
A novel dataset for fake android anti-malware detection

Saeed Seraj
 Department of Computer

Engineering
Yadegar-e-Imam Khomeini (RAH)

Shahre Rey Branch
 Islamic Azad University

 Tehran, Iran
 S.Seraj@iausr.ac.ir

Michalis Pavlidis
 School of Computing, Engineering

and Mathematics
 University of Brighton

 Brighton, United Kingdom
 M.Pavlidis@Brighton.ac.uk

Nikolaos Polatidis†
 School of Computing, Engineering

and Mathematics
 University of Brighton

Brighton, United Kingdom
 N.Polatidis@Brighton.ac.uk

ABSTRACT
Today in the world people are able to get all types of Android
applications (apps) from the app store or various sources over the
Internet. A large number of apps is being produced daily, some of
which are infected with malware. Thus, the use of anti-malware
identification tools is essential. At the same time, a number of
attackers who exploit a number of anti-malwares have been doing
obtaining information from mobile phones in various ways, such
as decompiling or infecting anti-malware. Therefore, in this paper,
we developed a classification dataset from collected anti-malware
data looking for fraudulent anti-malware products. Additionally,
we applied various machine learning algorithms and we propose a
combination of algorithms which provides high accuracy over
various evaluation tests, showing that our approach is both
practical and effective.

CCS CONCEPTS
• Management of Computing and Information Systems à
Security and Protection

KEYWORDS
Malware, Anti-malware, Fake anti-malware detection, Android,
Cyber security, Machine learning

ACM Reference format:

1 Introduction
In this paper, we gathered information of existing claimed anti-
malware android programs and examine if they have security
issues. To this extend, we collected many android anti-malware
programs from various sites such as Google Play and then
classified them as a regular app or malware program using
www.virustotal.com and almost 70 other reputed anti-malware
detection engines. Hence, we developed a novel dataset including
many anti-malware information derived from APK files including
information about the permissions required by those apps. Our
second contribution is an ensemble classifier which can detect and
classify apps as normal program or malware. Moreover, for the
analysis if data including android executable files, reverse
engineering was performed on these files. Then, the required
features were extracted and converted to the desired format

suitable to analyze. In fact, the purpose was to analyze different
batches of data and identify different subsets of malware in the
Android operating system, which can help prevent intrusions into
Android phones and prevent the hacking of the operating system
or other files. There are two methods for detecting malware: static
and dynamic. Static methods represent malware detection
strategies based on an identification code. A common way in an
antivirus program is to interrupt using a predetermined list of
known attacks, but it is not able to detect all malicious cases
because its database regularly needs to get updated. The main
advantages of this method are accuracy and decrease the system
overhead and runtime. One of the disadvantages of this method is
that it cannot detect altered codes or malwares whose code has
changed. In this method, the identification code is a hash code or a
unique code that is stored in the database [11].. Dynamic methods
analyze behavior or deviation. They check behavior of abnormal
calls at the time of program execution or the granting of irrational
access requests at the time of program installation. The advantage
of this method is that it provides a useful understanding of how a
malware produced and executed. In this method, suspicious
objects are evaluated based on their activities in the system. In
fact, irregular activities indicate that the target is suspicious or
destructive. The purpose of good behavior is to encode or
construct an object. Features of this method include detecting all
kinds of malicious unknown attacks, storing complexity for
behavior patterns, detecting flow dependency, time complexity
detection, and polymorphic malware detection. This method
works better than the identification code method, but it still has a
lot of errors and in order to fix this problem, it is better to use
machine learning techniques because machine learning techniques
are able to detect new types of malwares. In addition,
classification methods require numerous training examples to
construct classification models [11]. In this paper we make the
following contributions:

• A novel android fake anti-malware dataset is introduced.

• An ensemble classification method is applied to show the
effectiveness of the data.

The rest of the paper is organized as follows: section 2 presents
the related work, section 3 explains the dataset and describes the
proposed classifier, section 4 contains the evaluation and section 5
is the conclusions.

2 Related work

WIMS, June-July 2020, Biarritz, France S. Seraj et al.

In [1], a framework has been proposed that extracts logical file
permissions, generates feature vectors, and uses six different
rating tools to create distinct attributes. In this feature, the various
categories of learning tools reduce the Data Mining tool, Weka
used to classify Android apps. In [2], SIGPID, a malware
detection system based on permission usage analysis, has been
introduced to counter the rapid increase in the number of Android
malware. Instead of extracting and analyzing all Android
permissions, they used three levels of feature reduction by
extracting permission data to identify more important permissions
that can be used to distinguish between malicious and benign
apps. Then, SIGPID is used by the classification method based on
machine learning to classify various families of malicious and
benign apps. In [3], a new method for extracting contrasting
permission patterns was used to compare the difference between
Android's malicious and benign apps based on permissions and
use these differences to identify Android malware tools. Unlike
existing systems, this is the first analysis of permissions that are
required and used, then used the support-based candidate method
to extract unique items, or from permission patterns for detection
of Android malware. In this method, application patterns allow
the identification of android malwares using a data set to cope
with the problem of increasing the number of Android malware on
various sources. In [4], the apps are categorized into three
categories based on their APIs and permissions: safe, suspicious,
and malicious, to achieve this, they set the three levels of analysis.
Accordingly, the classification system based on API permissions
performed based on YARA rule. API, class, and general methods
of each of the extracted applications were from
AndroidManifest.xml, Classes.dex, and compliance with the
YARA rule. They ultimately provided user awareness by
providing insight into application behaviors that allowed them to
decide whether to install the application on their own devices. In
[5], a new approach has been proposed that analyzes Android
program features. This approach is performed by performing
static analysis to extract features from an APK files. The extracted
features are useful and meaningful to create efficient teaching
systems. In addition, a permission-based model was introduced
that uses a self-organizing map algorithm. In [6], the researchers
focused on the many challenges that developers are posing when
creating descriptions for permission usage. They have proposed a
new framework, CLAP, that describes potential explanations of
similar programs. CLAP provides information retrieval levers and
text summarization techniques to find repeated permission usages.
CLAP is a large dataset including 1.4 million Android apps. In
[7], other known algorithms such as KNN and SVM were also
evaluated in this study. However, since the J48 produces the
highest level of accuracy, all experiments used this study. J48 is
one of the top ten data mining algorithms that they also use to
interpret the tree in order to see better features and to isolate
software and malware. In training, the MalGenome dataset is used
to represent malicious applications. In [8], to address problems
regarding malware, they studied real-world Android apps to mine
hidden patterns of malware and succeeded to extract highly
sensitive APIs that are widely used in Android malware. In
addition, they implemented an automated malware detection
system, MalPat, to fight against malware and assist Android app
marketplaces to address unknown malicious apps. In [9], they
examined the effectiveness of exploring sandboxes in detecting
malicious apps using five testing tools. They infected two sets of
malicious and benign apps to check whether Sandbox based on

sensitive APIs can effectively detect malicious behavior in their
malicious apps. In [10], they described privacy issues by
classifying application permissions and classification credentials
using the Nave Bayes classification. Their results showed that
they were categorized by GP-PP and validated through Classifiers
Nave Bayes, users can decide which applications are safe to
install, and which application requires what permission according
to application generic (anti-malware). Permissions that fall into
the Privacy Invasive class are accessing your personal
information, camera, microphone, read information, Bluetooth,
and your location. In [11], A systematic literary review of
malware detection methods using data mining. The papers
examined are categorized into two main categories; (1)
identification code based (2) behavioral based approach. Malware
detection approaches are compared and analyzed according to
various factors such as classification methods, data analysis
method, number of used data, accuracy factor and analysis. In
paper [12], they propose DL-Droid, a deep learning system to
detect malicious Android applications through dynamic analysis
using stateful input generation. They performed experiments
(benign and malware) on real devices. Moreover, experiments
were also conducted to compare the detection performance and
code coverage of the stateful input generation method with the
commonly used stateless approach using the deep learning
system. In paper [13], they propose a hybrid analysis measure
called EspyDroid+1 that tackles the drawbacks of static analysis
in analyzing the obfuscated and run-time dependent parameters of
reflection APIs. EspyDroid+ incorporates Reflection Guide Static
Slicing (RGSS), an efficient method to cope with exploration of
large number of program paths by pruning non-relevant program
paths and ensures that the resultant paths get executed during the
subsequent dynamic analysis. In [14], they introduce
MAMADROID, a static-analysis-based system that abstracts
application’s API calls to their class, package, or family, and
builds a model from their sequences obtained from the call graph
of an application as Markov chains. This makes sure that the
model is more resilient to API changes and the features set is of
manageable size. In paper [15], they suggest the use of a
decompiled source code for malicious code classification. This
decompiled source code provides deeper analysis opportunities
and comprehension of malware nature. In [16], they propose a
novel malware classification approach for malicious Android
applications using RNNs and CNNs so that their model learns the
generalized correlation between obfuscated string patterns from
an application’s package name and the name of the certificate
owner. Their model extracts machine learning (ML) attributes
using gated recurrent units (GRU), and an additional CNN unit
further optimizes the attribute process of extraction. In [17], they
proposed an innovative detection model, called PermPair, which
compares constructs the graphs for malware and also normal
samples by permission pairs extraction from an application
manifest file.

The difference between this work and other related works is
that in this paper as far as we are concerned, we are the first
looking for fake anti-malware whereas the others are looking for
malware and not fake anti-malware.

3 Dataset and proposed classifier description

3.1 Dataset

A novel dataset for fake android anti-malware detection WIMS, June-July 2020, Biarritz, France WOODSTOCK’18, June, 2018, El Paso, Texas USA

The dataset can be used to identify and anti-malwares through the
use of appropriate classifiers. Therefore, it can be used in
supervised learning environments. By fake anti-malware we mean
software apps in Android that are in fact fake ones and they have
been made for abusive purposes (e.g. steal information from a
device or make it unresponsive) even though those fake ones act
like a real one that users don’t even notice or understand. Hence,
the purpose of this research is to identify types of fake anti-
malware and anti-malwares infected with malware. The dataset
contains 1200 entries out of which 869 are negative and 331 are
positive (i.e. pretending to be anti-malware but are malware).
Moreover, the dataset contains 328 features with values 0 or 1 and
the last (329th) value if the class which is either negative or
positive and these entries are filled from various website such as
Google Play and others. For example, features include internet
access and various app permissions and the dataset is licensed
under a CC-BY-NC 4.0 license and it is available online
accompanied by a full explanation for everyone to understand1.

3.2 Proposed classifier
For the classification of the final result we have used a
combination of classifiers. More specifically, we have applied a
Random Forest classifier with 100 estimators, and 2 neural
network multi-layer perceptron classifiers with 1 hidden layer and
100 neurons in each and random weight initialization. The
proposed ensemble classifier which works as follows (an arbitrary
positive number of classifiers can be used, but in this case, we
have used 3 classifiers):

1. Each classifier takes as input the training part of the
dataset

2. Random forest classifier makes predictions
3. 1st MLP classifier makes predictions
4. 2nd MLP classifier makes predictions
5. The final predictions of each classifier are used to create

a new dataset which is fed into a logistic regression
classifier to make the final prediction

For the development of the algorithms the Python programming
language has been used along with the Scikit learn machine
learning library. The Random Forest classifier is an ensemble
voting classifier and, in this case, it uses 10 decision trees and the
majority of each decision tree votes gives the final result. For both
MLP classifiers, we define an activation function as: 𝒈(𝒛)	with 𝒙
input values and 𝒘 weights as input. The activation function is
shown in equation 1.

z	 = 	w!x! +w"x" +⋯	+	w#x# (1)

If g(z) is greater than a given threshold theta, the output is 1 or -1
otherwise, as shown in equation 2.

g (z) = . 1	if	z>theta-1	otherwise (2)

Where z	 = 	w!x! +w"x" +⋯	+	w#x# =		∑ xw

#
$%! 	= 	w&x

1 https://www.kaggle.com/saeedseraj/antimalwarev1

After that, Rosenblatt’s perceptron rule is applied to update the
weights as follows: Each of the weights is initialized with a small
random number and for each iterative training step for each input
x the output value is calculated, and the weights are updated. The
output update is defined in equation 3, with ∆𝑤' =
	𝑒	?𝑡𝑎𝑟𝑔𝑒𝑡(𝑖)– 	𝑜𝑢𝑡𝑝𝑢𝑡(𝑖)I	𝑥'(and 𝑒 is the learning rate, target
the actual (true) class label and output the predicted label. Weight
updates were iterative, and updates are performed at the same
time.

	𝑤') =	𝑤' 		+ 	D𝑤' 		 (3)

At the last step, the logistic regression linear model is used to
make the final prediction.

4 Experimental evaluation

For the experimental evaluation we have used the Python
programming language and the Scikit machine learning library.
Moreover, we have used well known evaluation metrics such as
the Accuracy, which is defined in equation 4, Precision which is
defined in equation 5, Recall which is defined in equation 6 and
F1 which is defined in equation 7. In equations 4, 5 and 6: TP is
True Positive, TN is True Negative, FP is False Positive, and FN
is False Negative. The results are presented in Table 1 for the
accuracy, Table 2 for the Precision, Table 3 for the Recall and
Table 4 for the F1. In all 4 tables We compare our proposed
method with the Random Forest and MLP classifiers over 5
iterations using an 80/20 training testing approach and the average
is presented at the last row. Overall our proposed method
outperforms alternative classifiers in all metrics.

Accuracy =
TP + TN

TP + TN+ FP + FN (4)

Precision =
TP

TP + FP (5)

Recall =
TP

TP + FN (6)

F1 = 2	 ∙ 	
precision	 ∙ 	recall
precision + recall (7)

No of
execution

Random
Forest

MLP
Classifier Proposed

1 95.4% 95% 95.8%

WIMS, June-July 2020, Biarritz, France S. Seraj et al.

2 94.5% 96.5% 96.6%

3 97% 95% 95.8%

4 94.5% 95% 98.3%

5 95% 95.4% 97.9%

Average 95.28% 95% 96.88%

Table 1: Accuracy results

No of
execution

Random
Forest

MLP
Classifier Proposed

1 95% 94.1% 95.3%

2 94.3% 95.3% 94.9%

3 96.9% 93.9% 95.4%

4 93.7% 94.5% 97.8%

5 93.3% 94.9% 96.9%

Average 95% 94.54% 96.06%

Table 2: Precision results

No of
execution

Random
Forest

MLP
Classifier Proposed

1 93.9% 94.6% 94.6%

2 92.3% 94.9% 94.9%

3 95.4% 93.9% 93.4%

4 92.4% 92.7% 97.8%

5 94.2% 93.7% 97.4%

Average 93.64% 93.96% 95.62%

Table 3: Recall results

No of
execution

Random
Forest

MLP
Classifier Proposed

1 94.4% 94.4% 94.9%

2 93.2% 95.1% 94.9%

3 96.1% 93.9% 94.3%

4 93% 93.6% 97.8%

5 93.7% 94.3% 97.1%

Average 94.08% 94.26% 95.8%

Table 4: F1 results

To further evaluate the quality of the proposed classifier we show
in figures 1 and 2 a comparison of the proposed classifier against
a variation using 1 MLP classifier instead of 2 and the logistic
regression classifier at the end. The result averages for the
accuracy and F1 metrics are as follows: Proposed method
accuracy average over 5 iterations: 96.88%. Proposed method
with 1 MLP instead of 2 accuracy average over 5 iterations:
95.28%. Proposed method F1 average over 5 iterations: 95.80%.
Proposed method with 1 MLP instead of 2 F1 average over 5
iterations: 93.80%. This shows that using the proposed method
with 2 MLP classifiers instead of 1 indeed makes a difference.

A novel dataset for fake android anti-malware detection WIMS, June-July 2020, Biarritz, France WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure 1: Accuracy results comparison between ensemble
classifiers

Figure 2: F1 results comparison between ensemble classifiers

5 Conclusions

In this paper we introduce a novel android fake-anti malware
dataset. This dataset can be used to detect android fake-anti
malware apps pretending to be legitimate but in reality, are
malicious, through the use of appropriate classifiers. The results
indicate that even with the application of pre-built classifiers such
as Random Forest of MLP the results are very accurate. However,
we propose the use of a combination of algorithms that further
increase the accuracy and precision. Nowadays, the use of mobile
devices and especially of those utilizing the Android operating
system is very high and such a solution is necessary. However,
such a methodology can be further extended, thus in the future we
aim to look for more data that will allow us to classify by category
and apply other novel classifiers.

REFERENCES
[1] Bhattacharya, A., & Goswami, R. T. (2017). Comparative

analysis of different feature ranking techniques in data
mining-based android malware detection. In Proceedings of
the 5th International Conference on Frontiers in Intelligent
Computing: Theory and Applications (pp. 39-49). Springer,
Singapore.

[2] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018).
Significant permission identification for machine-learning-

based android malware detection. IEEE Transactions on
Industrial Informatics, 14(7), 3216-3225.

[3] Wang, C., Xu, Q., Lin, X., & Liu, S. (2018). Research on data
mining of permissions mode for Android malware detection.
Cluster Computing, 1-14.

[4] Park, J., Chun, H., & Jung, S. (2018, January). API and
permission-based classification system for Android malware
analysis. In 2018 International Conference on Information
Networking (ICOIN) (pp. 930-935). IEEE.

[5] Sharma, A., & Doegar, A. (2018). Permission-Set Based
Detection and Analysis of Android Malware. In Cyber
Security: Proceedings of CSI 2015 (pp. 231-239). Springer
Singapore.

[6] Liu, X., Leng, Y., Yang, W., Zhai, C., &Xie, T. (2018,
August). Mining Android app descriptions for permission
requirements recommendation. In 2018 IEEE 26th
International Requirements Engineering Conference (RE) (pp.
147-158). IEEE.

[7] Sen, S., Aysan, A. I., & Clark, J. A. (2018). SAFEDroid:
Using structural features for detecting Android malwares. In
Security and Privacy in Communication Networks:
SecureComm 2017 International Workshops, ATCS and
SePrIoT, Niagara Falls, ON, Canada, October 22–25, 2017,
Proceedings 13 (pp. 255-270). Springer International
Publishing.

[8] Tao, G., Zheng, Z., Guo, Z., &Lyu, M. R. (2018). MalPat:
Mining Patterns of Malicious and Benign Android Apps via
Permission-Related APIs. IEEE Transactions on Reliability,
67(1), 355-369.

[9] Bao, L., Le, T. D. B., & Lo, D. (2018, March). Mining
sandboxes: Are we there yet? In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 445-455). IEEE.

[10] Kesswani, N., Lyu, H., & Zhang, Z. (2018). Analyzing
Android App Privacy With GP-PP Model. IEEE Access, 6,
39541-39546.

[11] Souri, A., & Hosseini, R. (2018). A state-of-the-art survey of
malware detection approaches using data mining techniques.
Human-centric Computing and Information Sciences, 8(1), 3.

[12] Alzaylaee, M. K., Yerima, S. Y., &Sezer, S. (2020). DL-
Droid: Deep learning based android malware detection using
real devices. Computers & Security, 89, 101663.

[13] Gajrani, J., Agarwal, U., Laxmi, V., Bezawada, B., Gaur, M.
S., Tripathi, M., & Zemmari, A. (2020). EspyDroid+: Precise
reflection analysis of android apps. Computers & Security,
90, 101688.

[14] Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.
D., Ross, G., & Stringhini, G. (2019). MaMaDroid:
Detecting Android malware by building Markov chains of
behavioral models (extended version). ACM Transactions on
Privacy and Security (TOPS), 22(2), 1-34.

[15] Mateless, R., Rejabek, D., Margalit, O., & Moskovitch, R.
(2020). Decompiled APK based malicious code
classification. Future Generation Computer Systems.

[16] Lee, W. Y., Saxe, J., & Harang, R. (2019). SeqDroid:
Obfuscated Android Malware Detection Using Stacked
Convolutional and Recurrent Neural Networks. In Deep
Learning Applications for Cyber Security (pp. 197-210).
Springer, Cham.

[17] Arora, A., Peddoju, S. K., & Conti, M. (2019). PermPair:
Android Malware Detection using Permission Pairs. IEEE
Transactions on Information Forensics and Security.

92.00%
94.00%
96.00%
98.00%

100.00%

1 2 3 4 5

Accuracy comparison

Proposed method

Proposed method with 1 MLP instead of 2

85.00%

90.00%

95.00%

100.00%

1 2 3 4 5

F1 Comparison

Proposed method

Proposed method with 1 MLP instead of 2

