we examine is simple: we consider adding new 
VECTOR, MATRIX, and LABELED_SCALAR data types to rela-
tional database systems. Technically, this seems to be a rather 
minor change. After all, array has been available as a data type 
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in most modern DBMSs—arrays can clearly be used to encode 
vectors and matrices—and some database systems (such as 
Oracle Database) offer a form of integration between arrays and 
linear algebra libraries such as BLAS and LAPACK. However, 
these previous ad-hoc approaches do not offer complete inte-
gration with the database system. The query optimizer, for 
example, does not understand the semantics of the linear alge-
bra, and this results in losing opportunities for optimization.

In this paper, we evaluate our ideas, and we believe that 
our results call into question the need to build yet another 
special-purpose data management system for linear-algebra- 
based analytics.

2. LA ON TOP OF RA
In this section of the paper, we discuss why a relational  
database system might make an excellent platform for high-
performance, distributed linear algebra. We then discuss 
the challenges in using a database system for linear algebra, 
as well as our basic approach.

2.1. Linear and relational algebra
Development of distributed algorithms for linear algebra has 
been an active area of scientific investigation for decades. 
Figure 1(a) shows the example of performing a distributed 
multiplication of two large, dense matrices, O ← L × R.

For efficiency and storage considerations, matrices in 
a distributed system are typically “blocked” or “chunked”; 
that is, they are divided into smaller matrices, which can then 
be moved around in bulk to specific processors where high-
performance local computations are performed. Imagine 
that the six blocks making up each of the two input matrices 
L and R are distributed among three nodes as shown at the 
left of Figure 1(b). The blocks from L are hash-partitioned 
randomly, whereas the blocks from R are round-robin- 
partitioned, based upon each block’s row identifier.

As a first step, we would shuffle the blocks from L so that 
all of the blocks from L, column i, are co-located with all  
of the blocks from R, row i. Then, at each node, a local join 

(in this case, a cross product) is performed to iterate through 
all (Lj.i, Ri.k) pairs that can be formed at the node. For each 
pair, a matrix multiply is performed, so that Ii.j.k ← Lj.i×Ri.k. 
Finally, all of the Ii.j.k blocks are again shuffled so that all 
Ii.j.k blocks are co-located based upon their ( j, k) values—
these blocks are then summed, so that the output block is 
computed as Oj.k ← ∑iIi.j.k.

The key observation is that this is really just a relational 
algebra computation over the blocks making up L and R. The 
first two steps of the computation are a distributed join that 
computes all (Lj.i, Ri.k) pairs, followed by a projection that 
performs the matrix multiply. The next two steps—the shuf-
fle and summation—are nothing more than a distributed 
grouping with aggregation.

The matrix multiplication example shows that distrib-
uted linear algebra computations are often nothing more 
than distributed relational algebra computations. This fact 
underlies our assertion that a relational database system 
makes an excellent platform for distributed linear algebra. 
Database researchers have spent decades studying efficient 
algorithms for distributed joins and aggregations, and many 
relational systems are mature and highly performant; there 
is no need to reinvent the wheel.

A further benefit of using a distributed database system 
as a linear algebra engine is that decades of work in query 
optimization are directly applicable. In our example, we 
decided to shuffle L because R was already partitioned 
on the join key. Had L been pre-partitioned and not R, it 
would have been better to shuffle R. This is exactly the sort 
of decision that a modern query optimizer makes with 
total transparency. Using a database as the basis for a lin-
ear algebra engine gives us the benefit of query optimiza-
tion for free.

2.2. The challenges
However, there are two main concerns associated with 
implementing linear algebra directly on top of an exist-
ing relational system, without modification. First is the 
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complexity of writing linear algebra computations on top of 
SQL. Consider a data set consisting of the vectors {x1, x2, …, 
xn}, and imagine that our goal is to compute the distance

for a Riemannian metric16 encoded by the matrix A. We 
might wish to compute this distance between a particular 
data point xi and every other point x′ in the database. This 
would be required in a kNN-based classification in the met-
ric space defined by A.

This distance computation can be implemented in SQL 
as follows. Assume the set of vectors is encoded as a table:

data (pointID, dimID, value)

with the matrix A encoded as another table:

matrixA (rowID, colID, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, x1.value - x2.value
FROM data AS x1, data AS x2
WHERE x1.pointID = i AND x1.dimID = x2.dimID

SELECT x.pointID, SUM (firstPart.value * x.value)
FROM (SELECT x.pointID AS pointID, a.colID AS 

colID, SUM (a.value * x.value) AS value
  FROM xDiff AS x, matrixA AS a
  WHERE x.dimID = a.rowID
  GROUP BY x.pointID, a.colID)

  AS firstPart, xDiff AS x
WHERE firstPart.colID = x.dimID

 AND firstPart.pointID = x.pointID
GROUP BY x.pointID

Although it is clearly possible to write such a code, it is not 
necessarily a good idea. The first obvious problem is that 
this is a very intricate specification, requiring a nested  
subquery and a view—without the view it is even more  
intricate—and it bears little resemblance to the original, 
simple mathematics.

The second problem is perhaps less obvious from look-
ing at the code, but just as severe: performance. This code 
is likely to be inefficient to execute, requiring three or four 
joins and two groupings. Even more concerning in practice 
is the fact that if the data is dense and the number of data 
dimensions is large (that is, there are a lot of dimID values for 
each pointID), then the execution of this query will move a 
huge number of small tuples through the system, because a 
million, thousand-dimensional vectors are encoded as a bil-
lion tuples. In the classical, iterator-based execution model, 
there is a fixed cost incurred per tuple, which will translate to 
a very high execution cost. Vector-based processing can alle-
viate this somewhat, but the fact remains that satisfactory 
performance is unlikely. This fixed-cost-per-tuple problem 
was often cited as the impetus for designing new systems, 
specifically for vector- and matrix-based processing, or for 
processing of more general-purpose arrays.

2.3. The solution
As a solution, we propose a very small set of changes to a 
typical relational database system that includes adding new 
LABELED_SCALAR, VECTOR, and MATRIX data types to the 
relational model. Because these nonnormalized data types 
cause the contents of vectors and matrices to be manipu-
lated as a single unit during query processing, the simple act 
of adding these new types brings significant performance 
improvements.

Further, we propose a very small number of SQL lan-
guage extensions for manipulating these data types and 
moving between them. This alleviates the complicated-
code problem. In our Riemannian metric example, the two 
input tables data and matrixA become data (pointID, 
val) and matrixA (val), respectively, where data.val 
is a vector, and matrixA.val is a matrix. The SQL code 
to compute the pairwise distances becomes dramatically 
simpler:

SELECT x2.pointID,
 inner_product (
  matrix_vector_multiply (
   a.val, x1.val - x2.val),
   x1.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID = i

In the next full section of the paper, we describe our pro-
posed extensions in detail.

3. OVERVIEW OF EXTENSIONS
3.1. New types
We propose adding VECTOR, MATRIX, and LABELED_
SCALAR column types to SQL and the relational model, as 
well as implementing a useful set of operations over those 
types (diag to extract the diagonal of a matrix, matrix_
vector_multiply to multiply a matrix and a vector, 
matrix_matrix_multiply to multiply two matrices, 
etc.). Overall, 22 various built-in functions over LABELED_
SCALAR, VECTOR, and MATRIX types are present in our 
implementation. Each element of a VECTOR or a MATRIX is 
a DOUBLE.

In this particular subsection, we focus on introducing the 
VECTOR and MATRIX types; LABELED_SCALAR will be con-
sidered in detail in a subsequent subsection.

For a simple example of the use of VECTOR and MATRIX 
types, consider the following table:

CREATE TABLE m (mat MATRIX[10][10],
   vec VECTOR[100]);

This code specifies a relational table, where each tuple  
in the table has two attributes, mat and vec, of types 
MATRIX and VECTOR, respectively. In our language 
extensions, VECTORs and MATRIXes (as above) can 
have specified sizes, in which case operations such as 
matrix_vector_multiply are automatically type-
checked for size mismatches. For example, the follow-
ing query:
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returns a database table which stores the Hadamard prod-
uct of each matrix in m with itself.

As the standard arithmetic operations are all overloaded 
to work with MATRIX and VECTOR types, it means that the 
standard SQL aggregate operations all work as expected 
automatically. The SUM aggregate over VECTOR type attri-
bute, for example, performs a + (entry-by-entry addition) 
over each VECTOR in a relation. This can be very convenient 
for implementing mathematical computations. For exam-
ple, imagine that we have a matrix stored as a relational table 
of vectors, and we wish to perform a standard Gram matrix 
computation (if the matrix X is stored as a set of columns  
X = {x1, x2, …, xn}, then the Gram matrix of X is ). This 
computation can be implemented using our extensions as:

CREATE TABLE v (vec VECTOR[]);

SELECT SUM (outer_product (vec, vec) )
FROM v

Arithmetic between a scalar value and a MATRIX or 
VECTOR type performs the arithmetic operation between 
the scalar and every entry in the MATRIX or VECTOR. In this 
way, it becomes very easy to specify linear algebra compu-
tations of significant complexity using just a few lines of 
code. For example, consider the problem of learning a linear 
regression model. Given a matrix X = {x1, x2, …, xn} and a set 
of outcomes {y1, y2,  …, yn}, the goal is to estimate a vector  
where for each i, . In practice,  is typically computed 
so as to minimize the squared loss . In this case, 
the formula for  is given as:

This can be coded as follows. If we have:

CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_i DOUBLE);

then the SQL code to compute  is:

SELECT matrix_vector_multiply (
 matrix_inverse (

  SUM (outer_product (X.x_i, X.x_i) ) ),
  SUM (X.x_i * y_i) )

FROM X, y
WHERE X.i = y.i

Note the multiplication X.x_i * y_i between the vector 
X.x_i and the scalar y_i, which multiplies y_i by each 
entry in X.x_i.

3.3. Moving between types
By introducing MATRIX and VECTOR types, we then have 
new, de-normalized alternatives for storing data. For exam-
ple, a matrix can be stored as a traditional relation:

mat (row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set 
of column vectors using

SELECT matrix_vector_multiply (m.mat, m.vec)
   AS res

FROM m

will not compile because the number of columns in m.mat 
does not match the number of entries in m.vec. However,  
if the original table declaration had been:

CREATE TABLE m (mat MATRIX[10][10],
   vec VECTOR[10]);

then the aforementioned SQL query would compile and exe-
cute, and the output would be a database table with a single 
attribute (called res) of type VECTOR[10].

Note that in our extensions, there is no distinction 
between row and column vectors; whether or not a vector is 
a row or a column vector is up to the interpretation of each 
individual operation. matrix_vector_multiply inter-
prets a vector as a column vector, for example. To perform 
a matrix-vector multiplication treating the vector as a row 
vector, a programmer would first transform the vector into a  
one-row matrix (this transformation is described in the subse-
quent subsection), and then call matrix_matrix_multiply. 
Or, a programmer could transform the matrix first, and then 
apply the matrix_vector_multiply function.

It is possible to create MATRIX and VECTOR types where 
the sizes are unspecified:

CREATE TABLE m (mat MATRIX[10][10],
  vec VECTOR[]);

In this case, the aforementioned matrix_vector_ 
multiply SQL query would compile, but there could  
possibly be a runtime error if one or more of the tuples in m 
contained a vec attribute that did not have 10 entries.

It is possible to have a MATRIX declaration where  
only one of the dimensionalities is given; for example, 
MATRIX[10][]. However, it is generally a good idea for a 
programmer to specify the sizes in the table declaration. 
If a dimensionality is given, then the system ensures that 
there can be no runtime failures due to size mismatches. 
During the loading time, data is checked to ensure the cor-
rect dimensionality, and queries are type-checked to ensure 
that proper dimensionalities are used and satisfied. Further, 
if dimensions are known, it can help the optimization pro-
cess; a plan that uses a linear algebra operation that greatly 
reduces the amount of data early on (a multiplication of two 
“skinny” matrices, for example, which results in a small out-
put matrix) may be chosen as being optimal.

3.2. Built-in operations
In addition to a long list of standard linear algebra opera-
tions, the standard arithmetic operations +, −, * and / 
(element-wise) are also defined over MATRIX and VECTOR 
types. For example,

CREATE TABLE m (mat MATRIX[100][10]);

SELECT mat * mat
FROM m
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DOUBLE y_i. Then the VECTORIZE operation aggre-
gates the resulting values into a vector, adding each 
LABELED_SCALAR value to the vector at the position 
indicated by the label. Any “holes” (or entries in the vec-
tor for which no LABELED_SCALAR were found) in the 
resulting vector are set to zero.

As stated above, VECTOR attributes implicitly have labels, 
but they can be set explicitly, and those labels can be used 
to construct matrices. For example, imagine that we want to 
create a single tuple as a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)

We can do this with the following SQL code:

CREATE VIEW vecs (vec, row) AS
SELECT VECTORIZE (label_scalar (val, col) )

AS vec, row
FROM mat
GROUP BY row

followed by:

SELECT ROWMATRIX (label_vector (vec, row) )
FROM vecs

The first bit of code creates one vector for each row and 
the second bit of code aggregates those vectors into a matrix, 
using each vector as a row. It would have been possible to 
create a column matrix by first using a GROUP BY col and 
then SELECT COLMATRIX.

So far, we have discussed how to de-normalize relations 
into vectors and matrices. It is equally easy to normalize 
MATRIX and VECTOR types. Assuming the existence of a 
table label (id) which simply lists the values 1, 2, 3, etc., 
one can move from the vectorized representation (found 
in the vecs view defined above) to a purely-relational rep-
resentation using a join of the form:

SELECT label.id, get_scalar (vecs.vec, label.id)
FROM vecs, label

Code to normalize a matrix is written similarly.

4. IMPLEMENTATION
4.1. Underlying database
We have implemented all of these ideas on top of 
the SimSQL distributed database system.9 SimSQL 
is a prototype database system designed to perform 
scalable numerical and statistical computations over 
large data sets, written mostly in Java, with a C/C++ for-
eign function interface.

In this section, we describe some details regarding our 
implementation. In building linear algebra capabilities into 
SimSQL, our mantra was “incremental, not revolutionary”. 
Our goal was to see whether, with a small set of changes, a 
relational database system could be a reasonable platform 
for distributed linear algebra.

4.2. Distributed matrices?
One of the very first questions that we had to ask ourselves 
when architecting the changes to SimSQL to support vectors 

row_mat (row INTEGER, vec_value VECTOR[])

or

col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple 
having the whole matrix:

mat (value MATRIX [][])

It is of fundamental importance to be able to move 
around between these various representations, for several 
reasons. Most importantly, each representation has its own 
performance characteristics and ease-of-use for various 
tasks; depending upon a particular computation, one may 
be preferred over another.

Reconsider the linear regression example. Had we stored 
the data as:

CREATE TABLE X (mat MATRIX [][]);
CREATE TABLE y (vec VECTOR []);

then the SQL code to compute  would have been:

SELECT matrix_vector_multiply (
 matrix_inverse (
  matrix_matrix_multiply(trans_matrix(mat),mat) ),
 matrix_vector_multiply (
  trans_matrix (mat), vec) )

FROM X, y

Arguably, this is a more straightforward translation of 
the mathematics compared to the code that stores X as a 
set of vectors. However, it may not perform as well because 
it may be more difficult to parallelize on a shared-nothing 
cluster of machines. In comparison to the vector-based 
implementation, the matrix multiply XT X is implicit in the 
relational algebra.

As different representations are going to have their own 
merits, it may be necessary to construct (or deconstruct) 
MATRIX and VECTOR types using SQL. To facilitate this, 
we introduce the notion of a label. In our extension, each 
VECTOR attribute implicitly or explicitly has an integer label 
value attached to it (if the label is never explicitly set for a 
particular vector, then its value is −1 by default). In addition, 
we introduce a new type called LABELED_SCALAR, which 
is essentially a DOUBLE with a label. Using those labels 
along with three special aggregate functions (ROWMATRIX, 
COLMATRIX, and VECTORIZE), it is possible to write SQL 
code that creates MATRIX types and VECTOR types, respec-
tively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_i DOUBLE);

Imagine that we want to create a table with a single vector 
tuple from the table y. To do this, we simply write:

SELECT VECTORIZE (label_scalar (y_i, i) )
FROM y

Here, the label_scalar function creates an attribute 
of type LABELED_SCALAR, attaching the label i to the 
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Matrices, on the other hand, are stored as sparse lists of 
vectors, using a run-length encoding scheme (missing vec-
tors are treated as consisting entirely of zeros). As described 
previously, matrices can be stored as lists of column vectors 
or lists of row vectors; the exact storage format is specified 
during matrix construction (via either the ROWMATRIX or 
COLMATRIX aggregate function).

4.4. Algebraic operations
SimSQL is written mostly in Java, which presented some-
thing of a problem for us when implementing linear algebra 
operations: some readers of this paper will no doubt dis-
agree, but after much examination, we felt that Java linear 
algebra packages still lag behind their C/FORTRAN contem-
poraries in terms of raw performance. Although a high- 
performance C implementation is (in theory) available to  
a Java system via JNI, passing through the Java/C barrier 
typically requires a relatively expensive data copy.

The solution that we implemented is, in the end, a com-
promise. We decided not to use any Java linear algebra 
package. The majority of SimSQL’s built-in linear algebra 
operations (indeed, the majority of any linear algebra sys-
tem’s built-in operations), are simple and easy to implement 
efficiently: extracting/setting the diagonal of a matrix, com-
puting the outer product of two vectors (which is of linear 
cost in the size of the output matrix), scalar/matrix and  
scalar/vector multiplication, etc. All such “simple” operations 
are implemented in Java, directly on top of our in-memory 
representation.

There is, however, another set of operations (matrix 
inverse, matrix-matrix multiply, etc.) that are much more 
challenging to implement in terms of achieving good perfor-
mance and dealing with numerical instabilities. For those 
operations, we use SimSQL’s foreign function interface to 
transform vector- and matrix-valued inputs into C++ objects, 
where we then use BLAS implementations.

4.5. Aggregation
The extensions proposed in this paper require two new types 
of aggregation. First, we must be able to perform standard 
aggregate computations (SUM, AVERAGE, STD_DEV, etc.) 
over vectors and matrices. As, in SimSQL, these standard 
aggregate computations are all written in terms of basic 
arithmetic operations (+, −, *, etc.), the standard aggregate 
computations over vectors and matrices all happen “for 
free” without any additional modifications.

Second, our extensions need a few new aggregate func-
tions with special semantics: VECTORIZE, ROWMATRIX, 
and COLMATRIX. The first constructs a vector out of a set 
of LABELED_SCALAR objects. The latter two construct a 
matrix out of a set of vectors. All are implemented within the 
system via hashing. For example, in the case of VECTORIZE, 
all of the LABELED_SCALAR objects used to build the vec-
tor are collected in a hash table (in the case of a GROUP BY 
clause, there would be many such hash tables). As aggrega-
tion is performed in a distributed manner, hash tables from 
different machines that are being used to create the same 
vector will need to be merged into a single hash table on a 
single machine. Merging may also need to happen if there 

and matrices was: should we allow individual matrices 
stored in an RDBMS to be large enough to exceed the size of 
RAM available on one machine?

After a lot of debate, we decided that, in keeping with 
a traditional RDBMS design, SimSQL would enforce a 
requirement that all vectors and matrices should be small 
enough to fit into the RAM of an individual machine, 
and that individual vectors and matrices would not be 
distributed across multiple machines. As our mantra 
was “incremental, not revolutionary,” we did not want to 
replace database tables with new linear algebra types—
which would effectively give us an array database system. 
Thus, vectors/matrices are stored as attributes in tuples. 
And as distributing individual tuples or attributes across 
machines (or having individual tuples larger than the RAM 
available on a machine) is generally not supported by mod-
ern database systems, it seemed reasonable not to support 
this in our system.

Of course, one might ask, what if one has a matrix that 
is too large to fit into the RAM of an individual machine? This 
might be a reasonably common use case, and it would be 
desirable to support very large matrices. Fortunately, it 
turns out that one can still handle efficient operations over 
very large matrices using an RDBMS with our extensions. 
For example, a large, dense matrix with 100,000 rows and 
100,000 columns that require nearly a terabyte to store in all 
can be stored as one hundred tuples in the table:

bigMatrix (tileRow INTEGER, tileCol INTEGER,
   mat MATRIX[10000][10000])

Efficient, distributed matrix operations are then easily pos-
sible via SQL. For example, to multiply bigMatrix with 
anotherLargeMat:

anotherLargeMat (tileRow INTEGER,
tileCol INTEGER, mat MATRIX[10000][10000])

We would use:

SELECT lhs.tileRow, rhs.tileCol,
SUM (matrix_matrix_multiply (lhs.mat, rhs.mat) )

FROM bigMatrix AS lhs, anotherLargeMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

The resulting, very efficient computation is identical to  
what one would expect from a distributed matrix engine.

SELECT *
FROM matrix_matrix_multiply (bigMatrix, anotherLargeMat)

4.3. Storage
Given such considerations, storage for vectors and matri-
ces is quite simple. Vectors are stored in dense fashion, as 
lists of double-precision values, along with an integer label 
(because, as described in the previous section, all vectors are 
labeled with a row or a column number so that they can be 
used to construct matrices). This may sometimes represent 
a waste if vectors are indeed sparse, but if necessary, vectors 
can easily be compressed before being written to secondary 
storage.
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covariance matrices. If we use a matrix X to store the 
input vectors, then the Gram matrix G can be calcu-
lated as G = XT X.

(2)  Least squares linear regression. Given a paired data 
set {yi, xi}, i = 1, …, n, we wish to model each yi as a 
linear combination of the values in xi. Let , 
where β is the vector of regression coefficients. The 
most common estimator for β is the least squares 
estimator: .

(3)  Distance computation. We first compute the dis-
tance between each data point pair xi and 

. Then, for each data point xi, we 
compute the minimum  value over all x′ ≠ xi. 
Lastly, we select the data points which have the max 
value among those minimums.

In our second set of experiments, we use a Wikipedia dump 
of 4.86 million documents to learn how to predict the year 
of the last edit to a Wikipedia article. There are 17 possible 
labels in total. We pre-process the Wikipedia dump, repre-
senting each document as a 60,000-dimensional feature 
vector, where each feature corresponds to the number of 
times a particular unigram or bigram appears in the docu-
ment. This is input into a two-layer feed-forward neural 
network (FFNN). In most of our experiments, we use 10,000 
as the batch size, as recent results indicate that a relatively 
large batch of this size is a reasonable choice for large-scale 
learning.13

Implementation details. A SimSQL programmer uses que-
ries and built-in functions to implement computations. For 
the first set of experiments for SimSQL, we implemented 
each model using three different SQL codes. First, we wrote 
a pure-tuple-based code (as on an existing, standard SQL-
based platform). Second, we wrote an SQL code where each 
data point is stored as an individual vector. Third, we wrote an 
SQL code where data points are grouped together in blocks, 
and are stored as matrices so that they can be manipulated as  
a group. For FFNN learning, we used only blocked matrices.

In SystemML, data is stored and processed as blocks, which 
are square matrices. All code is written using SystemML’s 
Python-like programming language. In Spark mllib.linalg, 
we carefully tuned our implementation to answer questions 
such as: should the input data be stored/processed as vec-
tors, or as matrices? And, if a matrix is used, should it be a 
local matrix, or a distributed one? For example, for the Gram 
matrix computation and linear regression, the vector-based 
implementation is the fastest. Data in SciDB is partitioned 
as chunks. We use 1000 as the chunk size for all arrays.

Experiment setup. We ran the first set of experiments on 
10 Amazon EC2 r5d.2xlarge machines, each having eight 
CPU cores, 64 GB of RAM, and a 300GB SSD drive. For Gram 
matrix computation and linear regression, the number of 
data points per machine was 105. For the distance compu-
tation, the number of data points per machine was 104. All 
data sets were dense, and all the data was synthetic—as we 
are only interested in running time; there is likely no prac-
tical difference between synthetic and real data. For each 
computational task, we considered three data dimension-
alities: 10, 100, and 1000. We ran the FFNN experiments  

are enough groups during aggregation so that memory is 
exhausted; in this case, a partially-complete hash table may 
need to be flushed to disk.

Once all of the LABELED_SCALAR objects for a vector 
have been collected into a single hash table, the objects are 
sorted based on the position labels, and are then converted 
into a vector. Any missing entries are treated as zero, and 
the length of the resulting vector is equal to the largest label 
used to construct the vector.

Matrices are constructed similarly, with one change 
being that the objects hashed to construct the matrix are 
VECTOR objects, rather than LABELED_SCALAR objects. 
Note that by definition, all VECTOR objects are labeled, and 
it is those labels that are used to perform the aggregation.

5. EXPERIMENTS
In this section, we experimentally test whether these exten-
sions can, in fact, result in a performant distributed linear 
algebra system. In the first set of experiments, we compare 
the efficiency of our SimSQL linear algebra implementa-
tion with several alternative platforms, on a set of relatively 
straightforward compilations. In the second set of experi-
ments, we evaluate the utility of our extensions for imple-
menting very large-scale deep learning.1

We stress that this is not a “which system is faster?” com-
parison. SimSQL is implemented in Java and runs on top  
of Hadoop MapReduce, with the high latency that implies.  
A commercial system would be much faster. Rather, our goal 
is simply to ask: is an RDBMS a viable platform for running 
distributed linear algebra?

Platforms tested. The platforms we evaluated are:

(1)  SimSQL. We tested several different SimSQL imple-
mentations: Without vector/matrix support (the origi-
nal SimSQL implementation without our extensions), 
with data stored as vectors, and with data stored as 
vectors, then converted into blocks.

(2)  SystemML. This is SystemML V1.2.0, which runs on 
Spark-Batch mode. All computations are written in 
SystemML’s DML programming language.

(3)  SciDB. This is SciDB V18.1. All computations are writ-
ten in SciDB’s AQL language which is similar to SQL.

(4)  Spark mllib.linalg. This is run on Spark V2.4 in 
standalone mode. All computations are written in 
Scala.

(5)  TensorFlow. This is TensorFlow V0.12.0. All computa-
tions are written in Python.

Computations performed. In our first set of experiments, 
we performed three different representative computations.

(1)  Gram matrix computation. A Gram matrix is the  
inner products of a set of vectors. It is a common  
computational pattern in machine learning, and  
is often used to compute the kernel functions and 

1 Using RDBMS-based linear algebra for deep learning is considered in  
detail in Jankov et al.15; the experimental results given here are taken from 
that paper.
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matrix, the latter being considerably faster for the distance 
computation). SimSQL was slower for the lower-dimensional 
problems because as a prototype system, it is not engi-
neered for high throughput. Spark mllib and SciDB were 
not competitive on the higher-dimensional data.

For FFNN learning (Figure 5), SimSQL was slower than 
TensorFlow in most cases, but it scaled well, whereas 
TensorFlow crashed (due to memory problems) on a 
problem size of larger than 40,000 hidden neurons. In 
TensorFlow, there is no automatic way to distribute matri-
ces across machines, and for the bigger problem sizes, the 
weight matrices are very large (the problem with 160,000 
hidden neurons uses 102 GB weight matrices). Although a 
distributed database can easily handle data of this size by 
distributing it across machines or using the local disk to 
buffer data, TensorFlow lacks such capability.

Micro-benchmarks showed that for the 40,000-hidden-
neuron problem, all of the matrix operations required for 
an iteration of FFNN learning took 6 min, 17 s (6:17) on a 
single machine. Assuming a perfect speedup, the learning 
should take just 1:15 per iteration on a five-machine cluster. 
However, SimSQL took 8:30 and TensorFlow took 9:02. This 
shows that both systems incur significant overhead, at least 
at such a large model size. SimSQL, in particular, requires 
a total of 61 s per FFNN iteration just starting up and tear-
ing down Hadoop jobs. Also in Hadoop, each intermediate 
result that cannot be pipelined must be written to disk, and 
it causes a significant amount of I/O. A faster database could 
likely lower this overhead significantly.

One may wonder: how would TensorFlow have worked 
were GPUs were used instead? Using a similar dollars-
per-hour budget, we ran TensorFlow on several AWS GPU 
clusters (using a combination of p3.2xlarge and r5.4xlarge 
machines). At the same cost-per-hour as the five-worker 
CPU cluster, TensorFlow ran an iteration in 24 s for 10,000 

on 5, 10, and 20 Amazon EC2 r5d.2xlarge machines, and 
tested the neural network with different number of neurons 
in the hidden layer.

Experiment results and discussion. The results of the first 
set of experiments are shown in Figures 2–4, and the results 
of the FFNN experiments are shown in Figure 5.

In the first set of experiments, we see that vector- and 
block-based SimSQL clearly dominate the tuple-based 
implementation for each of the three computations. The 
results show that it is simply not possible to move enough 
tuples through a database system to fulfill large-scale linear 
algebra operations using only tuples.

For linear regression and Gram matrix, we see that the 
vector-based computation was faster than block-based for 
10- and 100-dimensional computations. This is because 
our experiments counted the time of grouping vectors into 
blocked matrices. This additional computation was not 
worthwhile for less computationally expensive problems. 
But for the 1000-dimensional computations, additional 
time savings could be realized via blocking.

For the higher-dimensional problems, there was no clear 
winner among block-based SystemML and SimSQL (the for-
mer being a tiny bit faster for linear regression and Gram 

Gram Matrix Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:48 02:25 Fail
Vector SimSQL 00:18 00:23 02:48
Block SimSQL 00:39 00:41 01:13

SystemML 00:01 00:02 01:03
Spark mllib 00:15 00:44 15:00

SciDB 00:02 00:08 03:46

Figure 2. Gram matrix results. Format is MM:SS.

Linear Regression
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 02:11 03:48 Fail
Vector SimSQL 00:28 00:33 02:55
Block SimSQL 00:41 00:44 01:06

SystemML 00:01 00:02 01:04
Spark mllib 00:22 00:47 15:10

SciDB 00:06 00:16 04:41

Figure 3. Linear regression results. Format is MM:SS.

Distance Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL Fail Fail Fail
Vector SimSQL 03:19 03:56 11:31
Block SimSQL 01:09 01:09 01:21

SystemML 01:01 01:05 03:39
Spark mllib 01:43 02:00 05:51

SciDB 19:20 19:34 23:13

Figure 4. Distance computation results. Format is MM:SS.

FFNN
Hidden Layer Neurons RDBMS TensorFlow

Cluster with 5 workers
10000 05:39 01:36
20000 05:46 03:38
40000 08:30 09:02
80000 24:52 Fail

160000 Fail Fail
Cluster with 10 workers

10000 04:53 00:54
20000 05:32 02:00
40000 07:41 04:59
80000 17:46 Fail

160000 44:21 Fail
Cluster with 20 workers

10000 04:08 00:32
20000 05:40 01:12
40000 06:13 02:56
80000 12:55 Fail

160000 25:00 Fail

Figure 5. Average iteration time for FFNN learning, using various 
CPU cluster and hidden layer sizes.
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neurons, and failed at all other sizes. At the same cost as 
the 10-worker cluster, it ran an iteration in 15 s for 10,000 
neurons, again failing at all other sizes. And at the same 
cost as the 20-worker cluster, the time was 12 s, failing for 
all other sizes. The reason for TensorFlow’s failure to run at 
more than 10,000 neurons is the limited memory available 
on a modern GPU. Again, TensorFlow does not page data 
on and off of a GPU, and so it cannot easily be used to learn 
larger models.

6. RELATED WORK
There has been recent interest in the construction of special 
purpose data management systems for scalable linear alge-
bra. SystemML12 was evaluated in this paper. Another good 
example is the Cumulon system14, which has the notable 
capability of optimizing its own hardware settings in the 
cloud. MadLINQ18, built on top of Microsoft’s LINQ frame-
work, can also be seen as an example of this. Other work 
aims at scaling statistical/numerical programming lan-
guages such as R. Ricardo11 aims to support R programming 
on top of Hadoop. Riot21 attempts to plug an I/O efficient 
backend into R to bring scalability.

The idea of moving past relations onto arrays as a data-
base data model, particularly for scientific and/or numeri-
cal applications, has been around for a long time. One of 
the most notable efforts is Baumann and his colleague’s 
work on Rasdaman.5 In this paper, we have compared with 
SciDB8, an array database for which linear algebra is a pri-
mary use case.

There is some support for linear algebra in modern, 
commercial relational database systems (such as Oracle 
Database). But that support is not well-integrated into the 
declarative (SELECT-FROM-WHERE) interface of SQL, and is 
generally challenging to use. For example, Oracle provides 
the UTL_NLA2 package to support BLAS and LAPACK opera-
tions. To multiply two matrices using this package, and 
assuming two input matrices m1 and m2 declared as type 
utl_nla_array_dbl (and an output matrix res defined 
similarly), a programmer would write:

utl_nla.blas_gemm(
transa => ’N’, transb => ’N’, m => 3, n => 3,
k =>    3, alpha => 1.0, a => m1, lda => 3,
b => m2, ldb => 2, beta => 0.0, c => res,
ldc => 3, pack => R);

This code specifies details about the input matrices, as  
well as details about the invocation of the BLAS library.

7. CONCLUSION
We conclude the paper by asking the question: have we 
affirmed the hypothesis at the core of the paper, that a rela-
tional engine can be used with little modification to sup-
port efficient linear algebra processing? We feel that our 
experimental evaluation did in fact confirm the hypoth-
esis. SimSQL was not exactly fast, but it was competitive 
compared to all of the evaluated systems, at least for larger 
and more complicated problems, even compared with 
TensorFlow. And given the baked-in efficiencies associ-
ated with SimSQL—it is, after all, a Hadoop-based system, 

written mostly in Java—the fact that SimSQL did reasonably 
well argues that a high-performance RDBMS could be a very 
effective engine for distributed linear algebra processing.
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