
DISCRETE ANALYSIS, 2022:12, 21 pp.
www.discreteanalysisjournal.com

Structure vs. Randomness for Bilinear Maps
Alex Cohen Guy Moshkovitz*

Received 19 August 2021; Published 3 October 2022

Abstract: We prove that the slice rank of a 3-tensor (a combinatorial notion introduced
by Tao in the context of the cap-set problem), the analytic rank (a Fourier-theoretic notion
introduced by Gowers and Wolf), and the geometric rank (an algebro-geometric notion
introduced by Kopparty, Moshkovitz, and Zuiddam) are all equal up to an absolute constant.
As a corollary, we obtain strong trade-offs on the arithmetic complexity of a biased bilinear
map, and on the separation between computing a bilinear map exactly and on average. Our
result settles open questions of Haramaty and Shpilka [STOC 2010], and of Lovett [Discrete
Anal. 2019] for 3-tensors.
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1 Introduction

Bilinear maps stand at the forefront of many basic questions in combinatorics and theoretical computer
science. A bilinear map is, intuitively, just a collection of matrices. Formally, a bilinear map f : Fn1×
Fn2 → Fm, where F is any field, is a map f (x,y) = ( f1(x,y), . . . , fm(x,y)) whose every component fk is
a bilinear form fk(x,y) = ∑i, j ai, j,kxiy j, or equivalently, xT Aky for some matrix Ak ∈ Fn1×n2 . While linear
maps are thoroughly understood thanks to linear algebra, bilinear maps are—in more than one way—still
very much a mystery.

1.1 Structure vs. randomness

In this paper we prove a tight relation between the slice rank and the analytic rank of bilinear maps, or
3-tensors. Our proof crucially uses the notion of geometric rank as an intermediary, enabling the use of
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tools from algebraic geometry to ultimately prove that these three notions of rank are in fact equivalent
up to a constant.

A 3-tensor (or sometimes simply a tensor) over a field F is a three-dimensional matrix (ai, j,k)i, j,k ∈
Fn1×n2×n3 with entries ai, j,k ∈ F. Equivalently, a tensor can be thought of as a degree-3 polynomial,
namely, a trilinear form T (x,y,z) = ∑i, j,k ai, j,kxiy jzk with coefficients ai, j,k ∈ F, where x = (x1, . . . ,xn1),
y = (y1, . . . ,yn2), z = (z1, . . . ,zn3).

1 Note that a tensor is just a symmetric way to think of a bilinear map
f : Fn1×Fn2 → Fn3 , where f = ( f1, . . . , fn3) with fk(x,y) = ∑i, j ai, j,kxiy j; indeed, each fk corresponds to
a slice (ai, j,k)i, j of T .2 As opposed to matrices, which have only one notion of rank, there are multiple
notions of rank for 3-tensors. The notions of rank of 3-tensors we consider are defined as follows:

• The slice rank of T , denoted SR(T ), is the smallest r ∈ N such that T can be decomposed as
T = ∑

r
i=1 figi where fi is an F-linear form in either the x, y, or z variables and gi is an F-bilinear

form in the remaining two sets of variables, for each i.

• The analytic rank of T over a finite field F is given by AR(T ) =− log|F|Ex,y,z χ(T (x,y,z)),3 where
we fix χ to be any nontrivial additive character of F (e.g., χ(x) = exp(2πix/p) when F = Fp is
prime).

• The geometric rank of T , viewed as a bilinear map f ,4 is defined as GR(T ) = codimker f , the
codimension of the algebraic variety ker f = {(x,y) ∈ Fn1×Fn2 | f (x,y) = 0}.

We note that all three notions above generalize matrix rank. Moreover, just like matrix rank, for any
T ∈ Fn×n×n all three quantities lie in the range [0,n]. Furthermore, for the n×n×n identity tensor In we
have SR(In) = GR(In) = n and AR(In) = (1−o|F|(1))n. The slice rank was defined by Tao [40] in the
context of the solution of the cap-set problem (similar notions have been considered before in other areas
of research). The analytic rank was introduced by Gowers and Wolf [19] in the context of higher-order
Fourier analysis. Roughly, this notion measures how close to uniform is the distribution of the values of
the polynomial corresponding to the tensor. The geometric rank is an algebro-geometric notion of rank
that was recently introduced in [30]. (A related notion was applied by Schmidt [37] in the context of
number theory.) Intuitively, it measures the number of “independent” components of the corresponding
bilinear map. We use it as a geometric analogue of the bias of the (output distribution of the) bilinear
map.

Understanding the structure of d-tensors, or d-dimensional matrices, that have low analytic rank is
important in many applications of the structure-vs-randomness dichotomy, in additive combinatorics, cod-
ing theory and more (see, e.g., [4, 20]). A recent breakthrough, obtained independently by Milićević [33]
and by Janzer [25], showed that the partition rank of a d-tensor, which is a generalization of slice rank

to d-tensors, is bounded from above by roughly AR(T )22poly(d)

. For fixed d this is a polynomial bound,

1A trilinear form means that every monomial has exactly one variable from x, one from y, and one from z, and so is linear
separately in each of x,y, and z.

2Yet another point of view is that a 3-tensor is a member of the vector space V1⊗V2⊗V3, where V1 = Fn1 ,V2 ∈ Fn2 ,V3 = Fn3

are finite-dimensional vector spaces over F.
3We use Ex to denote averaging, so Ex∈Fn stands for |F|−n

∑x∈Fn .
4Although permuting x,y,z gives rise to three distinct bilinear maps corresponding to T , the definition of GR(T ) is invariant

under them (see Theorem 3.1 in [30]).
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which proves a conjecture of Kazhdan and Ziegler [28]. Lovett [31], as others have, asks whether in fact a
linear upper bound holds. For 3-tensors, the best known bound until this work was SR(T )≤ O(AR(T )4)
by Haramaty and Shpilka [22]. They write: “It is an interesting open question to decide whether we can

do only with the ∑
O(log|F| 1/δ )

j=1 `i ·qi part”, which refers to a linear upper bound SR(T )≤ O(AR(T )). Our
main result is as follows.

Theorem 1 (Main result). For any 3-tensor T over a field F,

SR(T )≤ 3GR(T )≤ 8.13AR(T )

where the first inequality holds over any perfect field5, and the second for any finite field F 6= F2.

We note that the reverse inequalities are easy: GR(T ) ≤ SR(T ) (see Theorem 4.1 in [30]) and
AR(T )≤ SR(T ) (see Lemma 2.2 of [27] or [31]). Thus, as mentioned above, an immediate—and perhaps
surprising—corollary of Theorem 1 is that the combinatorial notion SR(T ), the algebro-geometric notion
GR(T ), and the analytic notion AR(T ) are all, up to a constant, equivalent notions of rank. In particular,
if one wants to estimate the slice rank of a 3-tensor, as Tao did in a solution of the cap-set problem [40],
then it is necessary and sufficient to instead estimate the bias of the tensor.

1.2 Complexity vs. bias

The importance of bilinear maps in theoretical computer science cannot be overstated. One example, in
the area of algebraic algorithms, is matrix multiplication. Note that the operation of multiplying two
matrices X ,Y ∈ Fm×m is a bilinear map MMn : Fn×Fn → Fn with n = m2, as every entry of XY is a
bilinear form in the entries of X and Y . It has been a persistent challenge to upper bound the arithmetic
complexity of matrix multiplication, that is, the minimum number of +,−, ·,÷ operations over F required
to express MMn in terms of its variables. Current research puts the complexity of MMn below O(n1.2)
(the state of the art is O(n1.18643) due to Alman and Williams [2]), with the ultimate goal of getting all
the way down to n1+o(1). For another example of the challenge of bilinear maps, this time in the area of
circuit complexity, we mention that explicitly finding even a single bilinear map6 f : Fn×Fn→ Fn with
provably superlinear arithmetic complexity, say Ω(n1.001), would imply the first such lower bound in
circuit complexity. This should be compared with the fact that almost every bilinear map f : Fn×Fn→ Fn

has arithmetic complexity Θ(n2). Finally, in the area of identity testing, it was shown by Valiant [41]
that identity testing of formulas reduces to deciding whether a given bilinear map f : Fn×Fn→ Fm has
full commutative rank, meaning a linear combination of its components fi has full rank n. Whether this
can be decided efficiently remains an open question, despite being raised by Edmonds [14] in the early
days of computer science, and it has close ties with a variety of other topics, from perfect matchings in
bipartite graphs to matrix scaling (see [18]).

Given the importance of bilinear maps, we propose studying other foundational questions of theoretical
computer science via the lens of bilinear maps. Consider Mahaney’s Theorem [32], a classical result in
computational complexity. It states that, assuming P 6= NP, no NP-hard language is sparse. Phrased

5Commonly considered fields are perfect, including: any field of characteristic zero, any algebraically closed field, and any
finite field.

6Or, equivalently, a single degree-3 polynomial ∑
N
k=1 fk(x,y)zk.

DISCRETE ANALYSIS, 2022:12, 21pp. 3

http://dx.doi.org/10.19086/da


ALEX COHEN AND GUY MOSHKOVITZ

differently, if a boolean function f : {0,1}∗→{0,1} is “extremely” biased in the sense that | f−1(1)∩
{0,1}n| ≤ poly(n), then it is not NP-hard. Multiple other classical results in the same vein have been
proved (see [17, 24, 34, 8, 9, 21]), giving implications of such extreme bias for various complexity classes.
This raises the following fundamental question.

Question. For a given class of functions, equipped with notions of complexity and bias, what is the best
complexity upper bound in terms of bias?7

We make progress towards the above Question for the class of bilinear maps f ; our notion of
complexity is multiplicative complexity C∗( f ), which is the number of (non-scalar) multiplications
needed to compute f by an arithmetic circuit; our notion of bias is the min-entropy H∞( f ) of the output
distribution of f . See Section 5 for a more formal discussion and the proof.

Proposition 1.1. For any bilinear map f : Fn×Fn→ Fn over any finite field F 6= F2,

C∗( f ) = O
( H∞( f )

log2 |F|
n
)
.

Another closely related classical result says that, assuming P 6= NP, it is impossible to efficiently
solve SAT on all but at most polynomially many inputs (this is sometimes phrased as saying that SAT is
not “P-close”). Again, this raises a fundamental question: For a given class of functions, what is the best
possible approximation of a hard function? Put differently, what is the best possible worst-case to average-
case reduction? For bilinear maps, we give an optimal answer to this question; again, see Section 5 for a
more formal discussion and the proof. We say that maps f ,g are δ -close if Prx[ f (x) = g(x)] = δ ,8 and
denote by SR( f ) the slice rank of the 3-tensor corresponding to a bilinear map f .

Proposition 1.2. Let F 6= F2 be a finite field. Any two bilinear maps f ,g : Fn → Fm that are δ -close
satisfy

|SR( f )−SR(g)| ≤ O(log|F|(1/δ )).

Moreover, this bound is best possible up to the implicit absolute constant.

We note that Kaufman and Lovett [26] prove such a reduction for degree-d polynomials over general
finite fields, improving a previous result by Green and Tao [20]. However, their reduction is qualitative
in nature and the implied bounds are far from optimal (see the next subsection for more discussion on
previous results and techniques).

1.3 Proof overview

Our proof for the bound SR(T ) = O(AR(T )) in Theorem 1 (and ultimately for complexity-vs-bias trade-
offs for bilinear maps in Section 5) goes through an algebraically closed field—despite the statement
ostensibly being about polynomials over finite fields. We use the concepts of dimension and tangent
spaces from algebraic geometry to obtain our slice rank decomposition, which ends up yielding the

7Contrapositively, this quantifies the phenomenon of high complexity functions exhibiting little bias.
8We use Prx to denote probability under a uniform choice of x.
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bound SR(T ) = O(GR(T )) (Theorem 3.1). To finish the proof of Theorem 1, we prove a new gener-
alization of the Schwartz-Zippel lemma appropriate for our setting, which yields GR(T ) = O(AR(T ))
(Proposition 4.1).

To obtain the slice rank decomposition mentioned above, we first prove a result about linear spaces
of matrices in which low-rank matrices have high dimension: we show that in any such space, one can
always find a somewhat large decomposable subspace (Proposition 3.4, Item (2)); following Atkinson
and Lloyd [3] (see also [16]), a space of matrices is decomposable if, roughly speaking, there is a basis
where all the matrices have the same block of zeros. This result is proved by looking at a tangent space
to a determinantal variety at a non-singular point, which turns out to be a decomposable matrix space
in the sense above (Proposition 2.4). We further show that such a matrix space can be thought of as a
3-tensor of low slice rank (Lemma 2.3). Since the above is proved by applying algebro-geometric tools
on varieties, which naturally live over the algebraic closure of our finite field, the resulting slice rank
decomposition has coefficients in the closure; however, using a result of Derksen [11], one can convert a
small slice rank decomposition over the closure into a decomposition over the base field (Proposition 3.2).
Finally, we use a result of [30] to combine the slice rank information we obtained above into a bound on
the geometric rank (Fact 3.5).

We note that our arguments diverge from proofs used in previous works. In particular, we do not
use results from additive combinatorics at all, nor do we use any “regularity lemma” for polynomials or
notions of quasi-randomness. Instead, our arguments use a combination of algebraic and geometric ideas,
which perhaps helps explain why we are able to obtain linear upper bounds.

Paper organization. We begin Section 2 by giving a brief review of a few basic concepts from algebraic
geometry, then determine the behavior of certain tangent spaces, and end by proving a slice rank upper
bound related to these tangent spaces. The first and second inequalities of Theorem 1 are proved in
Section 3 and in Section 4, respectively. In Section 5 we prove Proposition 1.1 and Proposition 1.2. We
end with some discussion and open questions in Section 6.

2 Tangent spaces and slice rank

2.1 Algebraic geometry essentials

We will need only a very small number of basic concepts from algebraic geometry, which we quickly
review next. All the material here can be found in standard textbooks (e.g., [23, 36]). A variety V is the
set of solutions, in an algebraically closed field, of some finite set of polynomials. More formally, for a
field F,9 the variety V⊆ Fn

cut out by the polynomials f1, . . . , fm ∈ F[x1, . . . ,xn] is

V = V( f1, . . . , fm) := {x ∈ Fn | f1(x) = · · ·= fm(x) = 0}.

We say that V ⊆ Fn
is defined over F as it can be cut out by polynomials whose coefficients lie in F.

The ideal of V is I(V) = { f ∈ F[x] | ∀p ∈ V : f (p) = 0}. Any variety V can be uniquely written as
the union of irreducible varieties, where a variety is said to be irreducible if it cannot be written as

9We henceforth denote by F the algebraic closure of the field F.
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the union of strictly contained varieties. The dimension of a variety V, denoted dimV, is the maximal
length d of a chain of irreducible varieties /0 6= V1 ( · · ·( Vd ( V. The codimension of V⊆ Fn

is simply
codimV = n−dimV.

2.2 Notation

In the rest of the paper we will often find it convenient to identify, with a slight abuse of notation, a bilinear
map f : Fn1×Fn2 → Fm (or tensor) with a linear subspace of matrices, or matrix space, L� Fn1×n2 . If
f = ( f1, . . . , fm), we will identify f with the linear subspace L spanned by the m matrices corresponding
to the bilinear forms f1, . . . , fm. Note that this identification is not a correspondence, as it involves
choosing a basis for L. Importantly, however, since the notions of tensor rank that we study are invariant
under the action of the general linear group GLn on each of the axes, the choice of basis we make is
immaterial in the definition of rank, meaning that GR(L), SR(L), AR(L) are nevertheless well defined.

For the reader’s convenience, we summarize below the different perspectives of tensor/bilinear
map/matrix space that we use, and how they relate to each other:

• A tensor T = (ai, j,k) ∈ Fn1×n2×n3 , or a multilinear form T (x,y,z) = ∑i, j,k ai, j,kxiy jzk.

• A bilinear form f = ( f1, . . . , fn3) : Fn1×Fn2 → Fn3 with fk(x,y) = ∑i, j ai, j,kxiy j.

• A matrix space L� Fn1×n2 spanned by {A1, . . . ,An3} where Ak = (ai, j,k)i, j.

2.3 Tangent spaces of a variety

For a variety V⊆Kn, the tangent space TpV to V at the point p ∈ V is the linear subspace

TpV =
{

v ∈Kn
∣∣∣∀g ∈ I(V) :

∂g
∂v

(p) = 0
}
.

Equivalently, for any choice of a generating set {g1, . . . ,gs} ⊆K[x1, . . . ,xn] for the ideal I(V) (which is
finitely generated by Hilbert’s basis theorem), the tangent space at p ∈ V is TpV = kerJp, where Jp is
the Jacobian matrix 

∂g1
∂x1

(p) · · · ∂g1
∂xn

(p)
...

. . .
...

∂gs
∂x1

(p) · · · ∂gs
∂x1

(p)


s×n

.

We will need the following basic fact about tangent spaces (for a proof see, e.g., Theorem 2.3 in [36]).

Fact 2.1. For any irreducible variety V and any p ∈ V we have dimTpV≥ dimV.

We will also need the following easy observation about the interplay between tangents and intersec-
tions.

Proposition 2.2. For any two varieties V and W, and any p ∈ V∩W,

Tp(V∩W)⊆ TpV ∩ TpW.

In particular, if V⊆W then TpV⊆ TpW.
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Proof. We have I(V)⊆ I(V∩W) and I(W)⊆ I(V∩W). Therefore, by the definition of a tangent space,
for any p ∈ V∩W we have Tp(V∩W) ⊆ TpV and Tp(V∩W) ⊆ TpW, and thus also Tp(V∩W) ⊆
TpV∩TpW, as claimed.

2.4 Slice rank of tangent spaces of determinantal varieties

We henceforth denote by Mr = Mr(Km×n) ⊆ Km×n the variety of matrices in Km×n of rank at most r.
Note that Mr is indeed a variety, as it is cut out by a finite set of polynomials: all (r+1)× (r+1) minors.
It is therefore referred to in the literature as a determinantal variety.

The following crucial lemma shows that certain tangent spaces of the variety Mr = Mr(Km×n), which
are matrix spaces, have a small slice rank (recall Subsection 2.2 for the terminology).

Lemma 2.3 (Slice rank of tangents). The tangent space to Mr = Mr(Km×n), for any algebraically closed
field K, at any matrix A ∈Mr with rank(A) = r satisfies

SR(TAMr)≤ 2r.

To prove Lemma 2.3 will need the following result, which explicitly describes the tangent space to
Mr at any matrix of rank exactly r. It can be deduced from Example 14.16 in [23]. We prove it below for
completeness.

Proposition 2.4 (Tangents of determinantal varieties). The tangent space to Mr = Mr(Km×n), for any
algebraically closed field K, at any matrix A ∈Mr with rank(A) = r is

TAMr = {CA+AC′ |C ∈Km×m,C′ ∈Kn×n}.

Proof. It will be convenient to work with the following equivalent definition of a tangent space of a
variety V at a point p ∈ V;

TpV = {v ∈Kn | ∀g ∈ I(V) : g(p+ tv)−g(p)≡ 0 (mod t2)}.

To see this equivalence, observe that, using the Taylor expansion of the polynomial g at the point p, we
have g(p+ tv)−g(p)≡ t ∂g

∂v(p) (mod t2).
Now, we will use the fact that the (r+1)×(r+1) minors not only cut out the variety Mr =Mr(Km×n),

but in fact generate the ideal I(Mr). Indeed, this follows from the fact that the ideal I they generate is prime
([7], Theorem 2.10) and so

√
I = I, together with Hilbert’s Nullstellensatz which gives I(Mr) =

√
I = I.

Let gI,J denote the minor of the submatrix whose set of rows and columns are given by I ⊆ [m] and
J ⊆ [n], respectively. Thus, I(Mr) = 〈gI,J | |I|= |J|= r+1〉.

Since rank(A) = r, there are invertible matrices P ∈ Fm×m and Q ∈ Fn×n such that A = PIrQ, where

Ir =



1 0 · · · 0 0 · · · · · · · · · 0
0 1 · · · 0 0 · · · · · · · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 1 0 · · · · · · · · · 0
0 0 · · · 0 0 · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · · · · · · · 0


m×n
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has the r× r identity matrix as the upper-left submatrix, that is, the submatrix whose set of rows I and set
of columns J are I = [r] and J = [r].

Let X ∈Km×n. Put Y = P−1XQ−1 ∈Km×n. For every g = gI,J with |I|= |J|= r+1 we have g(A) = 0
and

g(A+ tX) = g(P(Ir + tY )Q) = g(P)g(Ir + tY )g(Q).

It follows that

g(A+ tX)−g(A)≡ 0 (mod t2)
if and only if g(Ir + tY )≡ 0 (mod t2).

Write Y = (yi, j)i, j. Observe that if I = [r]∪{i} and J = [r]∪{ j} for some i > r and j > r then gI,J(Ir +
tY )≡ tyi, j (mod t2), and otherwise gI,J(Ir+tY )≡ 0 (mod t2). Thus, Y satisfies g(Ir+tY )≡ 0 (mod t2)
for every g ∈ I(Mr) if and only if yi, j = 0 for every i > r and j > r, or equivalently, Y = Y1Ir + IrY2 for
some Y1 ∈Km×m and Y2 ∈Kn×n. We deduce

TAMr = {X ∈Km×n | ∀g ∈ I(Mr) :

g(A+ tX)−g(A)≡ 0 (mod t2)}
= {PY Q | ∃Y1 ∈Km×m,Y2 ∈Kn×n : Y = Y1Ir + IrY2}
= {(PY1P−1)A+A(Q−1Y2Q) | Y1 ∈Km×m,Y2 ∈Kn×n}
= {CA+AC′ |C ∈Km×m,C′ ∈Kn×n},

completing the proof.

We note that any matrix A with rank(A) = r is a nonsingular point of Mr (i.e., dimTAMr = dimMr),
whereas any matrix B with rank(B)< r is a singular point, and in fact, TBMr(Km×n) =Km×n.

Proof of Lemma 2.3. We identify A = (ai, j) ∈ Mr(Km×n) with the bilinear form given by A(x,y) =
xT Ay = ∑i, j ai, jxiy j. Since A ∈Km×n and rank(A)≤ r, there are linear forms f1(x), . . . , fr(x) ∈K[x] and
linear forms g1(y), . . . ,gr(y) ∈K[y] such that

A(x,y) =
r

∑
i=1

fi(x)gi(y).

It follows that any matrix of the form CA+AC′, with C ∈ Km×m and C′ ∈ Kn×n, has a corresponding
bilinear form

xT (CA+AC′)y = (CT x)T Ay+xT A(C′y)

=
r

∑
i=1

fi(CT x)gi(y)+
r

∑
i=1

fi(x)gi(C′y).
(1)

Now, let B1, . . . ,Bd be any basis of TAMr. Then TAMr corresponds to the trilinear form T =∑
d
k=1 zkBk(x,y)

in the variables x,y,z. By Proposition 2.4, for each k ∈ [d] we can write Bk = CkA+AC′k for some
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Ck ∈Km×m and C′k ∈Kn×n. Using the decomposition in (1), we obtain the trilinear decomposition

T =
d

∑
k=1

zk ·Bk(x,y)

=
d

∑
k=1

zk

( r

∑
i=1

fi(CT
k x)gi(y)+

r

∑
i=1

fi(x)gi(C′ky)
)

=
r

∑
i=1

hi(x,z)gi(y)+
r

∑
i=1

fi(x)h′i(y,z)

where

hi(x,z) :=
d

∑
k=1

zk fi(CT
k x), h′i(y,z) :=

d

∑
k=1

zkgi(C′ky).

Note that each hi ∈K[x,z] and h′i ∈K[y,z] are bilinear forms over K, and recall that each fi ∈K[x] and
gi ∈K[y] are linear forms over K. We deduce that each of the 2r summands in the decomposition of T
above is a trilinear form of slice rank at most 1 over K. This completes the proof.

3 Slice rank vs. geometric rank

In this section we prove the core of our main result, linearly bounding the slice rank of a tensor from
above by its geometric rank.

Theorem 3.1. For any 3-tensor T over any perfect field F,

SR(T )≤ 3GR(T ).

We in fact get the slightly better constant 2 instead of 3 in Theorem 3.1, at the price of allowing the
slice rank decomposition to use coefficients from an algebraic extension.

Let SR(T ) denote, for a tensor T , the slice rank over the algebraic closure of the field of coefficients
of T . In other words, if T is a tensor over F then SR(T ) allows coefficients from the algebraic closure F,
rather than just from F, in the decomposition of T into slice-rank one summands. Clearly, SR(T )≤ SR(T ).
We note that for matrices, rank and rank are equal. For tensors we have the following inequality, essentially
due to Derksen [11] (we include a proof sketch at the end of this section).

Proposition 3.2 ([11]). For any 3-tensor T over any perfect field, 2
3 SR(T )≤ SR(T ).

We will also need the following properties of slice rank, which are easily deduced from definition.
For convenience of application, we state them for matrix spaces.

Proposition 3.3. The slice rank satisfies the following properties, where L and L′ are linear subspaces
of matrices:

1. (Dimension bound) SR(L)≤ dimL,

2. (Monotonicity) SR(L′)≤ SR(L) if L′ � L,

3. (Sub-additivity) SR(L+L′)≤ SR(L)+SR(L′).
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3.1 Linear sections of determinantal varieties

For L�Km×n a matrix space we define the variety Lr = L∩Mr (here Mr = Mr(Km×n)) of all matrices
in L of rank at most r. We next bound the slice rank of a matrix space using these linear sections of a
determinantal variety. We denote by codimL X the codimension of a variety X⊆ L inside a linear space
L; that is, codimL X = dimL−dimX.

Proposition 3.4. Let L�Km×n be a matrix space over any algebraically closed field K. For any r ∈ N,

SR(L)≤ 2r+ codimL Lr.

Proof. We proceed by induction on r. Note that the base case r = 0, which reads SR(L) ≤ 0 +
codimL{0}= dimL, follows from Proposition 3.3. We thus move to the inductive step.

Let V be an irreducible component of Lr with dimV = dimLr, and let A ∈V\Mr−1. We may indeed
assume V\Mr−1 6= /0, as otherwise V⊆ Lr−1 and thus dimLr = dimV≤ dimLr−1 and we are done via
the induction hypothesis by taking codimensions. Let P� L be the linear subspace P = L ∩ TAMr. We
will prove:

1. SR(P)≤ 2r,

2. codimL P≤ codimL Lr.

To see why this would complete the inductive step, let P⊥ be a complement subspace of P in L, and note
that

SR(L)≤ SR(P)+SR(P⊥)≤ SR(P)+ codimL P≤ 2r+ codimL Lr

where the first and second inequalities use Proposition 3.3, and the third inequality uses Items (1) and (2).
For the proof of Item (1), we have

SR(P) = SR(L∩TAMr)≤ SR(TAMr)≤ 2r

where the first inequality uses Proposition 3.3, and the second inequality uses Lemma 2.3 as rank(A) = r.
For the proof of Item (2), we have

dimLr = dimV≤ dimTAV
≤ dimTALr

≤ dim(TAL ∩ TAMr)

= dim(L ∩ TAMr) = dimP

where the first inequality uses Fact 2.1, the second inequality uses Proposition 2.2 together with the fact
that V⊆ Lr, the third inequality uses Proposition 2.2 again, and the last equality uses TAL = L since L is
a linear subspace. As the above varieties are subvarieties of L, we obtain codimL P≤ codimL Lr. This
proves Item (2) and therefore completes the proof of the inductive step.

We note that an immediate corollary of Proposition 3.4 is a slice rank upper bound of 2r for any
subspace of matrices of rank at most r.

DISCRETE ANALYSIS, 2022:12, 21pp. 10

http://dx.doi.org/10.19086/da


STRUCTURE VS. RANDOMNESS FOR BILINEAR MAPS

3.2 Putting everything together

To prove Theorem 3.1 we also need the following characterization of geometric rank. Recall that
GR(T ) = codimkerT where kerT = {(x,y) | T (x,y, ·) = 0}.

Fact 3.5 ([30]). For any 3-tensor T over any field,

GR(T ) = min
r

r+ codim{x | rankT (x, ·, ·) = r}.

Fact 3.5 is proved via the decomposition

kerT =
⋃
r
{(x,y) ∈ kerT | rankT (x, ·, ·) = r},

using a result from algebraic geometry on the dimensions of fibers, and the fact that the codimension of a
finite union of varieties is the minimum of their codimensions. We refer to Theorem 3.1 in [30] for the
formal proof.

We are now ready to prove the main result of this section. First, we show how to obtain Proposition 3.2
from the results in [11].

Proof sketch of Proposition 3.2. This is obtained by combining Theorem 2.5, Corollary 3.7, and Proposi-
tion 4.9 in [11]. These results show that the “G-stable rank” rankG

F (T ) over a perfect field F satisfies the
following properties, respectively:

• rankG
F (T ) = rankG

F (T ),

• rankG
F (T )≤ SR(T ),

• rankG
F (T )≥ (2/3)SR(T ).

Putting these together gives 2
3 SR(T )≤ rankG

F (T ) = rankG
F (T )≤ SR(T ), as claimed.

Proof of Theorem 3.1. Suppose T = (ai, j,k)i, j,k ∈ Fn1×n2×n3 with F an arbitrary field. Let L� Fn2×n3 be
the matrix space spanned by the n1 slices A1 = (a1, j,k) j,k, . . . ,An1 = (an1, j,k) j,k. Note that we may assume,
by acting with general linear group GLn1(F) on T , that the first d := dimL slices A1, . . . ,Ad of T are
linearly independent and the rest are zero matrices; indeed, this action does not change GR(T ) (see
Lemma 4.2 in [30]) nor does it change SR(T ).

Note that for any x ∈ Fn1 , the bilinear form T (x, ·, ·) corresponds to the matrix ∑i xiAi; indeed,

T (x, ·, ·) : (y,z) 7→ ∑
i, j,k

ai, j,kxiy jzk = ∑
i

xi ∑
j,k

ai, j,ky jzk

= ∑
i

xiyT Aiz = yT
(
∑

i
xiAi

)
z.

Using our assumption that Ai = 0 for every i > d, let

Xr = {x ∈ Fn1 | rankT (x, ·, ·)≤ r}
= {x ∈ Fn1 | rank

(
x1A1 + · · ·+ xdAd

)
≤ r}.
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We claim that codimXr = codimL Lr. Recall that Lr = {A ∈ L | rankA ≤ r}. First, we show that the
variety Xr is isomorphic to the variety Lr×Fn1−d

. Indeed, the polynomial map (in fact linear)

(x1, . . . ,xn1) 7→ (x1A1 + · · ·+ xdAd ,xd+1, . . . ,xn1)

maps Xr to Lr × Fn1−d
, and is invertible via a polynomial map (in fact linear) by our assumption

that A1, . . . ,Ad are linearly independent. We deduce from this isomorphism the equality of dimen-
sions dimXr = dim(Lr×Fn1−d

), or equivalently, codimXr = n1−dimXr = d−dimLr = codimL Lr, as
claimed.

Let r achieve the minimum in Fact 3.5. This implies that GR(T ) = r+ codimXr. By Theorem 3.4,

SR(T ) = SR(L)≤ 2r+ codimL Lr = 2r+ codimXr

= 2GR(T )− codimXr ≤ 2GR(T ).

Assuming further that F is a perfect field and using Proposition 3.2, we finally obtain the bound SR(T )≤
3
2 SR(T )≤ 3GR(T ), as desired.

4 Geometric rank vs. analytic rank

Our main result in this section gives an essentially tight upper bound on the geometric rank in terms of
the analytic rank.

Proposition 4.1. For any 3-tensor T over any finite field F,

AR(T )≥ (1− log|F| 2)GR(T ).

4.1 Schwartz-Zippel meet Bézout

We will need a certain generalized version of the classical Schwartz-Zippel lemma that applies to varieties.
We note that there are various generalized versions of the Schwartz-Zippel lemma appearing in the
literature (e.g., Lemma 14 in [6], Claim 7.2 in [13], Lemma A.3 in [15]). However, in our version below
the bound goes down exponentially with the codimension of the variety as soon as the field is larger than
the degrees of the polynomials cutting out the variety, which is crucial for proving Proposition 4.1.

We use the notation V(F) := V∩Fn for any variety V ⊆ Fn
defined over F. Recall that a variety

V = V( f1, . . . , fm) is said to be cut out by the polynomials f1, . . . , fm.

Lemma 4.2 (Schwartz-Zippel for varieties). Let F be a finite field. For any variety V⊆ Fn
cut out by

polynomials of degrees at most d,
|V(F)|
|F|n

≤
( d
|F|

)codimV
.

We note that the classical Schwartz-Zippel lemma is recovered as the special case of Lemma 4.2
where V is cut out by a single polynomial p. Indeed, in this case, Lemma 4.2 says that if p is a non-zero
polynomial, meaning codimV = 1, then |V(F)|/|F|n ≤ d/|F|.
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Let V0 denote the union of the 0-dimensional irreducible components of a variety V. Note that V0

is a finite set. For the proof of Lemma 4.2 we will use the overdetermined case of Bézout’s inequality,
which provides an upper bound on |V0| (see [39], Theorem 5).

Fact 4.3 (Overdetermined Bézout’s inequality). Let V = V( f1, . . . , fm)⊆Kn be a variety, for an alge-
braically closed field K, cut out by m≥ n polynomials. Write deg f1 ≥ ·· · ≥ deg fm ≥ 1. Then

|V0| ≤
n

∏
i=1

deg fi.

The degree of an equidimensional10 variety V⊆Kn, denoted degV, is the cardinality of the intersec-
tion of V with a generic linear subspace in Kn of dimension codimV (a well-defined, finite number). The
degree of an arbitrary variety V is the sum of the degrees of its irreducible components. The proof of
Lemma 4.2 will “bootstrap” the following generalization of the Schwartz-Zippel lemma.

Fact 4.4 ([6],[13]). Let F be a finite field. For any variety V over F,

|V(F)| ≤ degV · |F|dimV.

Proof of Lemma 4.2. We claim that the following inequality holds assuming V is equidimensional;

degV≤ dcodimV.

Suppose V is cut out by m polynomials of degree at most d. Note that m≥ codimV. Consider the variety
obtained by intersecting V with a generic linear subspace in Fn

of dimension codimV, and observe that it
can be embedded as a variety W⊆ Fn0 with n0 = codimV. Then W satisfies the following properties:

• dimW = 0,

• W is cut out by m polynomials of degree at most d.

In particular, and similarly to the above, m≥ n0. It follows that

degV = |W|= |W0| ≤ dn0 = dcodimV,

where the first equality is by the definition of degV, the second equality uses W = W0 as dimW = 0,
and the inequality applies Fact 4.3 since we are in the overdetermined case m≥ n0.

To finish the proof, we need to remove the assumption in the above inequality that V is equidi-
mensional. This is immediate using the standard technique of replacing the polynomials cutting out V
with generic linear combinations thereof, giving a variety V′ ⊇ V over F with dimV′ = dimV that is
an equidimensional set-theoretic complete intersection (see, e.g., Kollar [29], Theorem 1.5).11 Indeed,
starting with a single polynomial (which trivially cuts out an equidimensional variety), adding each such
linear combination p, that is, intersecting with the hypersurface Hp corresponding to p, reduces by one
the dimension of every irreducible component X (since X * Hp as long as X * V). Now, apply Fact 4.4
to obtain

|V(F)|
|F|n

≤ |V
′(F)|
|F|n

≤ dcodimV|F|dimV

|F|n
=
( d
|F|

)codimV
,

as desired.
10All irreducible components have the same dimension.
11Alternatively, this can be done by defining an appropriate variant of degree for varieties that are not equidimensional.
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4.2 Putting everything together

We now deduce the desired bound relating GR and AR. We will use the following well known characteri-
zation of AR; we include a proof for completeness.

Fact 4.5. For any 3-tensor T ∈ Fn1×n2×n3 over any finite field F,

AR(T ) =− log|F| Pr
x,y
[ f (x,y) = 0]

where f : Fn1×Fn2 → Fn3 is the bilinear map corresponding to T .

Proof. Write f = ( f1, . . . , fn3), so that T (x,y,z) = ∑
n3
k=1 fk(x,y)zk. Denote bias(T ) = Ex,y,z χ(T (x,y,z)),

where χ is an arbitrary, nontrivial additive character of F, so that AR(T ) =− log|F| bias(T ). Since f is
bilinear, we have bias(T ) = Prx,y[ f (x,y) = 0]; indeed,

bias(T ) = E
x,y,z

χ(T (x,y,z)) = E
x,y,z

χ

(
∑
k

fk(x,y)zk

)
= E

x,y
E
z ∏

k
χ( fk(x,y)zk) = E

x,y∏k
E

z∈F
χ( fk(x,y)z)

= E
x,y∏k

[ fk(x,y) = 0] = E
x,y
[ f (x,y) = 0]

= Pr
x,y
[ f (x,y) = 0],

where [·] is the Iverson bracket. This completes the proof.

Proof of Proposition 4.1. Suppose T ∈Fn1×n2×n3 . Put V= ker(T )⊆FN
with N = n1+n2. By Lemma 4.2,

|V(F)|/|F|N ≤ (2/|F|)codimV. Using Fact 4.5, it follows that

AR(T ) =− log|F|
|V(F)|
|F|N

≥ codimV · (1− log|F| 2).

As GR(T ) = codimV, we are done.

We are finally ready to combine our various bounds and obtain the main result.

Proof of Theorem 1. The first inequality is given by Theorem 3.1. The second inequality follows from
Proposition 4.1 for any finite F 6= F2, since

GR(T )≤ (1− log|F| 2)
−1 AR(T )

≤ (1− log3 2)−1 AR(T )≤ 2.71AR(T ).

We note that, as evident from the proof of Theorem 1, we in fact obtain the bounds SR(T ) ≤
3GR(T )≤ 3(1+o|F|(1))AR(T ).
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5 Some complexity results for bilinear maps

5.1 Rank vs. min-entropy

Recall that the min-entropy of a discrete random variable X is

H∞( f ) = min
x

log2
1

Pr[X = x]
.

With a slight abuse of notation, we define the min-entropy of a function X : A→ B, with A and B finite, in
the same way (using the uniform measure):

H∞(X) = min
b∈B

log2
1

Pra∈A[ f (a) = b]
=− log2 max

b∈B

|X−1(b)|
|A|

.

Note that we have the trivial bounds 0 ≤ H∞(X) ≤ log2 |B|, where the lower bounds holds when X is
constant and the upper bound when X is |A|/|B|-to-1.

Recall that SR( f ) denotes the slice rank of the 3-tensor corresponding to f (which can be thought
of as the “oracle complexity” of f , where the oracle produces any desired, arbitrarily hard matrices).
Towards the proof of Proposition 1.1, we first deduce from Theorem 1 a tight relation between slice rank
and min-entropy for the class of bilinear maps.

Proposition 5.1. For any bilinear map f : Fn×Fn→ Fn over any finite field F 6= F2,

SR( f ) = Θ

( H∞( f )
log2 |F|

)
.

Proof. As f is bilinear, we claim that maxb Pra[ f (a) = b] = Pra[ f (a) = 0]. Indeed, this follows from the
fact that f (x,y) is a linear map for any fixed y, and thus for every b,

Pr
x,y
[ f (x,y) = b] = E

y
Pr
x
[ f (x,y) = b]

≤ E
y

Pr
x
[ f (x,y) = 0] = Pr

x,y
[ f (x,y) = 0].

Therefore,

H∞( f ) = min
b
− log2 Pr

x,y
[ f (x,y) = b] =− log2 Pr

x,y
[ f (x,y) = 0] = AR( f ) log2 |F|

where the last equality uses Fact 4.5. We deduce using Theorem 1 that

SR( f ) = Θ(AR( f )) = Θ(H∞( f )/ log2 |F|),

as desired.

Proof of Proposition 1.1. Note that, almost directly from the definitions, C∗( f )≤ nSR(T ). The desired
bound therefore follows from Proposition 5.1,

C∗( f )≤ nSR(T ) = O(nH∞( f )/ log2 |F|).
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Below we show that our bound is in fact an equality (up to a constant) for almost every bilinear map. Let
f : Fn×Fn→ Fn be a uniformly random bilinear map. We have C∗( f ) = Θ(n2), since the tensor rank
of the corresponding tensor is Θ(n2), which is equal to Θ(C∗( f )) for any F large enough, as shown by
Strassen [38] (see also [5]). Thus, we next show that H∞( f ) = Θ(n log2 |F|). Observe that if L : Fn→ Fn

is a uniformly random linear map then for any 0 6= y ∈ Fn we have that L(y) is uniformly random in
Fn. Fix 0 6= y0 ∈ Fn. Then for each component fi(x,y) =: xT Aiy of f we have that fi(x,y0) = xT (Aiy0)
is a uniformly random linear form in x. Moreover, these n linear forms f1(x,y0), . . . , fn(x,y0) are
independent. It follows that f (x,y0) : Fn→ Fn is a uniformly random linear map. Thus, f (x,y0) is a
bijection. We conclude that | f−1(0)|=

(
∑06=y∈Fn 1

)
+ |F|n = 2|F|n−1 (and | f−1(b)|= |F|n−1 for any

b 6= 0). Therefore, H∞( f ) = log2(|F|2n/| f−1(0)|) = Θ(log2(|F|n)) = Θ(n log2 |F|), as desired.

5.2 Approximating bilinear maps

Recall that maps f ,g : A→ B are said to be δ -close if Pra∈A[ f (a) = g(a)] = δ . Let us recall the classical
fact that, for any NP-complete function f : {0,1}∗ → {0,1}, say f = SAT, if f can be computed in
polynomial time on all but polynomially many inputs then in fact f can be computed in polynomial
time. Phrased differently, if g : {0,1}∗→{0,1} is such that gn := g|{0,1}n is δ -close to fn := f |{0,1}n with
δ = 1−poly(n)/2n then g ∈ P implies f ∈ P. What would be an optimal analogue of this basic fact when
f is coming from the class of bilinear maps? We note that this restriction is already a radical change of
regime. For example, the Schwartz-Zippel lemma implies that if two distinct degree-d forms are δ -close
then necessarily δ ≤ d/|F|. In particular, an agreement that is close to 1, as in the example above, is
impossible in the bilinear setting.

Here we prove Proposition 1.2, showing that it suffices to compute f on a surprisingly small fraction
of the inputs in order to be able to compute f on all inputs. For example, this implies that if SR(g) = O(r)
and g agrees with f on merely an |F|−O(r)-fraction of the inputs, then already SR( f ) = O(r). As before,
Theorem 1 supplies the precise bounds we need.

Proof of Proposition 1.2. Since SR is subadditive by definition, we have

SR( f ) = SR(g+ f −g)≤ SR(g)+SR( f −g).

By Theorem 1 we have
SR( f −g)≤ O(AR( f −g)).

Write AR( f −g) =− log|F| bias( f −g) and bias( f −g) = Prx,y[( f −g)(x,y) = 0] = δ . Combining the
above inequalities gives

SR( f )−SR(g)≤ SR( f −g)≤ O(AR( f −g)) = O(log|F|(1/δ )).

By symmetry, the same bound holds when interchanging f and g, which proves the desired bound.
Finally, it remains to see that our bound is sharp, for any value of SR( f ),SR(g). Let r, t be positive

integers satisfying t = Θ(r), and let n≥ r+ t. Let f ,g : Fn×Fn→ Fn be the bilinear maps

f (x,y) = (x1y1, . . . ,xryr,0, . . . ,0)
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and
g(x,y) = (0, . . . ,0,xr+1yr+1, . . . ,xr+tyr+t ,0, . . . ,0).

Recall that for an identity tensor Im we have SR(Im) = m (see, e.g., [35]) and AR(Im) = Θ(m). On the
one hand, |SR( f )−SR(g)|= |SR(Ir)−SR(It)|= |r− t|= Θ(r). On the other hand,

δ = Pr
x,y
[ f (x,y) = g(x,y)]

= bias( f −g) = bias( f ) ·bias(g) = |F|Θ(r)+Θ(t).

Therefore, log|F|(1/δ ) = Θ(r+ t) = Θ(r) as well, completing the proof.

Corollary 5.2. Let F 6= F2 be a finite field. Any two bilinear maps f ,g : Fn→ Fm that are δ -close satisfy

C∗( f )≤ O((SR(g)+ log|F|(1/δ ))n).

6 Discussion and open questions

Several problems are left open by the results in this paper. Of course, it would be interesting to extend our
methods to higher-order tensors. It would also be interesting to see other instantiations of classical results
of theoretical computer science in the settings of bilinear, or more generally, low-degree polynomial
maps. It would be satisfying to extend our main result, Theorem 1, to F2. As of now, the best bound over
F2 remains SR(T )≤ O(AR(T )4), and we wonder whether it might be that a linear upper bound simply
does not hold F2.

Finally, it remains open to determine the best possible constant C such that SR(T )≤C ·GR(T ). Let us
show below that C ≥ 3/2. Over any field F, let T ∈ F3×3×3 denote the Levi-Civita tensor T = (εi, j,k)i, j,k.
In other words, the trilinear form corresponding to T is the 3-by-3 determinant polynomial,

T (x,y,z) = det

x1 x2 x3
y1 y2 y3
z1 z2 z3

 .

We will show that GR(T ) = 2 and SR(T ) = 3, giving the bound C ≥ SR(T )/GR(T ) = 3/2. To compute
GR(T ), observe that the bilinear map f : F3×F3→ F3 corresponding to T is f (x,y) = x× y, that is,
the cross product of the vectors x,y ∈ F3. Therefore, (x,y) ∈ ker f if and only if x× y = 0, that is, x
and y are linearly dependent. We deduce that GR(T ) = codimker f = 2, or equivalently dimker f = 4,
since y ∈ F3 is completely determined by x ∈ F3 together with a scalar multiple in F. To compute
SR(T ), observe that xiy jzk is a monomial of T (x,y,z) if and only if i, j,k ∈ [3] are all distinct. Let
S= {(i, j,k)∈ [3]3 | xiy jzk is in the support of T}. Observe that S forms an antichain; indeed, i+ j+k = 6
is constant for all (i, j,k) ∈ S. Thus, by Proposition 4 in [35], SR(T ) is equal to the vertex cover number
of S when viewed as a (3-partite) 3-uniform hypergraph. Since each vertex of the hypergraph S has degree
exactly 2, it follows that any vertex cover has at least 3!/2 vertices. We deduce that SR(T ) = 3.

One can actually obtain an infinite family of 3-tensors with a similar ratio, implying that SR(T )/GR(T )
does not drop below 3/2 even for large tensors. For any k ∈N, let Tk ∈ F3k×3k×3k be the k-fold direct sum
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of T with itself. We have GR(Tk) = k ·GR(T ) = 2k by the additivity of GR with respect to direct sums
(see Lemma 4.3 in [30]). Moreover, we have SR(Tk) = k ·SR(T ) = 3k since the hypergraph corresponding
to the support of Tk is a disjoint union of copies of the hypergraph corresponding to the support of T , and
thus is also a 2-regular antichain. Therefore, any vertex cover has at least 6k/2 vertices, implying that
SR(Tk) = 3k.

Let us end by noting a curious analogy between GR/SR and two other notions of rank for 3-tensors,
commutative rank/non-commutative rank. It is known that non-commutative rank is at most twice the
commutative rank, which interestingly matches the constant 2 in our Theorem 3.1. Moreover, just like
in this paper, constructions were given that witness a 3/2 lower bound, and it was conjectured that 3/2
might be the correct constant [16]. However, this was recently refuted by Derksen and Makam [12],
whose construction achieves a ratio that is arbitrarily close to 2. It would be interesting to understand
whether there is a deeper analogy between these two pairs of ranks!

Note added in proof. Since the submission (November 6, 2020) to the 53rd ACM Symposium on
Theory of Computing, bounds for higher-order tensors over large enough fields were obtained by the
authors, using considerably more intricate arguments [10]. Additionally, similar results to the ones in the
current paper for 3-tensors were obtained by Adiprasito, Kazhdan, and Ziegler ([1], February 6, 2021).12
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