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Flexible Skylines: Dominance for Arbitrary Sets of

Monotone Functions

PAOLO CIACCIA, Università di Bologna, Italy
DAVIDE MARTINENGHI, Politecnico di Milano, Italy

Skyline and ranking queries are two popular, alternative ways of discovering interesting data in large datasets.

Skyline queries are simple to specify, as they just return the set of all non-dominated tuples, thereby provid-

ing an overall view of potentially interesting results. However, they are not equipped with any means to

accommodate user preferences or to control the cardinality of the result set. Ranking queries adopt, instead,

a speci�c scoring function to rank tuples, and can easily control the output size. While specifying a scoring

function allows one to give di�erent importance to di�erent attributes by means of, e.g., weight parameters,

choosing the “right” weights to use is known to be a hard problem.

In this paper we embrace the skyline approach by introducing an original framework able to capture user

preferences by means of constraints on the weights used in a scoring function, which is typically much easier

than specifying precise weight values. To this end, we introduce the novel concept of F -dominance, i.e.,

dominance with respect to a family of scoring functions F : a tuple t is said to F -dominate tuple s when t is

always better than or equal to s according to all the functions in F .

Based on F -dominance, we present two �exible skyline (F-skyline) operators, both returning a subset

of the skyline: nd, characterizing the set of non-F -dominated tuples; po, referring to the tuples that are

also potentially optimal, i.e., best according to some function in F . While nd and po coincide and reduce

to the traditional skyline when F is the family of all monotone scoring functions, their behaviors di�er

when subsets thereof are considered. We discuss the formal properties of these new operators, show how to

implement them e�ciently, and evaluate them on both synthetic and real datasets.

CCS Concepts: • Information systems → Database query processing.

Additional Key Words and Phrases: Skyline queries, Ranking queries, Monotone functions
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1 INTRODUCTION

Determining the most interesting objects in a dataset is a fundamental task in many modern data-
intensive scenarios, including data mining and database systems.Whenmany, possibly con�icting,
criteria (such as those represented by the di�erent attributes of the tuples in a dataset) have to be
simultaneously met in the best possible way according to the user’s preferences, a problem known
as multi-objective optimization, three main approaches are usually considered [20]:
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Table 1. Pros and cons of multi-objective optimization approaches.

Evaluation criteria ↓ Queries→ Lexicographic Ranking Skyline

Simplicity of formulation Yes No Yes
Overall view of interesting results No No Yes
Control of result cardinality Yes Yes No
Trade-o� among attributes No Yes No

• The lexicographic approach [27], in which a strict priority among the attributes is established.
Thus, if a tuple is better than another on the most important attribute, all other attributes
play no role in determining the relative order of the two tuples.
• The ranking queries (or top-k) approach [25], where the original multi-objective problem is
reduced to a single-objective problem by using a so-called scoring function, in which parame-
ters such as weights are used both to adjust scales and to accommodate the importance that
the user gives to the di�erent attributes.
• The skyline approach [10], which returns all the non-dominated tuples (tuple t dominates
tuple s i� t is no worse than s on all the attributes, and strictly better on at least one).

As argued in [20] and virtually in all papers focusing on a speci�c approach, e ach o f these 
methods has pros and cons (also refer to Table 1). For instance, consider a user who wants to buy a 
used car. The relevant attributes for an informed decision are, say, price and mileage (as in Figure 1), 
and the user cares more about the former than the latter. The point of view of lexicographic queries 
is too narrow, in that they enforce a linear priority between attributes, and even the smallest 
di�erence in the most important attribute can never be compensated by the other attributes. In 
our case, cars would be ordered by price, with mileage only used to break ties. The result of a 
ranking query heavily depends on how user preferences are translated into a particular choice 
of weights in the scoring function. This is a di�cult ta sk, and it  is  usually hard to  predict the 
e�ects on ranking of changing one or more parameters. For instance, the best car according to
the scoring function 0.7 · Price + 0.

.

3 · Mileage is
.

C1, whereas by slightly changing the weights, 
e.g., by using the scoring function 0 6 · Price + 0 4 · Mileage, the best car would be C4. Finally,
skyline queries provide a good overview of potentially interesting results, but may contain too 
many tuples to choose from and o�er no way to express user preferences (since all attributes have 
the same importance). In our example, the skyline consists of �ve cars: C1, C2, C4, C6, and C7.
In this paper we embrace the skyline approach and aim to introduce a novel, �exible framework 

able to capture user preferences by means of constraints. As a bene�cial side e�ect, this also entails 
a reduction of the result size with respect to the standard skyline. Our approach, which can some-
how be regarded as the incorporation of ranking principles into skyline queries, is quite di�erent 
from that of prioritized skyline (p-skyline) queries [32], in which user preferences are integrated by 
introducing a partial order of priorities between attributes. Indeed, p-skylines, which essentially 
combine lexicographic and skyline queries, inherit a problem common to both, in that they allow 
no trade-o� between attributes (see Table 1). For instance, with reference to Figure 1, assuming 
again a preference for low prices, a p-skyline query would return only car C1, regardless of its 
high mileage (note that C1 would still be the only p-skyline result if its mileage were, say, 10 times 
larger and its price only slightly cheaper than other cars).
Based on the concepts of skyline and scoring functions, in this paper we introduce the notion 

of �exible skyline (F-skyline) queries. Similarly to p-skylines, F-skylines can take into account the 
di�erent importance of di�erent attributes. However, unlike p-skylines, in which a strict priority 
between attributes is assumed, F-skylines can model user preferences by means of constraints on
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CarID Price (×103) Mileage (×103)
C1 10 35
C2 18 25
C3 20 30
C4 20 15
C5 25 20
C6 35 10
C7 40 5
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Fig. 1. The UsedCars relation from Example 1.1 and a graphical representation of its tuples. With scoring
functions of form F = {wP Price + wMMileage | wP ≥ wM }, C1, C2, and C4 are non-F -dominated and
C1 and C4 are also potentially optimal. The thick contour separates the cars in the skyline (represented as
filled circles) from the other cars (empty circles).

the weights used in a scoring function, thus allowing for a much greater �exibility. Furthermore, F-
skylinesmay consider arbitrary (typically in�nite) families of monotone scoring functions. Overall,
this leads to the novel concept ofF -dominance: tuple t F -dominates tuple s when t is always better
than or equal to s according to all the scoring functions in F (and strictly better for at least one
function in F ).
We present two F-skyline operators, both returning a subset of the skyline: nd, characterizing

the set of non-F -dominated tuples; po, referring to the tuples that are potentially optimal, i.e.,
the only best option according to some function in F . While nd and po coincide and reduce to
the traditional skyline when F is the family of all monotone scoring functions (in which case
F -dominance reduces to standard dominance), their behaviors di�er when subsets thereof are
considered, with po always being a subset of nd.

Example 1.1. Consider the relation UsedCars (CarID,Price,Mileage) shown in Figure 1, forwhich
the skyline consists of cars C1, C2, C4, C6, and C7. With the F-skyline framework, we can translate
the preference for cheaper cars into a constraint on weights of a scoring function, e.g., by focus-
ing on the family F = {wPPrice + wMMileage | wP ≥ wM }, in which price weighs more than
mileage, since wP ≥ wM . In such a case, the set of non-F -dominated cars, i.e., nd, includes C1,
C2, and C4, whereas C6 and C7 are both F -dominated by C4, which is reasonable since they both
have a relatively high price. Out of the tuples in nd, only C1 and C4 are also part of po; indeed
C1 is the best option when, say, wP = 0.9 and wM = 0.1, while C4 wins when weights are more
comparable, e.g., when wP = 0.6 and wM = 0.4. Also note that car C2 is non-F -dominated, but
not potentially optimal, since there is no combination of weight values satisfying the constraint
wP ≥ wM making it a top-1 result.

We advocate the use of constraints on weights as a practical way to accommodate user prefer-
ences into the skyline framework, thus somehow preserving the simplicity of formulation typical
of skyline queries. Interestingly, this policy is adopted in the �eld of Multi-Attribute Decision The-
ory, where it commonly goes under the banner of “preference programming” (see, e.g., [39]), and
several techniques have been developed to assist decision makers in eliciting their preferences.
Besides constraints such as the one used in Example 1.1 (also called a weak ranking [17]), user’s
feedback on pairs of alternatives can be fruitfully exploited to issue suitable constraints [38]. For



instance, a preference for C4 over C6 induces the constraintwP · 20 +wM · 15 ≤ wP · 35 +wM · 10,
i.e., wP ≥ wM/3; if such a constraint held instead of the one used in Example 1.1, then C7 would
belong to both nd and po (while C6 would still belong to neither). Another relevant scenario for
F-skyline applicability is when weights of a scoring function are learned via crowdsourcing tasks
(see, e.g., [14] and references therein for strategies for collecting preferences between tuples), in
which case the remaining uncertainty can still be modeled as constraints (e.g., interval constraints
around an average value, also known as �xed bounds [17]). We observe that our framework can
generally deal with arbitrary (linear) constraints on weights, thus being able to express complex
preferences such as “attribute C is more important than attribute A, but no more than twice as
important”, which might be encountered by decision makers in multicriteria analysis [39].
With respect to the other criteria in Table 1, F-skylines clearly allow one to establish a trade-o�

among di�erent attributes. They inherit from skyline queries the capability of providing an overall
view of interesting results, but can now focus on speci�c parts of the skyline, depending on the
user preferences. For instance, the constraint wP ≥ wM in Example 1.1 allows one to focus on
the upper-left part of the skyline, whereas wM ≥ wP would concentrate on the lower-right part.
Constraints are also e�ective in controlling the cardinality of the result, albeit implicitly, in that
the tighter the constraints, the more restricted the result set.

After precisely characterizing the core notions used for de�ning thend and po operators (namely,
F -dominance and F -dominance region), in Section 3 we study the basic properties of F-skylines
and their relationship with traditional skylines, as well as their behavior as F and/or the input
dataset change. In Section 4 we address the problem of how to e�ciently compute nd and po re-
sults for a large class of scoring functions, which includes as particular cases all theweighted power
means. For computing nd, we provide two alternative approaches, one in which F -dominance
is tested via Linear Programming, the other based on the F -dominance region of a tuple. The
evaluation of po can also be carried through with two alternative methods, both based on Linear
Programming. In Section 5, we introduce several orthogonal opportunities for e�ciently imple-
menting algorithms computing nd and po, giving rise to more than 10 algorithmic alternatives. In
Section 6, we assess all algorithmic variants on a number of synthetic and real datasets, and discuss
how e�ciency varies with respect to several parameters, including the size and dimensionality of
the datasets, the number of constraints, and the family of scoring functions in use. Additionally,
we evaluate the e�ectiveness of F-skylines in reducing the cardinality of the result with respect
to classical skylines, and compare the obtained results with those of both skylines and ranking
queries. Our experimental �ndings show that F-skylines admit e�cient implementations in most
practical scenarios and provide an e�ective way to reduce the cardinality of the result set. Sec-
tion 7 discusses related work and Section 8 concludes. The four appendices report, respectively, a
detailed analysis of the behavior of weighted power means, an extension of our results to cover
all cases in which the set of scoring functions fails to distinguish all possible tuples, additional
experiments, and all the proofs of the claims included in the main body of the paper.

Summarizing, the main contributions of this paper are as follows.
(1) We introduce two operators, called F-skylines, incorporating user preferences into the sky-

line framework.
(2) We detail the basic formal properties of F-skylines for arbitrary families of monotone scoring

functions.
(3) We study the application of F-skylines when the scoring functions in F are linear in the

weights (and arbitrary monotone transforms are applied to attribute values).
(4) We discuss two alternative approaches to checking F -dominance (thus to computing nd).
(5) For computing potentially optimal tuples (po), we propose two methods, both based on

Linear Programming.
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(6) We introduce more than 10 algorithmic alternatives for e�ciently computing nd and po,
all of which are experimentally analyzed in a number of di�erent experimental settings including
synthetic as well as real datasets.

(7) We evaluate the e�ectiveness of F-skylines (i.e., their ability to restrict the set of tuples of
interest) by considering their relationship with both skylines and ranking queries.

2 PRELIMINARIES

Consider a relational schema R+ (A1, . . . ,Ad ,B1, . . . ,Bz ), with d ≥ 1 and z ≥ 0, where the �rst
d attributes are numeric attributes relevant for the analysis to follow, while the remaining ones
are supplemental attributes that will be henceforth disregarded. We denote the projection of R+ on
A1, . . . ,Ad as R. Without loss of generality, we assume that the domain of each attributeAi is [0, 1],
since each numeric domain could be normalized in this interval. In this paper, we consider lower
values to be better than higher ones, but the opposite convention would of course also be possible.
A tuple t over R is a function that associates a value vi in [0, 1] with each attribute Ai ; t is also
written as 〈v1, . . . ,vd 〉, and each vi may be denoted by t[Ai ]. Given the geometric interpretation
of a tuple in this context, in the following we sometimes also call it a point. An instance over R is
a set of tuples over R.1 In the following, we refer to an instance r over R.

De�nition 2.1 (Dominance and skyline). Let s, t be tuples over R. Then, t dominates s , written
t ≺ s , if (i) ∀i . 1 ≤ i ≤ d → t[Ai ] ≤ s[Ai ], and (ii) ∃j . 1 ≤ j ≤ d ∧ t[Aj ] < s[Aj ]. The skyline of r ,
denoted by Sky(r ), is de�ned as:

Sky(r ) = {t ∈ r | ∄s ∈ r . s ≺ t }. (1)

An equivalent de�nition of skyline may be derived by resorting to the notion of monotone
scoring functions, i.e., those monotone functions that can be applied to tuples over R to obtain a
non-negative value representing a score.

De�nition 2.2 (Monotone scoring function). A scoring function f is a function f : [0, 1]d → R+.
For a tuple t = 〈v1, . . . ,vd 〉 over R, the value f (v1, . . . ,vd ) is called the score of t , also written f (t ).
Function f is monotone if, for any tuples t , s over R, the following holds:

(∀i ∈ {1, . . . ,d }. t[Ai ] ≤ s[Ai ]) → f (t ) ≤ f (s ). (2)

The (in�nite) set of all monotone scoring functions is denoted by MF.

Note that, as a consequence of our preference for lower attribute values, lower score values are
also preferred over higher ones. Intuitively, scoring functions could be thought of as measuring a
sort of distance from the “origin” tuple 〈0, . . . , 0〉, and we prefer tuples closer to the origin.

It is well known [10] that, for every tuple t in the skyline, there exists a monotone scoring
function such that t minimizes that scoring function. Therefore, as formally shown in [10], the
skyline of r can be equivalently speci�ed as:

Sky(r ) = {t ∈ r | ∃f ∈ MF. ∀s ∈ r . s , t → f (t ) < f (s )}. (3)

The previous expressions emphasize two possible ways to regard a skyline: (i) as the set of all
non-dominated tuples (Equation (1)), or (ii) as the set of potentially optimal tuples, i.e., those that are
strictly better than all the others according to at least onemonotone scoring function (Equation (3)).
As we shall see in Section 3, although these two views coincide here, their underlying concepts
are di�erent.

1In order to simplify the presentation, we assume that the projection of R+ over A1, . . . , Ad does not generate duplicates.

The extension to the general case of our results is straightforward.



Example 2.3. Let r = {t1, t2, t3}, where t1 = 〈1, 2〉, t2 = 〈1, 3〉, t3 = 〈4, 1〉. According to De�ni-
tion 2.1, the skyline of r is Sky(r ) = {t1, t3}, since t2 is dominated by t1, while neither t1 nor t3
are dominated. As for the equivalent speci�cation given in (3), t1 is in the skyline because there
exists a monotone function f1 (x ,y) = x + y such that f1 (t1) < f1 (t2) and f1 (t1) < f1 (t3). Similarly,
t3 is the optimal point in r according to function f2 (x ,y) = y, and thus t3 is in the skyline. The
reason why in (3) a strict inequality is required (i.e., f (t ) < f (s )) is evident if one looks at tuple t2,
for which there is no monotone function that makes it the only optimal point in r . Indeed, even
though, for f3 (x ,y) = x , t2 reaches the best value obtainable for tuples in r , f3 (t2) is not strictly
smaller than f3 (t1), and thus t2 is not a skyline point.

3 MAIN DEFINITIONS AND PROBLEM STATEMENT

We now adopt the two di�erent views of skylines to introduce two corresponding operators, called
�exible skyline operators, whose behavior is the same as Sky, but applied to a limited set of mono-
tone scoring functions F ⊆ MF. In the following, we always assume F to be non-empty, and,
for simplicity, although the main focus of our results and algorithms to follow is on the in�nite
case, we will sometimes o�er examples in which F is a �nite set. In order to simplify the pre-
sentation, we initially consider that the set of monotone scoring functions F satis�es the natural
property of being tuple-distinguishing, as de�ned below (the case of sets of functions that are not
tuple-distinguishing is analyzed in Section 4.3 and in Appendix B).

De�nition 3.1 (Tuple-distinguishing set). A set F of scoring functions is said to be tuple-

distinguishing if the following holds:

∀t , s ∈ [0, 1]d . t , s → (∃f ∈ F . f (t ) , f (s )) . (4)

Intuitively, F satis�es Equation (4) if F is “rich enough” to distinguish between any two di�er-
ent tuples, i.e., if there is at least one function in F associating two di�erent scores with any two
distinct tuples. Note that the assumption of tuple-distinguishability entails that, for each attribute
Ai , there exists at least one function in F that depends on Ai .

2

Example 3.2. Assume d = 2 and consider the monotone scoring function f1 (x ,y) = x + y and
the set F1 = { f1}. Set F1 is not tuple-distinguishing. Indeed, f1 (0, 1) = f1 (1, 0) = 1, and therefore
tuples 〈0, 1〉 and 〈1, 0〉 cannot be distinguished by any function in F1.

Consider now d = 3 and the set of functions F2 = { f2, f3}, with f2 (x ,y, z) = x + 2y and
f3 (x ,y, z) = x + 3y. Note that none of the functions in F2 depends on the third attribute, and,
indeed, set F2 is not tuple-distinguishing, as it fails to distinguish between 〈0, 0, 0〉 and 〈0, 0, 1〉,
since f2 (0, 0, 0) = f2 (0, 0, 1) = f3 (0, 0, 0) = f3 (0, 0, 1) = 0.

We now extend the notion of dominance introduced in De�nition 2.1 so as to take into account
the set of scoring functions under consideration.

De�nition 3.3 (F -Dominance). Let F be a set of monotone scoring functions. A tuple t F -
dominates another tuple s , t , denoted by t ≺F s , if ∀f ∈ F . f (t ) ≤ f (s ).

An immediate consequence of De�nition 3.3, stated in the following corollary, is that F -
dominance between tuples cannot be lost by reducing the set of scoring functions.

Corollary 3.4. For any sets F and F ′ of monotone scoring functions, the following holds:

if F ⊂ F ′ then ≺F ′⊆≺F . (5)

In particular, ≺⊆≺F , i.e., dominance entails F -dominance.

2When some attributes are omitted in all the functions in F , we fall into the same case considered for subspace skylines [37], 
which we discuss in Section 7.



Flexible Skylines: Dominance for Arbitrary Sets of Monotone Functions

However, when considering a larger set of functions, F -dominance between tuples may not be
preserved, as shown in Example 3.5 below.

Example 3.5. Assume d = 2 and consider the tuples t = 〈0.5, 0.5〉, s = 〈0, 1〉, the monotone
scoring functions f1 (x ,y) = x + y and f2 (x ,y) = x + 2y, and the set F = { f1, f2}. We have t ≺F s ,
since f1 (t ) = f1 (s ) = 1 and f2 (t ) = 1.5 < f2 (s ) = 2, and therefore the condition in De�nition 3.3
holds. However, t 6≺MFs , since MF includes, among others, f3 (x ,y) = 2x +y, for which f3 (t ) = 1.5 >
f3 (s ) = 1, thereby violating the condition in De�nition 3.3.

Another consequence of De�nition 3.3 is the that F -dominance is transitive.

Corollary 3.6. For any set F of monotone scoring functions and any tuples t , s , u, the following

holds:

if t ≺F s and s ≺F u then t ≺F u . (6)

With De�nition 3.3 at hand, we are now ready to introduce the �rst �exible skyline operator,
called non-dominated �exible skyline, which consists of the set of non-F -dominated tuples in r , as
speci�ed in De�nition 3.7 below.

De�nition 3.7 (nd). Let F ⊆ MF be a set of monotone scoring functions. The non-dominated

�exible skyline of r with respect to F , denoted by nd(r ;F ), is de�ned as the following set of
tuples:

nd(r ;F ) = {t ∈ r | ∄s ∈ r . s ≺F t }. (7)

Note that the right-hand side of Equation (7) is similar to that of Equation (1), where ≺ has been
replaced by ≺F . Observe that, clearly, ≺MF coincides with ≺.
The second �exible skyline operator, called potentially optimal �exible skyline, returns the tuples

that are best (i.e., top-1) according to some scoring function in F , as speci�ed in De�nition 3.8
below.

De�nition 3.8 (po). Let F ⊆ MF be a set of monotone scoring functions. The potentially optimal

�exible skyline of r with respect to F , denoted by po(r ;F ), is de�ned as:

po(r ;F ) = {t ∈ r | ∃f ∈ F . ∀s ∈ r . s , t → f (t ) < f (s )}. (8)

Again, similarly to nd, the only di�erence between the right-hand side of Equation (8) and that
of Equation (3) is that MF has been replaced by F .

Example 3.9. Let r = {t1, t2, t3}, where t1 = 〈1, 2〉, t2 = 〈1, 3〉, t3 = 〈4, 1〉, as in Example 2.3, and
consider the set F = { f1, f2}, where f1 (x ,y) = x and f2 (x ,y) = y. Here, nd(r ;F ) = {t1, t3}, since
t2 is F -dominated by t1. Tuple t3 is also potentially optimal with respect to F , since f2 (t3) < f2 (t1)

and f2 (t3) < f2 (t2). Tuples t1 and t2, instead, are never the single best alternative for any of the
functions in F , since f1 (t1) = f1 (t2), and thus po(r ;F ) = {t3}.
Although the above example might suggest that F-skylines are somehow similar to dynamic sky-

lines [35], this only holds when we consider �nite sets of functions.3 The next example illustrates
F-skylines with an in�nite set of scoring functions.

Example 3.10. Consider the tuples of Example 1.1, shown in Figure 1, and the set F =

{wPPrice+wMMileage | wP ≥ wM }. Car C6 is F -dominated by car C4, since, for every function
f in F we have f (C4) < f (C6). Indeed, f (C4) = wP · 20+wM · 15 < wP · 35+wM · 10 = f (C6) re-
duces to 3wP > wM , which is clearly entailed bywP ≥ wM . With similar arguments, we conclude
that C1≺F C3, C2≺F C5, and C4≺F C7, and, thus, that nd(UsedCars;F ) = {C1,C2,C4}. Clearly,
3In Section 7, we discuss dynamic skylines more in detail.



since C6, C3, C5, and C7 are never better than their F -dominating cars, such cars are not poten-
tially optimal with respect to F . Car C1 is the best when, say, wP = 1 and wM = 0, whereas
C4 is the best when, say, wP = wM , and thus both C1 and C4 are potentially optimal. Car C2,
although not F -dominated by any other car in UsedCars, is never better than both C1 and C4.
Indeed, f (C2) = wP · 18 + wM · 25 < f (C1) = wP · 10 + wM · 35 reduces to 4wP < 5wM , while
f (C2) < f (C4) = wP · 20 +wM · 15 reduces to wP > 5wM . Clearly, 4wP < 5wM and wP > 5wM

cannot be both satis�ed at the same time. Therefore, po(UsedCars;F ) = {C1,C4}.

In the remainder of the paper we discuss the main properties of these operators and study how
to compute them e�ciently, thus addressing Problem 1 below.

Problem 1. To e�ciently compute nd(r ;F ) and po(r ;F ) for any given instance r and set of

monotone scoring functions F .

Table 2. Table of notation.

Notation Meaning

t[Ai ] Value of tuple t on attribute Ai

MF Set of all monotone scoring functions
r A generic instance of cardinality N over a schema A1, . . . ,Ad

Sky(r ) Skyline of r
F A generic set of monotone scoring functions
t ≺F s Tuple t F -dominates tuple s
nd(r ;F ) Non-dominated �exible skyline of r with respect to F
po(r ;F ) Potentially optimal �exible skyline of r with respect to F
W Set of all normalized weight vectors
C A set of c (linear) constraints on weights
W (C) Set of normalized weight vectors satisfying the set of constraints C
DR (t ;F ) F -dominance region of a tuple t under a set of scoring functions F

3.1 Basic Properties

In the following we present basic facts about nd and po, and further investigate their relationship
with Sky. For convenience, a summary of the main notation adopted in this paper is o�ered in
Table 2.

We start by observing that, as a direct consequence of the de�nitions, in the limit case in which
the set F of scoring functions coincides with MF, both po and nd coincide with the skyline:

po(r ; MF) = nd(r ; MF) = Sky(r ). (9)

In the more general case, which is our main focus, it can be proved that nd is a subset of the skyline
and po is a subset of nd, as the following Proposition 3.11 states.

Proposition 3.11. For any set F of monotone scoring functions, the following relationships hold:

po(r ;F ) ⊆ nd(r ;F ) ⊆ Sky(r ). (10)

A major concept that we exploit in order to check F -dominance is that of the F -dominance 
region of a tuple t .
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De�nition 3.12. The F -dominance region DR (t ;F ) of a tuple t under a set F of monotone scor-
ing functions is the set of all points in [0, 1]d that are F -dominated by t :

DR (t ;F ) = {s ∈ [0, 1]d | t ≺F s}. (11)

The following Example provides some intuition on Proposition 3.11 and De�nition 3.12.

Example 3.13. Let F be the set of all the linear scoring functions of the form f (x ,y) = w1x+w2y

such that w1 ≥ w2. Consider tuples t1 = 〈0.3, 0.6〉, t2 = 〈0.4, 0.45〉, t3 = 〈0.5, 0.2〉, t4 = 〈0.6, 0.15〉,
and instance r = {t1, t2, t3, t4}, shown in Figure 2a. We have

po(r ;F ) = {t1, t3} ⊂ nd(r ;F ) = {t1, t2, t3} ⊂ Sky(r ) = r .

To see this, �rst observe that no tuple in r dominates any other tuple in r , and therefore Sky(r ) =
r . However, we note that t3 ≺F t4: indeed, checking whether f (t3) ≤ f (t4) amounts to checking
whether w10.5 +w20.2 ≤ w10.6 +w20.15, that is, w1 (0.5 − 0.6) ≤ w2 (0.15 − 0.2), which is always
true in F , since w1 ≥ w2. Therefore t4 < nd(r ;F ). To further emphasize this, Figure 2a shows in
gray the region of [0, 1]d whose points (including tuple t4) are F -dominated by some tuple in r ,
i.e., ∪t ∈rDR (t ;F ).
To see that t2 < po(r ;F ), note that there is no function f ∈ F for which both f (t2) < f (t1) and

f (t2) < f (t3) hold, as there are no non-negativew1,w2 satisfying the system of inequalities

{ w1 (0.4 − 0.3) < w2 (0.6 − 0.45), w1 (0.4 − 0.5) < w2 (0.2 − 0.45) }.

The case on which we focus is when the set F is de�ned by starting with an in�nite family
of scoring functions and then some constraints on the weight parameters of such functions are
added. To this end, letW be the set of all normalized weight vectors, i.e.,W ⊆ [0, 1]d and, for

eachW = (w1, . . . ,wd ) ∈ W , we have
∑d

i=1wi = 1. Let C be a set of (linear) constraints onweights,
and denote withW (C) the subset ofW that satis�es C, i.e.,W (C) = {W ∈ W | C (W ) = true}.4
Given two sets of constraints C1 and C2 applied to the same family F , and leading to the sets F1
and F2, respectively, we say that C1 is more restrictive than C2 ifW (C1) ⊂ W (C2), thus F1 ⊆ F2.

The following Proposition 3.14, which has general validity, shows that, the more the constraints
are restrictive, the more the results of both nd and po reduce.

Proposition 3.14. nd and po are monotone operators with respect to the set of scoring functions,

i.e., for any two sets F1 and F2 of monotone scoring functions such that F1 ⊆ F2, the following

relationships hold:

po(r ;F1) ⊆ po(r ;F2), (12)

nd(r ;F1) ⊆ nd(r ;F2). (13)

An immediate consequence of De�nition 3.12 and Corollary 3.4 is that the F -dominance region
grows larger for smaller sets of functions.

Corollary 3.15. For any tuple t over R and any two sets F1 and F2 of monotone scoring functions

such that F1 ⊆ F2, the following holds:
DR (t ;F1) ⊇ DR (t ;F2). (14)

Example 3.13 (cont.). Let F be the set of all the linear scoring functions of the form f (x ,y) =

w1x +w2y such that C = {w1 ≥ 3w2} holds. The F -dominance regions of t1, t2, t3, t4 are shown in

4Henceforth, we always assume that C is not contradictory, i.e.,W (C) , ∅ and, consequently, the so-derived F is non-

empty.
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(c) C = {3w1 ≥ w2}.
Fig. 2. Tuples from Example 3.13 in [0, 1]2. F -dominance regions in gray, where F is the set of monotone
scoring functions of the form f (t ) = w1t[A1] +w2t[A2] subject to a set of constraints C on the weights.

gray in Figure 2b. Note that this set of constraints is more restrictive thanw1 ≥ w2, and thus each
F -dominance region contains the corresponding region shown in Figure 2a. We have

po(r ;F ) = {t1} = nd(r ;F ).

Assume now that F is of the same form but is, instead, subject to C = {3w1 ≥ w2}. This time,
the constraints are less restrictive than w1 ≥ w2, and thus each F -dominance region (shown in
Figure 2c) is contained in the corresponding region shown in Figure 2a. Here we have

po(r ;F ) = {t1, t3, t4} ⊂ {t1, t2, t3, t4} = nd(r ;F )

3.2 Further properties

We now present further properties of our F-skyline operators, which extend their applicability
beyond the core methods and algorithms illustrated in the next sections.
One may wonder whether having nd (resp., po) una�ected by changes in the set of scoring

functions would also leave po (resp., nd) unaltered. This is not the case, as the following example
shows.

Example 3.16. Consider the instance r = {t1, t2, t3}, with t1 = 〈0.3, 0.7〉, t2 = 〈0.65, 0.3〉, and
t3 = 〈0.4, 0.4〉, and the monotone scoring functions f1 (x ,y) = x , f2 (x ,y) = y, and f3 (x ,y) = x + y.
Let F1 = { f1, f2} and F2 = { f1, f2, f3}. We have nd(r ;F1) = nd(r ;F2) = r , but po(r ;F1) = {t1, t2} ⊂
po(r ;F2) = r , i.e., po changes even if nd remains unchanged.
Consider now also t4 = 〈0.6, 0.6〉, the instance r ′ = {t1, t2, t4}, and let F ′1 = { f1, f3} and F ′2 =
{ f1, f2, f3}. We have po(r ′;F ′1 ) = po(r ′;F ′2 ) = {t1, t2}, but nd(r ′;F ′1 ) = {t1, t2} ⊂ nd(r ′;F ′2 ) = r ′,
i.e., nd changes even if po remains unchanged.

The next proposition highlights the di�erent behavior of nd and po when unions of sets of
scoring functions are considered.

Proposition 3.17. Let F = F1 ∪ . . .∪Fm , where each Fi , 1 ≤ i ≤ m, is a set of monotone scoring

functions. Then:

nd(r ;F ) ⊇ nd(r ;F1) ∪ . . . ∪ nd(r ;Fm ) (15)

po(r ;F ) = po(r ;F1) ∪ . . . ∪ po(r ;Fm ) (16)
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Note that there are cases in which the inclusion in (15) holds strictly, as demonstrated in Ex-
ample 3.19 below. However, no tuple in the left-hand side but not in the right-hand side of (15)
can be potentially optimal, as stated in the following corollary, which is a direct consequence of
Propositions 3.11 and 3.17.

Corollary 3.18. Let F = F1 ∪ . . . ∪ Fm , where each Fi , 1 ≤ i ≤ m, is a set of monotone scoring

functions. If t ∈ nd(r ;F ) \ ∪mi=1nd(r ;Fi ) then t < po(r ;F ).

Example 3.19. Consider the instance r = {t1, t2, t3}, with t1 = 〈0.3, 0.7〉, t2 = 〈0.7, 0.3〉, and
t3 = 〈0.4, 0.4〉. Let F1 = { f11, f12}, F2 = { f21, f22}, and F = F1 ∪ F2, with f11 (x ,y) = x , f12 (x ,y) =
x + 0.1y and f21 (x ,y) = y, f22 (x ,y) = 0.1x + y. We have nd(r ;F1) = {t1}, nd(r ;F2) = {t2}, yet
nd(r ;F ) = {t1, t2, t3} ⊃ {t1, t2} = nd(r ;F1) ∪ nd(r ;F2). Note that po(r ;F1) = {t1}, po(r ;F2) = {t2},
and po(r ;F ) = {t1, t2} = t3.

For the intersection of families of scoring functions (F = F1 ∩ . . .∩Fm), the following relation-
ships directly follow from Proposition 3.14:

nd(r ;F ) ⊆ nd(r ;F1) ∩ . . . ∩ nd(r ;Fm ) (17)

po(r ;F ) ⊆ po(r ;F1) ∩ . . . ∩ po(r ;Fm ) (18)

As the following example shows, there are cases in which both inclusions are strict.

Example 3.20. Let F1 = { f1, f3, f4}, F2 = { f2, f3, f4} and F = F1 ∩ F2 = { f3, f4}, with f1 (x ,y) =

0.1x+y, f2 (x ,y) = 0.01x+y, f3 (x ,y) = x+y, f4 (x ,y) = x+0.1y. Consider a relation r = {t1, t2}, with
t1 = 〈0.8, 0.1〉 and t2 = 〈0.1, 0.2〉. We have nd(r ;F1) = po(r ;F1) = nd(r ;F2) = po(r ;F2) = {t1, t2},
but nd(r ;F ) = po(r ;F ) = {t2}.

We have so far considered how the behavior of our operators changes as the set of scoring
functions changes.We now state an anti-monotonic property ofnd and po regarding their behavior
with respect to changes in the input relation.

Proposition 3.21. Let r and r ′ be two instances over R with r ⊂ r ′. For any set of monotone

scoring functions F , the following holds:

• nd(r ′;F ) ∩ r ⊆ nd(r ;F ),

• po(r ′;F ) ∩ r ⊆ po(r ;F ).

The above proposition guarantees that, if a tuple t ∈ nd(r ′;F ) (respectively, t ∈ po(r ′;F )) is
also a tuple in r , then t also belongs to nd(r ;F ) (respectively, po(r ;F )). Thus, if one shrinks a
dataset r ′ by retaining only a subset r of its tuples, then all tuples in nd (resp., po) that are still
present will continue to be in nd (resp., po).
When the input data consists of several, possibly distributed relations (sharing the same schema),

i.e., r = r1 ∪ . . . ∪ rm , the computation of nd(r ;F ) and po(r ,F ) can rely on the following result,
which mimics strategies commonly adopted for skylines [10].

Proposition 3.22. Let r = r1 ∪ . . . ∪ rm , where ri , 1 ≤ i ≤ m, are relations over R, and F be a set

of monotone scoring functions. Then:

nd(r ;F ) = nd(nd(r1;F ) ∪ . . . ∪ nd(rm ;F );F ), (19)

po(r ;F ) = po(po(r1;F ) ∪ . . . ∪ po(rm ;F );F ). (20)

4 CHECKING F -DOMINANCE

When F is a �nite set, determining nd and po can be easily done by case enumeration. However,
most interesting cases occur when F is an in�nite family of scoring functions, possibly restricted



by a set of constraints on weight parameters. Since devising a method for checking F -dominance
in the general case may be challenging as well as computationally prohibitive, in this section we
discuss e�cient strategies for computing both nd and po when each function in F is what we
call a monotonically-transformed, linear-in-the-weights (MLW ) function, i.e., a function with the
following form

fW (t ) = h *
,

d
∑

i=1

wiдi (t[Ai ])+
-
, (21)

whereW = (w1, . . . ,wd ) ∈ W (C), C is a set of linear constraints, and allдi ’s andh are continuous,
monotone transforms such that theдi ’s andh are all either i) non-decreasing, or ii) non-increasing.
In the formal results we present, we distinguish the two cases by means of the Λ �ag, where Λ = 1
in case i, Λ = −1 in case ii. Henceforth, we refer to the дi (t[Ai ])’s as the marginal scores of tuple t .

The class of MLW functions covers the majority of practically relevant cases when considering
monotone scoring functions. For instance, they include commonly used (weighted) linear functions

(fW (t ) =
∑d

i=1wit[Ai ]), but also, say, quadratic (f
W (t ) =

√

∑d
i=1wit[Ai ]2) and harmonic (fW (t ) =

(
∑d

i=1wit[Ai ]
−1)−1) means. Such a class is also very general, since theh andдi ’s transforms account

for arbitrary, monotone, non-linear extensions, e.g., fW (t ) = exp(
∑d

i=1wi log
i (1 + t[Ai ])).

Unless otherwise stated, F indicates a homogeneous family of MLW functions such that any
two functions in F share the same set of transforms h,д1, . . . ,дd . At the end of Section 4.2, we
discuss how non-homogeneous families can be dealt with in our framework.

4.1 Computing non-dominated tuples

In this section we introduce the main tools for determining the set of non-dominated tuples
nd(r ;F ), where F is a set of MLW functions.
Our �rst result shows that checking F -dominance forMLW functions has polynomial complex-

ity.

Theorem 4.1 (F -dominance test). Let F be a set of MLW functions subject to a set C =
{C1, . . . ,Cc } of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}). Then,

t ≺F s i� the following linear programming problem (LP) in the variablesW = (w1, . . . ,wd ) has a

non-negative solution:

minimize Λ ·∑d
i=1wi (дi (s[Ai ]) − дi (t[Ai ])) (22)

subject to wi ∈ [0, 1] i ∈ {1, . . . ,d }
∑d

i=1wi = 1
∑d

i=1 ajiwi ≤ kj j ∈ {1, . . . , c}.

Example 3.13 (cont.). In order to check whether t3 ≺F t4, according to Theorem 4.1 it su�ces to
check whether the following LP has a non-negative solution:

minimize w1 (0.6 − 0.5) +w2 (0.15 − 0.2)
subject to w1,w2 ∈ [0, 1],w1 +w2 = 1,w2 ≤ w1,

which it does, e.g., by takingw1 = 1 andw2 = 0.

Computing nd(r ;F ) using Theorem 4.1 is likely to be time-consuming, since a di�erent LP
2problem needs to be solved for each of the O (N ) F -dominance tests implied by De�nition 3.7, 

where N is the cardinality of the dataset. An alternative approach is to explicitly compute the
F -dominance regions of tuples, and then discard those tuples that belong to at least one of such
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regions. The advantage of this approach is that the computation of the F -dominance region of a
tuple t can be performed just once, thus independently of how many F -dominance tests involve t .
Furthermore, as shown below, the cost of the most expensive component (i.e., vertex enumeration
of a polytope) of the calculation of F -dominance regions has to be paid just once for all tuples
(rather than once per tuple).

In order to compute DR (t ;F ), a fundamental observation is that, for any set C of linear con-
straints onweights,W (C) is a convex polytope contained in the standard (or unit) (d−1)-simplex.5

We have the following major result.

Theorem 4.2 (F -dominance region). Let F be a set of MLW functions subject to a set C =
{C1, . . . ,Cc } of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (j ∈ {1, . . . , c}). Let

W (1), . . . ,W (q ) be the vertices ofW (C). The dominance region DR (t ;F ) of a tuple t under F is the

locus of points s in [0, 1]d de�ned by the q inequalities:

Λ ·
d
∑

i=1

w
(ℓ)
i дi (s[Ai ]) ≥ Λ ·

d
∑

i=1

w
(ℓ)
i дi (t[Ai ]), ℓ ∈ {1, . . . ,q}. (23)

Example 3.13 (cont.). Since C = {w1 ≥ w2}, and considering thatw1+w2 = 1 and 0 ≤ w2 ≤ w1 ≤ 1,

the vertices ofW (C) areW (1)
= (1, 0) andW (2)

= ( 1
2
, 1
2
). By Theorem 4.2, the dominance region

DR (t3;F ) of t3 = 〈0.5, 0.2〉 is characterized by the system of inequalities:

{s[A1] ≥ 0.5, 1
2
s[A1] +

1
2
s[A2] ≥ 1

2
0.5 + 1

2
0.2}. (24)

Tuple t4 = 〈0.6, 0.15〉 satis�es (24) and thus t3 ≺F t4. For the dominance region DR (t1;F ) of tuple
t1 = 〈0.3, 0.6〉, the system becomes:

{s[A1] ≥ 0.3, 1
2
s[A1] +

1
2
s[A2] ≥ 1

2
0.3 + 1

2
0.6}. (25)

Here, t4 does not satisfy (25) and therefore t1 6≺F t4.

As the above example and Figure 2a suggest, the “shape” of DR (t ;F ) (modulo cropping in the
[0, 1]d hypercube) is independent of t . Indeed, in Inequalities (23), the left-hand sides of the in-
equalities stay the same and the right-hand sides are, for any given t , a constant.

Example 4.3. For a non-linear example, let d = 3 and consider the set F consisting of all MLW
functions of the following form:

√

w1et [A1] +w2 log(1 + t[A2]) +w3t[A3]2, (26)

which complies with form (21) by posing h(x ) =
√
x , д1 (x ) = ex , д2 (x ) = log(1 + x ), д3 (x ) = x2,

and subject to the set of constraints C = {w1 +w2 ≥ w3}. The vertices ofW (C) are:
W (1)

= 〈1, 0, 0〉, W (2)
= 〈0, 1, 0〉, W (3)

= 〈 1
2
, 0, 1

2
〉, W (4)

= 〈0, 1
2
, 1
2
〉.

For t = 〈 1
2
, 1
2
, 1
2
〉, DR (t ;F ) is characterized by:

{ es[A1] ≥ e
1
2 ,

log(1 + s[A2]) ≥ log(1 + 1
2
),

1
2
es[A1] +

1
2
s[A3]

2 ≥ 1
2
e

1
2 +

1
2

1
22
,

1
2
log(1 + s[A2]) +

1
2
s[A3]

2 ≥ 1
2
log(1 + 1

2
) + 1

2
1
22
}. (27)

Therefore, tuple t ′ = 〈0.7, 0.5, 0.3〉 is not F -dominated by t , as the last inequality in (27) is not
satis�ed when s = t ′. See Figure 3 for a graphical representation.

5Note that the standard (d − 1)-simplex is a (d − 1)-dimensional region in Rd .



(a) F -dominance region DR (t ,F ). (b)W (C) (in gray) on the 2-simplex.

Fig. 3. Example 4.3 – tuples and weights in [0, 1]d , d = 3, C = {w1 +w2 ≥ w3}, F of form (26).
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Fig. 4. Close-up of the tuples of Example 3.13. Tuple t2 is not F -dominated by either t1 or t3. However, t2 is
F -dominated by the “virtual” tuple tv , obtained as a convex combination of t1 and t3, so t2 is not potentially
optimal. Indeed, all convex combinations lying on the segment connecting ts and te F -dominate t2.

The only signi�cant overhead introduced by this approach is the enumeration of the vertices of
W (C), that, however has to be done just once.

4.2 Computing potentially optimal tuples

The fact that a tuple t is not F -dominated is only a necessary conditio
<

n for t to be potentia
,

lly
optimal, since there might anyhow be no function f ∈ F such that f (t ) f (s ) holds for all s t . 

An important property that suggests also a viable way to compute potentially optimal tuples is
implied by the following proposition, which states that po can be computed without considering
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F -dominated tuples. In particular, this allows computing po in two phases, the �rst of which
computes nd, as we shall discuss in detail in Section 5.

Proposition 4.4. LetF be a set ofMLW functions subject to a set C of linear constraints onweights
and such that h is strictly monotone. Then, for any instance r , we have po(r ;F ) = po(nd(r ;F );F ).

The intuition behind the above result is that if t ∈ po(nd(r ;F );F ) then there is a function
f ∈ F such that f (t ) < f (s ), for all other tuples s ∈ nd(r ;F ). In case for such f t ties with
some tuple t ′ not in nd(r ;F ), then, from the continuity of MLW functions, there exists another
function f ′ “close” to f such that t remains the best tuple in nd(r ;F ) and f ′(t ) < f ′(t ′).
From the very de�nition of potential optimality and Proposition 4.4, we have the following

result, which holds provided that h is a strictly monotone function.

Theorem 4.5 (Primal po test). Let F be a set ofMLW functions subject to a set C = {C1, . . . ,Cc }
of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}), and such that h

is strictly monotone. Let nd(r ;F ) = {t1, t2, . . . , tσ , t }. Then, t ∈ po(r ;F ) i� the following linear

programming problem (LP) in the variablesW = (w1, . . . ,wd ) and ϕ has a strictly positive optimal

solution:

maximize ϕ (28)

subject to Λ ·∑d
i=1wi (дi (t[Ai ]) − дi (tj [Ai ])) + ϕ ≤ 0 j ∈ {1, . . . ,σ }

∑d
i=1 ajiwi ≤ kj j ∈ {1, . . . , c}

wi ∈ [0, 1] i ∈ {1, . . . ,d }
∑d

i=1wi = 1.

Note that, when the above problem has an optimal solution ϕ∗ > 0, then it is guaranteed that

there exists a weight vectorW ∗
= (w∗1 , . . . ,w

∗
d
) such that

∑d
i=1w

∗
i дi (t[Ai ]) <

∑d
i=1w

∗
i дi (tj [Ai ])

holds for all tuples tj in nd(r ;F ) \ {t }. Since h is strictly monotone, this proves that t is optimal
for the function with weightsW ∗.
An alternative approach to the technique induced by Theorem 4.5 is based on the notion of

convex combination of (the marginal scores of) a set of tuples.

De�nition 4.6 (Convex combination). Given tuples t1, . . . , tn , n > 1, and monotone transforms дi ,
1 ≤ i ≤ d , a tuple s is a convex combination (through the дi ’s) of (the marginal scores of) t1, . . . , tn
if there exist α1, . . . ,αn such that α j ∈ [0, 1] for 1 ≤ j ≤ n,

∑n
j=1 α j = 1, and

дi (s[Ai ]) =

n
∑

j=1

α jдi (tj [Ai ]), i ∈ {1, . . . ,d }.

Indeed, as also shown in Example 3.13 for tuple t2, there might be a “virtual” tuple obtained
through a convex combination of other tuples in nd(r ;F ) that F -dominates (or coincides with) t .

Figure 4 o�ers a close-up of the scenario described in Example 3.13 and shows that, among the
convex combinations of t1 and t3 (lying on the segment connecting t1 and t3) there are tuples, such
as tv (in blue), that F -dominate t2. Indeed, all the convex combinations of t1 and t3 lying on the
segment connecting ts and te (shown as a solid orange line) F -dominate t2. Note that, although
in Example 3.13 the convex combinations of tuples lie on a segment, this is not the case when the
monotone transforms дi are not linear (see Appendix A).

We nowmake precise the intuition suggested by Figure 4 that the existence of a convex combina-
tion that F -dominates a tuple t is a necessary and su�cient condition for t not being in po(r ;F ).



Theorem 4.7 (Dual po test). Let F be a set of MLW functions subject to a set C of linear con-

straints on weights and such that h is strictly monotone. LetW (1), . . . ,W (q ) be the vertices ofW (C)
and let nd(r ;F ) = {t1, t2, . . . , tσ , t }. Then, t ∈ po(r ;F ) i� there is no convex combination s of

t1, . . . , tσ such that s ≺F t , i.e., i� the following linear system in the variables α = (α1, . . . ,ασ ) is

unsatis�able:

Λ ·∑d
i=1w

(ℓ)
i (
∑σ

j=1 α jдi (tj [Ai ])) ≤ Λ ·∑d
i=1w

(ℓ)
i дi (t[Ai ]) ℓ ∈ {1, . . . ,q} (29)

α j ∈ [0, 1] j ∈ {1, . . . ,σ }
∑σ

j=1 α j = 1.

On the left-hand side of Inequalities (29), the sum
∑σ

j=1 α jдi (tj [Ai ]) occurs, which, according

to De�nition 4.6, corresponds to the i-th marginal score дi (s[Ai ]) of a convex combination s .
Thus, Problem (29) is satis�able if and only if such a convex combination s exists, such that s
F -dominates t . In Appendix D, we rigorously prove this based on the relationship between the
primal formulation of a linear program (as shown in Theorem 4.5) and its dual [22]. The formu-
lation of Theorem 4.7 is a modi�ed version of the dual of Problem (28), in which we also exploit
properties of the vertices of the polytope (not present in the primal).

When d = 2, the F -dominance condition s ≺F t required by Theorem 4.7 can be replaced by a
dominance condition s ≺ t : when starting from a set of mutually non-F -dominating tuples, if a
convex combination of two of them (say, t and u) F -dominates another tuple v , then there must
also be a (possibly di�erent) convex combination of t and u that dominates v .

Proposition 4.8 (2d po test). Let F be a set of MLW functions subject to a set C of linear

constraints on weights and such that the дi ’s and h are strictly monotone. Let t , u, and v be three

tuples in [0, 1]2 such that i) nd({t ,u,v};F ) = {t ,u,v}, and ii) there exists a convex combination of

t and u that F -dominates v . Then there exists a convex combination of t and u that dominates v .

The result of Proposition 4.8 is, however, only of theoretical interest, since, testing dominance
instead of F -dominance amounts to changing the �rst q inequalities of System (29) with d inequal-
ities; yet, when d = 2, the number of vertices q is 2, thus with no concrete reduction in the size
of the problem. Proposition 4.8 does not apply to higher dimensions, as the following Example
shows.

Example 4.9. Consider the tuples t = 〈0, 1, 1〉, u = 〈1, 1, 0〉, v = 〈0.8, 0.8, 0.8〉, the set F of

functions of the form 
∑

i
3
=1 wit[Ai ] subject to the constraint C = {w1 ≥ w2}. As Figure 5a shows, 

tuple u does not F -dominate any point, while t only F -dominates a triangular region at the top
of the unit cube (shown in gray). Therefore, v (whose F -dominance region is shown in pink) 
is not F -dominated by either t or u, and, indeed, nd({t ,u,v}; F ) = {t ,u,v}. However, v is F -
dominated by some convex combination of t and u, e.g., s = 〈0.4, 1, 0.6〉. Figure 5b shows that the 
F -dominance region of s (shown in green) encloses v , and thus v < po({t ,u,v}; F ). Note that 
no convex combination s ′ of t and u can dominate v , since s ′[A2] = 1, while v[A2] = 0.8, which
shows that Proposition 4.8 only holds when d = 2.

All the results derived in this section can be immediately extended to the case in which F is a 
�nite union of homogeneous sets of MLW functions, i.e., F  =  F1 ∪ . . . ∪ Fm .
Proposition 3.17 guarantees that po(r ; F ) can be computed by taking the union of all the 

po(r ; Fi ) sets, each of which can be obtained by either the method in Theorem 4.5 or 4.7.
Instead, nd(r ; F ) cannot be computed by taking the union of the nd(r ; Fi ) sets. Rather, when 

comparing two tuples s and t , either using Theorem 4.1 or 4.2, one should apply the corresponding
method for all the Fi sets and then conclude that t ≺F s i� t ≺Fi s for 1 ≤ i ≤ m.



(a) F -dominance regions for t (top gray triangle),
u (empty), and v (in pink).

(b) F -dominance region (in green) of a convex
combination of t and u F -dominating v .

Fig. 5. Example 4.9 – tuples and weights in [0, 1]d , d = 3, C = {w1 ≥ w2}, F are weighted sums.

4.3 Non-tuple-distinguishing sets of MLW functions

The notion of F -dominancewas given in De�nition 3.3 for tuple-distinguishing sets.When consid-
ering non-tuple-distinguishing (ntd) sets, an extra condition is needed (point (ii) in De�nition 4.10
below, which implicitly holds when F is tuple-distinguishing).

De�nition 4.10. Let F be a ntd set of monotone scoring functions. A tuple t F -dominates an-
other tuple s , t , denoted by t ≺F s , if (i) ∀f ∈ F . f (t ) ≤ f (s ) and (ii) ∃f ∈ F . f (t ) < f (s ).

The notion of tuple-distinguishability for a set of MLW functions is tightly connected with the
existence of d linearly independent weight vectors inW (C), as the following result shows.

Proposition 4.11. Let F be a set of homogeneous MLW functions, such that the дi ’s and h

are strictly monotone, and subject to a set C of linear constraints on weights. Then, F is tuple-

distinguishing i� d linearly independent weight vectors exist inW (C).
Based on the above result, we can provide an e�ective way for checking whether a set F of

MLW functions is tuple-distinguishing.

Theorem 4.12 (Tuple-distinguishability ofMLW functions). Let F be a set of homogeneous

MLW functions such that the дi ’s and h are strictly monotone, and subject to a set C = {C1, . . . ,Cc }
of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}). Then, F is tuple-

distinguishing i� there exists a weight vectorW ∗
= (w∗1 , . . . ,w

∗
d
) ∈ W (C) such that∑d

i=1 ajiw
∗
i < kj

holds for j ∈ {1, . . . , c}.
According to Theorem 4.12, verifying tuple-distinguishability of a set of MLW functions

amounts to checking feasibility of a linear programwith constraints
∑d

i=1 ajiwi < kj , j ∈ {1, . . . , c}.

Example 4.13. Consider d = 3 and a set of MLW functions F = { fW (t ) =
∑d

i=1wit[Ai ] | w3 =

w1 +w2} (i.e., with the notation of Theorem 4.12, C = {−w1 −w2 +w3 ≤ 0,w1 +w2 −w3 ≤ 0}).
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Table 3. Algorithmic variants for computing nd.

ULP2 UVE2 SLP2 SVE2 SVE1/ SVE1F

sorting X X X

vertex enumeration X X X

1 phase (non Sky-based) X

Table 4. Algorithmic variants for computing po.

POPF2 PODF2 PODI1 POPI2 PODI2

dual LP test X X X

incremental X X X

nd-based X X X X

According to Theorem 4.12, F is ntd, because the system {−w1 −w2 +w3 < 0,w1 +w2 −w3 < 0}
is unsatis�able. Indeed, consider t1 = 〈0.5, 0.5, 0〉 and t2 = 〈0, 0, 0.5〉. We have fW (t1) = 0.5w1 +

0.5w2 = 0.5(w1 +w2) = 0.5w3 and fW (t2) = 0.5w3, and thus t1 and t2 are undistinguishable by F .

We now show how the Theorems in Section 4 have to be modi�ed in order to correctly deal
with ntd sets of functions.

Theorem 4.1 also holds when F is ntd if the solution to (22) is strictly positive.6 If the solution
to (22) is 0, an extra check is needed: t ≺F s i� Problem (22) with s and t swapped provides

a strictly negative solution. Indeed, if in both cases the solution is 0, then
∑d

i=1wiдi (s[Ai ]) =
∑d

i=1wiдi (t[Ai ]) for all (w1, . . . ,wd ) ∈ W (C), thus s and t are indistinguishable.
Similarly, when F is ntd, Theorem 4.2 still applies, with the extra requirement that at least one

of the Inequalities (23) is satis�ed strictly. As a direct consequence of De�nition 3.12, DR (t ;F ) is
a closed region if and only if F is tuple-distinguishing, since F -dominance in this case requires
only non-strict inequalities.

Theorem 4.5, for which t ∈ po(r ;F ) is determined using the very de�nition of potential opti-
mality, requires no changes at all when F is ntd. The same holds also for Theorem 4.7.

5 ALGORITHMS

Based on di�erent options for computing nd and po, we consider several algorithmic alternatives,
which are summarized in Tables 3 and 4.

5.1 Computing nd

Sincend is a subset of the skyline, it is in principle conceivable to �rst compute the skyline and then
obtain the result from it. Alternatively, we can directly compute nd from the input dataset. Clearly,
in the �rst case any skyline algorithm can be adopted. Among the many available alternatives, in
this paper we consider the two well-known BNL [6] and SFS [11] algorithms, the latter performing
a preliminary topological sort of the input data. Note that the alternative of whether to sort or not
the input data is also practicable if a single-phase approach is pursued (i.e., without �rst computing
the skyline). The available alternatives are further extended by considering how F -dominance can
be tested. The options we consider are described as follows.

6Here, as well as in the generalization of Theorem 4.2, we are obviously excluding the degenerate case in which the h 
transform is a constant function.
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Algorithm 1: SLP2 and SVE2 for nd.

Input: relation r , constraints C, family F of MLW functions. Output: nd(r ;F ).
(1) Prepare
(2) S := Sky(r ) // phase one

(3) for each s in S // candidate F -dominated tuple

(4) if SVE2 then compute left-hand sides of Inequalities (23)

(5) for each t in ND // candidate F -dominant tuple

(6) if t ≺F s then continue to line 3

(7) ND := ND ∪ {s}
(8) return ND

Subprocedure: Prepare

(9) W (1), . . . ,W (q ) be the vertices ofW (C)
(10) sort r using the coordinates of the centroid ofW (C) as weights
(11) ND := ∅

Algorithm 2: SVE1 for nd.

Input: relation r , constraints C, family F of MLW functions. Output: nd(r ;F ).
(1) Prepare // same as in Algorithm 1

(2) for each s in r // candidate F -dominated tuple

(3) for each t in ND // candidate F -dominant tuple

(4) if t ≺ s then continue to line 2

(5) compute left-hand sides of Inequalities (23)

(6) for each t in ND // candidate F -dominant tuple

(7) if t ≺F s then continue to line 2

(8) ND := ND ∪ {s}
(9) return ND

Algorithm 3: SVE1F for nd.

Input: relation r , constraints C, family F of MLW functions. Output: nd(r ;F ).
(1) Prepare // same as in Algorithm 1

(2) for each s in r // candidate F -dominated tuple

(3) compute left-hand sides of Inequalities (23)

(4) for each t in ND // candidate F -dominant tuple

(5) if t ≺ s ∨ t ≺F s then continue to line 2

(6) ND := ND ∪ {s}
(7) return ND

Phases. First, we can choose whether the computation of nd should be applied after computing
Sky (i.e., in two phases, indicated by “2” in the algorithm’s name) or whether nd should be directly
computed from the input dataset, without materializing the skyline (i.e., in one phase, “1” in the
algorithm’s name). As an optimization that exploits the fact that dominance entails F -dominance
(by Corollary 3.4), we still perform dominance tests, since they provide a faster way to safely



discard uninteresting tuples, while the more costly F -dominance tests should be performed only
if dominance does not hold.

Sorting. The second option regards whether to sort the dataset beforehand so as to produce a
topological sort with respect to the F -dominance relation, i.e., if tuple t precedes tuples s in the
sorted input relation, then s 6≺F t . In order to obtain such a topological sort, we can use as sorting
function any weighted sum in which the weights satisfy the constraints C. In particular, we adopt
as weights the coordinates of the centroid of the polytopeW (C). In the following, the letter “S”
in the algorithm’s name will indicate that sorting is used, “U” that the dataset is unsorted.
F -dominance. The alternatives for testing whether s ≺F t are: i) solving an LP problem as

in Theorem 4.1 (indicated by “LP” in the algorithm’s name); ii) checking whether t ∈ DR (s;F )

(i.e., the F -dominance region of s) as in Theorem 4.2 through vertex enumeration of the polytope
W (C) (“VE” in the name).
So far, there are 8 alternatives. We start by describing the four 2-phase alternatives (ULP2, UVE2,

SLP2, SVE2).
The pseudocode for the sorted variants SLP2 and SVE2 is shown in Algorithm 1: the main idea is

to scan the tuples sortedly and to populate a current window ND of non-dominated tuples among
those that are in Sky(r ); Sky(r ) is computed via the SFS algorithm, since the dataset is sorted.
Thanks to sorting, no tuple will ever be removed from ND (no tuple can be F -dominated by a
tuple found later in the sorted relation). The vertices of the polytopeW (C) are computed just
once (line 9). We enumerate sortedly every candidate F -dominated tuple s (line 3) and compare
it against every candidate F -dominant tuple t (line 6) to decide whether s should be added to ND.
The F -dominance test of line 6 is done via Theorem 4.1 for SLP2 and via Theorem 4.2 for SVE2. In
the latter case, it is useful to precompute the left-hand sides of Inequality (23) already at line 4.
The unsorted counterparts ULP2 and UVE2 are similar, but, without sorting, i) we cannot com-

pute Sky(r ) via SFS, and thus use the classical BNL algorithm, and ii) when a tuple s is added to
ND, other tuples in ND may be F -dominated by s , and thus need to be removed (also the second
phase of ULP2 behaves essentially as BNL, but with F -dominance instead of dominance tests).

Since the above described algorithms adopt in the �rst phase either SFS or BNL for computing
Sky(r ), it follows that: i) for the unsorted variants ULP2 and UVE2, multiple passes over the datasets
may be required depending on the available memory space, as in BNL; ii) for the sorted variants
SLP2 and SVE2, multiple passes are needed only if the size of Sky exceeds the memory space, as in
SFS.

As will be shown in Section 6.2, S strategies are faster than U strategies (except perhaps for
small datasets), and VE is orders of magnitude faster than LP. Therefore, we shall consider 1-phase
counterparts for SVE2 only.
The pseudocode of SVE1 is shown in Algorithm 2. Instead of �rst computing Sky and then

carving nd out of it, SVE1 �rst tries to discard the candidate F -dominated tuple s  by using only 
the easier dominance tests (lines 3–4) against the non-F -dominated tuples in ND; only if all such
tests fail, are the harder F -dominance tests (lines 6–7) executed.
The last 1-phase alternative we consider (Algorithm 3) interleaves dominance and F -dominance 

tests, thus performing, for each new tuple s , a single pass over ND (and is thus denoted SVE1F since
F -dominance is checked �rst, before moving to the next tuple in ND). The rationale behind SVE1F 
is that, for those cases in which F -dominance is much more e�ective in pruning tuples than simple 
dominance, this approach can lead to saving many dominance tests with respect to SVE1, although
perhaps attempting more F -dominance tests.

Note that both SVE1 and SVE1F require multiple passes over the dataset only if nd does not �t 
in main memory.
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5.2 Computing po

Even for computing po several alternatives are available. We can compute nd as an intermediate
result or directly obtain the potentially optimal tuples from the input data, and the test of optimality
can rely on two alternatives as well. Since optimality tests can become costly (especially for large
problem sizes), we introduce a heuristic optimization technique that tries to discard non-optimal
tuples by using an incremental, approximate strategy.

Phases. As in the algorithms for computing nd(r ;F ), we can choose the number of “phases”.
A 2-phase algorithm (indicated by “2” in the algorithm’s name) �rst computes nd(r ;F ) and then
�lters out non-po(r ;F ) tuples from it, as Proposition 4.4 allows; a 1-phase algorithm (“1” in the
name) discards non-po(r ;F ) tuples starting from the original relation r . In order to avoid any
confusion with the terminology used for nd-variants, in the following we shall refer to 2-phase
(resp., 1-phase) algorithms for computing po as nd-based (resp., non-nd-based) algorithms.

PO test.Another choice regards the use of the primal (Theorem 4.5) or of the dual (Theorem 4.7)
po test. In the following, the algorithm’s name will correspondingly contain the letter “P” (primal)
or “D” (dual).

Incrementality. Testing whether a tuple t is potentially optimal with respect to σ other tuples
requires solving an LP problem involving the marginal scores of all the σ + 1 tuples in the set,
as indicated in the claims of Theorems 4.5 and 4.7. However, this task may be prohibitively time
consuming when σ is large. Yet, we can solve an LP problem using only a subset of the σ other
tuples: if the solution indicates that t is not potentially optimal, we can safely discard t . This allows
us to try to solve LP problems of increasing sizes, with smaller sizes �rst, so that testing the full
problem with all the other σ tuples will only be needed for those tuples that could not be discarded
through smaller problem instances. The algorithm’s name will contain the letter “I” (incremental)
if this approach is adopted, or “F” (full) if the full-size instance is directly tested.

The eight resulting variants7 can be divided into non-incremental (POPF1, PODF1, POPF2, PODF2)
and incremental (POPI1, PODI1, POPI2, PODI2) algorithms.
Algorithm 4 describes the non-incremental approaches. The initial set of tuples we consider (PO)

is prepared in the subprocedure InitializePO (line 1), where we either start with the tuples in
r (for non-nd-based variants, line 5) or in nd(r ;F ) (for an nd-based algorithm, line 6). All the
algorithms we consider sort the starting set (be it r or nd(r ;F )) in the same way as the algorithms
for computing nd. Thanks to this, we can then sortedly enumerate candidate non-po tuples from
PO in reverse order (line 2), as the worst tuples with respect to the ordering are the most likely
to be discarded. We then test whether t is non-potentially-optimal in PO through the isNonPO

function: if so, we remove t from PO (line 3). If the adopted test uses the primal LP problem of
Theorem 4.5 (line 7), then System (28) is solved with the tuples in PO; if the system does not have
a positive solution, then t < po(r ;F ). Similarly, if the dual LP problem of Theorem 4.7 is used
(line 8), then System (29) is solved in order to look for a convex combination of tuples in PO \ {t }
that F -dominates t ; if such a tuple is found, i.e., the system is satis�able, then t < po(r ;F ). After
all tuples are scanned, we return the remaining tuples (line 4).

Algorithm 5 describes the incremental variants. In order to reduce as early as possible the set
of candidate potentially optimal tuples (PO), we adopt the following heuristics: i) we start with a
convex combination of only σ̃ = 2 tuples (line 2), which will give rise to smaller, faster-to-solve LP
problems; as long as σ̃ < |PO| − 1, this condition is only su�cient for pruning, but not necessary;
after each round, we double σ̃ (line 8); ii)we test whether t is non-potentially-optimal with respect
to the �rst σ̃ tuples in PO (lines 6 and 7), as they are the best with respect to the ordering and thus
more likely to beat other tuples. After this early pruning, in the last round (enabled by line 4) all

7We prepend the letters “PO” to the algorithm’s name.



Algorithm 4: po: non-incremental computation.

Input: relation r , constraints C, family F of MLW functions. Output: po(r ;F ).
(1) InitializePO
(2) for each t in PO in reverse order // candidate non-po tuple

(3) if isNonPO(t , PO \ {t }) then PO := PO \ {t }
(4) return PO

Subprocedure: InitializePO
(5) if phases =1 then Prepare; PO := r // Prepare as in Algorithm 1

(6) else PO := nd(r ;F ) // this includes Prepare as in Algorithm 1

Function: isNonPO. Input: candidate tuple t , set of tuples T . Output: true i� t < po(T ∪ {t };F ).
(7) primal: return true i� (28) on T ∪ {t } does not have a solution > 0
(8) dual: return true i� ∃s . s ≺F t , where s is a convex combination of the tuples in T

Algorithm 5: po: incremental computation.

Input: relation r , constraints C, family F of MLW functions. Output: po(r ;F ).
(1) InitializePO
(2) σ̃ := 2; lastRound := false

(3) while(¬lastRound)
(4) if σ̃ ≥ |PO| − 1 then lastRound := true

(5) for each t in PO in reverse order // candidate non-po tuple

(6) T := �rst min(σ̃ , |PO| − 1) tuples in PO \ {t }
(7) if isNonPO(t ,T ) then PO := PO \ {t }
(8) σ̃ := σ̃ · 2
(9) return PO

Table 5. Time complexity of algorithms for computing nd.

algorithm �rst phase second phase

ULP2 O (N 2) O ( |Sky|2 · lp(c,d ))
UVE2 O (N 2) O (ve(c ) + |Sky|2 · q)
SLP2 O (N · (logN + |Sky|)) O ( |Sky| · |nd| · lp(c,d )))
SVE2 O (N · (logN + |Sky|)) O (ve(c ) + |Sky| · |nd| · q)

SVE1, SVE1F O (ve(c ) + N · (logN + |nd| · q))

the remaining tuples are checked against all the other tuples still in po, which is now a necessary 
and su�cient condition for pruning, as in Theorem 4.7.

5.3 Considerations about complexity

We provide details about the input-output worst-case complexity of our algorithms when both 
the number of tuples N and the number of constraints c vary. In order to remain parametric with
respect to auxiliary problems we have to solve, namely vertex enumeration and F -dominance 
via linear programming, we consider that they will be solved by algorithms whose worst-case
complexity is in O (ve(c )) and O (lp(x ,y)), respectively, where x is the number of LP inequalities 
and y is the number of variables in the LP problem. The vertex enumeration problem is NP-hard
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Table 6. Time complexity of algorithms for computing po.

algorithm complexity

POPF2 Cnd + O ( |nd| · lp( |nd| + c,d ))
PODF2 Cnd + O ( |nd| · lp(q, |nd|))
PODI1 O (N · logN · lp(q,N ))

POPI2 Cnd + O ( |nd| · log |nd| · lp( |nd| + c,d ))
PODI2 Cnd + O ( |nd| · log |nd| · lp(q, |nd|))

in general and it is not known whether for the special case of bounded polytopes (likeW (C)) an
algorithm exists with PTIME input-output complexity. We also observe that, for any �xed value
of d , the number of vertices q is at most O (c ⌊d/2⌋ ) (see [26] and references therein).
Tables 5 summarizes our results for nd. For the 2-phase algorithms, the complexity of the �rst

phase is that of the corresponding skyline algorithm [24]. In the second phase, ULP2 performs at
most O ( |Sky|2) F -dominance tests, each of which costs O (lp(c,d )).8 On the other hand, SVE2 �rst
enumerates the vertices ofW (C), which costs O (ve(c )), and then performs at most |Sky| · |nd|
F -dominance tests using Theorem 4.2, each of which costs O (q), whereq is the number of vertices
ofW (C). The worst-case complexity of SVE1 and SVE1F is the same, since, besides enumerating
vertices ofW (C) and sorting the dataset, both execute O (N · |nd|) F -dominance tests. From the
comparison between SVE2 and SVE1 (and SVE1F), we argue that the larger the skyline, the more
SVE2 will be penalized.
For all variants that compute po(r ;F ) starting from nd(r ;F ), we include the complexity of

computing nd and indicate it as Cnd in the results summarized in Table 6. The PODI2 algorithm
will execute the loop at most O (log |nd|) times, which happens in the very unlikely case in which
most of the tuples in nd \ po appear before those in po in the ordering; at each iteration, PODI2
will execute at most |nd| F -dominance tests, the cost of which is bounded by O (lp(q, |nd|)), from
which the result follows. Analogously, POPI2 incurs a cost of O (lp( |nd| + c,d )) for checking F -
dominance with the primal test, hence the result. The non-incremental variants PODF2 and POPF2
save a factor O (log |nd|) from the corresponding incremental versions (in the worst case), since
there is no outer loop varying σ̃ . The complexity of PODI1 is the same as that of PODI2, in which
nd is replaced by N , without the component due to the computation of nd.
In terms of space, besides that needed by the 2-phase approaches to store the intermediate

result Sky, and that required by the nd window, the only additional overhead is introduced by the
speci�c procedures used to enumerate vertices and test F -dominance by LP. Notice that the input
to vertex enumeration is a set of c constraints, whereas the output is a set of q vertices. The largest
LP problem encountered by 2-phase variants for computing powill be a matrix of size O (q× |nd|).
This grows to O (q × N ) for 1-phase variants.

6 EXPERIMENTS

In this section we aim to assess the e�ciency of the various algorithmic alternatives for computing
F-skylines, and to understand how F-skylines compare to both skylines and ranking queries. For a
comprehensive analysis, wemeasure e�ciency and e�ectiveness in a number of di�erent scenarios,
and study in particular how they are a�ected by i) data distribution, ii) dataset size, iii) number
of dimensions, and iv) number of constraints. As for the family of scoring functions in use, we

8When considering the number of constraints in an LP problem, we disregard those imposing non-negativity of variables,

as these are commonly implicitly assumed by LP solvers.



consider weighted power meansMW
p , de�ned as follows:

MW
p (t ) = *

,

d
∑

i=1

wit[Ai ]
p+
-

1/p

, p , 0 (30)

MW
0 (t ) =

d
∏

i=1

t[Ai ]
wi . (31)

Note that, when p < 0, MW
p (t ) is de�ned only when each t[Ai ] > 0, for 1 ≤ i ≤ d . Fur-

thermore, when p = 0, we obtain the geometric mean, which can be expressed as MW
0 (t ) =

exp(
∑d

i=1wi log t[Ai ]) (which indeed shows that even MW
0 is a MLW function), provided that

t[Ai ] > 0, for 1 ≤ i ≤ d . We shall therefore restrict to tuples from (0, 1]d when using weighted
power means with p ≤ 0. More details on weighted power means are given in Appendix A.

The relevant parameters are shown in Table 7, with defaults in bold.
In this section, we focus on the main distinctive traits of our algorithms, and therefore omit the

evaluation of experimental settings and datasets that turn out to be less challenging. We discuss
all such cases in detail in Appendix C.

Table 7. Operating parameters for performance evaluation (defaults, when available, are in bold).

Full name Tested values

Distribution synthetic: ANT, UNI, COR; real: NBA, HOU, GAU
Synthetic dataset size (N ) 10K, 50K, 100K, 500K, 1M, 5M, 10M
# of dimensions (d) 2, 4, 6, 8, 10
# of constraints (c) 1, 2, 3, 4, 5 (default: d/2)
Parameter ofMW

p mean (p) [-5,5] with step 0.5 (default: 1)

6.1 Datasets and constraints
We use two families of datasets: synthetic datasets and real datasets. Synthetic datasets are gen-
erated by the standard data generation tool used in [6]. For any value of d and N mentioned in 
Table 7, we produced three d-dimensional datasets of size N with values in the [0, 1] interval: one 
of these datasets (UNI) has values distributed uniformly in [0, 1]; another one (ANT) has values anti-
correlated across di�erent dimensions – informally, points that are good in one dimension are bad 
in one or all of the other dimensions; the last dataset (COR) has correlated values. Like other less 
challenging datasets, we shall only report detailed results about COR in Appendix C.
The real datasets analyzed here are three publicly available datasets, two of which are commonly 

used in the context of skylines.
The �rst one (NBA), reports statistics for each player in each game regarding NBA seasons from 

2008 to 2015.9 We selected 10 attributes with a clear numeric semantics for our experiments, in-
cluding o�ensive rating, defensive rating and other measures of players’ performance. Although 
irrelevant to the experiments, for coherence with the conventions used in this paper, all these val-
ues have been normalized in the [0, 1] interval, 0 being the best value. After cleaning entries with 
null values, the dataset consisted of 190862 points. Figure 6 o�ers a representation of the notions 
of F-skylines on the NBA dataset when o�ensive and defensive ratings are the only dimensions 
and there is a constraint stating that the former weighs more than the latter: the skyline consists
9Available at http://www.quantifan.com.

http://www.quantifan.com
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Fig. 6. NBA dataset, d = 2,w1 ≥ w2: Sky, nd and po.

of ten tuples (C. Anthony occurs for two di�erent games), three of which are potentially optimal
(shown as green diamonds, including NBA superstar LeBron James), and four of which are non-
F -dominated but not potentially optimal (orange triangles); the F -dominance regions are shown
in gray and the slope of the diagonal lines on their border is −45◦.

The second dataset (HOU) consists of 127931 6-dimensional points regarding household data
scraped from www.ipums.org. The HOU dataset shows a higher correlation and has a limited num-
ber of dimensions.

The third dataset (EMP) contains information regarding salary and bene�ts paid to City employ-
ees since �scal year 2013 in San Francisco10 and consists of 291, 825 multi-dimensional points
including 6 numeric attributes describing several forms of compensation (salary, overtime, other
salaries, retirement, dental health, and other bene�ts). The EMP dataset is an example of naturally
clustered data. In the interest of space, in this section, both HOU and EMP are only mentioned in a
table reporting aggregated results (Table 8), while more detailed results regarding these datasets
are found in Appendix C.

For our experiments, we consider one of themost common types of constraints onweights:weak
rankings (see, e.g., [17] for an overview of useful constraints). In particular, for any number c of con-
straints mentioned in Table 7 (with c < d), we consider the following set: {wi ≥ wi+1 |i ∈ {1, . . . , c}}.
Note that, due to Theorem 4.12, the set of functions obtained by applying such constraints to a
family of weightedMW

p means is tuple-distinguishing for any value of p. In the following, we only
show results for constraints in the form of weak rankings, whereas in Appendix C we shall also
consider interval constraints of the form w̄i (1 − ε ) ≤ wi ≤ w̄i (1 + ε ), for 1 ≤ i ≤ d , indicating
uncertainty in the weight around a value w̄i . Results for interval constraints show indeed trends
similar to weak rankings, as concisely summarized in Section 6.3. Moreover, we study the e�ect
of varying p on weightedMW

p means.

6.2 Results on e�iciency

Weassess e�ciency of the di�erent algorithms for computingnd and po bymeasuring, in a number
of di�erent scenarios, i) execution time (as measured on a machine sporting a 2.2 GHz Intel Core
i7 with 16 GB of RAM), ii) number of dominance tests, iii) number of F -dominance tests. For

10Available at https://data.world/data-society/employee-compensation-in-sf .

www.ipums.org
https://data.world/data-society/employee-compensation-in-sf
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Fig. 7. Performance of 2-phase algorithms for nd on smaller-scale datasets as the size N varies.

computing po, we only report the execution time. The data structures storing partial results were
implemented as plain arrays, with no particular indexing structure built on the �y.

All LP problems were solved by integrating our system with the linear programming tool
lp_solve.11 In the worst-case scenario (d = 10, c = 5), solving the LP problem in Theorem 4.1
required 0.24ms on average. In the same scenario, it took 3.7ms on average to check the po test of
Theorem 4.7, and 4.1ms for the po test of Theorem 4.5.

Vertex enumeration, relevant for Theorems 4.2 and 4.7, was performed with the lrs tool,12

which never required more than 18ms to complete. We remind that vertex enumeration needs to
be done only once during the entire computation of nd and po.

As a common trend to all the analyzed variants, execution times increase as N and/or d grow.
Also, times decrease as c grows, because more constraints make it more likely to discard a tuple
quickly and thus to reduce the problem size.

Computing nd. We �rst assess all 2-phase variants (ULP2, UVE2, SLP2, SVE2) for smaller-scale
synthetic datasets with varying size up to 100K tuples. Figure 7 shows that ULP2 and SLP2 are
clearly outperformed by UVE2 and SVE2 by at least two orders of magnitude. This supports the
intuition that led us to Theorem 4.2, since the high number of F -dominance tests highly penalizes
both ULP2 and SLP2; for instance, when N = 105, SLP2 performs up to 5.8 million tests on ANT,
each requiring to solve a di�erent LP problem.

Although comparable for less challenging datasets (UNI, Figure 7a), SVE2 prevails over UVE2 in
the more di�cult cases (ANT, Figure 7b). This is in line with what others observed when comparing
sorted (i.e., SFS) vs. unsorted (i.e., BNL) skyline algorithms, which are used in the �rst phase of
SVE2 and UVE2, respectively. As to the second phase, we observe that UVE2 requires many more
F -dominance tests than SVE2 (up to 6 times more tests on ANT). Furthermore, since sorting enables
the application of the heuristics used for computing po (Algorithms 4 and 5), in the following we
only consider SVE2 and its 1-phase counterparts SVE1 and SVE1F.
In the next set of experiments, we varied the dataset size N up to 10M tuples (see Figures 8a

and 8b). Execution times of SVE2, SVE1 and SVE1F are almost the same on the simpler UNI datasets,
whereas, when data are anti-correlated, SVE1F performs much better than SVE1 (second-best) and
SVE2 (last). In order to understand this phenomenon, we analyze the number of dominance and
F -dominance tests executed by the algorithms, shown in Figures 9a and 9b for the ANT dataset.
We observe that SVE1F performs at least ten times less dominance tests than SVE1 and SVE2, while
doing only a little more F -dominance tests. The additional pruning capability of F -dominance
is tightly correlated to the constraints. To this end, for the default values N = 105 and d = 6, in
Figures 8c and 8d we vary the number of constraints from c = 1 to c = 5. As the �gures show, the

11http://lpsolve.sourceforge.net.
12http://cgm.cs.mcgill.ca/~avis/C/lrs.html.

.

http://lpsolve.sourceforge.net
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
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Fig. 8. Performance for computing nd. Distribution: UNI on the le�; ANT on the right.
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Fig. 9. Dominance (a) and F -dominance (b) tests for computing nd on ANT.

relative performance of SVE1Fmonotonically improves as c grows, whereaswith fewer constraints,
i.e., smaller pruning, the number of additional F -dominance tests is so high that the relatively
small overhead incurred by SVE1F in anticipating (unsuccessful) F -dominance tests becomes the
heaviest factor in overall performance, and hence SVE1F is not the best choice for ANT when c = 1
and for UNI when c ∈ {1, 2}.
The behavior of the algorithms as the number of dimensions d grows is shown in Figures 8e

and 8f. The relative performance of the algorithms remains unchanged, with SVE1F being, again,
the most e�cient regardless of d . Both 1-phase variants prevail over SVE2, since they do not have
the burden of computing Sky as an intermediate step, which heavily increases its size as d grows
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Fig. 10. Performance for computing nd on the real dataset NBA.

(as an example, 75% of the tuples in ANT are in the skyline when d = 10, N = 105, and around 25%
in UNI).

The experiments on the real NBA dataset con�rm the previous observations. In particular, Fig-
ure 10a shows that, on NBA, the algorithms’ trend is similar to that on UNI, i.e., SVE1F tends to
improve its relative performance as the number of constraints grows. As in the other datasets,
SVE1F still incurs fewer dominance tests than the other alternatives; however the di�erence is
smaller than in synthetic datasets, so SVE1F only prevails when c = 5. Since the relative size of
nd(NBA;F ) with respect to Sky(NBA) is larger than for the synthetic datasets UNI and ANT (see
Table 8), the e�ectiveness of F -dominance tests reduces (and consequently the relative e�ective-
ness of SVE1F), which also favors the 2-phase SVE2 approach. This is made evident in Figure 10b,
where performance of all approaches is similar for low dimensionalities (d ≤ 6), and the 1-phase
approach SVE1 pays o� only for the more challenging cases with d ∈ {8, 10}.

Table 8. Cardinalities of Sky, nd, po with default values; in brackets, the ratio with the cardinality of Sky.

Dataset Sky nd po

ANT 26637 2616 (9.8%) 271 (1%)
UNI 2626 445 (16.9%) 122 (4.6%)
COR 31 13 (41.9%) 9 (29.0%)
NBA 1137 264 (23.2%) 32 (2.8%)
HOU 49 26 (53%) 19 (38.7%)
EMP 49 12 (24.5%) 5 (10.2%)

Computing po.
We �rst assess nd-based algorithms for computing po on all datasets, with default values on all 

but one parameter among size (N ), constraints (c), and dimensions (d). For this set of experiments, 
we measure the time required to compute po starting from the nd set.

Figure 11 compares POPF2 with PODF2, with the latter always outperforming the former. The 
�gure shows the minimum, average and maximum gain (in execution time) of PODF2 with respect 
to POPF2 in each dataset and for each varying parameter. Generally the gain is larger for more 
challenging instances, i.e., for higher values of N or d or lower values of c , and the e�ect is more 
visible for ANT than for UNI. For instance, with an ANT dataset of N = 1M tuples, POPF2 �nds the 
result in 105.1s while PODF2 requires 77.6s , with a 29.5% gain. The widest range is found when 
d varies: with d = 2 the gain is unsubstantial (POPF2 and PODF2 are essentially tied at 0.0039s in 
ANT), whereas with d = 10 the gain is notable (1923.1s for POPF2 vs. 1221.5s for PODF2, with a 36.5%
gain). In all tested scenarios, the average gain is beyond 10%, with the sole exception of the UNI 
dataset with varying d , which turns out to be “easier” than the other datasets even for high values
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(a) Dataset size N varies. (b) # of constraints c varies. (c) # of dimensions d varies.

Fig. 11. Min, max and avg gains of PODF2 with respect to POPF2 while varying (a) size, (b) constraints, (c)
dimensions.

of d , thus resulting in slightly lower gains (averaging 7.5%). Similar e�ects (not shown here for
the sake of brevity) can be observed between POPI2 and PODI2, with PODI2 outperforming POPI2
in all tested scenarios. This shows that checking potential optimality through the dual po test is
generally faster than through the primal po test. Indeed, this can be explained by observing that,
unlike the primal po test, the dual test just consists of a feasibility check, which can often fail early
in the solution search performed by LP solvers. For this reason, we shall disregard methods based
on the primal po test in the following, and will now focus on the comparison between PODF2 and
PODI2.
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Fig. 12. Performance for computing po on anti-correlated distribution.

������ ����
���

�
�

� �

�
�

�
��

�

�

�

�

✁✁✁✁✁✁✁✁✁✁✁✁✁
✁✁

✁✁
✁

✁
✁✁
✁

✁

✁

✁
✁

✂ ✄✂✂ ☎✂✂✂ ☎✄✂✂ ✆✂✂✂
✂

✆

✝

✞

✟

|✠✡|

☛☞
✌
✍

(✎

)

� ✏✑✒✓✔

✁ ✏✑✒✕✔

(a) Smaller |nd| sizes: PODF2
prevails.

��

��

� �
�� �

�

�
�

�

�

✁✁
✁✁

✁
✁

✁
✁✁

✁
✁

✁ ✁

✁

✂✄✄✄ ☎✄✄✄✄ ☎✂✄✄✄
☎✄

✂✄

☎✄✄

✂✄✄

☎✄✄✄

|✆✝|

✞✟
✠
✡

(☛

)

� ☞✌✍✎✏

✁ ☞✌✍✑✏

(b) Larger |nd| sizes: PODI2

prevails.

� ✁��� ✂���� ✂✁���

-✄✁�%

✄��%

-✂✁�%

-✂��%

-✁�%

�%

✁�%

|☎✆|

✝
✞
✟
✠✡

/✝
✞
✟
☛
✡
☞
✌
✍✎

(c) PODI2/PODF2 gain as |nd|
varies.

Fig. 13. Performance for computing po as |nd| varies (on all distributions).

Figure 12 shows the time required by PODI2 and PODF2 to compute po starting from the nd set
on the ANT dataset. The incrementality of PODI2 starts to pay o� as soon as the problem instance
becomes su�ciently challenging. In our tests, we observed that PODI2 prevails in the ANT dataset
already with default parameter values, and more so for N > 100K , c < 3 and d > 6. The number
of LP problems solved by PODF2 is exactly |nd|. Although such a number is generally lower than
the number of LP problems solved by PODI2, the size of the problems varies substantially. Indeed,
the su�cient condition used by PODI2 for early pruning proves very e�ective for larger instances.
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Fig. 14. Comparison between 1-phase and 2-phase algorithms for po on smaller-scale datasets as the size N 
varies.

For instance, in the ANT dataset with default parameter values, nd consists of 2,616 tuples, 271 of
which are in po; PODI2 removes 96% of the non-potentially-optimal tuples before the last round, 
and 43% in the �rst �ve (very quick) rounds, where convex combinations of at most 32 tuples are
considered; once it gets to the last of 9 rounds, there are only 367 tuples left (14% of |nd|). Note
that solving a single instance of Problem (29) with a combination of σ = 2, 615 tuples takes on 
average approximately 26 times as much as solving an instance with σ = 366 tuples, therefore
the gains become apparent. Overall, PODI2 completes in 11s, whereas PODF2, which directly com-
putes po using LP Problem (29), requires 13s. The other datasets show similar trends, con�rming
a correlation between execution times and |nd|, independently of the distribution. This can be
clearly observed in Figures 13a and 13b, which report the execution times of PODI2 and PODF2
for all values of |nd| occurring with all tested parameter values, merging observed results from 
all dataset distributions. In our experiments, PODF2 outperformed PODI2 whenever |nd| < 2, 000 
tuples, whereas PODI2 prevailed for larger values of |nd|. Figure 13c shows the relative gain of
PODI2 over PODF2 as |nd| varies and indicates that, although PODF2 is much better than PODI2 
for smaller values of |nd|, the di�erence in execution times is small in absolute terms (always less
than 2s). On the contrary, PODI2 was up to 70% better than PODF2 for larger instances, showing
also huge gains in absolute terms (more than 800s faster than PODF2 for the largest instance).

Given the intrinsic higher complexity of computing po with respect to nd, it can be argued that
the times incurred by PODI2 and PODF2 are always acceptable for the UNI and NBA datasets (less
than 10s in all cases but d ≥ 8); ANT is harder to deal with when the problem size gets larger, 
because the starting nd set contains more tuples; execution times remain around 10s or less with
default parameter values or easier combinations, i.e., N ≤ 100K , c ≥ 3 and d ≤ 6.

Non-nd-based methods require performing a large number of po tests. In the case of non-
incremental variants, the size of the LP problems to be solved is unfeasibly large even for the
smallest instances we consider (when N = 10K , the �rst Problem (29) solved by PODF1 has already 
σ =9,999 variables, while Problem (28) solved by POPF1 has more than σ =9,999 constraints). As for 
nd-based methods, the dual po test runs faster than the primal po test. Therefore, the only sensible
non-nd-based variant to consider is PODI1, and we compare it with PODI2 and PODF2 on smaller-
scale synthetic datasets with varying size up to 100K tuples. Figure 14 reports the execution times 
incurred by the various algorithms (for PODI2 and PODF2 we now also include the time spent for
computing nd through SVE1F) and shows that PODI1 is clearly outperformed by nd-based algo-
rithms by at least one order of magnitude. This is due to the fact that PODI1 incurs a much larger 
number of LP problems to be solved. For instance, on the ANT dataset with N = 105, the number
of LP problems solved by the various algorithms is: 843,872 for PODI1, 16,325 for PODI2, and 2,616 
for PODF2.
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Fig. 15. Correlation between execution times and percentage of preserved volume in the space of weights
as the number of constraints varies, both for weak rankings (WR) and for interval constraints (IC).

6.3 Other types of constraints

As in the case of weak rankings, our experiments with interval constraints detailed in Appendix C
suggest that performance of our algorithms clearly depends on the selectivity of the constraints, i.e.,
the ratio between the (hyper-)volume of the polytopeW (C) determined by the |C| = c constraints
in the space of weights and the volume of the (d −1)-simplex. Figure 15 shows the execution times
for nd (as computed by SVE1F, Figure 15a) and po (as computed by PODI2, Figure 15b) with the
ANT dataset as the number of constraints c varies, both for weak rankings (WR) and for interval
constraints (IC). The percentages of preserved volumes are not identical across the two kinds of
constraints as c varies (for instance, when c = 1, the percentage is 50% for WR and 32.6% for IC,
while, when c = 5, we have 0.13% for WR and 0.49% for IC). Still, the measured execution times
tend to lie on the same line, independently of the kind of constraints (apart perhaps for smaller per-
centages of preserved volume, where small �uctuations in the measured times are proportionally
more relevant). This suggests that performance is indeed independent of the kind of constraints
and that the main impacting factor is the percentage of preserved volume.

6.4 Partitioning the dataset for parallel processing

The aim of this subsection is to explore the potentialities of parallel processing for computing nd

and po. To this end, we exploit Proposition 3.22 and consider a simulated environment withm ≥ 1
processors with shared memory, in which the i-th processor is in charge of processing a partition
ri of the whole dataset r , such that all ri ’s are (approximately) of the same size. The ri partitions
are determined by assigning tuples to processors in a round-robin fashion. We perform this set
of experiments only with the most challenging datasets, namely ANT with N = 10M (and default
parameter values otherwise) and ANT with d = 10 (default values otherwise). For computing nd,
we consider the SVE1F variant, which is the best one on the considered datasets; similarly, we
consider PODI2 for computing po.
According to Equation (19) in Proposition 3.22, when r = r1 ∪ r2 ∪ . . . ∪ rm , nd(r ;F ) can be

computed in two steps:
(1) �rst, determine the so-called “local” nd(ri ;F )’s, for 1 ≤ i ≤ m;
(2) then, apply nd on the union of the local nd(ri ;F )’s in order to obtain the “�nal” nd(r ,F ).
Figure 16a shows results for the case N = 10M . In this Figure, each stacked bar shows in red the

maximum of the times spent by them processors in computing the corresponding local nd, while
the pink part accounts for the cost of the second step (“�nal nd”), in which a single processor is in



charge of computing the �nal result.13 The overall execution time is almost inversely proportional
to the number m of partitions, with a remarkable speedup of 4.92 with m = 8 and of 5.76 with
m = 16. The cost of the second step tends to increase withm, since, as Figure 19a shows, the sum
of cardinalities of the local nd(ri ;F )’s (“merged nd’s”) grows withm, as expected.

The situation for the case d = 10 is shown in Figure 16b, fromwhich it is evident that paralleliza-
tion has a reduced bene�t if compared with the previous case. Even if the cost of the �rst step has
a trend similar to the case N = 10M , computing the �nal result becomes the heavier component
already whenm = 2. Indeed, even if nd has a comparable cardinality in the two datasets, when
N = 10M it only represents 0.13% of the dataset, whereas, for d = 10, 18.29% of the tuples are in
nd.
In the second step, we experimented with several optimization opportunities, in particular an

m-way merge of the local nd’s and a “partition-aware” F -dominance test. When combining the
local nd’s, which are already locally sorted as a result of the computation, one can avoid sorting
their union from the scratch by applying a simpler merge algorithm. Additionally, F -dominance
tests can be avoided altogether between all those pairs of tuples coming from the same partition
(on which such tests have already been applied). Although these optimizations tends to reduce the
overall execution time, their e�ect is negligible compared to the other cost factors.

For the computation of po, we initially analyze two alternative strategies, whose di�erent be-
haviors are shown in Figure 17 for the casem = 4. The �rst strategy, labeled “4/1” in the �gure,
�rst computes the local nd’s (whose computation time is reported as the red part of the corre-
sponding stacked bar), then it directly applies PODI2 on the union of such sets of tuples (i.e., �rst
computing the �nal nd(r ;F ), whose time is reported as the pink component, and then po(r ;F ),
shown in green). Conversely, the second strategy, labeled “4/4” in the �gure, also parallelizes the
computation of the local po’s (green part of the stacked bar), which is followed by the computa-
tion of the �nal po(r ;F ) (light green part), thus re�ecting the strategy induced by Equation (20)
in Proposition 3.22. Note that, this second strategy, compared to the �rst one, largely reduces the
number of tuples from which the �nal po result has to be derived. Indeed, for both datasets, the
second strategy largely outperforms the �rst one, which shows no visible improvement with re-
spect to the non-parallelized baseline (labeled “1/1”) when d = 10. Similar results occur also for
other values ofm.
Figure 18 shows how our second strategy behaves with a variable number of processors. For

both datasets, the availability of multiple processors results in signi�cant improvements, attaining
a maximum speedup of 3.3 for m = 16 when N = 10M and a maximum of 2.9 for m = 8 when
d = 10. However, as was the case with nd, the dataset with N = 10M is less heavily impacted by
the (non-parallelized) computation of the �nal result, shown as the light-green components of the
bars, never exceeding 50% of the total time. Conversely, such a component becomes prevalent in
the datasetwithd = 10, attaining up to 90% of the total timewhenm = 16. This phenomenon can be
explained by considering the fact that the cardinalities of the inputs (i.e., the “merged po’s”) to the
�nal po computation are roughly the same in the two scenarios (see Figure 19), but the complexity
of the problem is much lower when d = 6 (which is the case of the dataset with N = 10M) than
when d = 10. Since the cardinality of the merged po’s grows withm, the bene�ts of parallelization
are partially neutralized by the increased burden of the �nal po computation for larger values of
m.

13Note that, for the non-partitioned case m = 1, the concepts of “local” and “�nal” nd coincide, and we have labeled the 
bar as “local” for a more immediate comparison with the other cases. A similar observation applies also to the other �gures 
in this subsection.
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(a) Size N = 10M . (b) # of dimensions d = 10.

Fig. 16. Performance for computingndwith SVE1Fwhile varying number of partitions for parallel processing
with default parameter values except for (a) size N = 10M , (b) dimensions d = 10.

(a) Size N = 10M . (b) # of dimensions d = 10.

Fig. 17. Performance for computing po with PODI2, comparing no partitioning (le�-most bars), partitioning
with 4 partitions for nd (central bars) and for both nd and po (right-most bars). Default parameter values
except for (a) size N = 10M , (b) dimensions d = 10.

(a) Size N = 10M . (b) # of dimensions d = 10.

Fig. 18. Performance for computing powith PODI2while varying number of partitions for parallel processing
with default parameter values except for (a) size N = 10M , (b) dimensions d = 10.

6.5 Summary of experimental findings on performance

We conclude by summarizing the main �ndings from the previous subsections.
Computation of nd

(1) sorting the input dataset is always bene�cial;
(2) the Vertex Enumeration (VE) strategy largely outperforms the approach based on Linear Pro-
gramming (LP);
(3) computing nd starting from the skyline (2-phase approach) does not pay o� in challenging
scenarios.
(4) if the set of constraints has a reasonably high selectivity (e.g., c ≥ 3 in our scenarios), inter-
leaving dominance and F -dominance tests (as in SVE1F) leads to better performance than �rst
checking dominance on all tuples and then F -dominance on the remaining tuples.
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parameter values except for (a) size N = 10M , (b) dimensions d = 10.

Computation of po

(1) computing po starting from nd (nd-based variants) is always the best alternative;
(2) using the dual po test of Theorem 4.7 leads to better performances than the primal test of
Theorem 4.5, with the maximum gain exceeding 30%;
(3) the variants based on the incremental approach are preferable for challenging problem in-
stances, as measured by the cardinality of nd.
From these observations, we can derive the following guidelines for the choice of the most appro-
priate algorithms, depending on the scenario at hand:
• generally, the best variant for computing nd on challenging datasets is SVE1F, which, for default
parameter values (d = 6, c = 3, N = 100K , p = 1) requires 1.54s on the ANT dataset;
• however, if we consider challenging datasets and constraints with low selectivity then the best

variant is SVE1, which prevails over SVE1F on the ANT dataset when c = 1 (default parameter
values otherwise) by a 12% margin;
• for less challenging scenarios, SVE2 usually prevails (see, e.g., Figure 10a and Appendix C);
• the best variant for computing po in scenarios in which nd is large is PODI2, which executes in
12.69s on the ANT dataset with default parameter values;
• for smaller values of |nd|, PODF2 generally prevails over PODI2, although, in this case, the per-
formance gains are not as signi�cant.

6.6 Comparison with skyline queries
In order to better understand the behavior of nd and po, we �rst characterize them in terms of 
user results by considering how much they are able to reduce the size of the result as compared to 
standard skyline queries. In particular, we compute the ratio of points retained by these operators 
among those in the skyline (see also Table 8 in Section 6.2).
Figures 20 and 21 show this ratio in several scenarios for the ANT, UNI and NBA datasets. The 

results indicate that F-skylines are always much more e�ective than skylines, and po is more e�ec-
tive than nd, as expected. Table 8 shows that, for default values of the parameters, the e�ectiveness 
of F-skylines is already remarkable, with the largest reductions in ANT (9.8% of the skyline points 
are in nd and only 1% in po).

Figures 20a and 20b show that the reduction of points increases as the size N of the dataset 
grows, the highest pruning being obtained in the ANT dataset with N = 10M points; in this setting, 
the skyline has 289812 points, 13490 of which (4.6%) are retained by nd, and only 710 (0.2%) by po. 
Although we observed this reduction increase in all our experiments, an analytic explanation is 
still missing and we expect this to be di�cult to provide, as already for standard skylines the size 
estimation problem is open [23].
Figures 20c, 20d, and 21a show that the e�ectiveness o f F -skylines s teadily improves a s the 

number of constraints c increases. This is mainly due to the fact that each constraint reduces the
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�

� � � �

✁

✁ ✁ ✁ ✁
✂ ✄ ☎ ✆ ✝✞✞✟✞

✞✟✂

✞✟✄

✞✟☎

✞✟✆

✝✟✞

✠✡☛☞✌✍✡✎✌✍

(✏
✑
✒✓
✔

)/

✕
✖
✗
✘✙
✚✛✜

�✢✣

✁ ✤✥

(e) UNI: # of dimensions d varies.

�
� � �

�
✁

✁ ✁ ✁ ✁
✂ ✄ ☎ ✆ ✝✞✞✟✞

✞✟✂

✞✟✄

✞✟☎

✞✟✆

✝✟✞

✠✡☛☞✌✍✡✎✌✍

(✏
✑
✒✓
✔

)/

✕
✖
✗
✘✙
✚✛✜

�✢✣

✁ ✤✥

(f) ANT: # of dimensions d varies.

Fig. 20. Cardinality ratio between F-skylines (po, nd) and Sky: UNI on the le�; ANT on the right.
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(b) NBA: # of dimensions d varies.

Fig. 21. Cardinality ratio between F-skylines (po, nd) and Sky for the NBA dataset.

space of weights, and thus the set F of functions to consider for F -dominance; the number of
retained tuples decreases as a consequence of Proposition 3.14. The experiments also show that po
proves very e�ective even with few constraints, with the most dramatic improvement with respect
to nd in the NBA dataset with 1 constraint, where the ratio decreases from 88.6% for nd to 6.2% for
po. The �gures suggest a possible correlation between the reduction of the (hyper-)volume of the
space of weightsW (C) caused by constraints and the reduction of tuples caused by F-skylines.
Figure 22 con�rms a clear correlation between the ratio of points in nd and the ratio of preserved
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Fig. 22. Correlation between nd/Sky cardinality ratio and percentage of preserved volume in the space of
weights as the number of constraints c varies.

weight volume, i.e., the ratio between the (hyper-)volume of the polytopeW (C) determined by
the |C| = c constraints in the space of weights and the volume of the (d − 1)-simplex.

Signi�cant reduction is also observed when varying the number of dimensions, as shown in
Figures 20e, 20f, and 21b. In all the scenarios with d > 2, the ratio of skyline points in nd is always
below 35%, and much less in many cases, while for po the ratio never exceeds 10% in these cases,
reaching an impressive 0.38% when d = 10 for the NBA dataset.
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Fig. 23. Cardinality ratio between F-skylines (po, nd) and Sky as parameter p ofMW
p means varies; (a): weak

rankings; (b): weak rankings with non-zero weights.

Finally, Figure 23a shows the e�ect of parameterp ofMW
p means (see Equations (30) and (31)).We

only show the results for the UNI dataset, since ANT and NBA have similar behaviors. The |nd|/|Sky|
ratio grows steadily as p grows, and then saturates for high values of p (p ≈ 4). This asymptotic be-
havior can be explained by observing that the shape of the F -dominance regions tends to stabilize 
for large values of |p | (see also Figure 24). As for po, the |po|/|Sky| ratio is minimal for negative
values of p (where less than 10 tuples are in po). For p > 0, the ratio grows with p until a maximum
is reached for a value of p ≈ 3, after which it rapidly decreases.

Note that when all the weights are non-zero and p → ∞, the score of a tuple t tends to
max{t[A1], . . . , t[Ad ]} (or min when p → −∞), in which case both nd and po would tend to
the set with just the tuple (possibly tied) with the best (i.e., lowest) maximum (minimum) attribute 
value. However, our default constraints allow some of the weights to be 0, therefore preventing
this behavior. Figure 23b shows what happens when additional constraints imposing all weights
to be non-zero are included: for high values of |p |, both |po| and |nd| tend to one single tuple, as
expected.

Since in Figure 23 the cardinality of Sky is clearly independent of p, the graphs also suggest
that, in the general case, the cardinalities of nd and po do not display a monotonic behavior when 
varying p. Indeed, as further discussed in Appendix A, this depends on the fact that there is no
inclusion between the F -dominance regions of a tuple when p varie
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(a) p = 5 (b) p = −5

Fig. 24. F -dominance regions for three tuples when p = 5 (le�) and p = −5 (right).

Dataset Sky by SFS nd by SVE1F po by PODI2

ANT 11.17 (98%) 1.54 12.69
UNI 0.34 (94%) 0.36 1.41
NBA 0.58 (98%) 0.65 1.74

Table 9. Execution times (in seconds) of Sky, nd, po with default values; in brackets, the percentage with
respect to the execution time of SVE2.

In order to provide more intuition on the behavior of the |nd|/|Sky| ratio (and, consequently,
on the |po|/|Sky| ratio) when zero-weights are possible, we refer to Figure 24, showing the F -
dominance regions for three tuples with constraints {w1 ≥ w2} with p = 5 (Figure 24a) and p = −5
(Figure 24b).

With respect to the reference linear case p = 1, when p grows, the F -dominance region of a
tuple t below the main diagonal (such as t3) tends to include all tuples s such that s[A1] ≥ t[A1]
(i.e., only the �rst coordinate matters), and this region strictly includes the F -dominance region
of t when p = 1. In this case, we therefore expect tuple t3 to F -dominate more tuples than when
p = 1. On the other hand, for a tuple t above the main diagonal (such as t1 and t2) a somewhat
opposite e�ect may occur, in that the volume of the F -dominance region may reduce depending
on how far the tuple is from the diagonal. For instance, this reduction can be appreciated for t1
(far from the diagonal), but not for t2 (close to the diagonal). A rather di�erent situation occurs
when p → −∞: now, the F -dominance region of tuples below the main diagonal reduces to the
minimum possible (i.e., their dominance region), whereas tuples above the diagonal tend to enlarge
their F -dominance region, again depending on how far they are from the diagonal. The di�erent
phenomenon occurring when p → ∞ and p → −∞ explains why the asymptotic values of |nd|
are likely to be di�erent in practice.

We conclude this set of experiments on p by observing that, for large values of |p | (such as
|p | > 5), numerical instability problems are encountered by the LP solver, thus making the results
unreliable for those values. However, this is not an actual limitation, since, when |p | = 5, the nd
and po operators already exhibit a stable behavior, which is not expected to change for larger
values of |p |, as con�rmed by the fact that the F -dominance regions observed in Figure 24 for
|p | = 5 are not going to change signi�cantly for larger values of |p |.
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Fig. 25. Precision and recall of top-k queries with respect to Sky, nd, and po. Centroid of theW (C) as weight
vector; default parameter values.

We now compare F-skylines and skylines in terms of execution times. Table 9 shows such times
for default parameter values. It can be seen that computing Sky using SFS essentially requires
the same time as computing nd with the 2-phase SVE2 approach (i.e., most of the time is spent
in the �rst phase of the algorithm), a fact we observed in all the scenarios we tested. Therefore,
computing Sky and nd via a 1-phase algorithm (like SVE1F) is in most cases in favor of the latter,
possibly requiring even much less time, as can be seen in Table 9 for the ANT case. Table 9 also
shows that computing po incurs only a moderate overhead for all the considered datasets with
default parameter values.

Overall, this con�rms that F-skyline operators can be safely used in place of standard skylines,
especially considering their increased �exibility in controlling the size of the result.

6.7 Comparison with ranking queries

We �rst remark that, to the best of our knowledge, a detailed comparative analysis between the
results of ranking (top-k) and skyline queries has never been attempted before, and indeed it would
beworth investigating to better understand how tuples of a dataset are distributed. In the following
we provide some intuition on the relationship between results yielded by our operators and those
of top-k queries. To this end, we consider the classical precision and recall measures. Let Tk (r ; f )
indicate the set of top-k tuples in relation r with respect to a scoring function f . The precision
of Tk (r ; f ) with respect to a set S is de�ned as pre(S) = |S ∩ Tk (r ; f ) |/k , whereas the recall is
rec(S) = |S ∩ Tk (r ; f ) |/|S|. Notice that, in our context, where S ∈ {Sky,nd, po}, high precision
would indicate that most of the top-k tuples are also in S, whereas a high recall would mean that
most of the tuples in S are also top-k tuples.
Clearly, if there is a small overlap between top-k and skyline results, we expect a similar or

smaller overlap with F-skylines. Moreover, the overlap will largely depend on the speci�c scoring
function f , and, in the case of F-skylines, also on the family of scoring functions F . Intuitively,
the more f is “dissimilar” to F , the more F-skyline and top-k query results will di�er.

Figure 25 shows precision and recall when f is a weighted sumwith the centroid of the polytope

W (C) as weight vector. This choice guarantees that f ∈ F and ensures that f is, in some sense,

.
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the most representative function in F . Clearly, recall values grow with k , while precision values
decrease. For every value of k and all datasets, pre(po) ≤ pre(nd) ≤ pre(Sky), i.e., a top-k query
will more easily retrieve skyline tuples than non-F -dominated and potentially optimal tuples. For
instance, among the top-50 tuples in UNI, 47 are also in Sky, while 36 are in nd and only 13 in po.
As expected, pre(nd) and pre(po) somehow depend on pre(Sky) and thus on data distribution.
As for recall, when k equals the number of tuples returned by an F-skyline operator (and thus
precision and recall are equal), we have that the range of rec(nd) is between 38% (for UNI) and
50% (for ANT), while such values drop to 18%–38% for rec(po). Note that, for retrieving all the 264
tuples in nd(NBA;F ) one should choose a value of k > 30000, and the same holds for the 32 tuples
in po(NBA;F ); even larger values of k are needed for ANT and UNI. As a further illustration of the
di�erence of the results of F-skylines and top-k queries, we examined the ANT dataset when d = 2:
here, a top-10 query retrieves only 4 out of the 8 tuples in nd, while all the other tuples in nd occur
after position 1000. Note that the above results are the best possible for top-k queries, since using
for f a weight vector other than the centroid ofW (C) leads to lower precision as well as recall.
Similarly to skyline queries, F-skylines pay the increased capability of returning interesting

results at the price of a higher computational overhead with respect to ranking queries. In all our
experiments, in which the top-k algorithm was implemented using a max-heap along the lines
of [8], ranking queries required only a fraction of the execution time of SVE1F (between 0.1% and
7%), as expected.

7 RELATEDWORK

Due to the limits that each of the basic methods for multi-objective optimization exhibits, several
approaches have been attempted to help in more easily �nding interesting results in large datasets.

Among the methods aiming to extend skyline queries with user preferences, we mention p-
skylines and trade-o� skylines, which only rely on the order properties of skylines, i.e., without any
reference to the actual underlying attribute domains (which can consequently also be categorical).
P-skyline (or Prioritized skyline) queries [32] are a generalization of skyline queries in which the
user can specify that some attributes are more important than others, by respecting the syntax of
so-called p-expressions. In practice, a p-expression over d attributes will have fewer than d “most
important” attributes. Since these ultimately determine the size of the result, p-skylines usually
contain fewer tuples than skylines. P-skylines can be e�ciently computed by taking advantage
of the reduced cardinality of the result, i.e., with an output-sensitive algorithm [31]. Trade-o�
skylines [30] consider qualitative trade-o�s, i.e., no numerical considerations are present. While
this allows extending the applicability of their algorithms to categorical attributes, the price to be
paid is an increased computational complexity, which makes them hardly applicable to datasets as
large as those we consider in this paper.

Several techniques have been proposed for reducing the skyline size, a recent survey of which
can be found in [29]. Notice, however, that none of these methods is conceived to accommodate
user preferences as we do with F-skylines. Distance-based representative skylines [43] aim to de-
termine the k tuples in the skyline for which the maximum distance to the excluded skyline points
is minimized. Since this problem is NP-hard, only approximate solutions can be provided. Fur-
thermore, the method is also sensitive to the speci�c metric used to measure distance between
tuples. Another approach to select a limited subset of skyline tuples is to assign to each of them a
measure of interestingness based on some speci�c properties. Top-k Representative Skyline Points
(RSP) [28] are the k skyline points that together dominate the maximum number of (non-skyline)
points. Computing top-k RSP is NP-hard for three or more dimensions, thus approximate solu-
tions are adopted in practice. Top-k dominating queries [44] return the k tuples that dominate the
highest number of tuples in the dataset, i.e., they rank tuples according to the number of other



tuples they dominate. Besides the high computational cost incurred by this approach if the input
dataset is not indexed, a major drawback is that the score of a tuple depends on how worse tuples
are distributed, a problem that this method shares with top-k RSP.

Somehow related to what we study in this paper are those works on top-k queries in which the
scoring function is not univocally de�ned, e.g., [34, 45]. Along these lines, [42] studies represen-
tative orderings (such as the most probable ordering) and their stability with respect to a change
of parameter values, by assuming that the set of parameters (weights) is a random variable with
a uniform distribution. Also partially related to the present work is the notion of skyline over
probabilistic data [3, 36], which we discuss as an orthogonal line of research in Section 8.

When the scoring function f is linear both in the weights and in the attribute values (i.e., f
is a weighted arithmetic mean), the top-1 result is guaranteed to lie on the convex hull of the
dataset.14 This is exploited by the Onion technique for indexing purposes [9]. However, for general
MLW functions and constraints, which we consider in this paper, the Onion technique cannot be
adopted. This stems from the observation that, in general, neither nd nor po are subsets of the
convex hull.

F-skylines have a small overlap with dynamic skylines [35], but important di�erences exist. In
a dynamic skyline query, one considers a �nite set of q monotone functions, Φ = {ϕ1, . . . ,ϕq },
de�ned on the tuple attributes and, possibly, on user-provided query points, and then establishes
that tuple t Φ-dominates tuple s i�ϕi (t ) ≤ ϕi (s ) holds for i ∈ {1, . . . ,q}, with at least one inequality
being strict. A remarkable application of dynamic skylines is on spatial datasets [40], in which the
q functions are the distances of a tuple t from q query points. In the extreme case in which no user-
de�ned query points are given (i.e., Φ only consists of monotone functions of the tuple attributes),
the dynamic skyline of a relation r coincides with nd(r ;Φ), as it is immediate to verify. However,
in general, the two types of queries are incomparable, since, on one hand, dynamic skylines can
rely on external query points and, on the other hand, F-skylines can deal with an in�nite family of
scoring functions (and constraints on them). It is interesting to observe that our approach can also
be applied so as to extend dynamic skylines with user preferences, as we have done with standard
skylines. To see this, consider for instance Φ = {ϕ1,ϕ2} and the set of (functions of) functions
F = {w1ϕ1 +w2ϕ2 |w1 ≥ w2}. Then, one can de�ne nd and po as in the classical (static) case, thus
returning, respectively, the set of non-F -dominated tuples and the set of tuples that are optimal
for at least one combination of ϕ1 and ϕ2 respecting the constraint.
In this paper we have assumed, for the sake of tuple-distinguishability, that for each attribute

Ai in A = {A1, . . . ,Ad } there exists at least one function in F that depends on Ai . When this is
not the case, we fall into the same scenario considered by subspace skylines [37], which compute
the skyline, SkyB (r ), by considering each proper (non-empty) subset B ⊂ A of the attributes.
Let MFB be the set of all monotone scoring functions de�ned on B. Then, SkyB (r ) = nd(r ; MFB ),
whereas po(r ; MFB ), due to the loss of tuple-distinguishability inB, omits all the tuples t that in the
B subspace collapse with some other tuple. In all these cases, as well as in the more general case
in which a subset of MLW functions F ⊆ MFB is used, nd(r ;F ) and po(r ;F ) can be computed
exactly as described in Section 4.3.

Since their introduction in [12], the very concept of F -dominance and the operators relying on
it have inspired several subsequent works aiming to extract interesting results from large datasets.

In [33], the authors consider the extension of our nd and po operators to computing the set
of tuples that are F -dominated by less than k tuples (ndk ) and the set of tuples that are in the
top-k result for some function in F (pok ), respectively. The computation of ndk assumes that
the dataset is indexed by an R-tree, and their algorithm is a variant of the BBS algorithm used to

14The convex hull is the smallest convex polytope that encloses all tuples in a dataset [15].
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compute the k-skyband (the generalization of the skyline to the case k ≥ 1): the index is traversed
by considering a priority queue whose entries are ordered using, as we do, a linear scoring function
with weights equal to the coordinates of the centroid ofW (C), and F -dominance is checked by
an analog of our test based on the vertices of theW (C) polytope. When k = 1 their algorithm for
computing po1 reduces to the po variant described in this paper based on the primal LP test without
incrementality (i.e., POPF2), which we have shown to yield inferior performance with respect to
the dual-based approach with incrementality (i.e., PODI2).
In [13] the concept of F -dominance has been exploited to derive a novel, instance-optimal algo-

rithm [19], called FSA, for solving multi-source, distributed top-k queries, when only constraints
on weights (rather than a speci�c scoring function) are available. In [13] it is also shown that FSA
generalizes and includes as special cases two well-known algorithms for computing top-k queries
in a distributed scenario, i.e., Fagin’s Algorithm [18] and the Threshold Algorithm [19].

There are numerous application scenarios that share the common goal of extracting the most
relevant objects from a large set of alternatives. For instance, this is the case with recommender
systems as well as with feature selection approaches, in which, for avoiding the so-called curse of di-
mensionality, the aim is to select the most relevant features for, e.g., training a classi�er. Assuming
thatd �lters are available that assign a relevance score to theN features under consideration, [4] de-
scribes the application of F -dominance to the problem of feature selection, with (range-tolerance)
interval constraints on weights. Initial experiments involving several UCI datasets and �lters show
the bene�ts of this approach with respect to other methods based on classical top-k selection.
This paper substantially extends the work in [12], in which the concept of F -dominance was

originally introduced, together with the nd and po operators. In particular, besides adding rigorous
proofs to all our formal results, here we provide amore detailed analysis of the fundamental proper-
ties of the operators (Section 3.1), several novel properties extending the applicability of F-skylines
(Section 3.2), along with numerous examples illustrating the properties at hand. While [12] only
focused on scoring functions in the form of weighted Lp norms, here we consider a much more
general class, which we call MLW functions (Section 4), in which attribute values can be subject
to arbitrary, possibly di�erent, monotone transforms. We show that all our formal results gener-
alize to this larger class, including a novel theorem providing an alternative way of computing
potentially optimal tuples. We also provide a formal justi�cation to nd-based algorithms for com-
puting po (which was only implicitly assumed in [12]). The case of non-tuple-distinguishing sets
of functions was not considered at all in [12], whereas here we provide a comprehensive analysis,
in Section 4.3 for the case of in�nite sets of scoring functions, which is the main focus of our work,
and in Appendix B for the general case in which the set can also be �nite. The computation of po
in [12] was based on a single algorithm, whereas here we introduce and experimentally evaluate
eight new di�erent variants. Our experiments focus on a practically relevant subset of MLW func-
tions, i.e., weighted power means, whose distinctive properties (only sketched in [12]) are studied
in Appendix A. The experiments cover a wide variety of scenarios that were not considered in
the original conference paper, such as larger datasets (up to 10M tuples) and di�erent data distri-
butions (also including correlated data and clustered data, for both real and synthetic variants).
We experiment with a di�erent type of constraints (interval constraints), showing, in Section 6.3,
that the selectivity of the constraints, independently of their kind, is the factor with the heaviest
impact on performance. In Appendix C, we also compare the di�erent kinds of constraints from a
geometric point of view. Appendix C also discusses how performance is a�ected by non-linearity
in the scoring function. As a novel contribution, in Section 6.4, we assess the impact of the avail-
ability of multiple processors for parallelizing the computation of nd and po, along the lines of
Proposition 3.22. The detailed comparisons with dynamic skylines and subspaces skylines o�ered
in this section are also new.



It is well known that choosing the “right” weights for a scoring function is a di�cult task for
users, since it is usually hard to predict the e�ects on ranking of changing one or more parameters.
Replacing precise values with constraints on weights, as F-skylines do, is therefore a viable way
to alleviate the problem. To this end, a large body of techniques have been investigated in Multi-
Attribute Decision Theorywithin the so-called preference programming [39]. In general, preference
programming methods deal with the problem of assisting decision makers when their preferences
are incomplete. F-skyline algorithms represent, as far as we know, the �rst successful attempt to
apply a preference programming method on large datasets.

8 FINAL DISCUSSION

In this paper, we have introduced the notion of �exible skyline queries (F-skylines), aiming to
extend the skyline framework with user preferences expressed by means of constraints on the
weights of scoring functions. We have done so through the novel concept of F -dominance, i.e.,
dominance with respect to a family of scoring functions F . We have then introduced two F-skyline
operators, respectively implementing the notions of non-dominated (nd) and potentially optimal
(po) tuples with respect to F .

We have shown that both nd and po are very e�ective in focusing on tuples of interest, even in
very large datasets, often leading to considerably smaller result sizes than standard skylines. Over-
all, we have developed several variants for e�ciently computing both nd and po, and characterized
their behaviors in a variety of scenarios.

The concepts and methods we have presented in this paper can be extended along several direc-
tions, which we brie�y describe in the following.

For the sake of general applicability, in this paper we have considered algorithms that sequen-
tially scan the input dataset, possibly after pre-sorting it. Clearly, the notion of F -dominance 
could certainly be used in conjunction with more re�ned optimization techniques, such as those
characterizing the LESS [24] and SaLSa [2] algorithms, as well as ad hoc algorithms for parallel 
environments, such as [5] – developed for classical skyline queries –, which would improve the
e�ciency of the variants based on sorting of the dataset. Similarly, one might extend index-based 
approaches, such as the BBS algorithm [35], for supporting F-skyline queries.
A di�erent line of investigation would be to apply the notion of F -dominance to variants of sky-

line queries. Among them, we mention reverse skyline queries [16] and skylines for probabilistic
data [3, 36]. In all these cases, the possibility of working with a speci�c family of scoring functions 
could reveal interesting properties of the data.

As observed in Section 7, the notion of F-skyline can also be applied when the coordinates of 
interest are dynamically de�ned, as is the case with dynamic skylines. An in-depth analysis of this 
enlarged scenario, which greatly extends the applicability of our techniques beyond the family of
MLW functions considered in this paper, is another interesting line of research.

Our F-skylines, much in the same way as ranking queries, are tailored to deal with numeric at-
tributes. Clearly, by mapping categorical attributes into numerical domains, our techniques would
still be applicable. Alternatively, one could imagine a mixed scenario, in which numerical and cate-
gorical data coexist, and in which F-skyline concepts are applied only to the numerical part, while
standard dominance criteria are applied to the categorical part (which, however, needs to consist 
of ordinal attributes). The extension of our techniques to this case, which would require a fusion 
of the two parts, is also an open problem.
Furthermore, the application of F-skylines to di�erent computer science areas could be worth

investigating, as exempli�ed by the approach described in [4].
According to our framework, the speci�cation of the family of scoring functions F  to use can be 

given through constraints on weights and the marginal scores of tuples (given by our дi functions
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in (21)). It is apparent (as well as agreed upon in the literature [42]) that providing precise weight
values is much harder than specifying constraints on weights. Although de�nitely important, the
issue of providing the “right” weight constraints is completely orthogonal to our work. This task is
tightly related to the issue of preference elicitation, which is covered by a large body of research in
the Decision Theory �eld. Similarly, methods for choosing the “right” marginal scores abound in
the Decision Theory literature (see, e.g., [41]), and have also been incorporated in some preference
programming methods [39]. An interesting development of our work would be that of extending
F-skyline algorithms to the more challenging scenario in which both weights and marginal scores
are partially speci�ed.

Finally, we observe that, when the result of an F-skyline operator is too large, one could consider
using one of the methods developed for controlling the cardinality of the skyline, which were de-
scribed in the related work section and can be applied orthogonally to F-skylines. For instance, the
concept underlying distance-based representative skylines [43] can also immediately be applied
to F-skylines. An interesting research issue would be to devise e�cient algorithms in which the
�nal result is obtained without �rst computing the full F-skyline result.

ELECTRONIC APPENDIX

The electronic appendix to this article can be accessed in the ACM Digital Library.
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ELECTRONIC APPENDIX

In this online appendix, the four sections report, respectively, a detailed analysis of the behavior
of weighted power means (Section A), an extension of our results to cover all cases in which the
set of scoring functions fails to distinguish all possible tuples (Section B), additional experiments
(Section C), and all the proofs of the claims included in the main body of the paper (Section D).

A THE CASE OF WEIGHTED POWER MEANS

In this appendix, we analyze in more detail the relevant case of weighted power means, which, as
de�ned in Section 6, are MLW functions of the following form:

MW
p (t ) = *

,

d
∑

i=1

wit[Ai ]
p+
-

1/p

, p , 0

MW
0 (t ) =

d
∏

i=1

t[Ai ]
wi .

We de�ne the familyMp of weighted power means for some �xed value of p as follows:

Mp = {MW
p |W ∈ W}. (32)

The behaviors of nd and po are radically di�erent underMp .

Theorem A.1. For every p ∈ R and every r , nd(r ;Mp ) = Sky(r ).

Proof. By Proposition 3.11 it follows that nd(r ;Mp ) ⊆ Sky(r ). Now we also need to show that
every tuple t ∈ Sky(r ) also belongs to nd(r ;Mp ). We know that ∄s ∈ r . s ≺ t , and assume, by
contradiction, that ∃s ∈ r . s ≺Mp

t , with s , t . Therefore, ∀f ∈ Mp . f (s ) ≤ f (t ). Now, let us

indicate withW (i )
= (w

(i )
1 , . . . ,w

(i )

d
) ∈ W the weight vector such that w

(i )
i = 1 and, for j , i ,

w
(i )
j = 0. Since s ≺Mp

t , we must have MW (i )

p (s ) ≤ MW (i )

p (t ) for 1 ≤ i ≤ d , i.e., we must have

s[Ai ] ≤ t[Ai ] for 1 ≤ i ≤ d , which entails s ≺ t since t , s . Contradiction.

Thus, anyMp family is “powerful enough” to reveal all skyline points with nd. However, this
does not hold for po, as indicated in the following theorem.

Theorem A.2. For every p ∈ R, there exists a relation r such that

po(r ;Mp ) ⊂ Sky(r ). (33)

Proof. Consider an instance r = {t1, t2, t }, with t1 = 〈1, 0〉, t2 = 〈0, 1〉, t = 〈1 − ϵ, 1 − ϵ〉, where
0 < ϵ < 1. Clearly, Sky(r ) = r , since no tuple in r is dominated by any other tuple in r . Now,
for every p ∈ R, we can choose a value of ϵ such that t < po(r ;Mp ). Indeed, for t to be in

po(r ;Mp ), there needs to be a vector of weightsW = (w1,w2) ∈ W such that MW
p (t ) < MW

p (t1)

andMW
p (t ) < MW

p (t2). When p , 0, this means:

((1 − ϵ )pw1 + (1 − ϵ )pw2)
1/p < w

1/p
1 ,

((1 − ϵ )pw1 + (1 − ϵ )pw2)
1/p < w

1/p
2 ,

which reduces to w2
(1−ϵ )p

1−(1−ϵ )p < w1 < w2
1−(1−ϵ )p
(1−ϵ )p . But this condition can never hold if (1−ϵ )p

1−(1−ϵ )p ≥
1−(1−ϵ )p
(1−ϵ )p , which happens for ϵ ≤ 1 − 1

21/p
.

When p = 0, the condition becomes (1 − ϵ )w1 + (1 − ϵ )w2 < 0, which is impossible.

Yet, a containment relationship holds for po for increasing values of p.
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Fig. 26. Tuples from Example A.4. MC
1
-dominance regions, with C = {w1 ≥ w2}, are in gray. Tuple t2 is

potentially optimal for theMCp families with p ≥ 2 but not with p ≤ 1. The colored curves connecting t1
and t3 are the loci of points obtained as convex combinations of t1 and t3 for various values of p.

Theorem A.3. Let p ′ > p. Then, for every r we have:

po(r ;Mp ) ⊆ po(r ;Mp′ ). (34)

Proof. Let t be a tuple in po(r ;Mp ). Then t minimizes an MW
p function for some weight vector

W = (w1, . . . ,wd ). Consider the region Sp (which includes only t among the tuples in r ) de�ned

by the inequalities
∑d

i=1wix
p
i ≤

∑d
i=1wit[Ai ]

p and xi ≥ 0 (for i ∈ {1, . . . ,d }). The region Sp′

de�ned by
∑d

i=1w
′
ix

p′

i ≤
∑d

i=1w
′
i t[Ai ]

p′ and xi ≥ 0 (for i ∈ {1, . . . ,d }), withW ′
= (w ′1, . . . ,w

′
d
)

chosen so that the boundary of Sp′ is tangent in t to the boundary of Sp , is strictly enclosed in Sp .

This implies that Sp′∩r = {t }, thusMW ′
p′ (t ) < MW ′

p′ (s ) holds for all s ∈ r , s , t . Then, t ∈ po(r ;Mp′ ).

Now we analyze how the presence of constraints can in�uence the above results, which were
stated for the case in which no constraints on the weights are applied. For the sake of clarity, let
us denote byMC

p the subset ofMp functions that satisfy the constraints C.
The constrained counterpart of Theorem A.1 can be stated as nd(r ;MC

p ) ⊆ Sky(r ), which
trivially follows from Proposition 3.11. Clearly, TheoremA.2 continues to hold also for constrained
weightedMp means, since po(r ;MC

p ) ⊆ po(r ;Mp ), by Proposition 3.14.
As for Theorem A.3, we start by analyzing, in the next example, the e�ect of p on the convex

combinations that ultimately determine potential optimality of a tuple.

Example A.4. Consider constraint C = {w1 ≥ w2}, tuples t1 = 〈0.1, 0.8〉, t2 = 〈0.4, 0.4〉, t3 =
〈0.5, 0.1〉, and instance r = {t1, t2, t3}, shown in Figure 26, where the gray area represents the
union of theMC

1 -dominance regions for all the tuples in r . The orange line connecting t1 and t3
represents the set of points that convexly combine t1 and t3 when the considered scoring functions
are inM1, i.e., those points expressible as 〈αt1[A1] + (1 − α )t3[A1],αt1[A2] + (1 − α )t3[A2]〉 with
α ∈ [0, 1]. Therefore, such points are simply determined as the segment connecting t1 and t3. If
any point on this segmentMC

1 -dominates t2 (as is apparent from the �gure), then t2 cannot be in

po(r ;MC
1 ).

Let us now consider the MC
2 family. The red arc connecting t1 and t3 represents the

points t that convexly combine t1 and t3 via functions in M2, i.e., those points expressible as

〈
√

αt1[A1]2 + (1 − α )t3[A1]2,
√

αt1[A2]2 + (1 − α )t3[A2]2〉 with α ∈ [0, 1]. Such a shape is obtained
by imposing f (t ) = f (t1) = f (t3), where f is a function in MC

2 , and thus corresponds to an
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1
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ellipse centered in 〈0, 0〉 and passing through t1 and t3. In this case, no point on the red arcMC
2 -

dominates t2, and therefore, for the particular choice of weights determining the scoring function
represented by the red arc, t2 is the optimal tuple in r , and thus t2 ∈ po(r ;MC

2 ). Note that, since
d = 2, by Proposition 4.8, we could have reached the same conclusion by simply checking that no
point on the red arc dominates (instead ofMC

2 -dominates) t2.
We can observe that t2 continues to be potentially optimal for larger values of p, as shown in

the �gure for p = 10 (green arc), i.e., t2 ∈ po(r ;MC
p ) for p ≥ 2.

Based on similar considerations, we observe that, with values of p smaller than 1, t2 can never
be potentially optimal, as shown for p = 0.5 (purple arc), p = 0 (brown arc), and p = −1 (blue arc),
i.e., t2 < po(r ;MC

p ) for p ≤ 1.

Example A.4 seems to suggest that Theorem A.3 also holds for constrained weighted power
means. However, the following example shows that the inclusion holds neither for nd nor for po
when varying p.

Example A.5. Consider constraint C = {w1 ≥ w2}, tuples t1 = 〈0.1, 0.7〉, t2 = 〈0.4, 0.45〉,
C

t3 = 〈0.65, 0.1〉, and instance r = {t1, t2, t3}, shown in Figure 27. The constrained M2 -dominance 
regions of t1, t2 and t3 are shown in gray, with dashed borders. The bottom-left part of such re-
gions is an arc of a circle centered in 〈0, 0〉 connecting the horizontal axis with the tuple. Such 
a shape derives from the de�nition o f F -dominance region when Equation ( 30) (for p  =  2 ) is
plugged in Equation (11) and the limit case w1 = w2 is considered, i.e., 

√

0.5 · t[A1]2 
+ 0.5 · t[A2]2 ≤

√

0.5 · s[A1]2 
+ 0.5 · s[A2]2, where t is the considered tuple and s is a generic tuple M2

C-dominated by t . Similarly, when the family of functions is M1
C , the bottom-left part of the M1

C-dominance 
regions is a segment whose s

C
lope is −45◦ (shown in

C
red in the �gure).

Clearly, we have nd(r ; M2 ) = {t1, t2} , nd(r ; M1 ) = {t1, t3}. This shows that, generally, there 
is no inclusion between nd for constrained Mp

C families with increasing values of p. Indeed, there
is no such inclusion between the corresponding Mp

C-dominance regions of a tuple. Consider, e.g.,
tuple t1: its M1

C-dominance region neither includes nor is included in the M2
C-dominance region, 

i.e., DR (t1, M2
C ) * DR (t1, M1

C ) and DR (t1, M1
C ) * DR (t1, M2

C ). Ditto for po, since in this example

nd(r ; Mp
C ) = po(r ; Mp

C ), with p = 1, 2, since there are only 2 tuples in nd and thus no convex
combination can be formed to Mp

C-dominate one such tuple.
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B NON-TUPLE-DISTINGUISHING SETS OF FUNCTIONS

For the sake of completeness, in this appendix we analyze the case of non-tuple-distinguishing
(ntd) sets of functions, including the case of �nite sets (the focus on in�nite sets was covered in
Section 4.3).

Example 3.5 showed that F -dominance between tuples may not be preserved when considering
a larger set of functions. Note, however, that F -dominance may be lost also when reducing F , if
the smaller set becomes ntd.

Example B.1. Consider tuples t = 〈0, 0〉 and s = 〈0, 1〉. Clearly, t ≺MF s , since the condition in
De�nition 3.3 holds. Consider now the monotone scoring function f (x ,y) = min{x ,y} and the set
F = { f }, which is ntd. Although the �rst condition of De�nition 4.10 holds, the second one does
not, since f (t ) = f (s ) = 0; therefore, t ≺F s does not hold.

A direct consequence of the notion of tuple-distinguishability is stated in Corollary B.2 below.

Corollary B.2. Let F be a ntd set of scoring functions. Then no subset of F is tuple-

distinguishing.

We observe that, when r , ∅, Sky(r ) and nd(r ;F ) are never empty whereas po(r ;F ) may only
be empty if F is ntd.

Example B.3. Consider tuples t = 〈0, 1〉 and s = 〈1, 0〉, instance r = {t , s}, function f (x ,y) = x+y

and set F = { f }. Then po(r ;F ) = ∅, since f (t ) = f (s ) = 1. Indeed, F is ntd.

We observe that, if F = { f }, then both nd(r ;F ) and po(r ;F ) are a sort of “top-1” operator with
respect to scoring function f , and return the best tuple according to f in r , if it exists. However, if
there are ties, nd(r ;F ) returns all the tied top-1 tuples in r , whereas po(r ;F ) = ∅.

Besides the cases covered by Theorem 4.12, non-tuple-distinguishability may also arise if one
considers a �nite set of functions.

Proposition B.4. Let F be a set of monotone scoring functions. If |F | < d and each function in

F is continuous, then F is ntd.

Proof. To prove the claim, let us represent them < d continuous functions in F by a single con-
tinuousm-valued function f from [0, 1]d to Rm . Set F is tuple-distinguishing i� f is injective. We
show that f cannot be both continuous and injective. Recall that a subset D of Rd is called open if,
given any point x in D, there exists a real number ϵ > 0 such that, given any point y in Rd whose
Euclidean distance from x is smaller than ϵ , y also belongs to D. Indeed, [0, 1]d contains an open
subset D of Rd (for instance, (0, 1)d ). The restriction of f from D to Rm remains continuous and
injective. Let us now extend f to a new function F from D to Rd = Rm × Rd−m by adding a point
c in Rd−m , so that the image F (p) of a point p in D through F becomes F (p) = ( f (p), c ) (i.e., them
values in the image f (p) of p through f plus d −m �xed values from point c). F remains continu-
ous and injective. The domain invariance theorem [7] states that the image of a non-empty open
subset D of Rd through a continuous and injective function from D to Rd is an open set, while
F (D) = f (D) × {c} is evidently not open.

Example B.5. Consider d = 3, functions f1 (x ,y, z) = x + y + z and f2 (x ,y, z) = x + y + 2z,
and the set F = { f1, f2}. Set F is ntd by Proposition B.4, since |F | = 2 < 3 = d , and all the
functions in F are continuous. Indeed, given tuples t = 〈0.2, 0.5, 0.5〉 and u = 〈0.4, 0.3, 0.5〉, we
have f1 (t ) = f1 (u) = 1.2 and f2 (t ) = f2 (u) = 1.7.



When |F | < d , the requirement in Proposition B.4 that the functions are continuous is essential
for the result to hold. Indeed, if one drops the hypothesis of continuity, then a single monotone
function would be su�cient to achieve tuple-distinguishability for any value of d .

Example B.6. Let d = 2 and, for any tuple t , consider the scoring function f obtained by inter-
leaving the bits of the binary representations of t[A1] and t[A2], which leads to the well-known
Z-order [21]. For instance, when t = 〈0.75, 0.25〉, the binary representations are, respectively, 0.112
and 0.012, and interleaving the bits yields 0.10112, thus f (t ) = 0.6875. Clearly, f is not continuous,
yet it is monotone and injective (thus tuple-distinguishing). The same procedure can be applied to
any value of d .

The condition |F | ≥ d is not su�cient to avoid ntd sets. For instance, let d = 2 and consider
the set F = { f1, f2}, with f1 (x ,y) = x + y and f2 (x ,y) = x · y. The set F is ntd since there
are tuples, such as t = 〈0.2, 0.5〉 and u = 〈0.5, 0.2〉, having the same score for both f1 and f2

(f1 (t ) = f1 (u) = 0.7 and f2 (t ) = f2 (u) = 0.1).
Verifying that a �nite s et o f m onotone ( and c ontinuous) s coring f unctions F  i s tuple-

distinguishing appears to be a challenging problem to solve, in the general case, as it amounts
to checking injectivity of a multi-dimensional mapping, which is known to be hard [1].

C ADDITIONAL EXPERIMENTS

In this appendix we discuss additional experiments regarding aspects that were not considered in 
full detail in the main body of the paper. In particular, we show performance results for computing 
nd and po in a number of new scenarios and datasets. New datasets include correlated data, both 
synthetic (COR) and real (HOU), as well as clustered data, both synthetic (GAU) and real (EMP). More-
over, we study the e�ect of adopting di�erent kinds of constraints on performance for all the main 
datasets analyzed in the main body of the paper. Finally, we assess how performance is a�ected by 
non-linearity in the scoring function by observing the behavior as the p parameter of Mp

W means 
changes.

Performances of SVE1F, SVE1 and SVE2 for computing nd are reported in Figure 28a for corre-
lated data (COR) as dataset size N varies, with little observable di�erences in the execution times 
among the various algorithms. Indeed, all algorithms spend most of the time for sorting the dataset, 
while the �nal result is found very quickly as soon as the dataset is sorted. With default parameters 
we have sub-second execution times. A closer analysis as the number of constraints c (Figure 28b) 
or as the number of dimensions d (Figure 28c) varies reveals that SVE2 is around 10% faster than 
the other alternatives, con�rming the observation made in Section 6 that SVE2 usually prevails in 
less challenging datasets. Figure 28d compares three algorithms for computing po, namely PODI2, 
PODF2 and PODI1, on small-sized versions of COR (up to 100K ), and shows that, while we always 
obtain sub-second times with PODI2 and PODF2 with these parameter con�gurations, the execution 
times are already unacceptably high for PODI1, thus con�rming what was observed in Section 6.
Figure 29a shows performance for computing nd on HOU as the number of constraints c varies. 

The trends are similar to those obtained with synthetic data, with SVE1 and SVE1F nearly tied for 
all values of c at around 1s and SVE2 performing around 20% better. The analysis for po, reported 
in Figure 29b, shows that the di�erence in performance between PODI2 and PODF2 is less than 2%
for all values of c .
A similar analysis is conducted on the EMP real dataset as the number of constraints c varies (Fig-

ure 30). While the dataset proves nearly twice more challenging than HOU (being more than twice 
as large), with worst times around 2s for most algorithms, the relative di�erences between the 
di�erent algorithms are unchanged: SVE1 and SVE1F are essentially tied, whereas SVE2 is around 
15% faster; PODI2 and PODF2 are less than 2% apart for all values of c .
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Fig. 28. Performance for computing nd and po on correlated datasets (COR).

� � � � �✁ ✁ ✁ ✁ ✁
✂ ✂ ✂ ✂ ✂

✄ ☎ ✆ ✝ ✞
✟✠✟

✟✠✞

✄✠✟

✄✠✞

☎✠✟

✡☛☞✌✍✎✏✑☞✍✌

✒✓
✔
✕

(✖

)

� ✗✘✙✚

✁ ✗✘✙✚✛

✂ ✗✘✙✜

(a) Computing nd.

� � � � �✁ ✁ ✁ ✁ ✁

✂ ✄ ☎ ✆ ✝
✞✟✞

✞✟✝

✂✟✞

✂✟✝

✄✟✞

✠✡☛☞✌✍✎✏☛✌☞

✑✒✓
✔

(✕

)

� ✖✗✘✙✚

✁ ✖✗✘✛✚

(b) Computing po.

Fig. 29. Performance for computing nd and po on the real dataset HOU as the number of constraints c varies.
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Fig. 30. Performance for computing nd and po on the real dataset EMP as the number of constraints c varies.

In order to analyze clustered data, we have generated synthetic datasets, referred to here as GAU,
with a varying number of Gaussian clusters (10, 20, 30, and 40) and default parameter values oth-
erwise. Our experiments on performance for computing nd and po on GAU are shown in Figure 31.
Execution times vary as the number of clusters varies, with a close correspondence to the number
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Fig. 31. Performance for computing nd and po on the clustered dataset GAU as the number of clusters varies.

(a) C = {w1 ≥ w2,w2 ≥ w3} (weak rankings). (b) C = {w2,w3 ∈ [w̄ (1 − ϵ ), w̄ (1 + ϵ )]} (interval
constraints), with w̄ = 1

d
and ϵ chosen so as to

equal the area of the gray polygon in Figure 32a.

Fig. 32. Polytopes W (C) (in gray) on the 2-simplex (in yellow) from Example C.1, with d = 3. In both
examples, the area of the polytope is 1/6 of the area of the simplex.

of tuples in the result set. Indeed, in the tested instances, the cardinalities of both nd and po are
highest with 30 clusters (with, respectively, 786 and 58 tuples), which in turn correspond to the
highest execution times for all algorithms. Similarly, the lowest cardinalities occur with 20 clusters
(with, respectively, 382 and 44 tuples), corresponding to the fastest executions. The spread around
the average execution time for each algorithm is within ±20% for nd and ±30% for po.
Before introducing our experiments on interval constraints, we �rst illustrate their di�erences

with respect to constraints in the form of weak rankings. To this end, we o�er a geometric illus-
tration for d = 3 in the next example.

Example C.1. Consider the 2-simplex in R3, shown in yellow in Figures 32a and 32b. Figure 32a
also shows, in gray, the shape of the polytope (polygon, in this case)W (C) when the set of con-
straints is C = {w1 ≥ w2,w2 ≥ w3}, i.e., two weak rankings constraints. In this case,W (C) has
vertices (1, 0, 0), ( 1

2
, 1
2
, 0) and ( 1

3
, 1
3
, 1
3
), and area 1

4
√
3
, i.e., 1

6
of the area of the simplex (

√
3
2
).
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(d) Real dataset (NBA).

Fig. 33. Performance for computing nd with interval constraints as their number varies (default parameter
values).

Similarly, Figure 32b showsW (C) when the set of constraints C consists of two interval con-
straints:

w̄ (1 − ϵ ) ≤ w2 ≤ w̄ (1 + ϵ )
w̄ (1 − ϵ ) ≤ w3 ≤ w̄ (1 + ϵ ),

where w̄ = 1
d
=

1
3
and ϵ is chosen so that the area ofW (C) is also 1

6
of the area of the simplex, by

analogy with the previous case. This is obtained by setting ϵ =
√
3
4
. The vertices ofW (C) in this

case are: 〈 1
3
, 1+ϵ

3
, 1−ϵ

3
〉, 〈 1+2ϵ

3
, 1−ϵ

3
, 1−ϵ

3
〉, 〈 1

3
, 1−ϵ

3
, 1+ϵ

3
〉, and 〈 1−2ϵ

3
, 1+ϵ

3
, 1+ϵ

3
〉.

Figure 33 shows performance of computing nd under interval constraints for the ANT (Fig-
ure 33a), UNI (Figure 33b), COR (Figure 33c), and NBA (Figure 33d) datasets as the number c of
constraints varies (default parameter values otherwise for synthetic datasets). We set w̄ = 1

d
=

1
6

and ϵ = 40%. The results show that SVE1F is the preferred choice for more challenging scenarios
(ANT) and that, in such cases, times decrease as the number c of constraints grows, since pruning
is very e�ective in these cases. For less challenging cases, SVE2 is the best choice, and pruning is
not signi�cant, so that times do not necessarily decrease as c grows.
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Fig. 34. Performance for computing po on ANT with interval constraints as their number varies (default
parameter values).
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(b) Computing po.

Fig. 35. Performance for computing nd and po on UNI as p varies (default parameter values).

Figure 34 shows performance of computing po under interval constraints for the ANT dataset
as c varies (default parameter values otherwise for synthetic datasets and, again, w̄ = 1

d
=

1
6
and

ϵ = 40%). The gains of PODI2 with respect to PODF2 are signi�cant, and more so as c decreases.
For instance, when c = 1, PODF2 requires 738s while PODI2 only requires 157s .
Figure 35 shows the e�ect of the p parameter of MW

p means on execution times for computing
nd and po on the UNI dataset. Generally, computing nd reaches a minimum execution time when
p = 1, while performance slightly deteriorates as p diverges from 1. This is likely due to the fact
that the number of dominance and F -dominance tests, for all algorithms, minimizes between 0
and 1 and increases for larger values of |p |; also, our implementation does not use power functions
when p = 1, thus possibly saving time. A similar e�ect is observed for the computation of po, only
with a minimum execution time around p = 0. A possible explanation is that the number of LP
tests performed by both algorithms drops considerably when moving from p > 0 to p = 0, while
it increases as p grows and it remains more or less stable when p < 0.

D PROOFS

This appendix reports all the proofs of the claims included in the main body of the paper.

Proposition 3.11. For any set F of monotone scoring functions, the following relationships hold:

po(r ;F ) ⊆ nd(r ;F ) ⊆ Sky(r ). (10)

Proof. To prove (10), take any tuple t ∈ po(r ;F ). According to De�nition 3.8, there exists a scoring
function f ∈ F such that f (t ) is lower than the score of any other tuple in r . Therefore, there
cannot be any tuple in r that either dominates or F -dominates t in the sense of De�nitions 2.1
and 3.3, because for at least function f , t would achieve a better score. Therefore,

• t is not dominated, thus t ∈ Sky(r ) according to De�nition 2.1, i.e., po(r ;F ) ⊆ Sky(r ).
• t is not F -dominated, thus t ∈ nd(r ;F ) according to De�nition 3.7, i.e., po(r ;F ) ⊆ nd(r ;F ).

To prove that nd(r ;F ) ⊆ Sky(r ), we �rst observe that nd(r ;F ) ⊆ nd(r ; MF) follows from Equa-
tion (7), since F ⊆ MF entails ≺MF⊆≺F . By transitivity with Equation (9), we obtain nd(r ;F ) ⊆
Sky(r ).

Proposition 3.14. nd and po are monotone operators with respect to the set of scoring functions,

i.e., for any two sets F1 and F2 of monotone scoring functions such that F1 ⊆ F2, the following

relationships hold:

po(r ;F1) ⊆ po(r ;F2), (12)

nd(r ;F1) ⊆ nd(r ;F2). (13)
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Proof. Inequality (12) is a direct consequence of De�nition 3.8. Inequality (13) follows from De�-
nition 3.7 by observing that F1 ⊆ F2 entails ≺F2⊆≺F1 (as stated in Corollary 3.4).

Proposition 3.17. Let F = F1 ∪ . . .∪Fm , where each Fi , 1 ≤ i ≤ m, is a set of monotone scoring

functions. Then:

nd(r ;F ) ⊇ nd(r ;F1) ∪ . . . ∪ nd(r ;Fm ) (15)

po(r ;F ) = po(r ;F1) ∪ . . . ∪ po(r ;Fm ) (16)

Proof. By Proposition 3.14, each disjunct in the right-hand side of Equation (15) is contained in the
left-hand side, hence the claim.

Analogously, the right-hand side of Equation (16) is contained in its left-hand side. Additionally,
let t ∈ po(r ;F ). Then, ∃f ∈ F such that f (t ) < f (s ) ∀s ∈ r \ {t }. Since F = ∪mi=1Fi , there exists
Fi such that f ∈ Fi . Hence t ∈ po(r ;Fi ), thus proving the claim.

Proposition 3.21. Let r and r ′ be two instances over R with r ⊂ r ′. For any set of monotone

scoring functions F , the following holds:

• nd(r ′;F ) ∩ r ⊆ nd(r ;F ),

• po(r ′;F ) ∩ r ⊆ po(r ;F ).

Proof. Let t ∈ r . Since t ∈ nd(r ′;F ), there is no other tuple t ′ ∈ r ′ that F -dominates t . Since
r ⊆ r ′, it follows that no tuple in r F -dominates t .

For the second part, since t ∈ po(r ′;F ), there exists a scoring function f ∈ F such that, for all
tuples t ′ ∈ r ′, f (t ) < f (t ′) holds. Since r ⊆ r ′, t is potentially optimal also in r .

Proposition 3.22. Let r = r1 ∪ . . . ∪ rm , where ri , 1 ≤ i ≤ m, are relations over R, and F be a set

of monotone scoring functions. Then:

nd(r ;F ) = nd(nd(r1;F ) ∪ . . . ∪ nd(rm ;F );F ), (19)

po(r ;F ) = po(po(r1;F ) ∪ . . . ∪ po(rm ;F );F ). (20)

Proof. Let r ′ = nd(r1;F ) ∪ . . . ∪ nd(rm ;F ); clearly, r ′ ⊆ r . Every tuple t ∈ nd(r ;F ) must also
belong to nd(r ′;F ); indeed, t must belong to one of r1, . . . , rm , say ri , and therefore t ∈ nd(ri ;F ),
since no tuple in r (and a fortiori in ri ⊆ r ) F -dominates t . So, t ∈ r ′ and then t ∈ nd(r ′;F ) since
no tuple in r (and a fortiori in r ′ ⊆ r ) F -dominates t . For the other direction, consider a tuple
s ∈ nd(r ′;F ). Then s is not F -dominated by any tuple in r ′. Note that s cannot be F -dominated
by any tuple in r \ r ′ either, since every tuple in r \ r ′ is F -dominated by some tuple in r ′ and
F -dominance is transitive (Corollary 3.6), so s ∈ nd(r ;F ).
Similarly, let r ′ = po(r1;F ) ∪ . . . ∪ po(rm ;F ); clearly, r ′ ⊆ r . If t ∈ po(r ;F ) then ∃f ∈ F such

that f (t ) < f (t ′) for every other tuple t ′ ∈ r , and, a fortiori, also for every other tuple t ′ ∈ r ′ ⊆ r ,
so t ∈ po(r ′;F ). For the other direction, consider a tuple s ∈ po(r ′;F ). Then ∃f ∈ F such that
f (s ) < f (s ′) for every other tuple s ′ ∈ r ′. Note that f (s ) < f (s ′) also holds for every other tuple
s ′ ∈ r , since every tuple in r \ r ′ is worse than some tuple in r ′ according to f and, by transitivity,
than s , so s ∈ nd(r ;F ).

Theorem 4.1 (F -dominance test). Let F be a set of MLW functions subject to a set C =
{C1, . . . ,Cc } of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}). Then,

t ≺F s i� the following linear programming problem (LP) in the variablesW = (w1, . . . ,wd ) has a



non-negative solution:

minimize Λ ·∑d
i=1wi (дi (s[Ai ]) − дi (t[Ai ])) (22)

subject to wi ∈ [0, 1] i ∈ {1, . . . ,d }
∑d

i=1wi = 1
∑d

i=1 ajiwi ≤ kj j ∈ {1, . . . , c}.

Proof. The following expression

d
∑

i=1

wiдi (s[Ai ]) −
d
∑

i=1

wiдi (t[Ai ]) (35)

reduces to the objective of System (22). The result immediately follows from the de�nition of F -
dominance, since, for any function fW ∈ F , the di�erence fW (s ) − fW (t ) is

h(

d
∑

i=1

wiдi (s[Ai ])) − h(
d
∑

i=1

wiдi (t[Ai ])), (36)

and (36) has the same sign as (35).

Theorem 4.2 (F -dominance region). Let F be a set of MLW functions subject to a set C =
{C1, . . . ,Cc } of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (j ∈ {1, . . . , c}). Let

W (1), . . . ,W (q ) be the vertices ofW (C). The dominance region DR (t ;F ) of a tuple t under F is the

locus of points s in [0, 1]d de�ned by the q inequalities:

Λ ·
d
∑

i=1

w
(ℓ)
i дi (s[Ai ]) ≥ Λ ·

d
∑

i=1

w
(ℓ)
i дi (t[Ai ]), ℓ ∈ {1, . . . ,q}. (23)

Proof. We assume Λ = 1, the case Λ = −1 being analogous. SinceW (C) is convex, any W ∈
W (C) can be written as a convex combination of the vertices, i.e.,W =

∑q

ℓ=1
bℓW

(ℓ) , with bℓ ≥ 0,

ℓ ∈ {1, . . . ,q}, and ∑q

ℓ=1
bℓ = 1. For ℓ ∈ {1, . . . ,q}, let us multiply both members of the ℓ-th

Inequality (23) by bℓ and sum member-wise all the resulting q inequalities. We obtain:

q
∑

ℓ=1

bℓ

d
∑

i=1

w
(ℓ)
i дi (s[Ai ]) ≥

q
∑

ℓ=1

bℓ

d
∑

i=1

w
(ℓ)
i дi (t[Ai ]),

which holds if and only if the following holds

d
∑

i=1

q
∑

ℓ=1

bℓw
(ℓ)
i дi (s[Ai ]) ≥

d
∑

i=1

q
∑

ℓ=1

bℓw
(ℓ)
i дi (t[Ai ]), i.e.,

d
∑

i=1

wiдi (s[Ai ]) ≥
d
∑

i=1

wiдi (t[Ai ]). (37)

Now, since h is monotone, Inequality (37) holds if and only if the following holds:

h *
,

d
∑

i=1

wiдi (s[Ai ])+
-
≥ h *

,

d
∑

i=1

wiдi (t[Ai ])+
-
,

i.e., if and only if t ≺F s holds, which is what we wanted to prove.
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Proposition 4.4. LetF be a set ofMLW functions subject to a set C of linear constraints onweights
and such that h is strictly monotone. Then, for any instance r , we have po(r ;F ) = po(nd(r ;F );F ).

Proof. If t ∈ po(r ;F ), there exists f ∈ F such that f (t ) < f (s ), ∀s ∈ r \ {t }, and, a fortiori,
also ∀s ∈ nd(r ;F ) \ {t }, since nd(r ;F ) ⊆ r . Since t ∈ nd(r ;F ) by Proposition 3.11, then t ∈
po(nd(r ;F );F ).
If t ∈ po(nd(r ;F );F ), ∃f ∈ F such that f (t ) < f (s ), ∀s ∈ nd(r ;F ) \ {t }. Now, if t < po(r ;F )

then there would exist a tuple t ′ ∈ r \nd(r ;F ), such that f (t ′) ≤ f (t ). Since the case f (t ′) < f (t )

cannot occur (otherwise t ′ would not be F -dominated, thus a contradiction), we have f (t ′) =
f (t ). Note that this implies that t ′ is F -dominated by t and by no other tuple in nd(r ;F ) (since
f (t ′) = f (t ) < f (s ), ∀s ∈ nd(r ;F ) \ {t }).
LetW be the weight vector of function f . From the assumption of continuity it follows that for

any arbitrarily small value of ε > 0, there exists a neighborhood ofW inW (C ) such that, for any

weight vectorW ′ in the neighborhood, we have | fW ′
(t ) − f (t ) | < ε . Then, by choosing ε small

enough, t will remain the best tuple in nd(r ;F ), i.e., fW
′
(t ) < fW

′
(s ), ∀s ∈ nd(r ;F ) \ {t }. Finally,

since t F -dominates t ′ and h is strictly monotone, there existsW ′ in the neighborhood ofW such

that fW
′
(t ) < fW

′
(t ′), which completes the proof.

Theorem 4.5 (Primal po test). Let F be a set ofMLW functions subject to a set C = {C1, . . . ,Cc }
of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}), and such that h

is strictly monotone. Let nd(r ;F ) = {t1, t2, . . . , tσ , t }. Then, t ∈ po(r ;F ) i� the following linear

programming problem (LP) in the variablesW = (w1, . . . ,wd ) and ϕ has a strictly positive optimal

solution:

maximize ϕ (28)

subject to Λ ·∑d
i=1wi (дi (t[Ai ]) − дi (tj [Ai ])) + ϕ ≤ 0 j ∈ {1, . . . ,σ }

∑d
i=1 ajiwi ≤ kj j ∈ {1, . . . , c}

wi ∈ [0, 1] i ∈ {1, . . . ,d }
∑d

i=1wi = 1.

Proof. We assume Λ = 1, the case Λ = −1 being analogous. If the above LP problem has optimal
solution ϕ∗ > 0, with (w∗1 , . . . ,w

∗
d
) being the corresponding weight vector, from the �rst σ con-

straints we derive
∑d

i=1w
∗
i дi (t[Ai ]) <

∑d
i=1w

∗
i дi (tj [Ai ]), j ∈ {1, . . . ,σ }, i.e. t ∈ po(r ;F ). On the

other hand, ϕ∗ ≤ 0 implies that t < po(r ;F ). Notice that the problem is always feasible, since we
assumed that C is not contradictory, i.e.,W (C) , ∅, and thus the last c + d + 1 constraints are
satis�able, and ϕ is not constrained (i.e., ϕ ∈ R), thus also the �rst σ constraints are satis�able.

Theorem 4.7 (Dual po test). Let F be a set of MLW functions subject to a set C of linear con-

straints on weights and such that h is strictly monotone. LetW (1), . . . ,W (q ) be the vertices ofW (C)
and let nd(r ;F ) = {t1, t2, . . . , tσ , t }. Then, t ∈ po(r ;F ) i� there is no convex combination s of

t1, . . . , tσ such that s ≺F t , i.e., i� the following linear system in the variables α = (α1, . . . ,ασ ) is

unsatis�able:

Λ ·∑d
i=1w

(ℓ)
i (
∑σ

j=1 α jдi (tj [Ai ])) ≤ Λ ·∑d
i=1w

(ℓ)
i дi (t[Ai ]) ℓ ∈ {1, . . . ,q} (29)

α j ∈ [0, 1] j ∈ {1, . . . ,σ }
∑σ

j=1 α j = 1.

Proof. We assume Λ = 1, the case Λ = −1 being analogous.
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Only-if part. Let t ∈ po(r ;F ) and assume that the above system is satis�able with α∗ =
(α∗1 , . . . ,α

∗
σ ). Since t ∈ po(r ;F ), there must existW ∈ W (C) such that t ’s score is better than

those of t1, . . . , tσ :

h *
,

d
∑

i=1

wiдi (t[Ai ])+
-
< h *

,

d
∑

i=1

wiдi (tj [Ai ])+
-
, j ∈ {1, . . . ,σ }. (38)

Since h is strictly monotone, (38) holds if and only if the following holds:

d
∑

i=1

wiдi (t[Ai ]) <

d
∑

i=1

wiдi (tj [Ai ]), j ∈ {1, . . . ,σ }. (39)

Let us multiply both members of the j-th Inequality (39) by α∗j , for 1 ≤ j ≤ σ , and sum member-

wise all the resulting σ inequalities. We obtain:

σ
∑

j=1

α∗j

d
∑

i=1

wiдi (t[Ai ]) <

σ
∑

j=1

α∗j

d
∑

i=1

wiдi (tj [Ai ]), i.e.,

d
∑

i=1

wiдi (t[Ai ]) <

d
∑

i=1

wi

σ
∑

j=1

α∗j дi (tj [Ai ]). (40)

Since α∗ satis�es system (29), we also have:

d
∑

i=1

w
(ℓ)
i

σ
∑

j=1

α∗j дi (tj [Ai ]) ≤
d
∑

i=1

w
(ℓ)
i дi (t[Ai ]), ℓ ∈ {1, . . . ,q} (41)

As in the proof of Theorem 4.2, we exploit the fact that anyW ∈ W (C) can be written asW =
∑q

ℓ=1
bℓW

(ℓ) . For ℓ ∈ {1, . . . ,q}, let us multiply both members of the ℓ-th Inequality (41) by bℓ and
sum member-wise all the resulting q inequalities. We obtain:

q
∑

ℓ=1

bℓ

d
∑

i=1

w
(ℓ)
i

σ
∑

j=1

α∗j дi (tj [Ai ]) ≤
q
∑

ℓ=1

bℓ

d
∑

i=1

w
(ℓ)
i дi (t[Ai ]),

which holds if and only if the following holds

d
∑

i=1

q
∑

ℓ=1

bℓw
(ℓ)
i

σ
∑

j=1

α∗j дi (tj [Ai ]) ≤
d
∑

i=1

q
∑

ℓ=1

bℓw
(ℓ)
i дi (t[Ai ]),

which in turn becomes:

d
∑

i=1

wi

σ
∑

j=1

α∗j дi (tj [Ai ]) ≤
d
∑

i=1

wiдi (t[Ai ]). (42)

Inequalities (42) and (40) are in contradiction, hence if t ∈ po(r ;F ) then system (29) must be
unsatis�able.

If part. The proof that the condition in the theorem is also su�cient is based on the relation
existing between a solution to an LP problem and its dual version.
Consider LP problem (28) in the variablesW = (w1, . . . ,wd ) and ϕ, and recall that t ∈ po(r ;F )

i� the LP problem has optimal solution ϕ∗ > 0.
In order to simplify the notation, let us introduce the shorthands xi = дi (t[Ai ]), i ∈ {1, . . . ,d },

and yji = дi (tj [Ai ]), i ∈ {1, . . . ,d }, j ∈ {1, . . . ,σ }. Then, the �rst σ constraints in (28) become
∑d

i=1wi (xi − yji ) + ϕ ≤ 0, j ∈ {1, . . . ,σ }.
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Let the set of constraints C be {C1, . . . ,Cc }, whereCj =
∑d

i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}). The
dual version of LP problem (28) can then be written as follows (see, e.g., [22]):

minimize
∑c

j=1 kjβj + γ (43)

subject to
∑σ

j=1 α j (xi − yji ) +
∑c

j=1 βjaji + γ ≥ 0 i ∈ {1, . . . ,d }
α j ∈ [0, 1] j ∈ {1, . . . ,σ }
∑σ

j=1 α j = 1

βj ≥ 0 j ∈ {1, . . . , c},

where the α j variables, j ∈ {1, . . . ,σ }, correspond to the �rst σ constraints of the original LP
problem (28), the βj variables, j ∈ {1, . . . , c}, to the c constraints on the weights, and the γ variable

originates from the constraint
∑d

i=1wi = 1.
Assume t < po(r ;F ). Then, ϕ∗ ≤ 0 (System (28) cannot be infeasible, since we assumed

W (C) , ∅). By the duality theorem of LP, System (43) is also feasible and has an optimal solution
(α∗1 , . . . ,α

∗
σ , β

∗
1 , . . . , β

∗
c ,γ
∗) such that ϕ∗ =

∑c
j=1 kjβ

∗
j +γ

∗. Lety∗i =
∑σ

j=1 α
∗
jyji , i ∈ {1, . . . ,d }. Since

∑σ
j=1 α

∗
j = 1, the following inequalities, derived from the �rst d constraints of (43), hold:

xi − y∗i +
c
∑

j=1

β∗j aji + γ
∗ ≥ 0, i ∈ {1, . . . ,d }. (44)

Let us nowmultiply each of these inequalities by the i-th component of an arbitrary weight vector
W = (w1, . . . ,wd ) ∈ W (C) and sum member-wise the obtained inequalities. We have:

d
∑

i=1

wi (xi − y∗i ) +
d
∑

i=1

wi

c
∑

j=1

β∗j aji + γ
∗ ≥ 0, (45)

which can be rewritten as:

d
∑

i=1

wi (xi − y∗i ) +
c
∑

j=1

β∗j

d
∑

i=1

wiaji + γ
∗ ≥ 0 (46)

From the original LP problem we know that
∑d

i=1wiaji ≤ kj , j ∈ {1, . . . , c}. Hence:
d
∑

i=1

wi (xi − y∗i ) +
c
∑

j=1

β∗j kj + γ
∗ ≥ 0. (47)

Since
∑c

j=1 β
∗
j kj + γ

∗
= ϕ∗ ≤ 0, we have

∑d
i=1wi (xi − y∗i ) ≥ 0, i.e.:

d
∑

i=1

wiдi (t[Ai ]) ≥
d
∑

i=1

wi

σ
∑

j=1

α∗j дi (tj [Ai ]). (48)

SinceW is an arbitrary weight vector inW (C), the above inequality also holds for all the vertices
W (1), . . . ,W (q ) ofW (C). Therefore, System (29) is satis�able, which proves the result.

Proposition 4.8 (2d po test). Let F be a set of MLW functions subject to a set C of linear

constraints on weights and such that the дi ’s and h are strictly monotone. Let t , u, and v be three

tuples in [0, 1]2 such that i) nd({t ,u,v};F ) = {t ,u,v}, and ii) there exists a convex combination of

t and u that F -dominates v . Then there exists a convex combination of t and u that dominates v .
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Proof. We assume Λ = 1, the case Λ = −1 being analogous. Let us denote дi (t[Ai ]) = ti for
i = 1, 2 and let f (t ,w ) = wt1 + (1 −w )t2, and similarly for u, v , and a generic point s . Notice that,
since h is assumed to be strictly monotone, it can be safely ignored for the purpose of checking
F -dominance and dominance, as in Theorem 4.7. We observe that, for the polytope of admissible

weights to be convex, it can only have two (possibly coinciding) verticesW (1)
= 〈w, 1 − w〉 and

W (2)
= 〈w, 1−w〉, corresponding to a constraint of the formw ≤ w1 ≤ w , or else convexity would

be lost. Since t 6≺F v andv 6≺F t , tuple t must be worse thanu on one of the vertices and better on
the other; similarly for u and v (but with the opposite vertices, or else every convex combination
of t and u would be worse than v on a vertex). The following (49) shows one of the two possible
choices (the other one is symmetric and thus not shown):

f (t ,w ) > f (v,w ), f (u,w ) > f (v,w ), f (t ,w ) < f (v,w ), f (u,w ) < f (v,w ) (49)

By transitivity of inequalities in (49), we have

f (t ,w ) < f (u,w ), f (t ,w ) > f (u,w ) (50)

Then, by Bolzano’s theorem, there must be a weight valuew∗ in [w,w] such that

f (t ,w∗) = f (u,w∗) (51)

Since there exists a convex combination of t and u that F -dominates v , the following holds for
some α ∈ [0, 1]:

α f (t ,w∗) + (1 − α ) f (u,w∗) ≤ f (v,w∗), hence, by (51),

f (t ,w∗) ≤ f (v,w∗) (52)

The score on w∗ of any convex combination s of t and u can be expressed as follows, with
β ∈ [0, 1]:

f (s,w∗) = β f (t ,w∗) + (1 − β ) f (u,w∗), and, by (51),

f (s,w∗) = f (t ,w∗). (53)

Consider, in particular, a convex combination s such that s[A1] = v[A1]. Then, the marginal score
s2 is obtained by setting s1 = v1 in (53):

w∗v1 + (1 −w∗)s2 = w∗t1 + (1 −w∗)t2

s2 = t2 + (t1 −v1)
w∗

1 −w∗ (54)

In order to prove the clam, it su�ces to show that s2 ≤ v2, since the дi ’s are strictly monotone,
which implies s[A2] ≤ v[A2]:

t2 + (t1 −v1)
w∗

1 −w∗ ≤ v2, i.e.,

w∗t1 + (1 −w∗)t2 ≤ w∗v1 + (1 −w∗)v2 (55)

where (55) is the same as (52).

Proposition 4.11. Let F be a set of homogeneous MLW functions, such that the дi ’s and h 
are strictly monotone, and subject to a set C of linear constraints on weights. Then, F is tuple-
distinguishing i� d linearly independent weight vectors exist in W (C).
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Proof. If part. Let {W (1), . . . ,W (d ) } be a set of d linearly independent weight vectors, and let fj
be the function corresponding toW (j ) (j = 1, . . . ,d). Consider an arbitrary tuple t with scores
f1 (t ), . . . , fd (t ), and the following system of d equations in the unknowns X = (x1, . . . ,xd ):

h *
,

d
∑

i=1

w
(j )
i xi+

-
= fj (t ), j ∈ {1, . . . ,d }, i.e., by strict monotonicity of h,

d
∑

i=1

w
(j )
i xi =

d
∑

i=1

w
(j )
i дi (t[Ai ]), j ∈ {1, . . . ,d }.

Since the d weight vectors are linearly independent, the rank of the matrix of coe�cients is d , and
thus the above system admits as unique solution xi = дi (t[Ai ]), i ∈ {1, . . . ,d }. Since all the дi ’s
are strictly monotone, there is no tuple u , t such that f1 (t ) = f1 (u), . . . , fd (t ) = fd (u), thus F is
tuple-distinguishing.

Only-if part. Letb < d be themaximumnumber of linearly independentweight vectors inW (C).
Let {W (1), . . . ,W (b ) } be one of such sets, and { f1, . . . , fb } be the corresponding functions. Then, for
every weight vectorW ∈ W (C) there exist real numbers β1, . . . , βb satisfyingW =

∑b
j=1 βjW

(j ) .

Let f be the function corresponding toW , and let t be an arbitrary tuple. Then we have:

h−1 ( f (t )) =
d
∑

i=1

wiдi (t[Ai ]) =

d
∑

i=1

b
∑

j=1

βjw
(j )
i дi (t[Ai ]) =

b
∑

j=1

βj

d
∑

i=1

w
(j )
i дi (t[Ai ]) =

b
∑

j=1

βjh
−1 ( fj (t )),

i.e.,

f (t ) = h
*.
,

b
∑

j=1

βjh
−1 ( fj (t ))

+/
-
. (56)

By Proposition B.4, the set { f1, . . . , fb } is not tuple-distinguishing, since b < d . Therefore, there
exist two tuples t and u such that f1 (t ) = f1 (u), . . . , fb (t ) = fb (u). Then, by Equation (56), f (t ) =
f (u) also holds for each function f ∈ F , thus proving that F is ntd.

Theorem 4.12 (Tuple-distinguishability ofMLW functions). Let F be a set of homogeneous

MLW functions such that the дi ’s and h are strictly monotone, and subject to a set C = {C1, . . . ,Cc }
of linear constraints on weights, where Cj =

∑d
i=1 ajiwi ≤ kj (for j ∈ {1, . . . , c}). Then, F is tuple-

distinguishing i� there exists a weight vectorW ∗
= (w∗1 , . . . ,w

∗
d
) ∈ W (C) such that∑d

i=1 ajiw
∗
i < kj

holds for j ∈ {1, . . . , c}.

Proof. If part. The existence of a weight vectorW ∗
= (w∗1 , . . . ,w

∗
d
) ∈ W (C) such that∑d

i=1 ajiw
∗
i <

kj holds for j ∈ {1, . . . , c} amounts to saying that W (C) has the same dimensionality as the
standard (d − 1)-simplex (since its interior is not empty), which implies thatW (C) includes a
set of d linearly independent vectors (like the (d − 1)-simplex). From the If part of the proof of
Proposition 4.11 it then follows that F is tuple-distinguishing.

Only-if part. When the system of strict inequalities
∑d

i=1 ajiwi < kj (j ∈ {1, . . . , c}) has no
solution, the dimensionality ofW (C) is strictly less than that of the standard (d − 1)-simplex,
which means that no set of d linearly independent weight vectors exists inW (C). The result then
follows from the Only-if part of the proof of Proposition 4.11.
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