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Abstract

There has been a recent wave of interest in intermediate trust models for dierential privacy

that eliminate the need for a fully trusted central data collector, but overcome the limitations of

local dierential privacy. This interest has led to the introduction of the shue model (Cheu et al.,

EUROCRYPT 2019; Erlingsson et al., SODA 2019) and revisiting the pan-private model (Dwork et al.,

ITCS 2010). The message of this line of work is that, for a variety of low-dimensional problems—

such as counts, means, and histograms—these intermediate models oer nearly as much power as

central dierential privacy. However, there has been considerably less success using these models for

high-dimensional learning and estimation problems.

In this work we prove the rst non-trivial lower bounds for high-dimensional learning and estimation

in both the pan-private model and the general multi-message shue model. Our lower bounds apply to

a variety of problems—for example, we show that, private agnostic learning of parity functions over

𝑑 bits requires Ω(2𝑑/2) samples in these models, and privately selecting the most common attribute

from a set of 𝑑 choices requires Ω(𝑑1/2) samples, both of which are exponential separations from the

central model. Our work gives the rst non-trivial lower bounds for learning and optimization in both

the pan-private and the general multi-message shue model.

1 Introduction

The most widely accepted way to ensure individual privacy in the context of statistics and machine

learning is dierential privacy [DMNS06], which provides a strong guarantee that no individual user’s

data has a strong inuence on the output of the computation that are visible to the attacker. Dierentially

private algorithms, however, are designed for a variety of dierent trust models that determine what

output is visible. The strongest, and most commonly studied trust model is the central model, in which

a single party is entrusted to collect raw data from the users, runs a dierentially private computation,

and only the nal output of this computation is visible. On the other extreme, the weakest trust model

is the local model [KLN+08], where we don’t trust anyone to safeguard raw data, so each user applies

dierential privacy locally to their own data to compute a response, and each user’s response is visible.

While the central model allows for many powerful algorithms, the local model is much less powerful

([KLN
+
08, BNO08, CSS12, DJW13] et seq.) and signicantly limits the accuracy of computations.

In principle there is no tradeo between trust and power, as the user’s can use cryptographic secure

multiparty computation to implement any algorithm designed for the central model without any trusted

party. However, general-purpose secure multiparty computation has several drawbacks, such as large
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Figure 1: (Left) The multi-message shue model. The attacker’s view consists of the entire set of messages,

randomly shued. (Right) The pan-privacy model. The attacker’s view consists of the output and the

internal state at any single step, which is 𝑠3 in this example.

computation and communication costs, multiple rounds of interaction, and requiring all users to remain live

throughout the computation. Although there aremore practical protocols implementing certain dierentially

private algorithms ([DKM
+
06] et seq.) so far these are restricted to relatively simple computations and are

not practical for large-scale applications.

Thus, a recent focus has been on intermediate trust models that oer some of the best features of both

the central model and the local model. Two models that have received signicant attention are:

• The shue model [CSU+19, EFM+19].1 In this model, users introduce randomness into their own

data, as in the local model. However the user’s responses are then passed through a secure shuer so
the responses are visible but not identied with individual users. We consider the most general multi-
message shue model where each user can send multiple responses that are shued independently.

An equivalent model would use secure aggregation to ensure that only a histogram of the responses

is visible. Secure shuing and secure aggregation are signicantly easier to achieve than general

secure computation, and Google’s prochlo system [BEM
+
17] is a scalable realization of this model.

• The pan-private model [DNP+10]. In this model, the users’ data is processed in an online fashion by a

central party. We trust this central party to process the data but not to store it in perpetuity, so we

assume that at any one point in the stream, the party’s internal state may become visible. This model

captures, for example, a data collector who is well intentioned, and can be trusted to see raw data

during process, but whose storage may be subject to breaches [AJM20].

We visualize the models in Figure 1. At rst glance, these two models seem unrelated, however a recent

result of Balcer, Cheu, Joseph, and Mao [BCJM20] shows that, for a large class of problems that includes all

the problems we study, any protocol in the shue model can be simulated in the pan-private model with

only a small reduction in accuracy. So for purposes of this work, we can think of these models as being

ordered from least powerful to most powerful as local � shue � pan-private � central.
Both the shue model ([CSU

+
19, EFM

+
19] et seq.) and the pan-private model [DNP

+
10, MMNW11,

AJM20] provably allow much greater accuracy than the local model, while also requiring weaker trust than

1
More precisely, we consider a version of the shue model with an additional robustness property [BCJM20]. Although the

property is not without loss of generality, and has not always formalized in the literature, it is satised by all known natural

shue protocols, and was one of the explicit motivations of studying the shue model [CSU
+
19]. For brevity we use only the

term “shue model” in the introduction, and defer more discussion of this issue to Section 2.
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the central model. See Section 1.3 for a more specic overview of recent progress. However, these positive

results are mostly limited to relatively simple functionalities, such as computing means and histograms

over the user’s data. We note that these are all problems that can be solved eciently in the local model

with reasonable, although larger, sample complexity. However, for problems such as learning parities

and selecting the most common attribute, where the local model where the local model is most severely

limited [KLN
+
08, DJW13, Ull18, ENU20], there is no evidence that either the pan-private or shue model

can overcome these limitations. Our main contribution is to show that these limitations are inherent:

For many high-dimensional learning and estimation problems, the shue and pan-private models
incur an exponential cost in sample complexity relative to the central model.

For those familiar with dierential privacy, our results can be interpreted as the statement there is no
analogue of the exponential mechanism in the pan-private or shue models, as we prove lower bounds for
problems that can be solved in the central model by applying the exponential mechanism.

Our specic lower bounds follow from a new general lower bound argument. We note that the two most

common lower bounds techniques for the local model cannot prove lower bounds for the pan-private and

shue models, so our lower bounds cannot be proven by any straightforward extension of existing lower

bound techniques. Specically, there is no non-trivial upper bound on the mutual information between

the algorithm’s inputs and outputs [BC20], so information-theoretic arguments [MMP
+
10, DJW13] do not

apply. Moreover, these models can solve problems that would requite innitely many statistical queries to

solve, so the simulation of the local model in the statistical query model [KLN
+
08] cannot be extended to

these more general models.

1.1 Results

Our main results are lower bounds for many closely related learning and estimation problems in both the

pan-privacy and shue models of dierential privacy. We note that throughout this work we adopt the

standard model for studying privacy for distributional problems where we dene the accuracy goal with

respect to input satisfying certain distributional assumptions, but dene privacy for a worst-case dataset.

We begin by highlighting two important cases of our results.

Learning Parities. In this canonical learning problem, we are given a dataset consisting of 𝑛 labeled

examples {(𝑥𝑖 , 𝑦𝑖)} sampled from some distribution P over the domain {±1}𝑑 ×{±1}. The goal is to output a
parity function ℎ𝑆 (𝑥) =

∏
𝑗 ∈𝑆 𝑥 𝑗 that predicts the labels nearly as well as any other parity function. Namely,

P
(𝑥,𝑦)∼P

(ℎ𝑆 (𝑥) = 𝑦) ≥ max

𝑇
P

(𝑥,𝑦)∼P
(ℎ𝑇 (𝑥) = 𝑦) − 𝛼.

In the central model this problem can be solved privately to any constant level of accuracy with just

𝑂 (𝑑) samples [KLN
+
08], whereas in the local model any algorithm solving this problem requires Ω(2𝑑 )

samples [KLN
+
08, ENU20].

2
We prove an exponential separation between the central model and the pan-

privacy and shue models, showing that, for learning parities, these models are much more similar to the

local model.

Theorem 1.1. (Informal) Any dierentially private algorithm that leans parity functions to constant accuracy
in the pan-privacy model or the shue privacy model requires Ω(2𝑑/2) samples in the worst-case.

We also consider learning sparse parities, where our goal is to output some 𝑘-sparse parity function ℎ𝑆 ,

|𝑆 | ≤ 𝑘 that competes with the best parity function on 𝑘 variables. That is,

P
(𝑥,𝑦)∼P

(ℎ𝑆 (𝑥) = 𝑦) ≥ max

𝑇 : |𝑇 | ≤𝑘
P

(𝑥,𝑦)∼P
(ℎ𝑇 (𝑥) = 𝑦) − 𝛼.

2
For specicity, we state lower bounds for the non-interactive local model of dierential privacy, although, for every problem

we consider, slightly weaker bounds are known to hold for interactive variants of the local model as well.
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We show that learning 𝑘-sparse parities requires Ω(
√︃(

𝑑
≤𝑘

)
) samples where

(
𝑑
≤𝑘

)
denotes the number of

𝑘-sparse parity functions on 𝑑 bits.

Selection. One of the most celebrated tools in central-model dierential privacy is the exponential mecha-
nism of McSherry and Talwar [MT07], which is a very general and very accurate method for optimizing

a Lipschitz loss function over a discrete set of choices. The canonical problem solved by the exponential

mechanism is the following selection problem: given a dataset consisting of 𝑛 samples {𝑥𝑖} from some distri-

bution P over the domain {0, 1}𝑑 , select a coordinate 𝑗 such that the expected value of the 𝑗-th coordinate

is as large as possible. Namely,

E
𝑥∼P

(
𝑥 𝑗

)
≥ max

𝑘
E
𝑥∼P
(𝑥𝑘 ) − 𝛼.

In the central model, the exponential mechanism solves this problem to any constant level of accuracy with

just 𝑂 (log𝑑) samples, whereas in the local model any algorithm solving this problem requires Ω(𝑑 log𝑑)
samples [DJW13, Ull18]. Again, we show an exponential separation between the central model and the

pan-privacy and shue models, demonstrating that there is no general-purpose analogue of the exponential

mechanism in these intermediate models.

Theorem 1.2. (Informal) Any dierentially private algorithm that solves selection to constant accuracy in the
pan-privacy model or the shue privacy model requires Ω(

√
𝑑) samples in the worst-case.

Variants of Dierential Privacy. We emphasize that all of our lower bounds hold for the most general

variant of dierential privacy, (Y, 𝛿)-dierential privacy for 𝛿 ≤ 1/𝑛1.1, and obtain lower bounds for this

variant is one of the main technical challenges addressed by our work. Thus, our results imply essentially the

same lower bounds for pure dierential privacy, concentrated dierential privacy [DR16, BS16], truncated

concentrated dierential privacy [BDRS18], Rényi dierential privacy [Mir17], and Gaussian dierential

privacy [DRS19], none of which were known prior to our work.

More Applications. In our work we also prove tight lower bounds for several closely related, natural

problems that have been studied in the literature on dierential privacy:

• Estimating 𝑘-Sparse Parities for 1 ≤ 𝑘 ≤ 𝑑 . Here we are given samples {𝑥𝑖} from a distribution

P ∈ {±1}𝑑 , and the goal is to output a set of estimates {𝑎𝑇 }𝑇 ⊆[𝑑 ]
|𝑇 |≤𝑘

such that�����𝑎𝑇 − E𝑥∼P
(∏
𝑗 ∈𝑇

𝑥 𝑗

)����� ≤ 𝛼

for every 𝑇 .

• 𝑑-wise Simple Hypothesis Testing. Here we are given samples {𝑥𝑖} from a distribution P ∈ Q where

Q = {Q1, . . . ,Q𝑑 } is a known set of 𝑑 hypotheses satisfying dTV(Q𝑖 ,Q𝑗 ) ≥ 𝛼 , and the goal is to

determine which of these distributions is P.

• 1-Sparse Mean Estimation. Here we are given samples {𝑥𝑖} from a distribution P ∈ {±1}𝑑 with mean

`, with the promise that ‖`‖0 = 1, and the goal is to output ˆ̀ such that ‖` − ˆ̀‖∞ ≤ 𝛼 .

We summarize our lower bounds and compare to the local and central models in Table 1. We also stress

that, while the focus of this work is on lower bounds and not algorithms, all of our lower bounds are easily

seen to be tight up to logarithmic factors with respect to trivial statistical query algorithms [Kea98] that

can be implemented in both the pan-private and shue models of privacy.
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Problem Parameters Local Privacy
Pan/Shule Privacy

(This Work) Central Privacy

Learning

Parities

Dimension 𝑑

Sparsity 𝑘

Ω(
(
𝑑
≤𝑘

)
log

(
𝑑
≤𝑘

)
)

[ENU20]

Ω

(√︃(
𝑑
≤𝑘

) )
Thms 8.6/8.7

𝑂 (log
(
𝑑
≤𝑘

)
)

[KLN
+
08]

Selection Dimension 𝑑
Ω(𝑑 log𝑑)
[DJW13]

Ω(
√
𝑑)

Thms 7.2/ 7.3

𝑂 (log𝑑)
[MT07]

Estimating

Parities

Dimension 𝑑

Sparsity 𝑘

Ω(
(
𝑑
≤𝑘

)
log

(
𝑑
≤𝑘

)
)

[ENU20]

Ω

(√︃(
𝑑
≤𝑘

) )
Thms 6.2/6.3

�̃� (
√
𝑑 log

(
𝑑
≤𝑘

)
)

[HR14]

𝑑-Wise Simple

Hypothesis Testing

𝑑 Hypotheses

Ω(𝑑 log𝑑)
[GKK

+
19]

Ω(
√
𝑑)

Thms 4.2/4.4

𝑂 (log𝑑)
[BKSW19]

1-Sparse

Mean Estimation

Dimension 𝑑
Ω(𝑑 log𝑑)
[DJW13]

Ω(
√
𝑑)

Thms 5.2/5.3

𝑂 (log𝑑)
[Folklore]

Table 1: Summary of our sample-complexity lower bounds for the pan-privacy and shue privacy models,

in comparison to the local and central models. For brevity, all lower bounds are stated for accuracy 𝛼 = 1/100
and (1, 𝑛−2)-dierential privacy. See the formal theorems for more general statements. All our lower bounds

are tight up to polylogarithmic factors. We use the notation

(
𝑑
≤𝑘

)
=

∑𝑘
𝑖=1

(
𝑑
𝑖

)
.

1.2 Techniques

Our results are all a consequence of a very general lower bound for algorithms in these models. For

simplicity, we will restrict this discussion to pan-private algorithms, as lower bounds for shue privacy

will then follow from a general transformation from the shue model to the pan-privacy model due to

Balcer, Cheu, Joseph, and Mao [BCJM20]. Also, in this discussion we will ignore the parameter 𝛿 for brevity,

but, crucially, our results apply for moderately small 𝛿 > 0.

Let {P𝑣}𝑣∈V be some family of distributions over the domain X, let 𝑉 be uniform overV , and let

U = E
𝑣∼𝑉
(P𝑣)

be the uniform mixture of these distributions. We will give lower bounds that show no (Y, 𝛿)-dierentially
private algorithm in the pan-private or shue models can distinguish 𝑛 i.i.d. samples from U𝑛

from data

drawn from the mixture P𝑛
𝑉
, where we chose 𝑣 ∼ 𝑉 uniformly and then sample from P𝑛𝑣 . We will, of course,

choose the family {P𝑣} so that any algorithm solving one of the problems above, must distinguish U𝑛
from

P𝑛
𝑉
, which is how we will obtain sample-complexity lower bounds.

For background, let’s recap the way to use this setup to prove lower bounds in the (non-interactive)

local model of dierential privacy. Here, one chooses the data from the mixture P𝑛
𝑉
, and a lemma of Duchi,

Jordan, and Wainwright [DJW13] gives a bound on the mutual information between the output of the

protocol Π and the identity of the random mixture component 𝑉 :

𝐼 (Π(P𝑛𝑉 );𝑉 ) = 𝑂 (𝑛 · Y2 · ‖{P𝑣}‖2∞→2
) (1)

where

‖{P𝑣}‖2∞→2
= sup

𝑓 :X→[±1]
E

𝑣∼𝑉

((
E

𝑥∼P𝑣
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

)
5



is the crucial quantity determining how hard these distributions are to distinguish subject to local dierential

privacy. For intuition, note that this quantity satises the relationship

‖{P𝑣}‖2∞→2
≤ E

𝑣∼𝑉

(
sup

𝑓 :X→[±1]

(
E

𝑥∼P𝑣
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

)
= 4 · E

𝑣∼𝑉

(
dTV(P𝑣,U)2

)
,

but it can be much smaller than 4 · E𝑣∼𝑉 (dTV(P𝑣,U)2), which is crucial for proving tight lower bounds.

Given this lemma, and a construction of a hard distribution family such that ‖{P𝑣}‖2∞→2
is small, it is

not hard to deduce a lower bound on the number of samples 𝑛 required to identify the specic mixture

component 𝑉 . It’s also not too dicult to construct a family of hard distributions for all of our problems of

interest (see Section 3.1). We note that all of the lower bounds in the “local model” column of Table 1 are

proven via this approach.

With this state-of-aairs, it’s tempting to try to argue that a mutual-information bound analogous to (1)

holds for pan-private or shue model algorithms. However, Balcer and Cheu [BC20] constructed a family

of distributions and a pan-private algorithm such that the mutual information 𝐼 (Π;𝑉 ) can be unbounded,

showing that the purely information-theoretic approach used to prove lower bounds for the local model

cannot work for pan-privacy.
3

Nonetheless, we prove the following indistinguishability lemma for pan-private algorithms:

dTV(Π(U𝑛),Π(P𝑛𝑉 )) ≤ 𝑂 (𝑛 · Y · ‖{P𝑣}‖∞→2) (2)

Although this bound is quantitatively somewhat weaker than (1)—in ways that are actually crucial to avoid

proving false statements—it is nonetheless sucient to give tight lower bounds for all of the problems we

consider. The value of this lemma is that, even though the information-theoretic bounds that are used in

the local model are false for the pan-private model, the exact same constructions of hard distributions can

be used to obtain lower bounds for pan-privacy!

The proof of this lemma uses a hybrid argument, where we transition between data sampled from U𝑛

and data sampled from P𝑛
𝑉
. Namely, we x a value of 𝑖 between 0 and 𝑛 and consider the case where the

rst 𝑖 inputs are sampled from U𝑖
and the remaining 𝑛 − 𝑖 inputs are sampled from P𝑛−𝑖 . We then bound the

total variation distance between the 𝑖-th case and the (𝑖 + 1)-st case and apply the triangle inequality. In

each step, we carefully argue that the total variation distance between the two cases follows from a careful

application of (1) to the algorithm that computes the internal state after viewing the rst 𝑖 inputs, which is

why we ultimately get a bound of a similar form.

1.3 Related Work

Comparison to the ConcurrentWorks of [CGKM20] and [BHNS20]. A concurrent and independent

work of Chen, Ghazi, Kumar, and Manurangsi [CGKM20] proves lower bounds for selection and learning

parity in the multi-message shue model. Their lower bounds depend on the number of messages, and are

only non-trivial when the number of messages is relatively small, whereas our lower bounds do not require

any bound on the number of messages. For example, their lower bound for selection is Ω(𝑑/𝑚), where𝑚 is

the number of messages, while our lower bound for selection is Ω(
√
𝑑) for any number of messages, and

our lower bound is matched by a trivial algorithm that sends 𝑑 messages. Compared to ours, their lower

bounds do not require the shue protocol to be robust, although robustness was a motivating feature of

the shue model that is discussed in the early work on the subject [CSU
+
19, EFM

+
19]. Their work also

does not consider the pan-privacy model, and their arguments do not seem to apply to that model.

3
The algorithm showing pan-private algorithms can have unbounded mutual information crucially uses the full generality of

(Y, 𝛿)-dierential privacy for 𝛿 > 0, however, even for stricter variants of dierential privacy where the mutual information is

bounded, we don’t know how to obtain a mutual-information bound as strong as (1) for any of these variants.
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Another concurrent and independent work of Beimel, Haitner, Nissim, and Stemmer [BHNS20] also

proves lower bounds for multi-message shue protocols that use a small number of messages. They show

that if an𝑚-message shue protocol is private when run with for 𝑛 users, then each user’s messages reveals

at most ≈ 𝑛𝑚 bits of information about their input, which allows them to prove non-trivial lower bounds

when𝑚 is quite small.

The Shule Model. The shue model was introduced concurrently in works by Cheu et al. [CSU
+
19] and

Erlingsson et al. [EFM
+
19]. These works were both inspired by Google’s prochlo system [BEM

+
17], which

implements amore general algorithmic paradigm called encode, shue, and analyze. Much of the work in this

model has focused on constructing optimal algorithms for problems like binary sums [CSU
+
19, GGK

+
20a],

real-valued sums [BBGN19, GPV19, GMPV20, GKMP20, BBGN20], histograms and heavy-hitters [CSU
+
19,

BC20, GGK
+
20b], and uniformity testing [BCJM20]. Another complementary set of works have given

general amplication theorems showing that if each user applies a dierentially private randomizer to their

data, then the shue protocol using the randomizer satises dierential privacy with stronger parameters

[BBGN19, EFM
+
19].

Almost all prior lower bounds for the shue model apply only to a special case of the model where

each user sends only a single response, the so-called single-message shue model. Cheu et al. [CSU
+
19]

showed that if a protocol is private in this restricted model, then each user’s response satises local

dierential privacy, for which we already have strong lower bounds. Their approach was rened by Ghazi

et al. [GGK
+
20b], who obtained stronger bounds for single-message protocols. Balle et al. [BBGN19] proved

a lower bound for computing real-valued sums in the single-message model. In contrast, our lower bounds

hold for the generalmulti-message shue model, where each user may send an arbitrary number of messages

that are shued independently. Note that in this model, the user’s individual responses need not satisfy

any local dierential privacy [BC20]. An early lower bound for the multi-message shue model is due to

Ghazi et al. [GGK
+
20a], and applies to computing binary sums subject to pure dierential privacy and a

strong communication constraint. We emphasize that our lower bounds do not impose any restriction on

the number of messages or the amount of communication.

The Pan-Private Model. The pan-privacy model was introduced by Dwork et al. [DNP
+
10] as a model

of dierential privacy for streaming algorithms, and they constructed pan-private algorithms for clas-

sic streaming problems like distinct elements. Their algorithm was subsequently improved by Mir et

al. [MMNW11], who also gave the rst lower bounds for this model. We note that their technique gives

lower bounds for worst-case inputs, whereas our technique gives lower bounds for distributional problems.

More recently, Amin, Joseph, and Mao [AJM20] revisited the model from the perspective of nding an

intermediate trust model between local and central privacy, which is the perspective we adopt in this work.

They also gave an algorithm for uniformity testing and a matching lower bound for algorithms satisfying

pure dierential privacy, which is (Y, 𝛿)-privacy with 𝛿 = 0. Theirs is the rst lower bound in this model for

any distributional problem. As we discussed above, their information-theoretic arguments are inherently

limited to pure dierential privacy, whereas ours apply to dierential privacy in general.

The initial work on pan-privacy considered a more general model where the attacker can view the

internal state at two or more arbitrary steps, however [AJM20] showed that this model is equivalent to the

local model with sequential interaction. Our lower bounds apply to the weakest model, where the attacker

can view the state at just a single time step.

Lower Bounds Techniques in the Local and Central Model. We briey summarize the techniques for

proving lower bounds in the more well studied models of dierential privacy. The rst lower bounds for

local dierential privacy were proven by Kasiviswanathan et al. [KLN
+
08], who proved that the local model

is equivalent, up to polynomial factors, to the statistical queries model [Kea98]. Balcer and Cheu [BC20]

showed that the shue and pan-private model do not admit such a characterization. Recently Edmonds,

Nikolov, and Ullman [ENU20] gave a nearly tight characterization of the sample complexity of query release

7



and agnostic learning in the non-interactive local model. Subsequent work gave stronger lower bounds

for specic problems in the local model [BNO08, CSS12, DJW13, BS15, JKMW18, DR18, DR19, JMNR19],

including interactive variants of the local model. This line of work primarily uses information-theoretic

arguments that were rst introduced by McGregor et al. [MMP
+
10] in the context of two-party dierential

privacy. However, these approaches cannot give strong lower bounds for the pan-private and shue

model [BC20], and the main novelty in our work is nding strong lower-bound arguments for these

intermediate models that do not require strong information bounds.

There are two main approaches to proving lower bounds for high-dimensional problems in the central

model of dierential privacy. The rst are reconstruction attacks, introduced by Dinur and Nissim ([DN03]

et seq.). These attacks only apply when computing some statistics to very high accuracy, and thus cannot

give non-trivial lower bounds for distributional problems where the accuracy can never be smaller than

the sampling error. The other main approach is based on tracing attacks ([BUV14, DSS
+
15, SU17] et seq.).

Although tracing attacks give tight lower bounds for the central model, but the lower bounds we prove for

more restricted models are exponentially larger, and do not seem to be provable using tracing attacks. We

refer the reader to [DSSU17] for a survey of these attacks lower bounds.

2 Preliminaries

2.1 Notational Conventions

We use boldface letters denote probability distributions, capital letters in plain math text denote random

variables, and calligraphic letters denote sets. We reserve𝑀 for randomized algorithms and Π for distributed

protocols. Throughout this work, we use the notation [𝑘] := {1, 2, . . . , 𝑘}.

2.2 Dierential Privacy

We dene a dataset ®𝑥 ∈ X𝑛
to be an ordered tuple of 𝑛 rows where each row is drawn from a data universe

X and corresponds to the data of one user. Two datasets ®𝑥, ®𝑥 ′ ∈ X𝑛
are neighbors, denoted as ®𝑥 ∼ ®𝑥 ′, if

they dier in at most one row.

Denition 2.1 (Dierential Privacy [DMNS06]). An algorithm 𝑀 : X𝑛 → R satises (Y, 𝛿)-dierential
privacy if, for every pair of neighboring datasets ®𝑥 and ®𝑥 ′ and every event C ⊆ R,

P(𝑀 ( ®𝑥) ∈ C) ≤ 𝑒Y · P(𝑀 ( ®𝑥 ′) ∈ C) + 𝛿.

The central model of dierential privacy refers to the case where the algorithm𝑀 is allowed to depend

arbitrarily on ®𝑥 with no further restrictions.

2.3 The Pan-Private Model

A pan-private algorithm observes the data as a stream. At each step, the algorithm receives a datapoint

that it uses to update its internal state, and this process repeats until the stream is exhausted and a nal

output is computed. We say that two streams ®𝑥 and ®𝑥 ′ are neighbors if they dier in at most one element.

Pan-privacy models an attacker who observes the nal output of the algorithm, as well as the internal state

at any one step in the stream, and requires that the joint distribution of these two pieces of information is

dierentially private.

Denition 2.2 (Online Algorithm). An online algorithm 𝑀 is dened by a sequence of internal algorithms

𝑀1, 𝑀2, . . . and an output algorithm 𝑀O . On input ®𝑥 , the rst function 𝑀1 : X → I maps 𝑥1 to a state

𝑠1 and the remaining functions 𝑀𝑖 map 𝑥𝑖 and the previous state 𝑠𝑖−1 to a new state 𝑠𝑖 . At the end of the

stream,𝑀 publishes a nal output by executing𝑀O : I → O on its nal internal state.
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Denition 2.3 (Pan-privacy [DNP+10, AJM20]). Given an online algorithm𝑀 , let𝑀I ( ®𝑥) denote its internal
state after processing stream ®𝑥 , and let ®𝑥≤𝑡 be the rst 𝑡 elements of ®𝑥 . We say𝑀 is (Y, 𝛿)-pan-private if, for
every pair of neighboring streams ®𝑥 and ®𝑥 ′, every time 𝑡 and every set of internal state, output state pairs

𝑇 ⊆ I × O,

P
𝑀

( (
𝑀I ( ®𝑥≤𝑡 ), 𝑀O (𝑀I ( ®𝑥))

)
∈ 𝑇

)
≤ 𝑒Y · P

𝑀

( (
𝑀I ( ®𝑥 ′≤𝑡 ), 𝑀O (𝑀I ( ®𝑥 ′))

)
∈ 𝑇

)
+ 𝛿. (3)

See Figure 1 for a diagram.

Note that any pan-private algorithm can trivially be implemented in the central model. Our denition

of pan-privacy is the specic variant given by Amin et al. [AJM20]. This version guarantees record-level

privacy (uncertainty about the presence of any single stream element) rather than user-level privacy

(uncertainty about the presence of any one data universe element). We use this variant because for the

problems we consider it is natural to model each user as contributing a single element of the stream.

Lastly, note that when we consider

2.4 The Shule Model

In the shue model, each user individually randomizes their own data to produce a series of messages.

Unlike the local model, where these messages would be identied with the user who produced them, we

allow the users to send their messages to a secure shuer that collects all the messages of all the users

and randomly permutes them.
4
The shue model captures an attacker who observes the messages after

they are shued, and we require this shued set of messages to satisfy dierential privacy. An equivalent

model would allow the attacker observes only a histogram of the messages.

Denition 2.4 (Shue Model [CSU
+
19]). A protocol Π in the shue model consists of three randomized

algorithms:

• A randomizer Π𝑅 : X → Y∗ mapping data to (possibly variable-length) vectors. The length of the

vector is the number of messages sent. If, on all inputs, the probability of sending a single message is

1, then the protocol is said to be single-message. Otherwise, the protocol is multi-message.

• A shuer Π𝑆 : Y∗ → Y∗ that applies a uniformly random permutation to all messages.

• An analyzer Π𝐴 : Y∗ → O that computes on a permutation of messages.

As the shuer is the same in every protocol, we identify each shue protocol by Π = (Π𝑅,Π𝐴). We dene

the honest execution on input ®𝑥 ∈ X𝑛
as

Π( ®𝑥) := Π𝐴 (Π𝑆 (Π𝑅 (𝑥1), . . . ,Π𝑅 (𝑥𝑛))).

We denote the output of the shuer as

(Π𝑆 ◦ Π𝑛
𝑅) ( ®𝑥) := Π𝑆 (Π𝑅 (𝑥1), . . . ,Π𝑅 (𝑥𝑛)) .

We assume that users and the analyzer have access to 𝑛, as well as an arbitrary amount of public randomness.

It remains to dene dierential privacy in this model. We note that the output of the shuer only follows

the distribution Π( ®𝑥) if all users are following the protocol as specied. This assumption is undesirable

because it means each user is reliant on other users to behave correctly. Thus we consider a robust variant of

4
See [BEM

+
17] for a discussion of various choices of how to implement such a secure shuer.
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the shue model, where we require that the protocol remains private when only a constant fraction of users

behave correctly, while the other users may behave arbitrarily. We emphasize all known natural protocols in

this model satisfy the additional robustness condition, and the need for robustness was explicitly discussed

in [CSU
+
19] as a feature of the model, so we consider the robust variant to be the most appropriate version

of the model.

Denition 2.5 (Robust Shue Dierential Privacy [BCJM20]). Fix 𝛾 ∈ (0, 1]. A protocol Π = (𝑅,𝐴) is
(Y, 𝛿,𝛾)-robustly shue dierentially private if, for all 𝑛 ∈ N and 𝛾 ′ ≥ 𝛾 , the algorithm Π𝑆 ◦ Π𝛾 ′𝑛

𝑅
is (Y, 𝛿)-

dierentially private. In other words, Π guarantees (Y, 𝛿)-shue privacy whenever at least a 𝛾 fraction of

the intended number of users follow the protocol.

We remark that the above denition only explicitly handles drop-out attacks, where malicious users

send no messages. However, dropping out is the worst malicious users can do. Combining arbitrary

messages from malicious users with the messages of honest users can be viewed as a post-processing of

Π𝑆 ◦ Π𝛾𝑛

𝑅
. If Π𝑆 ◦ Π𝛾𝑛

𝑅
is already dierentially private for the outputs of the 𝛾𝑛 users alone, then dierential

privacy’s resilience to post-processing ensures that adding other messages does not aect this guarantee.

Hence, it is without loss of generality to focus on drop-out attacks.

2.5 From Robust Shule Privacy to Pan-Privacy

[BCJM20] prove a reduction from robust shue privacy to pan-privacy in the context of uniformity

testing and counting distinct elements. Here, we note that the technique can be applied to essentially any

distributional problem, so we state it as a standalone theorem. Using this theorem we will be able to obtain

lower bounds for the shue model from those we prove for the pan-private model.

We begin by establishing some notation. For any universe X, let U denote any xed distribution over

X. For any distribution P over X and any 𝑏 ∈ [0, 1], let P(𝑏) denote the mixture 𝑏 · P + (1 − 𝑏) · U.

Theorem 2.6 (Generalization of [BCJM20]). For any 𝑛 and any (Y, 𝛿, 1/3)-robustly shue private protocol
Π, there exists an (Y, 𝛿)-pan-private algorithm𝑀Π such that

dTV(𝑀Π (U𝑛/3),Π(U𝑛)) = 0 (4)

and, for any P over X,
dTV(𝑀Π (P𝑛/3),Π(P𝑛(2/9) )) < exp(−Ω(𝑛)) . (5)

In particular, if 𝑛 is larger than some absolute constant, dTV(𝑀Π (P𝑛/3),Π(P𝑛(2/9) )) < 1/6.

Proof. We present a concise version of𝑀Π
in Algorithm 1. Although it does not explicitly take the form

specied by Denition 2.2, it is straightforward to decompose it into a sequence of algorithms

(𝑀1, . . . , 𝑀𝑛/3, 𝑀O) .

Pan-privacy: For any user 𝑖 and intrusion time 𝑡 , we prove that
(
𝑀Π
I ( ®𝑥≤𝑡 ), 𝑀

Π
O (𝑀

Π
I ( ®𝑥))

)
—the adversary’s

view—is (Y, 𝛿)-dierentially private conditioned on arbitrary event 𝑁 ′ = 𝑛′. If 𝑖 > 𝑛′, observe that the

algorithm is completely independent of 𝑥𝑖 . Otherwise, we shall leverage the robust privacy of Π.
We rst consider the case where 𝑡 < 𝑖 . The state observed by the adversary, 𝑆𝑡 , is independent of 𝑖 so it

will suce to prove that 𝑀Π
O (𝑀

Π
I ( ®𝑥)) is dierentially private conditioned on any event 𝑆𝑡 = 𝑠𝑡 . Note that

𝑀Π
O (𝑀

Π
I ( ®𝑥)) is obtained by running Π𝐴 on the union of 𝑠𝑡 and

(Π𝑆 ◦ Πℎ
𝑅) (𝑥𝑡+1, . . . , 𝑥𝑖 ,𝑊𝑖+1, . . . ,𝑊𝑛/3,U, . . . ,U︸   ︷︷   ︸

𝑛/3 terms

), (6)
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Algorithm 1:𝑀Π
, an online algorithm built from a shue protocol

Input: Data stream ®𝑥 ∈ X𝑛/3
; a shue protocol Π = (Π𝑅,Π𝐴) that expects 𝑛 inputs

1 Create initial state 𝑆0 ← (Π𝑆 ◦ Π𝑛/3
𝑅
) (U𝑛/3)

2 Sample 𝑁 ′ ∼ Bin(𝑛, 2/9)
3 Set 𝑁 ′← min(𝑁 ′, 𝑛/3)
4 For 𝑖 ∈ [𝑛/3]
5 If 𝑖 ≤ 𝑁 ′ : 𝑊𝑖 ← 𝑥𝑖 ;

6 Else𝑊𝑖 ∼ U;
7 Create the state 𝑆𝑖 by shuing the messages from 𝑆𝑖−1 with those from Π𝑅 (𝑊𝑖)
8 Create ®𝑌 by shuing the messages from 𝑆𝑛/3 with those from Π𝑛/3

𝑅
(U𝑛/3)

9 Return Π𝐴 ( ®𝑌 )

where ℎ = 2𝑛/3 − 𝑡 ≥ 𝑛/3. We can therefore invoke the robust shue privacy of Π.
Now we consider the case where 𝑡 ≥ 𝑖 . Observe that𝑀Π

I ( ®𝑥≤𝑡 ) is equivalent to

(Π𝑆 ◦ Πℎ
𝑅) (UX, . . . ,UX︸        ︷︷        ︸

𝑛/3 terms

, 𝑥1, . . . , 𝑥𝑖 ,𝑊𝑖+1 . . . ,𝑊𝑡 ),

where ℎ = 𝑛/3 + 𝑡 > 𝑛/3. We again invoke the robust shue privacy of Π. And, conditioned on any event

𝑀Π
I ( ®𝑥≤𝑡 ) = 𝑠𝑡 , we argue that𝑀

Π
O (𝑀

Π
I ( ®𝑥)) is independent of 𝑥𝑖 . This follows from our previous observation

that𝑀Π
O (𝑀

Π
I ( ®𝑥)) is obtained by running Π𝐴 on the union of 𝑠𝑡 and (6); 𝑥𝑖 is not an input to this function.

Bound on TV distance: In the case where the input ®𝑋 is drawn from U𝑛/3
, observe that every execution

of Π𝑅 made by𝑀Π
is on an independent sample from U. Because the output of the algorithm is obtained by

running Π𝐴 on 𝑛 such executions, we immediately have𝑀Π (U𝑛/3) = Π(U𝑛).
Otherwise, consider 𝑛 samples from P(2/9) . The number of samples drawn from P is distributed as

Bin(𝑛, 2/9). By Hoeding’s bound, P(Bin(𝑛, 2/9) > 𝑛/3) < exp(−Ω(𝑛)). Thus the TV distance between

Bin(𝑛, 2/9) and the distribution of 𝑁 ′ is at most exp(−Ω(𝑛)). In turn, the TV distance between

Π(P𝑛(2/9) ) = Π𝐴 (Π𝑆 (

𝑛 terms︷                                           ︸︸                                           ︷
Π𝑅 (P), . . . ,Π𝑅 (P)︸                ︷︷                ︸

Bin(𝑛,2/9) terms

,Π𝑅 (U), . . . ,Π𝑅 (U)))

and

𝑀Π (P𝑛/3) = Π𝐴 (Π𝑆 (

𝑛 terms︷                                           ︸︸                                           ︷
Π𝑅 (P), . . . ,Π𝑅 (P)︸                ︷︷                ︸

𝑁 ′ terms

,Π𝑅 (U), . . . ,Π𝑅 (U)))

is at most exp(−Ω(𝑛)) as well. This concludes the proof. �

3 Main Lower Bound

Let 𝑀 be a pan-private algorithm. Let {P𝑣}𝑣∈V be a family of distributions, 𝑉 be uniform over V , and

U = E𝑣∼𝑉 (P𝑣) be the uniform mixture over the distributions. Let U𝑛
be the product distribution consisting

of 𝑛 copies of U and let P𝑛
𝑉
= E𝑣∼𝑉 (P𝑛𝑣 ) be the mixture of product distributions. Note that U = P1

𝑉
.
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An important quantity that we will show measures how hard it is for pan-private algorithms to

distinguish U𝑛
from P𝑛

𝑉
is the (∞→2)-norm5

of {P𝑣}, which dened as

‖{P𝑣}‖∞→2 = sup

𝑓 :X→[±1]
E

𝑣∼𝑉

((
E

𝑥∼P𝑣
(𝑓 (𝑥)) − E

𝑥∼𝑈
(𝑓 (𝑥))

)
2

)
1/2

The main goal of this section is to prove the following theorem.

Theorem 3.1. If {P𝑣}𝑣∈V is a family of distributions and 𝑀 is an (Y, 𝛿)-pan private algorithm such that 6

𝛿 log |V |/𝛿 � Y2‖{P𝑣}‖2∞→2
and dTV(𝑀 (P𝑛𝑉 ), 𝑀 (U

𝑛)) is larger than a positive constant, then

𝑛 ≥ Ω

(
1

Y‖{P𝑣}‖∞→2

)
More generally, 𝑛 ≥ 1/𝑂 (Y‖{P𝑣}‖∞→2 +

√︁
𝛿 log |V |/𝛿)

The main tool we use to prove Theorem 3.1 is the following information inequality.

Lemma 3.2. For any (Y, 𝛿)-pan private algorithm𝑀 ,

dTV(𝑀 (P𝑛𝑉 ), 𝑀 (U
𝑛)) ≤ 𝑛 ·

√︃
1

2
𝐼Y,𝛿 ({P𝑣})

where we dene 𝐼Y,𝛿 ({P𝑣}) = sup𝑀 :X→R
(Y, 𝛿 ) -DP

𝐼 (𝑀 (P𝑉 );𝑉 )

Proof of Lemma 3.2. As a shorthand, let Q𝑖 denote the distribution of𝑀 (U𝑖 , P𝑛−𝑖
𝑉
). This is the distribution

of the algorithm’s output on a data stream where the rst 𝑖 elements are sampled i.i.d. from U and the rest

from P𝑉 . Note that Q0 = 𝑀 (P𝑛
𝑉
) and Q𝑛 = 𝑀 (U𝑛). By the triangle inequality we have

dTV(𝑀 (P𝑛𝑉 ), 𝑀 (U
𝑛)) = dTV(Q0,Q𝑛) ≤

𝑛∑︁
𝑖=1

dTV(Q𝑖−1,Q𝑖) .

Thus, in order to prove the theorem it is enough to show that for every 𝑖 = 1, . . . , 𝑛,

dTV(Q𝑖−1,Q𝑖) ≤
√︃

1

2
𝐼Y,𝛿 ({P𝑣}) (7)

Before proving (7), we give a simplied diagram of the relevant random variables in the two distributions

Q𝑖−1,Q𝑖 in Figure 2. For the purposes of comparingQ𝑖−1 andQ𝑖 , we can group all of the inputs𝑋1, . . . , 𝑋𝑖−1 ∼
U𝑖−1

into one random variable and all of the inputs 𝑋𝑖+1· · ·𝑛 ∼ P𝑛−𝑖
𝑉

into another random variable. Moreover,

in Q𝑖−1, 𝑋𝑖 is drawn from P𝑉 , for the same choice of 𝑉 as 𝑋𝑖+1· · ·𝑛 , whereas in Q𝑖 , 𝑋𝑖 is drawn from U.
Now, observe that the random variables 𝑆𝑖 and 𝑋𝑖+1· · ·𝑛 have the same marginal distribution in both

Q𝑖−1,Q𝑖 . However, in Q𝑖−1 they are correlated by the shared choice of 𝑉 , and in Q𝑖 they are independent.

Moreover, 𝑆𝑛 is a post-processing of the pair (𝑆𝑖 , 𝑋𝑖+1· · ·𝑛). Thus, using (𝑆𝑖 , 𝑋𝑖+1· · ·𝑛) to denote the joint

distribution of 𝑆𝑖 (𝑉 ) and 𝑋𝑖+1· · ·𝑛 (𝑉 ) in Q𝑖−1, and applying the data-processing inequality, we have

dTV(Q𝑖−1,Q𝑖) ≤ dTV((𝑆𝑖 , 𝑋𝑖+1· · ·𝑛), (𝑆𝑖 ⊗ 𝑋𝑖+1· · ·𝑛))
≤ E

𝑠𝑖∼𝑆𝑖

(
dTV(𝑋𝑖+1· · ·𝑛 |𝑆𝑖=𝑠𝑖 , 𝑋𝑖+1· · ·𝑛)

)
(Fact 3.3)

where the last inequality uses the following fact.

5
We call this quantity the (∞→2)-norm because it is equal to the better known (∞→2)-norm, sup𝑧 ‖𝑀𝑧‖2/‖𝑧‖∞, of the matrix

𝑀 dened by𝑀𝑣,𝑥 = P𝑣 (𝑥) −𝑈 (𝑥).
6
We use 𝑥 � 𝑦 to indicate that 𝑥 ≤ 𝑐𝑦 for a suciently small numerical constant 𝑐 > 0.
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𝑋𝑖𝑋1· · ·𝑖−1 𝑋𝑖+1· · ·𝑛

𝑉

𝑆𝑖 𝑆𝑛

𝑋𝑖𝑋1· · ·𝑖−1 𝑋𝑖+1· · ·𝑛

𝑉

𝑆𝑖 𝑆𝑛

Figure 2: A simplied diagram of the relevant random variables in Q𝑖−1 (left) and Q𝑖 (right).

Fact 3.3. If (𝐴, 𝐵) and (𝐴, 𝐵′) are joint distributions, dTV((𝐴, 𝐵), (𝐴, 𝐵′)) ≤ E
𝑎∼𝐴
(dTV(𝐵 |𝐴=𝑎, 𝐵′ |𝐴=𝑎)).

Next, since 𝑆𝑖 and 𝑋𝑖+1· · ·𝑛 are independent conditioned on 𝑉 , we have

E
𝑠𝑖∼𝑆𝑖

(
dTV(𝑋𝑖+1· · ·𝑛 |𝑆𝑖=𝑠𝑖 , 𝑋𝑖+1· · ·𝑛)

)
≤ E

𝑠𝑖∼𝑆𝑖

(
dTV(𝑉 |𝑆𝑖=𝑠𝑖 ,𝑉 )

)
(Fact 3.4)

where we use the following fact.

Fact 3.4. If (𝐴, 𝐵,𝐶) are jointly distributed random variables and 𝐴 and 𝐵 are independent conditioned on 𝐶 ,
then for every 𝑎 ∈ supp(𝐴), dTV(𝐵 |𝐴=𝑎, 𝐵) ≤ dTV(𝐶 |𝐴=𝑎,𝐶).

We prove Facts 3.3 and 3.4 in Appendix A. From this point we can calculate

E
𝑠𝑖∼𝑆𝑖

(
dTV(𝑉 |𝑆𝑖=𝑠𝑖 ,𝑉 )

)
≤

√︂
E

𝑠𝑖∼𝑆𝑖

(
dTV(𝑉 |𝑆𝑖=𝑠𝑖 ,𝑉 )2

)
(Jensen’s Inequality)

≤
√︂
E

𝑠𝑖∼𝑆𝑖

(
1

2
· dKL(𝑉 |𝑆𝑖=𝑠𝑖 ‖𝑉 )

)
(Pinsker’s Inequality)

=

√︂
E

𝑠𝑖∼𝑆𝑖

(
1

2
· dKL((𝑆𝑖 ,𝑉 )‖(𝑆𝑖 ⊗ 𝑉 ))

)
(chain rule for KL-divergence)

≤
√︃

1

2
· 𝐼 (𝑆𝑖 ;𝑉 ) (denition of mutual information)

Lastly, we argue that 𝐼 (𝑆𝑖 ;𝑉 ) ≤ 𝐼Y,𝛿 ({P𝑣}) using pan-privacy. The intuition is that pan privacy requires

𝑆𝑖 to be (Y, 𝛿)-dierentially private as a function of the prex 𝑋1, . . . , 𝑋𝑖 . Moreover, 𝑋1, . . . , 𝑋𝑖−1 are drawn
from the xed distribution U𝑖−1

that is independent from 𝑉 . Therefore, we can x the distribution of

𝑋1, . . . , 𝑋𝑖−1 and view 𝑆𝑖 as an (Y, 𝛿)-dierentially private function of just𝑋𝑖 . Specically, given an (Y, 𝛿)-pan
private algortihm 𝑀 , and 𝑖 , dene the function 𝑓𝑖 : X → R as follows: 𝑓𝑖 (𝑥) samples 𝑋1, . . . , 𝑋𝑖−1 ∼ U𝑖−1

,

computes 𝑠1 = 𝑀1(𝑋1), 𝑠2 = 𝑀2(𝑋2, 𝑠1), . . . , 𝑠𝑖−1 = 𝑀𝑖−1(𝑋𝑖−1, 𝑠𝑖−2), and outputs 𝑟 = 𝑀𝑖 (𝑥, 𝑠𝑖−1). Pan-privacy
guarantees that 𝑓𝑖 (𝑥) = 𝑀𝑖 (𝑋1, . . . , 𝑋𝑖−1, 𝑥) is (Y, 𝛿)-dierentially private as a function of 𝑥 . Note that 𝑆𝑖 |𝑋𝑖=𝑥

is distributed identically as 𝑓𝑖 (𝑥). Therefore√︃
1

2
𝐼 (𝑆𝑖 ;𝑉 ) =

√︃
1

2
𝐼 (𝑀𝑖 (P𝑉 );𝑉 ) ≤

√︃
1

2
𝐼Y,𝛿 ({P𝑣})

Combining with the previous calculations gives

dTV(Q𝑖−1,Q𝑖) ≤
√︃

1

2
𝐼Y,𝛿 ({P𝑣}),

as desired. �

To use Lemma 3.2 we need a bound on the mutual information 𝐼Y,𝛿 ({P𝑣}). A result of Duchi, Jordan,

and Wainwright [DJW13], gives such a bound for the case of 𝛿 = 0.
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Lemma 3.5 ([DJW13]). 𝐼Y,0({P𝑣}) ≤ 𝑂 (Y2‖{P𝑣}‖2∞→2
).

We give a simple extension to the case of 𝛿 > 0.

Lemma 3.6. 𝐼Y,𝛿 ({P𝑣}) ≤ 𝑂 (Y2‖{P𝑣}‖2∞→2
+ 𝛿 log |V |/𝛿) .

Therefore, we will obtain Theorem 3.1 as an immediate corollary of Lemma 3.2 and Lemma 3.6. The

proof of Lemma 3.6 from Lemma 3.5 relies on the following statement, which is an easy consequence of a

structural result of Kairouz, Oh, and Viswanath [KOV15].

Lemma 3.7. If𝑀 : X → R is (Y, 𝛿)-dierentially private, then there is a (2Y, 0)-dierentially private𝑀 ′ such
that

∀𝑥 ∈ X dTV(𝑀 (𝑥), 𝑀 ′(𝑥)) ≤ 𝛿

For completeness, we prove this lemma in Appendix A.

Proof of Lemma 3.6. Let 𝑀 be any (Y, 𝛿)-dierentially private function with input 𝑥 ∈ X. Lemma 3.7

guarantees that there exists a mechanism𝑀 ′ that is (2Y, 0)-dierentially private and satises

∀𝑥 ∈ X dTV(𝑀 (𝑥), 𝑀 ′(𝑥)) ≤ 𝛿

In particular, dTV(𝑀 (P𝑉 ), 𝑀 ′(P𝑉 )) ≤ 𝛿 . Therefore, there exists a joint distribution (𝑀,𝑀 ′) such that

𝑀 = 𝑀 (P𝑉 ), 𝑀 ′ = 𝑀 ′(P𝑉 ) and P(𝑀 ≠ 𝑀 ′) ≤ 𝛿 . Let 𝐵 be the binary random variable I{𝑀 ≠ 𝑀 ′}. Thus,
there is a joint distribution (𝑀,𝑀 ′, 𝐵) such that (𝐵 = 0 =⇒ 𝑅 = 𝑅′) and P(𝐵 ≠ 0) ≤ 𝛿 . Therefore,

𝐼 (𝑉 ;𝑅) ≤ 𝐼 (𝑉 ;𝑀,𝑀 ′, 𝐵)
≤ 𝐼 (𝑉 ;𝑀,𝑀 ′ | 𝐵) + 𝐻 (𝐵)
= 𝐼 (𝑉 ;𝑀,𝑀 ′ | 𝐵 = 0)P(𝐵 = 0) + 𝐼 (𝑉 ;𝑀,𝑀 ′ | 𝐵 = 1)P(𝐵 = 1) + 𝐻 (𝐵)
≤ 𝐼 (𝑉 ;𝑀 ′) + 𝐻 (𝑉 )𝛿 + 𝐻 (𝐵)
= 𝐼 (𝑉 ;𝑀 ′) +𝑂 (𝛿 log |V| + 𝛿 log(1/𝛿))
≤ 𝐼2Y,0({P𝑣}) +𝑂 (𝛿 log |V| + 𝛿 log(1/𝛿))
= 𝑂 (Y2‖{P𝑣}‖2∞→2

) +𝑂 (𝛿 log |V| + 𝛿 log(1/𝛿))

The lemma now follows by rewriting the nal expression as 𝑂 (𝛿 log |V |/𝛿). �

3.1 A Family of Hard Distributions

In order to apply Theorem 3.1 to a learning or optimization problem, we need a family of distributions {P𝑣}
such that ‖{P𝑣}‖∞→2 is small and any accurate algorithm for the problem distinguishes P𝑛

𝑉
from U𝑛

. This

subsection describes one such family we will use in most of our lower bound arguments.

Let X = {±1}𝑑 be the data domain. For a parameter 𝛼 ∈ (0, 1/2), a non-empty set ℓ ⊆ [𝑑], and a bit 𝑏 ∈
{±1}𝑑 , we dene the distribution P𝑑,ℓ,𝑏,𝛼 to be uniform on {±1}𝑑 except biased so that E𝑥∼P𝑑,𝛼,ℓ,𝑏,𝛼 (

∏
𝑖∈𝑡 𝑥𝑖) =

2𝛼𝑏. Its probability mass function is

P𝑑,ℓ,𝑏,𝛼 (𝑥) =
{
(1 + 2𝛼)2−𝑑 if

∏
𝑖∈𝑡 𝑥𝑖 = 𝑏

(1 − 2𝛼)2−𝑑 if

∏
𝑖∈𝑡 𝑥𝑖 = −𝑏

(8)

Note that, by construction, for every non-empty 𝑡 ′ ≠ 𝑡 , E𝑥∼P𝑑,ℓ,𝑏,𝛼 (
∏

𝑖∈𝑡 ′ 𝑥𝑖) = 0.

For dimension 𝑑 , a parameter 𝑘 ≤ 𝑑 , and 𝛼 ∈ (0, 1/2), we dene the family

P𝑑,𝑘,𝛼 = {P𝑑,ℓ,𝑏,𝛼 : 𝑡 ⊆ [𝑑], |𝑡 | ∈ [𝑘], 𝑏 ∈ {±1}} (9)
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Fact 3.8. The size of the family P𝑑,𝑘,𝛼 is 2 ·
(
𝑑
≤𝑘

)
where

(
𝑑
≤𝑘

)
=

∑𝑘
𝑗=1

(
𝑑
𝑗

)
.

Fact 3.9. The uniform mixture over the family P𝑑,𝑘,𝛼 is uniform over X.
The following lemma is implicit in many lower bounds for local dierential privacy (e.g. [DJW13, Ull18,

ENU20]), although we reprove it here for completeness.

Lemma 3.10. For every 𝑑 ∈ N, 𝑘 ≤ 𝑑 , and 𝛼 ∈ (0, 1/2),

‖P𝑑,𝑘,𝛼 ‖2∞→2
≤ 4𝛼2(

𝑑
≤𝑘

)
Proof. We begin by expanding the denition of the (∞ → 2) norm:

‖P𝑑,𝑘,𝛼 ‖2∞→2
= sup

𝑓 :X→[±1]

∑︁
P∈P𝑑,𝑘,𝛼

1

|P𝑑,𝑘,𝛼 |
·
(
E
𝑥∼P
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

= sup

𝑓 :X→[±1]

∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

1

|P𝑑,𝑘,𝛼 |
· ©«

∑︁
𝑥 ∈{±1}𝑑

𝑓 (𝑥) · (P𝑑,ℓ,𝑏,𝛼 (𝑥) − U(𝑥))
ª®¬
2

= sup

𝑓 :X→[±1]

1

2

(
𝑑
≤𝑘

) · ∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

©«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) · (P𝑑,ℓ,𝑏,𝛼 (𝑥) − U(𝑥))

ª®¬
2

(10)

The nal equality comes from Fact 3.8. Note that (8) is equivalent to P𝑑,ℓ,𝑏,𝛼 (𝑥) = (1 + 2𝛼𝑏 ·
∏

𝑖∈𝑡 𝑥𝑖)2−𝑑
and, via Fact 3.9, U(𝑥) = 2

−𝑑
. Thus,

(10) = sup

𝑓 :X→[±1]

1

2

(
𝑑
≤𝑘

) · ∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

©«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) · 2𝛼𝑏 ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

= sup

𝑓 :X→[±1]

2𝛼2(
𝑑
≤𝑘

) · ∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

©«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

= sup

𝑓 :X→[±1]

4𝛼2(
𝑑
≤𝑘

) · ∑︁
𝑡 ⊆[𝑑 ], |𝑡 | ∈ [𝑘 ]

©«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

≤ sup

𝑓 :X→[±1]

4𝛼2(
𝑑
≤𝑘

) · ∑︁
𝑡 ⊆[𝑑 ]

©«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

(11)

Dene
ˆ𝑓 (𝑡) := E

𝑋∼U
(𝑓 (𝑋 ) ·∏𝑖∈𝑡 𝑋𝑖), the Fourier transform over the Boolean hypercube. This is precisely

the term being squared above. So we have

(11) =
4𝛼2(
𝑑
≤𝑘

) · sup

𝑓 :X→[±1]

∑︁
𝑡 ⊆[𝑑 ]

ˆ𝑓 (𝑡)2

=
4𝛼2(
𝑑
≤𝑘

) · sup

𝑓 :X→[±1]
E

𝑋∼U

(
𝑓 (𝑋 )2

)
(Parseval’s identity)

≤ 4𝛼2(
𝑑
≤𝑘

)
This concludes the proof. �
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The following is an immediate corollary of Theorem 3.1, Lemma 3.10, and Fact 3.8.

Theorem 3.11. Let P𝑑,𝐿,𝐵,2𝛼 denote a distribution chosen uniformly at random from P𝑑,𝑘,𝛼 (where 𝐿 is a
uniformly random subset of [𝑑] with size ≤ 𝑘 and 𝐵 is a uniformly random member of {±1}). If 𝑀 is an
(Y, 𝛿)-pan private algorithm such that 𝛿 log ( 𝑑≤𝑘)/𝛿 � 𝛼2Y2/

(
𝑑
≤𝑘

)
and dTV(𝑀 (P𝑛𝑑,𝐿,𝐵,𝛼 ), 𝑀 (U

𝑛)) is larger than a
positive constant, then

𝑛 ≥ Ω
©«
√︃(

𝑑
≤𝑘

)
𝛼Y

ª®®¬
4 Lower Bounds for Simple Hypothesis Testing

In this section, we use Theorem 3.11 obtain lower bounds for the problem of simple hypothesis testing. We

rst prove a lower bound that holds under pan-privacy, then adapt it for robust shue privacy via Theorem

2.6. This pattern is repeated in the subsequent lower bound sections.

Denition 4.1 (𝑑-Wise Simple Hypothesis Testing). Let 𝑑 be any integer larger than 1 and let 𝛼 be any

real in the interval (0, 1/2). An algorithm𝑀 solves 𝑑-wise simple hypothesis testing with error 𝛼 and sample
complexity 𝑛 if, for any set of 𝑑 distributions P satisfying dTV(P, P′) ≥ 𝛼 for every distinct pair P, P′ ∈ P,
when given 𝑛 independent samples from an arbitrary P ∈ P as input, the algorithm outputs P with

probability ≥ 99/100. This probability is over the randomness of the samples and of𝑀 .

Theorem 4.2. If𝑀 is an (Y, 𝛿)-pan-private algorithm that solves 𝑑-wise simple hypothesis testing with error
𝛼 and 𝛿 log 𝑑/𝛿 � 𝛼2Y2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼Y).

Proof. Consider the set of distributions {U} ∪ P𝑑,1,𝛼 . Note that this is a family of 2𝑑 + 1 distributions. From
Fact 3.8, its size is 2𝑑 + 1. We also prove the following in the Appendix:

Claim 4.3. For any P ≠ P′ ∈ {U} ∪ P𝑑,1,𝛼 , dTV(P, P′) ≥ 𝛼 .

The upshot is that {U} ∪ P𝑑,1,𝛼 is a valid set of distributions for (2𝑑 + 1)-wise hypothesis testing. We

now argue that the accuracy of𝑀 for this problem instance implies that we can invoke Theorem 3.11.

To do so, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from P𝑑,1,𝛼 . We show that the

total variation distance between𝑀 (U𝑛) and𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

) is at least some positive constant.

dTV(𝑀 (U𝑛), 𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

))

= max

P⊆{U}∪P𝑑,𝑘,𝛼

���P(𝑀 (U𝑛) ∈ P) − P
(
𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
) ∈ P

)���
≥ P(𝑀 (U𝑛) ∈ {U}) − P

(
𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
) ∈ {U}

)
≥ P(𝑀 (U𝑛) ∈ {U}) − 1

100

≥ 99

100

− 1

100

=
49

50

To obtain the second inequality, we rst observe that P𝑑,𝑡,𝑏,𝛼 ≠ U for every 𝑡, 𝑏 so U would be an incorrect

output. Then we use the fact that 𝑀 solves simple hypothesis testing: it is incorrect with probability at

most 1/100. The same reasoning yields the third inequality.

From Theorem 3.11, we conclude that 𝑛 = Ω
(

1

Y ‖P𝑑,1,𝛼 ‖∞→2

)
= Ω

(√
𝑑/𝛼Y

)
.. This lower bound holds for a

family of 2𝑑 + 1 distributions, so the claimed result follows by rescaling 𝑑 . �
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The next theorem adapts our proof to the robust shue privacy setting:

Theorem 4.4. If Π is an (Y, 𝛿, 1/3)-robustly shue private protocol that solves 𝑑-wise simple hypothesis
testing with error 𝛼 and 𝛿 log 𝑑/𝛿 � 𝛼2Y2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼Y).

Proof. As before, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from P𝑑,1,𝛼 . Let Π denote an

algorithm in the shue model that solves (2𝑑 + 1)-wise simple hypothesis testing with accuracy 2𝛼/9.
Let𝑀Π

denote the (Y, 𝛿)-pan-private algorithm guaranteed by Theorem 2.6. We will lower bound the

total variation distance between𝑀Π (U𝑛/3) and𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

).

dTV(𝑀Π (U𝑛/3), 𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

))

≥ P
(
𝑀Π (U𝑛/3) ∈ {U}

)
− P

(
𝑀Π (P𝑛/3

𝑑,𝐿,𝐵,𝛼
) ∈ {U}

)
≥ P(Π(U𝑛) ∈ {U}) − P

(
Π(P𝑛

𝑑,𝐿,𝐵,2𝛼/9) ∈ {U}
)
− 1

6

(Theorem 2.6)

≥ 49

50

− 1

6

=
61

75

The third inequality comes from repeating the analysis in the proof of Theorem 4.2. Since 𝑀Π
is an

(Y, 𝛿)-pan-private algorithm such that

dTV(𝑀Π (U𝑛/3), 𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

))

is at least a positive constant, we invoke Theorem 3.11 to conclude that 𝑛 = Ω(
√
𝑑/𝛼Y). The claimed

theorem follows by rescaling 𝛼 and 𝑑 . �

5 Lower Bounds for Sparse Mean Estimation

Denition 5.1. Let 𝛼 be any real in the interval (0, 1/2) and let 𝑘 ≤ 𝑑 be any integers larger than 1. An

algorithm𝑀 solves (𝑑, 𝑘, 𝛼)-sparse mean estimation with sample complexity 𝑛 if, for any distribution P over

{±1}𝑑 whose mean ®̀ satises ‖ ®̀‖0 ≤ 𝑘 , it receives 𝑛 independent samples from P as input and outputs

®𝑉 ∈ [−1, +1]𝑑 such that ‖ ®̀ − ®𝑉 ‖∞ ≤ 𝛼 with probability at least 99/100. This probability is taken over the

randomness of the samples observed by𝑀 and𝑀 itself.

Theorem 5.2. If 𝑀 is an (Y, 𝛿)-pan-private algorithm that solves (𝑑, 1, 𝛼)-sparse mean estimation and
𝛿 log 𝑑/𝛿 � 𝛼2Y2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼Y).

Proof. As before, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from P𝑑,1,𝛼 . By construction,

the mean of this distribution is 1-sparse, namely it is 𝐵 · ®𝑒𝐿 wehre ®𝑒𝐿 is the 𝐿-th standard basis vector. We

show that the total variation distance between𝑀 (U𝑛) and𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

) is at least a constant. This time, we

argue that the former is more likely to output a “small” vector than the latter. Specically,

dTV(𝑀 (U𝑛), 𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

))

≥ P(‖𝑀 (U𝑛)‖∞ ≤ 𝛼) − P
(
‖𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
)‖∞ ≤ 𝛼

)
= P(‖𝑀 (U𝑛) − E(U)‖∞ ≤ 𝛼) − P

(
‖𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
)‖∞ ≤ 𝛼

)
(E(U) = ®0)

≥ 99

100

− P
(
‖𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
)‖∞ ≤ 𝛼

)
≥ 99

100

− P
(
‖𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
) − E

(
P𝑑,𝐿,𝐵,𝛼

)
‖∞ > 𝛼

)
(‖E

(
P𝑑,𝐿,𝐵,𝛼

)
‖∞ = 2𝛼)

≥ 99

100

− 1

100

=
49

50
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From Theorem 3.11, we conclude that 𝑛 = Ω
(√

𝑑/𝛼Y
)
. �

The next theorem adapts our proof to the robust shue privacy setting:

Theorem 5.3. IfΠ is an (Y, 𝛿, 1/3)-robustly shue private protocol that solves (𝑑, 1, 𝛼)-sparse mean estimation
and 𝛿 log 𝑑/𝛿 � 𝛼2Y2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼Y).

Proof. As before, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from P𝑑,1,𝛼 . Assume Π is a

shue-model protocol that solves (𝑑, 1, 2𝛼/9)-sparse mean estimation. We show that 𝑀Π
distinguishes

between U𝑛/3
and P𝑛/3

𝑑,𝐿,𝐵,𝛼
.

dTV(𝑀Π (U𝑛/3), 𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

))

≥ P
(
‖𝑀Π (U𝑛/3)‖∞ ≤ 2𝛼/9

)
− P

(
‖𝑀Π (P𝑛/3

𝑑,𝐿,𝐵,𝛼
)‖∞ ≤ 2𝛼/9

)
≥ P(‖Π(U𝑛)‖∞ ≤ 2𝛼/9) − P

(
‖Π(P𝑛

𝑑,𝐿,𝐵,2𝛼/9)‖∞ ≤ 2𝛼/9
)
− 1

6

(Theorem 2.6)

≥ 49

50

− 1

6

=
61

75

The third inequality comes from repeating the analysis in the proof of Theorem 5.2. As before, we invoke

Theorem 3.11 to conclude that 𝑛 = Ω(
√
𝑑/𝛼Y). The claimed theorem follows from rescaling 𝛼 and 𝑑 . �

6 Lower Bounds for Releasing Parity Functions

Denition 6.1. Let 𝛼 be any real in the interval (0, 1/2) and let 𝑘 ≤ 𝑑 be any integers larger than 1. An

algorithm𝑀 releases width-𝑘 parities with error 𝛼 and sample complexity 𝑛 if it takes 𝑛 independent samples

from a distribution P over {±1}𝑑 and reports a function 𝐹 : 2
[𝑑 ] → R such that

P
®𝑋∼P𝑛

𝐹∼𝑀 ( ®𝑋 )

(
∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘

�����𝐹 (ℓ) − E𝑥∼P
(∏
𝑗 ∈ℓ

𝑥 𝑗

)����� ≤ 𝛼

)
≥ 99/100.

Theorem 6.2. If 𝑀 is an (Y, 𝛿)-pan-private algorithm that releases width-𝑘 parities with error 𝛼 and

𝛿 log ( 𝑑≤𝑘)/𝛿 � 𝛼2Y2/
(
𝑑
≤𝑘

)
, then its sample complexity is 𝑛 = Ω(

√︃(
𝑑
≤𝑘

)
/𝛼Y).

Proof. Analogous to the previous proofs, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from

the family P𝑑,𝑘,𝛼 . We show that the total variation distance between 𝑀 (U𝑛) and 𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

) is at least a
constant. This time, we argue that the former is more likely to output a function bounded by 𝛼 than the

latter. Specically,

dTV(𝑀 (U𝑛), 𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

))
≥ P

𝐹∼𝑀 (U𝑛)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 𝛼) − P

𝐹∼𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 𝛼)

≥ 99

100

− P
𝐹∼𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 𝛼) (12)

≥ 99

100

− P
𝐹∼𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) − 2𝛼 | > 𝛼)

≥ 99

100

− 1

100

(13)

=
49

50
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Inequality (12) follows from the fact that ∀ℓ, 𝑏 E
𝑥∼U

(∏
𝑗 ∈ℓ 𝑥 𝑗

)
= 0 and the correctness of𝑀 . Meanwhile (13)

follows from the fact that ∀ℓ, 𝑏 E
𝑥∼P𝑑,ℓ,𝑏,𝛼

(∏
𝑗 ∈ℓ 𝑥 𝑗

)
= 2𝛼𝑏 and the correctness of𝑀 . From Theorem 3.11, we

conclude the claimed lower bound on 𝑛. �

The next theorem adapts our proof to the robust shue privacy setting:

Theorem 6.3. If Π is an (Y, 𝛿, 1/3)-robustly shue private protocol that releases width-𝑘 parities with error 𝛼

and 𝛿 log ( 𝑑≤𝑘)/𝛿 � 𝛼2Y2/
(
𝑑
≤𝑘

)
, then its sample complexity is 𝑛 = Ω(

√︃(
𝑑
≤𝑘

)
/𝛼Y).

Proof. Again, let 𝑀Π
denote the (Y, 𝛿)-pan-private algorithm given by Theorem 2.6. We show that 𝑀Π

distinguishes between U𝑛/3
and P𝑛/3

𝑑,𝐿,𝐵,𝛼
.

dTV(𝑀Π (U𝑛/3), 𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

))
≥ P

𝐹∼𝑀Π (U𝑛/3)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 2𝛼/9) − P

𝐹∼𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 2𝛼/9)

≥ P
𝐹∼Π (U𝑛)

(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 2𝛼/9) − P
𝐹∼Π (P𝑛

𝑑,𝐿,𝐵,2𝛼/9)
(∀ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘 |𝐹 (ℓ) | ≤ 2𝛼/9) − 1

6

≥ 49

50

− 1

6

=
61

75

The third inequality comes from repeating the analysis in the proof of Theorem 6.2. As before, we

invoke Theorem 3.11 to conclude the claimed lower bound on 𝑛. �

7 Lower Bounds for Selection

Denition 7.1 (Selection). Let 𝛼 be any real in the interval (0, 1/2) and let 𝑑 be any integer larger than 1.

An algorithm𝑀 solves (𝛼,𝑑)-selection with sample complexity 𝑛 if, for any distribution P over {±1}𝑑 , it takes
𝑛 independent samples from P and selects a coordinate 𝐽 ∈ [𝑑] such that E

𝑋∼P

(
𝑋 𝐽

)
≥ max𝑗 E

𝑋∼P

(
𝑋 𝑗

)
−𝛼 with

probability at least 99/100. This probability is taken over the randomness of the samples observed by𝑀

and𝑀 itself.

Theorem 7.2. If 𝑀 = (𝑀1, . . . , 𝑀𝑛, 𝑀O) is an (Y, 𝛿)-pan-private algorithm that solves (𝛼,𝑑)-selection and
𝛿 log 𝑑/𝛿 � 𝛼2Y2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼Y).

Proof. Let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from P𝑑,1,𝛼 . We will again use Theorem

3.11 but this time our proof will not use𝑀 as-is. Instead, we show that𝑀 implies another (Y, 𝛿)-pan-private
algorithm 𝑀 ′ where the total variation distance between 𝑀 ′(U𝑛) and 𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) is at least a positive

constant.

Let Rad(𝛼) be the distribution over {±1} with mean 𝛼 . For any 𝑖 ∈ [𝑛], dene 𝑀 ′𝑖 to be the internal

update algorithm that does the following on input 𝑥𝑖 :

1. Draw independent sample 𝑌𝑖 from Rad(𝛼)

2. 𝑊𝑖 ← (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑑 , 𝑌𝑖)

3. Output𝑀𝑖 (𝑊𝑖 , 𝑠𝑖−1) if 𝑖 > 1 else𝑀1(𝑊1)
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𝑀 ′ is the online algorithm dened by (𝑀 ′
1
, . . . , 𝑀 ′𝑛, 𝑀O). It is (Y, 𝛿)-pan-private by virtue of using𝑀 , so

it remains to lower bound the TV distance between𝑀 ′(U𝑛) and𝑀 ′(P𝑛
𝑑,𝐿,𝐵,𝛼

).

dTV(𝑀 ′(U𝑛), 𝑀 ′(P𝑛
𝑑,𝐿,𝐵,𝛼

))

≥ P(𝑀 ′(U𝑛) = 𝑑 + 1) − P
(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
= P

(
𝑀 (P𝑛

𝑑+1,{𝑑+1},+1,𝛼/2) = 𝑑 + 1
)
− P

(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
(14)

≥ 99

100

− P
(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
(15)

To obtain (14), observe that𝑀 ′ feeds into𝑀 a stream of 𝑛 i.i.d. samples from a product distribution where

the (𝑑 + 1)-th coordinate has mean 𝛼 , while the rest have mean 0. In our notation, this product distribution

is P𝑑+1,{𝑑+1},+1,𝛼/2. Meanwhile, the inequality in (15) follows from the fact that𝑀 solves (𝛼,𝑑 + 1)-selection.
We now upper bound the probability in (15).

P
(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
= P

(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1, 𝐵 = −1

)
+ P

(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1, 𝐵 = +1

)
≤ 1

2

+ P
(
𝑀 ′(P𝑛

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1, 𝐵 = +1

)
=
1

2

+
𝑑∑︁
𝑗=1

P
(
𝑀 ′(P𝑛

𝑑,{ 𝑗 },+1,𝛼 ) = 𝑑 + 1
)
· P(𝑇 = { 𝑗}, 𝐵 = +1) (16)

We focus our attention on the rst term in the product. Observe that 𝑀 ′ feeds to 𝑀 a stream of 𝑛 iid

samples drawn from a distribution where coordinate 𝑗 ∈ [𝑑] has mean 2𝛼 , coordinate 𝑑 + 1 has mean 𝛼 ,

and every other coordinate has mean 0. Here, 𝑗 is the correct answer to (𝛼,𝑑 + 1) selection; since𝑀 solves

(𝛼,𝑑 + 1)-selection, P
(
𝑀 ′(P𝑛

𝑑,{ 𝑗 },+1,𝛼 ) = 𝑑 + 1
)
≤ 1/100. As a result,

(16) ≤ 1

2

+
𝑑∑︁
𝑗=1

1

100

· P(𝐿 = { 𝑗}, 𝐵 = +1) = 1

2

+ 1

100

=
51

100

Thus, dTV(𝑀 ′(U𝑛), 𝑀 ′(P𝑛
𝑑,𝐿,𝐵,𝛼

)) ≥ 99/100 − 51/100 = 12/25. From Theorem 3.11, we conclude that

𝑛 = Ω

(
1

Y‖P𝑑,1,𝛼 ‖∞→2

)
= Ω

(√
𝑑/𝛼Y

)
.

The claimed theorem now follows by rescaling 𝑑 . �

The next theorem adapts our proof to the robust shue privacy setting:

Theorem 7.3. If Π is an (Y, 𝛿, 1/3)-robustly shue private protocol that solves (𝛼,𝑑)-selection and 𝛿 log 𝑑/𝛿 �
𝛼2Y2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼Y).

Proof. As before, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from P𝑑,1,𝛼 . Let𝑀Π
denote

the (Y, 𝛿)-pan-private algorithm given by Theorem 2.6. Like the preceding proof, we show that𝑀Π
implies

an (Y, 𝛿)-pan-private algorithm𝑀 ′ that distinguishes between U𝑛/3
and P𝑛/3

𝑑,𝐿,𝐵,𝛼
. We construct𝑀 ′ essentially

identically, the dierences being that we have 𝑛/3 instead of 𝑛 internal algorithms.
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To bound the total variation distance between𝑀 ′(U𝑛/3) and𝑀 ′(P𝑛/3
𝑑,𝐿,𝐵,𝛼

) we follow the same steps as

in the proof of Theorem 7.2 except we need to account for the reduction from robust shue privacy to

pan-privacy (Theorem 2.6)

dTV(𝑀 ′(U𝑛/3), 𝑀 ′(P𝑛/3
𝑑,𝐿,𝐵,𝛼

))

≥ P
(
𝑀 ′(U𝑛/3) = 𝑑 + 1

)
− P

(
𝑀 ′(P𝑛/3

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
= P

(
𝑀Π (P𝑛/3

𝑑+1,{𝑑+1},+1,𝛼/2) = 𝑑 + 1
)
− P

(
𝑀 ′(P𝑛/3

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
≥ P

(
Π(P𝑛

𝑑+1,{𝑑+1},+1,𝛼/9) = 𝑑 + 1
)
− 1

6

− P
(
𝑀 ′(P𝑛/3

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
(Theorem 2.6)

≥ 99

100

− 1

6

− P
(
𝑀 ′(P𝑛/3

𝑑,𝐿,𝐵,𝛼
) = 𝑑 + 1

)
≥ 99

100

− 1

6

−
(
1

2

+ 1

100

+ 1

6

)
(Theorem 2.6)

=
11

75

As before, we invoke Theorem 3.11 to conclude that 𝑛 = Ω(
√
𝑑/𝛼Y). The claimed theorem follows from

rescaling 𝛼 and 𝑑 . �

8 Lower Bounds for Learning Signed Parity Functions

In this section, we take X = {±1}𝑑+1 and interpret the bits at index 𝑑 + 1 to be labels of the strings. Our

focus will be on signed parity functions: given a tuple (ℓ, 𝑏) ∈ 2[𝑑 ] × {±1} and a string 𝑥 ∈ X, we would like
labels to predict the value 𝑏 ·∏𝑗 ∈ℓ 𝑥 𝑗 . Specically, for any distribution P over X, we dene error function

errP(ℓ, 𝑏) := P
𝑋∼P

(
𝑏 ·

∏
𝑗 ∈ℓ

𝑋 𝑗 ≠ 𝑋𝑑+1

)
,

to be the probability of misclassifying a random test example.

Denition 8.1. Let 𝛼 ∈ (0, 1
2
) be a parameter and let 1 ≤ 𝑘 ≤ 𝑑 be integers. An algorithm𝑀 learns width-𝑘

signed parities with error 𝛼 and sample complexity 𝑛 if it takes 𝑛 independent samples from a distribution P
over X and reports a tuple (𝐿, 𝐵) ∈ 2[𝑑 ] × {±1} such that, with probability at least 99/100,

errP(𝐿, 𝐵) < min

ℓ,𝑏
errP(ℓ, 𝑏) + 𝛼.

This probability is taken over the randomness of the samples and over𝑀 .

For this problem, we will use a variant of our family of distributions: for a parameter 𝛼 ∈ [0, 1/2], a set
ℓ ⊆ [𝑑], and a bit 𝑏 ∈ {±1}, we dene the distribution Q𝑑,ℓ,𝑏,𝛼 to have probability mass function

Q𝑑,ℓ,𝑏,𝛼 (𝑥) =
{
(1 + 2𝛼)2−𝑑−1 if 𝑏 ·∏𝑗 ∈ℓ 𝑥 𝑗 = 𝑥𝑑+1

(1 − 2𝛼)2−𝑑−1 if 𝑏 ·∏𝑗 ∈ℓ 𝑥 𝑗 = −𝑥𝑑+1
(17)

Fact 8.2. For any (ℓ ′, 𝑏 ′) ≠ (ℓ, 𝑏),

P
𝑋∼Q𝑑,ℓ,𝑏,𝛼

(
𝑏 ·

∏
𝑗 ∈ℓ

𝑋 𝑗 = 𝑋𝑑+1

)
=
1

2

+ 𝛼

P
𝑋∼Q𝑑,ℓ,𝑏,𝛼

(
𝑏 ′ ·

∏
𝑗 ∈ℓ′

𝑋 𝑗 = 𝑋𝑑+1

)
≤ 1

2
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Algorithm 2:𝑀 ′, an online algorithm

Input: Data stream ®𝑥 ∈ X𝑚
; access to online algorithm𝑀 : X𝑛 → 2

[𝑑 ] × {±1}
Output: A random variable 𝑍 ∈ R

1 𝑆1 ← 𝑀1(𝑥1)
2 For 𝑖 ∈ [2, 𝑛]
3 𝑆𝑖 ← 𝑀𝑖 (𝑥𝑖 , 𝑆𝑖−1)
4 For 𝑖 ∈ [𝑛 + 1,𝑚]
5 If 𝑖 = 𝑛 + 1 :
6 (�̂�, �̂�) ← 𝑀O (𝑆𝑛)
7 𝐶 ∼ Lap(1/Y)
8 Else
9 (�̂�, �̂�,𝐶) ← 𝑆𝑖−1

10 If
∏

𝑗 ∈�̂� 𝑥𝑖, 𝑗 = 𝑥𝑖,𝑑+1 · �̂� :
11 𝐶 ← 𝐶 + 1
12 𝑆𝑖 ← (�̂�, �̂�,𝐶)
13 𝐿 ∼ Lap(1/Y)
14 Return 𝑍 ← 𝐶 + 𝐿

For dimension 𝑑 , a parameter 𝑘 ≤ 𝑑 , and 𝛼 ∈ [0, 1/2], we dene the family

Q𝑑,𝑘,𝛼 = {Q𝑑,ℓ,𝑏,𝛼 : ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘,𝑏 ∈ {±1}} (18)

Fact 8.3. The size of the family Q𝑑,𝑘,𝛼 is 2
(
𝑑
≤𝑘

)
+ 2.

Fact 8.4. The uniform mixture of the family Q𝑑,𝑘,𝛼 is uniform over X.

Lemma 8.5. For every 𝑑 ∈ N, 𝑘 ≤ 𝑑 , and 𝛼 ∈ [0, 1/2],

‖Q𝑑,𝑘,𝛼 ‖2∞→2
≤ 4𝛼2(

𝑑
≤𝑘

)
For brevity, we defer the proof to the Appendix.

Theorem 8.6. If𝑀 = (𝑀1, . . . , 𝑀𝑛, 𝑀𝑂 ) is an (Y, 𝛿)-pan-private algorithm that learns width-𝑘 signed parities

with error 𝛼 and 𝛿 log ( 𝑑≤𝑘)/𝛿 � 𝛼2Y2/
(
𝑑
≤𝑘

)
, then its sample complexity is 𝑛 = Ω(

√︃(
𝑑
≤𝑘

)
/𝛼Y).

Proof. Analogous to previous proofs, let Q𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly at random from

Q𝑑,𝑘,𝛼 . We argue that𝑀 implies an (Y, 𝛿)-pan-private algorithm𝑀 ′ which takes𝑚 = 𝑛 + Θ(1/𝛼Y) values
from X as input and outputs a real number such that dTV(𝑀 ′(U𝑚), 𝑀 ′(Q𝑚

𝑑,𝐿,𝐵,𝛼
)) is larger than a constant.

We specify𝑀 ′ in Algorithm 2. Although it does not explicitly have the structure in Denition 2.2, it

is straightforward to decompose it into a sequence of algorithms. At a high level, 𝑀 ′ has a training and
a testing phase. In the training phase, it will execute 𝑀 on the rst 𝑛 samples to obtain a signed parity

function (�̂�, �̂�). In the testing phase, 𝑀 ′ will evaluate the function on the remaining samples and maintain

a pan-private estimate of the number of correct predictions. If the samples are drawn from U, then any

choice of parity function makes a correct prediction with only 1/2 probability. But if the samples are drawn

from any distribution Q𝑑,ℓ,𝑏,𝛼 ∈ Q𝑑,𝑘,𝛼 , we know that (�̂�, �̂�) = (ℓ, 𝑏) with ≥ 99/100 probability; conditioned
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on this event, our predictions will be correct with probability 1/2 + 𝛼 . Thus, the count of correct predictions
will reliably dierentiate between the two input cases.

Pan-privacy: We will rst prove privacy for user 𝑖 and intrusion time 𝑡 . Recall that the adversary’s view

is the tuple (𝑀 ′I ( ®𝑥≤𝑡 ), 𝑀
′
𝑂
(𝑀 ′I ( ®𝑥))); for brevity, we shall use the notation (𝑆𝑡 , 𝑍 ). If 𝑖 ≤ 𝑛 and 𝑡 ≤ 𝑛, the

tuple is a post-processing of (𝑀I ( ®𝑥≤𝑡 ), 𝑀𝑂 (𝑀I ( ®𝑥))) which we know to be (Y, 𝛿)-private. If 𝑖 ≤ 𝑛 but 𝑡 > 𝑛,

the adversary’s view is a post-processing of𝑀I ( ®𝑥) which is again (Y, 𝛿)-private.
If 𝑖 > 𝑛 but 𝑡 ≤ 𝑛, the only inuence 𝑆𝑡 has on 𝑍 is the choice of (�̂�, �̂�); it suces to prove that 𝑍

is dierentially private for any choice of (�̂�, �̂�). Let I(·) be the {0, 1} indicator function. Observe that

𝑍 ∼ Lap(1/Y) +∑𝑚
𝑢=𝑛+1 I(

∏
𝑗 ∈�̂� 𝑥𝑢,𝑗 = 𝑥𝑢,𝑑+1 · �̂�) + Lap(1/Y). Y-dierential privacy follows the observation

that the summation is 1-sensitive and the privacy of the Laplace mechanism.

If 𝑖 > 𝑛 and 𝑡 > 𝑛, we consider two further cases. When 𝑡 ≥ 𝑖 , observe that 𝑍 is a post-processing of

𝑆𝑡 . Also observe that 𝑆𝑡 ∼ Lap(1/Y) +∑𝑡
𝑢=𝑛+1 I(

∏
𝑗 ∈�̂� 𝑥𝑢,𝑗 = 𝑥𝑢,𝑑+1 · �̂�). So we can again invoke the privacy

of the Laplace mechanism. When 𝑡 < 𝑖 , we can show that 𝑍 is dierentially private conditioned on any

realization of 𝑆𝑡 = (�̂�, �̂�,𝐶𝑡 ): because 𝑍 ∼ Lap(1/Y) +𝐶𝑡 +
∑𝑚

𝑢=𝑡+1 I(
∏

𝑗 ∈�̂� 𝑥𝑢,𝑗 = 𝑥𝑢,𝑑+1 · �̂�) and 𝑖 ∈ [𝑡 + 1,𝑚],
we invoke the privacy of the Laplace mechanism one more.

Bound on TV distance: Now we show that the total variation distance between𝑀 ′(U𝑚) and𝑀 ′(Q𝑚
𝑑,𝐿,𝐵,𝛼

)
is larger than a constant. Notice that, for any 𝜏 ∈ R,

dTV(𝑀 ′(Q𝑚
𝑑,𝐿,𝐵,𝛼

), 𝑀 ′(U𝑚))

≥ P
(
𝑀 ′(Q𝑚

𝑑,𝐿,𝐵,𝛼
) > 𝜏

)
− P(𝑀 ′(U𝑚) > 𝜏)

=
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏

)
· P((𝐿, 𝐵) = (ℓ, 𝑏))

ª®®¬ − P(𝑀 ′(U𝑚) > 𝜏)

=
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏 | (�̂�, �̂�) = (ℓ, 𝑏)

)
· P

(
(�̂�, �̂�) = (ℓ, 𝑏)

)
· P((𝐿, 𝐵) = (ℓ, 𝑏))

ª®®¬ − P(𝑀 ′(U𝑚) > 𝜏)

≥
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏 | (�̂�, �̂�) = (ℓ, 𝑏)

)
· 99
100

· P((𝐿, 𝐵) = (ℓ, 𝑏))
ª®®¬ − P(𝑀 ′(U𝑚) > 𝜏) (19)

(19) comes from the fact that 𝑀 learns parities. Notice that, conditioned on (�̂�, �̂�) = (ℓ, 𝑏), Fact 8.2
implies 𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) is a sample from the convolution Bin(𝑚 − 𝑛, 1/2 + 𝛼) + Lap(1/Y) + Lap(1/Y) with

probability ≥ 99/100.
Meanwhile, note that the equality P

𝑋∼U

(∏
𝑗 ∈ℓ 𝑋 𝑗 = 𝑋𝑑+1 · 𝑏

)
= 1/2 holds for any parity function (ℓ, 𝑏).

Consequently, the output of the algorithm 𝑀 ′(U𝑚) is a sample from the convolution Bin(𝑚 − 𝑛, 1/2) +
Lap(1/Y) + Lap(1/Y).

Because𝑚 − 𝑛 = Θ(1/𝛼Y), we can use a Cherno bound to argue that there is some 𝜏 where

(19) ≥
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

99

100

· 99
100

· P((𝐿, 𝐵) = (ℓ, 𝑏))
ª®®¬ −

1

100

=
99

2 − 100
10000

Lemma 8.5 and Theorem 3.1 imply𝑚 = Ω

(√︃(
𝑑
≤𝑘

)
/𝛼Y

)
and, in turn, 𝑛 = Ω

(√︃(
𝑑
≤𝑘

)
/𝛼Y

)
. �
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The next theorem adapts our proof to the robust shue privacy setting:

Theorem 8.7. If Π is an (Y, 𝛿, 1/3)-robustly shue private protocol that learns width-𝑘 signed parities with

error 𝛼 and 𝛿 log ( 𝑑≤𝑘)/𝛿 � 𝛼2Y2/
(
𝑑
≤𝑘

)
, then its sample complexity is 𝑛 = Ω(

√︃(
𝑑
≤𝑘

)
/𝛼Y).

Proof. We repeat the construction, this time building𝑀 ′ atop𝑀Π
(Theorem 2.6). To prove pan-privacy of

𝑀 ′, we follow the same steps as in the proof of Theorem 8.6; we do not replicate the text here.

Lower bounding the total variation distance between 𝑀 ′(U𝑚) and 𝑀 ′(Q𝑛
𝑑,𝐿,𝐵,𝛼

) is also very similar

though we do have to account for the change from Π to𝑀Π
:

dTV(𝑀 ′(Q𝑚
𝑑,𝐿,𝐵,𝛼

), 𝑀 ′(U𝑚))

=
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏 | (�̂�, �̂�) = (ℓ, 𝑏)

)
· P

(
(�̂�, �̂�) = (ℓ, 𝑏)

)
· P((𝐿, 𝐵) = (ℓ, 𝑏))

ª®®¬ − P(𝑀 ′(U𝑚) > 𝜏)

≥
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏 | (�̂�, �̂�) = (ℓ, 𝑏)

)
·
(
99

100

− 1

6

)
· P((𝐿, 𝐵) = (ℓ, 𝑏))

ª®®¬ − P(𝑀 ′(U𝑚) > 𝜏)

≥
©«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

99

100

· 247
300

· P((𝐿, 𝐵) = (ℓ, 𝑏))
ª®®¬ −

1

100

=
99

100

· 247
300

− 1

100

=
8051

10000

Lemma 8.5 and Theorem 3.1 imply𝑚 = Ω

(√︃(
𝑑
≤𝑘

)
/𝛼Y

)
and, in turn, 𝑛 = Ω

(√︃(
𝑑
≤𝑘

)
/𝛼Y

)
. �
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A Proofs for Supporting Facts for Theorem 3.1

For completeness, we prove the statements used by the proof of Theorem 3.1.

Fact A.1 (Fact 3.3 Restated). If (𝐴, 𝐵) and (𝐴, 𝐵′) are joint distributions on the domain A × B, then

dTV((𝐴, 𝐵), (𝐴, 𝐵′)) ≤ E
𝑎∼𝐴
(dTV(𝐵 |𝐴=𝑎, 𝐵′ |𝐴=𝑎))

Proof. Given a set 𝑇 ⊆ A × B, dene 𝑇 |𝐴=𝑎 = {𝑏 : (𝑎, 𝑏) ∈ 𝑇 }. Then, we have

dTV((𝐴, 𝐵), (𝐴, 𝐵′))
= sup

𝑇

P((𝐴, 𝐵) ∈ 𝑇 ) − P((𝐴, 𝐵′) ∈ 𝑇 )

= sup

𝑇

E
𝑎∼𝐴
(P(𝐵 |𝐴=𝑎 ∈ 𝑇 |𝐴=𝑎) − P(𝐵′ |𝐴=𝑎 ∈ 𝑇 |𝐴=𝑎))

≤ sup

𝑇

E
𝑎∼𝐴
(dTV(𝐵 |𝐴=𝑎, 𝐵′ |𝐴=𝑎))

= E
𝑎∼𝐴
(dTV(𝐵 |𝐴=𝑎, 𝐵′ |𝐴=𝑎))

This completes the proof. �

Fact A.2 (Fact 3.4 Restated). If (𝐴, 𝐵,𝐶) are jointly distributed random variables on A × B × C and 𝐴 and 𝐵
are independent conditioned on 𝐶 , then for every 𝑎 ∈ supp(𝐴),

dTV(𝐵 |𝐴=𝑎, 𝐵) ≤ dTV(𝐶 |𝐴=𝑎,𝐶)

Proof. Let 𝑇 be an arbitrary subset of B, then we have

P(𝐵 ∈ 𝑇 | 𝐴 = 𝑎) − P(𝐵 ∈ 𝑇 )
= E

𝑐∼𝐶 |𝐴=𝑎

(P(𝐵 ∈ 𝑇 | 𝐴 = 𝑎,𝐶 = 𝑐)) − E
𝑐∼𝐶
(P(𝐵 ∈ 𝑇 | 𝐶 = 𝑐))

= E
𝑐∼𝐶 |𝐴=𝑎

(P(𝐵 ∈ 𝑇 | 𝐶 = 𝑐)) − E
𝑐∼𝐶
(P(𝐵 ∈ 𝑇 | 𝐶 = 𝑐)) (conditional independence)

≤ sup

𝑓 :C→[0,1]
E

𝑐∼𝐶 |𝐴=𝑎

(𝑓 (𝑐)) − E
𝑐∼𝐶
(𝑓 (𝑐))

= dTV(𝐶 |𝐴=𝑎,𝐶)

28

https://arxiv.org/abs/1507.03113


where the nal inequality is because 𝑓 (𝑐) = P(𝐵 ∈ 𝑇 | 𝐶 = 𝑐) is a function mapping C → [0, 1]. Therefore
we have

dTV(𝐵 |𝐴=𝑎, 𝐵) = sup

𝑇

P(𝐵 ∈ 𝑇 | 𝐴 = 𝑎) − P(𝐵 ∈ 𝑇 ) ≤ dTV(𝐶 |𝐴=𝑎,𝐶),

as desired. �

Lemma A.3 (Lemma 3.7 Restated). If𝑀 : X → R is (Y, 𝛿)-dierentially private, then there is a randomizer
𝑀 ′ that is (2Y, 0)-dierentially private such that

∀𝑥 ∈ X dTV(𝑀 (𝑥), 𝑀 ′(𝑥)) ≤ 𝛿

Proof. Fix an arbitrary element 𝑥 ∈ X. We dene𝑀 ′(𝑥) to have the same distribution as𝑀 (𝑥).
For any other 𝑥 ∈ X, a lemma of Kairouz, Oh, and Viswanath [KOV15]

7
implies that there exists a tuple

of distributions (�̃�𝑥,𝑥
0

, �̃�
𝑥,𝑥
1

, �̃�
𝑥,𝑥
⊥ , �̃�

𝑥,𝑥
> ) where

𝑀 (𝑥) =
(
𝑒Y (1 − 𝛿)
1 + 𝑒Y

)
�̃�

𝑥,𝑥
0
+

(
1 − 𝛿
1 + 𝑒Y

)
�̃�

𝑥,𝑥
1
+ 𝛿�̃�𝑥,𝑥

⊥

𝑀 (𝑥) =
(
1 − 𝛿
1 + 𝑒Y

)
�̃�

𝑥,𝑥
0
+

(
𝑒Y (1 − 𝛿)
1 + 𝑒Y

)
�̃�

𝑥,𝑥
1
+ 𝛿�̃�𝑥,𝑥

>

With this context, we dene𝑀 ′(𝑥) to be the distribution

𝑀 ′(𝑥) :=
(
𝑒Y (1 − 𝛿)
1 + 𝑒Y

)
�̃�

𝑥,𝑥
0
+

(
1 − 𝛿
1 + 𝑒Y

)
�̃�

𝑥,𝑥
1
+ 𝛿�̃�𝑥,𝑥

> .

By construction, we have

∀𝑥 ∈ X dTV(𝑀 (𝑥), 𝑀 ′(𝑥)) ≤ 𝛿

Also by construction, we have

∀𝑅 ⊆ R 𝑒−Y ≤ P(𝑀
′(𝑥) ∈ 𝑅)

P(𝑀 ′(𝑥) ∈ 𝑅) ≤ 𝑒Y

which implies that, for every pair 𝑥, 𝑥 ′ ∈ X, we have

∀𝑅 ⊆ R P(𝑀
′(𝑥) ∈ 𝑅)

P(𝑀 ′(𝑥 ′) ∈ 𝑅) ≤ 𝑒2Y,

as desired. �

B Proofs of Other Supporting Statements

Claim B.1 (Claim 4.3 Restated). For any P ≠ P′ ∈ {U} ∪ P𝑑,1,𝛼 , dTV(P, P′) ≥ 𝛼 .

Proof. We rst compute the distance between the uniform distribution and P𝑑,{ 𝑗 },𝑏,𝛼 (for generic 𝑗 ∈ [𝑑]
and 𝑏 ∈ {±1}):

dTV(U, P𝑑,{ 𝑗 },𝑏,𝛼 ) =
1

2

‖U − P𝑑,{ 𝑗 },𝑏,𝛼 ‖1

=
1

2

©«
∑︁

𝑥 ∈X,𝑥 𝑗=𝑏

|2−𝑑 − (1 + 2𝛼)2−𝑑 | +
∑︁

𝑥 ∈X,𝑥 𝑗=−𝑏
|2−𝑑 − (1 − 2𝛼)2−𝑑 |ª®¬

=
1

2

(
𝛼 · 2−𝑑+1 · 2𝑑−1 + 𝛼 · 2−𝑑+1 · 2𝑑−1

)
= 𝛼

7
See also Murtagh and Vadhan [MV16, Lemma 3.2] for the precise form we use.
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For any 𝑗, 𝑗 ′ ∈ [𝑑] and any 𝑏, 𝑏 ′ ∈ {±1}, we calculate the distance dTV(P𝑑,{ 𝑗 },𝑏,𝛼 , P𝑑,{ 𝑗 ′ },𝑏′,𝛼 ) via case
analysis. In the case where 𝑗 ≠ 𝑗 ′,

dTV(P𝑑,{ 𝑗 },𝑏,𝛼 , P𝑑,{ 𝑗 ′ },𝑏′,𝛼 ) =
1

2

‖P𝑑,{ 𝑗 },𝑏,𝛼 − P𝑑,{ 𝑗 ′ },𝑏′,𝛼 ‖1

=
1

2

·
∑︁
𝑥𝑗 =𝑏

𝑥𝑗′=𝑏′

| (1 + 2𝛼)2−𝑑 − (1 + 2𝛼)2−𝑑 | + 1

2

·
∑︁
𝑥𝑗≠𝑏

𝑥𝑗′≠𝑏′

| (1 − 2𝛼)2−𝑑 − (1 − 2𝛼)2−𝑑 |

+ 1

2

·
∑︁
𝑥𝑗 =𝑏

𝑥𝑗′≠𝑏′

| (1 + 2𝛼)2−𝑑 − (1 − 2𝛼)2−𝑑 | + 1

2

·
∑︁
𝑥𝑗≠𝑏

𝑥𝑗′=𝑏′

| (1 − 2𝛼)2−𝑑 − (1 + 2𝛼)2−𝑑 |

=
1

2

·
∑︁
𝑥𝑗 =𝑏

𝑥𝑗′≠𝑏′

𝛼 · 2−𝑑+2 + 1

2

·
∑︁
𝑥𝑗≠𝑏

𝑥𝑗′=𝑏′

𝛼 · 2−𝑑+2

=
1

2

(
𝛼 · 2−𝑑+2 · 2𝑑−2 + 𝛼 · 2−𝑑+2 · 2𝑑−2

)
= 𝛼

In the case where 𝑗 = 𝑗 ′ but 𝑏 ≠ 𝑏 ′, we take 𝑏 = +1 and 𝑏 ′ = −1 without loss of generality.

dTV(P𝑑,{ 𝑗 },+1,𝛼 , P𝑑,{ 𝑗 ′ },−1,𝛼 ) =
1

2

‖P𝑑,{ 𝑗 },+1,𝛼 − P𝑑,{ 𝑗 ′ },−1,𝛼 ‖1

=
1

2

©«
∑︁
𝑥 𝑗=+1

| (1 + 2𝛼)2−𝑑 − (1 − 2𝛼)2−𝑑 | +
∑︁
𝑥 𝑗=−1

| (1 − 2𝛼)2−𝑑 − (1 + 2𝛼)2−𝑑 |ª®¬
=
1

2

(
𝛼 · 2−𝑑+2 · 2𝑑−1 + 𝛼 · 2−𝑑+2 · 2𝑑−1

)
= 2𝛼 �

Lemma B.2 (Lemma 8.5, Restated). For every 𝑑 ∈ N, 𝑘 ≤ 𝑑 , and 𝛼 ∈ [0, 1/2],

‖Q𝑑,𝑘,𝛼 ‖2∞→2
≤ 4𝛼2(

𝑑
≤𝑘

)
Proof. The proof proceeds almost identically with the proof of Lemma 3.10. Recall that we now take

X = {±1}𝑑+1. We begin by expanding the denition of the (∞ → 2) norm:

‖Q𝑑,𝑘,𝛼 ‖2∞→2
= sup

𝑓 :X→[±1]

∑︁
Q∈Q𝑑,𝑘,𝛼

1

|Q𝑑,𝑘,𝛼 |
·
(
E

𝑥∼Q
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

= sup

𝑓 :X→[±1]

∑︁
𝑡⊆[𝑑 ],|𝑡 |≤𝑘

𝑏∈{±1}

1

|Q𝑑,𝑘,𝛼 |
·
(∑︁
𝑥 ∈X

𝑓 (𝑥) · (Q𝑑,𝑡,𝑏,𝛼 (𝑥) − U(𝑥))
)
2

= sup

𝑓 :X→[±1]

1

2

(
𝑑
≤𝑘

)
+ 2
·

∑︁
𝑡⊆[𝑑 ],|𝑡 |≤𝑘

𝑏∈{±1}

(∑︁
𝑥 ∈X

𝑓 (𝑥) · (Q𝑑,𝑡,𝑏,𝛼 (𝑥) − U(𝑥))
)
2

(20)

The nal equality comes from Fact 8.3. Note that (17) is equivalent to Q𝑑,𝑡,𝑏,𝛼 (𝑥) = (1 + 2𝛼𝑏 ·
∏

𝑖∈𝑡 𝑥𝑖 ·
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𝑥𝑑+1)2−𝑑−1. We also have from Fact 8.4 that U(𝑥) = 2
−𝑑−1

. Thus,

(20) = sup

𝑓 :X→[±1]

1

2

(
𝑑
≤𝑘

)
+ 2
·

∑︁
𝑡⊆[𝑑 ],|𝑡 |≤𝑘

𝑏∈{±1}

(∑︁
𝑥 ∈X

𝑓 (𝑥) · 2𝛼𝑏 ·
∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑−1
)
2

= sup

𝑓 :X→[±1]

2𝛼2(
𝑑
≤𝑘

)
+ 1
·

∑︁
𝑡⊆[𝑑 ],|𝑡 |≤𝑘

𝑏∈{±1}

(∑︁
𝑥 ∈X

𝑓 (𝑥) ·
∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑−1
)
2

= sup

𝑓 :X→[±1]

4𝛼2(
𝑑
≤𝑘

)
+ 1
·

∑︁
𝑡 ⊆[𝑑 ], |𝑡 | ≤𝑘

(∑︁
𝑥 ∈X

𝑓 (𝑥) ·
∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑−1
)
2

≤ sup

𝑓 :X→[±1]

4𝛼2(
𝑑
≤𝑘

) · ∑︁
𝑡 ⊆[𝑑 ]

(∑︁
𝑥 ∈X

𝑓 (𝑥) ·
∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑−1
)
2

(21)

Dene
ˆ𝑓 (𝑡) := E

𝑋∼U
(𝑓 (𝑋 ) ·∏𝑖∈𝑡 𝑋𝑖), the Fourier transform over the Boolean hypercube. This is precisely

the term being squared above. So we have

(21) =
4𝛼2(
𝑑
≤𝑘

) · sup

𝑓 :X→[±1]

∑︁
𝑡 ⊆[𝑑 ]

ˆ𝑓 (𝑡)2

=
4𝛼2(
𝑑
≤𝑘

) · sup

𝑓 :X→[±1]
E

𝑋∼U

(
𝑓 (𝑋 )2

)
(Parseval’s identity)

≤ 4𝛼2(
𝑑
≤𝑘

)
This concludes the proof. �
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