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ABSTRACT 
Today in the world people are able to get all types of Android 
applications (apps) from the app store or various sources over the 
Internet. A large number of apps is being produced daily, some of 
which are infected with malware. Thus, the use of anti-malware 
identification tools is essential. At the same time, a number of 
attackers who exploit a number of anti-malwares have been doing 
obtaining information from mobile phones in various ways, such 
as decompiling or infecting anti-malware. Therefore, in this paper, 
we developed a classification dataset from collected anti-malware 
data looking for fraudulent anti-malware products. Additionally, 
we applied various machine learning algorithms and we propose a 
combination of algorithms which provides high accuracy over 
various evaluation tests, showing that our approach is both 
practical and effective.   
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1 Introduction 
In this paper, we gathered information of existing claimed anti-
malware android programs and examine if they have security 
issues. To this extend, we collected many android anti-malware 
programs from various sites such as Google Play and then 
classified them as a regular app or malware program using 
www.virustotal.com and almost 70 other reputed anti-malware 
detection engines. Hence, we developed a novel dataset including 
many anti-malware information derived from APK files including 
information about the permissions required by those apps. Our 
second contribution is an ensemble classifier which can detect and 
classify apps as normal program or malware.  Moreover, for the 
analysis if data including android executable files, reverse 
engineering was performed on these files. Then, the required 
features were extracted and converted to the desired format 

suitable to analyze. In fact, the purpose was to analyze different 
batches of data and identify different subsets of malware in the 
Android operating system, which can help prevent intrusions into 
Android phones and prevent the hacking of the operating system 
or other files. There are two methods for detecting malware: static 
and dynamic. Static methods represent malware detection 
strategies based on an identification code. A common way in an 
antivirus program is to interrupt using a predetermined list of 
known attacks, but it is not able to detect all malicious cases 
because its database regularly needs to get updated. The main 
advantages of this method are accuracy and decrease the system 
overhead and runtime. One of the disadvantages of this method is 
that it cannot detect altered codes or malwares whose code has 
changed. In this method, the identification code is a hash code or a 
unique code that is stored in the database [11].. Dynamic methods 
analyze behavior or deviation. They check behavior of abnormal 
calls at the time of program execution or the granting of irrational 
access requests at the time of program installation. The advantage 
of this method is that it provides a useful understanding of how a 
malware produced and executed. In this method, suspicious 
objects are evaluated based on their activities in the system. In 
fact, irregular activities indicate that the target is suspicious or 
destructive. The purpose of good behavior is to encode or 
construct an object. Features of this method include detecting all 
kinds of malicious unknown attacks, storing complexity for 
behavior patterns, detecting flow dependency, time complexity 
detection, and polymorphic malware detection. This method 
works better than the identification code method, but it still has a 
lot of errors and in order to fix this problem, it is better to use 
machine learning techniques because machine learning techniques 
are able to detect new types of malwares. In addition, 
classification methods require numerous training examples to 
construct classification models [11]. In this paper we make the 
following contributions: 

• A novel android fake anti-malware dataset is introduced. 

• An ensemble classification method is applied to show the 
effectiveness of the data. 

The rest of the paper is organized as follows: section 2 presents 
the related work, section 3 explains the dataset and describes the 
proposed classifier, section 4 contains the evaluation and section 5 
is the conclusions. 

2 Related work 
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In [1], a framework has been proposed that extracts logical file 
permissions, generates feature vectors, and uses six different 
rating tools to create distinct attributes. In this feature, the various 
categories of learning tools reduce the Data Mining tool, Weka 
used to classify Android apps. In [2], SIGPID, a malware 
detection system based on permission usage analysis, has been 
introduced to counter the rapid increase in the number of Android 
malware. Instead of extracting and analyzing all Android 
permissions, they used three levels of feature reduction by 
extracting permission data to identify more important permissions 
that can be used to distinguish between malicious and benign 
apps. Then, SIGPID is used by the classification method based on 
machine learning to classify various families of malicious and 
benign apps. In [3], a new method for extracting contrasting 
permission patterns was used to compare the difference between 
Android's malicious and benign apps based on permissions and 
use these differences to identify Android malware tools. Unlike 
existing systems, this is the first analysis of permissions that are 
required and used, then used the support-based candidate method 
to extract unique items, or from permission patterns for detection 
of Android malware. In this method, application patterns allow 
the identification of android malwares using a data set to cope 
with the problem of increasing the number of Android malware on 
various sources. In [4], the apps are categorized into three 
categories based on their APIs and permissions: safe, suspicious, 
and malicious, to achieve this, they set the three levels of analysis. 
Accordingly, the classification system based on API permissions 
performed based on YARA rule. API, class, and general methods 
of each of the extracted applications were from 
AndroidManifest.xml, Classes.dex, and compliance with the 
YARA rule. They ultimately provided user awareness by 
providing insight into application behaviors that allowed them to 
decide whether to install the application on their own devices. In 
[5], a new approach has been proposed that analyzes Android 
program features. This approach is performed by performing 
static analysis to extract features from an APK files. The extracted 
features are useful and meaningful to create efficient teaching 
systems. In addition, a permission-based model was introduced 
that uses a self-organizing map algorithm. In [6], the researchers 
focused on the many challenges that developers are posing when 
creating descriptions for permission usage. They have proposed a 
new framework, CLAP, that describes potential explanations of 
similar programs. CLAP provides information retrieval levers and 
text summarization techniques to find repeated permission usages. 
CLAP is a large dataset including 1.4 million Android apps. In 
[7], other known algorithms such as KNN and SVM were also 
evaluated in this study. However, since the J48 produces the 
highest level of accuracy, all experiments used this study. J48 is 
one of the top ten data mining algorithms that they also use to 
interpret the tree in order to see better features and to isolate 
software and malware. In training, the MalGenome dataset is used 
to represent malicious applications. In [8], to address problems 
regarding malware, they studied real-world Android apps to mine 
hidden patterns of malware and succeeded to extract highly 
sensitive APIs that are widely used in Android malware. In 
addition, they implemented an automated malware detection 
system, MalPat, to fight against malware and assist Android app 
marketplaces to address unknown malicious apps. In [9], they 
examined the effectiveness of exploring sandboxes in detecting 
malicious apps using five testing tools. They infected two sets of 
malicious and benign apps to check whether Sandbox based on 

sensitive APIs can effectively detect malicious behavior in their 
malicious apps. In [10], they described privacy issues by 
classifying application permissions and classification credentials 
using the Nave Bayes classification. Their results showed that 
they were categorized by GP-PP and validated through Classifiers 
Nave Bayes, users can decide which applications are safe to 
install, and which application requires what permission according 
to application generic (anti-malware). Permissions that fall into 
the Privacy Invasive class are accessing your personal 
information, camera, microphone, read information, Bluetooth, 
and your location. In [11], A systematic literary review of 
malware detection methods using data mining. The papers 
examined are categorized into two main categories; (1) 
identification code based (2) behavioral based approach. Malware 
detection approaches are compared and analyzed according to 
various factors such as classification methods, data analysis 
method, number of used data, accuracy factor and analysis. In 
paper [12], they propose DL-Droid, a deep learning system to 
detect malicious Android applications through dynamic analysis 
using stateful input generation. They performed experiments 
(benign and malware) on real devices. Moreover, experiments 
were also conducted to compare the detection performance and 
code coverage of the stateful input generation method with the 
commonly used stateless approach using the deep learning 
system. In paper [13], they propose a hybrid analysis measure 
called EspyDroid+1 that tackles the drawbacks of static analysis 
in analyzing the obfuscated and run-time dependent parameters of 
reflection APIs. EspyDroid+ incorporates Reflection Guide Static 
Slicing (RGSS), an efficient method to cope with exploration of 
large number of program paths by pruning non-relevant program 
paths and ensures that the resultant paths get executed during the 
subsequent dynamic analysis. In [14], they introduce 
MAMADROID, a static-analysis-based system that abstracts 
application’s API calls to their class, package, or family, and 
builds a model from their sequences obtained from the call graph 
of an application as Markov chains. This makes sure that the 
model is more resilient to API changes and the features set is of 
manageable size. In paper [15], they suggest the use of a 
decompiled source code for malicious code classification. This 
decompiled source code provides deeper analysis opportunities 
and comprehension of malware nature. In [16], they propose a 
novel malware classification approach for malicious Android 
applications using RNNs and CNNs so that their model learns the 
generalized correlation between obfuscated string patterns from 
an application’s package name and the name of the certificate 
owner. Their model extracts machine learning (ML) attributes 
using gated recurrent units (GRU), and an additional CNN unit 
further optimizes the attribute process of extraction. In [17], they 
proposed an innovative detection model, called PermPair, which 
compares constructs the graphs for malware and also normal 
samples by permission pairs extraction from an application 
manifest file.  

The difference between this work and other related works is 
that in this paper as far as we are concerned, we are the first 
looking for fake anti-malware whereas the others are looking for 
malware and not fake anti-malware.  

3 Dataset and proposed classifier description 

3.1  Dataset 
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The dataset can be used to identify and anti-malwares through the 
use of appropriate classifiers. Therefore, it can be used in 
supervised learning environments. By fake anti-malware we mean 
software apps in Android that are in fact fake ones and they have 
been made for abusive purposes (e.g. steal information from a 
device or make it unresponsive) even though those fake ones act 
like a real one that users don’t even notice or understand. Hence, 
the purpose of this research is to identify types of fake anti-
malware and anti-malwares infected with malware. The dataset 
contains 1200 entries out of which 869 are negative and 331 are 
positive (i.e. pretending to be anti-malware but are malware). 
Moreover, the dataset contains 328 features with values 0 or 1 and 
the last (329th) value if the class which is either negative or 
positive and these entries are filled from various website such as 
Google Play and others. For example, features include internet 
access and various app permissions and the dataset is licensed 
under a CC-BY-NC 4.0 license and it is available online 
accompanied by a full explanation for everyone to understand1. 

3.2  Proposed classifier 
For the classification of the final result we have used a 
combination of classifiers. More specifically, we have applied a 
Random Forest classifier with 100 estimators, and 2 neural 
network multi-layer perceptron classifiers with 1 hidden layer and 
100 neurons in each and random weight initialization. The 
proposed ensemble classifier which works as follows (an arbitrary 
positive number of classifiers can be used, but in this case, we 
have used 3 classifiers): 

1. Each classifier takes as input the training part of the 
dataset 

2. Random forest classifier makes predictions 
3. 1st MLP classifier makes predictions 
4. 2nd MLP classifier makes predictions 
5. The final predictions of each classifier are used to create 

a new dataset which is fed into a logistic regression 
classifier to make the final prediction  

For the development of the algorithms the Python programming 
language has been used along with the Scikit learn machine 
learning library. The Random Forest classifier is an ensemble 
voting classifier and, in this case, it uses 10 decision trees and the 
majority of each decision tree votes gives the final result. For both 
MLP classifiers, we define an activation function as: 𝒈(𝒛)	with 𝒙 
input values and 𝒘 weights as input. The activation function is 
shown in equation 1. 
 

z	 = 	w!x! +w"x" +⋯	+	w#x# (1) 
 
If g(z) is greater than a given threshold theta, the output is 1 or -1 
otherwise, as shown in equation 2. 

 

g (z) = . 1	if	z>theta-1	otherwise (2) 

 
Where z	 = 	w!x! +w"x" +⋯	+	w#x# =		∑ x$w$

#
$%! 	= 	w&x 

 

 
1 https://www.kaggle.com/saeedseraj/antimalwarev1 

After that, Rosenblatt’s perceptron rule is applied to update the 
weights as follows: Each of the weights is initialized with a small 
random number and for each iterative training step for each input 
x the output value is calculated, and the weights are updated. The 
output update is defined in equation 3, with ∆𝑤' =
	𝑒	?𝑡𝑎𝑟𝑔𝑒𝑡(𝑖)– 	𝑜𝑢𝑡𝑝𝑢𝑡(𝑖)I	𝑥'(		and 𝑒  is the learning rate, target 
the actual (true) class label and output the predicted label. Weight 
updates were iterative, and updates are performed at the same 
time. 

	𝑤') =	𝑤' 		+ 	D𝑤' 		 (3) 

At the last step, the logistic regression linear model is used to 
make the final prediction.  

 

4 Experimental evaluation 
 
For the experimental evaluation we have used the Python 
programming language and the Scikit machine learning library. 
Moreover, we have used well known evaluation metrics such as 
the Accuracy, which is defined in equation 4, Precision which is 
defined in equation 5, Recall which is defined in equation 6 and 
F1 which is defined in equation 7. In equations 4, 5 and 6: TP is 
True Positive, TN is True Negative, FP is False Positive, and FN 
is False Negative. The results are presented in Table 1 for the 
accuracy, Table 2 for the Precision, Table 3 for the Recall and 
Table 4 for the F1. In all 4 tables We compare our proposed 
method with the Random Forest and MLP classifiers over 5 
iterations using an 80/20 training testing approach and the average 
is presented at the last row. Overall our proposed method 
outperforms alternative classifiers in all metrics. 
 

Accuracy =
TP + TN

TP + TN+ FP + FN   (4) 

 

Precision =
TP

TP + FP (5) 

 

Recall =
TP

TP + FN (6) 

 

F1 = 2	 ∙ 	
precision	 ∙ 	recall
precision + recall (7) 

 

No of 
execution 

Random 
Forest 

MLP 
Classifier Proposed 

1 95.4% 95% 95.8% 
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2 94.5% 96.5% 96.6% 

3 97% 95% 95.8% 

4 94.5% 95% 98.3% 

5 95% 95.4% 97.9% 

Average 95.28% 95% 96.88% 

Table 1: Accuracy results 

No of 
execution 

Random 
Forest 

MLP 
Classifier Proposed 

1 95% 94.1% 95.3% 

2 94.3% 95.3% 94.9% 

3 96.9% 93.9% 95.4% 

4 93.7% 94.5% 97.8% 

5 93.3% 94.9% 96.9% 

Average 95% 94.54% 96.06% 

Table 2: Precision results 

No of 
execution 

Random 
Forest 

MLP 
Classifier Proposed 

1 93.9% 94.6% 94.6% 

2 92.3% 94.9% 94.9% 

3 95.4% 93.9% 93.4% 

4 92.4% 92.7% 97.8% 

5 94.2% 93.7% 97.4% 

Average 93.64% 93.96% 95.62% 

Table 3: Recall results 

No of 
execution 

Random 
Forest 

MLP 
Classifier Proposed 

1 94.4% 94.4% 94.9% 

2 93.2% 95.1% 94.9% 

3 96.1% 93.9% 94.3% 

4 93% 93.6% 97.8% 

5 93.7% 94.3% 97.1% 

Average 94.08% 94.26% 95.8% 

Table 4: F1 results 

To further evaluate the quality of the proposed classifier we show 
in figures 1 and 2 a comparison of the proposed classifier against 
a variation using 1 MLP classifier instead of 2 and the logistic 
regression classifier at the end. The result averages for the 
accuracy and F1 metrics are as follows: Proposed method 
accuracy average over 5 iterations: 96.88%. Proposed method 
with 1 MLP instead of 2 accuracy average over 5 iterations: 
95.28%. Proposed method F1 average over 5 iterations: 95.80%. 
Proposed method with 1 MLP instead of 2 F1 average over 5 
iterations: 93.80%. This shows that using the proposed method 
with 2 MLP classifiers instead of 1 indeed makes a difference. 
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Figure 1: Accuracy results comparison between ensemble 
classifiers 

 

Figure 2: F1 results comparison between ensemble classifiers 

5 Conclusions 

In this paper we introduce a novel android fake-anti malware 
dataset. This dataset can be used to detect android fake-anti 
malware apps pretending to be legitimate but in reality, are 
malicious, through the use of appropriate classifiers. The results 
indicate that even with the application of pre-built classifiers such 
as Random Forest of MLP the results are very accurate. However, 
we propose the use of a combination of algorithms that further 
increase the accuracy and precision.  Nowadays, the use of mobile 
devices and especially of those utilizing the Android operating 
system is very high and such a solution is necessary. However, 
such a methodology can be further extended, thus in the future we 
aim to look for more data that will allow us to classify by category 
and apply other novel classifiers. 
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