
ar
X

iv
:2

10
2.

04
76

9v
1

 [
cs

.C
C

]
 9

 F
eb

 2
02

1

Constant Approximating k-Clique is W[1]-hard

Bingkai Lin

Nanjing University, China

lin@nju.edu.cn

February 10, 2021

Abstract

For every graph G, let ω(G) be the largest size of complete subgraph in G. This paper
presents a simple algorithm which, on input a graph G, a positive integer k and a small

constant ǫ > 0, outputs a graph G′ and an integer k′ in 2Θ(k5) · |G|O(1)-time such that (1)

k′ ≤ 2Θ(k5), (2) if ω(G) ≥ k, then ω(G′) ≥ k′, (3) if ω(G) < k, then ω(G′) < (1− ǫ)k′. This
implies that no f(k) · |G|O(1)-time algorithm can distinguish between the cases ω(G) ≥ k and
ω(G) < k/c for any constant c ≥ 1 and computable function f , unless FPT = W [1].

1 Introduction

Given a simple graph G and a positive integer k, the task of k-Clique problem is to decide
whether ω(G) ≥ k. In parameterized complexity [DF99, FG06], the k-Clique problem with k
as its parameter is a canonical W [1]-complete problem [DF95]. Unless W [1] = FPT , it has no
f(k) · |G|O(1)-time algorithm (FPT-algorithm) for any computable function f : N → N. This
problem has been used as a starting point in many reductions and thus plays a fundamental role
in the area of parameterized complexity. Yet, it is still not known whether constant approximating
k-Clique is also W [1]-hard. More precisely, we consider the following question:

Question 1.1. Is there any algorithm which, on input a graph G and a positive integer k, outputs
a new graph G′ and a positive integer k′ in f(k) · |G|O(1)-time for some computable function
f : N → N such that,

• k′ = g(k) for some computable function g : N → N,

• if ω(G) ≥ k, then ω(G′) ≥ k′,

• if ω(G) < k, then ω(G′) < k′/2?

The question above is motivated by the study of FPT-approximation algorithms for k-Clique.
For any c ≥ 1, we say an algorithm is a c-FPT-approximation algorithm for k-Clique if on input
a graph G it outputs a clique of size ω(G)/c in G in f(ω(G)) · |G|O(1)-time for some computable
function f : N → N. Whether there exists such an algorithm has been repeatedly raised in
the literature [Mar08, FGMS, CGG06, DF13]. Previous results for FPT-inapproximability of k-
Clique are under strong assumptions which already have a gap [CCK+17, BEKP15]. Proving such
results based on standard assumptions is an interesting and important open question. It is wildly
believed that the technique needed to resolve this question is closely related to a PCP-theorem
for parameterized complexity [CGG06]:

Non-approximability results in the classical framework were proved for the CLIQUE
problem using the PCP-theorem, so it might be necessary to obtain a parameterized
version of the PCP-theorem to solve these questions.

1

http://arxiv.org/abs/2102.04769v1

This paper gives the first positive answer to Question 1.1. An immediate corollary of our result
is the non-existence of FPT-approximation algorithm for the k-Clique problem under the standard
parameterized complexity hypothesis W [1] 6= FPT .

Theorem 1.2. Assuming that k-Clique has no FPT-algorithm, there is no FPT-algorithm that
can approximate k-Clique to any constant.

The main contribution of this paper is to show how to create a constant gap for ω(G) from a
W [1]-hard problem with no gap.

1.1 Overview of the reduction

Let us illustrate the idea using a toy k-Vector-Sum problem and the Walsh-Hadamard code.
Throughout this paper, we will work on finite field F with characteristic 2. For any ~v1, . . . , ~vk ∈ F

d

and ~a1, . . . ,~ak ∈ F
d, let H(~v1, . . . , ~vk)~a1,...,~ak

=
∑

i∈[k] ~ai · ~vi be the Walsh-Hadamard code of

~v1, . . . , ~vk. Here ~ai ·~vi denotes the dot product of vectors ~ai and ~vi. Given k vector ~v1, . . . , ~vk ∈ F
d

and a target vector ~t ∈ F
d, we want to test whether

∑

i∈[k] ~vi = ~t. For that sake, we construct a

constraint satisfaction problem (CSP) on variables {x~a1,...,~ak
: ~a1, . . . ,~ak ∈ F

d}. Any assignment to
these variables can be seen as a long vector ~x ∈ F

kd, which is supposed to be the Walsh-Hadamard
code of ~v1, . . . , ~vk. Then we do the following tests.

(T1) To ensure that the vector ~x ∈ F
kd is a Walsh-Hadamard code of some vector ~v1, . . . , ~vk ∈ F

d,

we check if ~x~a1+~b1,...,~ak+~b1
= ~x~a1,...,~ak

+ ~x~b1,...,~bk for ~a1, . . . ,~ak,~b1, . . . ,~bk ∈ F
d.

(T2) Check if ~x~a1,...,~ai+~a,...,~ak
− ~x~a1,...,~ak

= ~vi · ~a for i ∈ [k], ~a ∈ F
d and ~a1, . . . ,~ak ∈ F

d.

(T3) Check if ~x~a1+~a,...,~ak+~a − ~x~a1,...,~ak
= ~a · ~t for ~a,~a1, . . . ,~ak ∈ F

d.

By the linearity testing [BLR93], for any assignment ~x ∈ F
kd, if ~x satisfies δ-fractions of constraints

in (T1), then ~x is at most (1− δ)-far from the Walsh-Hadamard code of some vectors ~u1, . . . , ~uk ∈
F
d. That is, for a δ-fraction of (~a1, . . . ,~ak) ∈ F

dk, ~x~a1,...,~ak
= H(~u1, . . . , ~uk)~a1,...,~ak

. Next, if
~u1 + · · · + ~uk 6= ~t, then for a (1 − 1/|F|)-fraction of ~a ∈ F

d, ~a · (~u1 + · · · + ~uk) 6= ~a · ~t. If for some
i ∈ [k], ~ui 6= ~vi, then for a (1 − 1/|F|)-fraction of ~a ∈ F

d, ~a · ~ui 6= ~a · ~vi. We conclude that, if
~v1 + · · · + ~vk = ~t, then there exists a vector ~x satisfying all the constraints. If ~v1 + · · · + ~vk 6= ~t,
then for any assignment ~x, one of the following must hold:

• a constant fraction of constraints in (T1) are not satisfied.

• for some i ∈ [k], a constant fraction of constraints in (T2) with respect to i are not satisfied.

• a constant fraction of constraints in (T3) are not satisfied.

Then we construct a graph G from the CSP instance using a modified FGLSS-reduction [FGL+96].
The vertex set of G consists of two parts A and B.

The vertices of A are corresponding to assignments to variables {x~a1,...,~ak
: ~a1, . . . ,~ak ∈ F

d} of
the CSP instance. Two vertices in A are adjacent unless they are corresponding to assignments
that are not consistent, i.e., assigning different values to the same variable, or there exists a (T2)
or (T3) constraint between them and they do not satisfy that constraint. Note that there are
|F|1+dk vertices in A. They can be partitioned into |F|dk independent sets of size |F|.

The vertices in B are corresponding to assignments to three variables satisfying constraints
in (T1). Two vertices in B are adjacent unless they are corresponding to inconsistent assign-
ments. Note that the vertex set of B can be partitioned into |F|2dk disjoint subsets, each forms
an independent set of size |F|2.

We add an edge between any two vertices in A and B if the assignments corresponding to these
vertice are consistent. Since the sizes of A and B are not balanced, we assign to each vertex in A
weight |F|kd and each vertex in B weight 1.

If ~v1 + · · · + ~vk = ~t, then G contains a clique of weight 2|F|2kd. This clique consists of |F|kd

vertices from A and |F|2kd vertices from B. If ~v1 + · · · + ~vk 6= ~t, then for any clique X in G, one
of the following must hold:

2

(i) |X ∩B| ≤ (1 − ǫ)|F|2kd,

(ii) there exists ~a ∈ F
d and i ∈ [k] such that the variable set V can be partitioned into two

disjoint sets V = V0 ∪ V1 with V1 = {x~a1,...,~ai+~a,...,~ak
: x~a1,...,~ak

∈ V0}. The assignment
corresponding to X satisfies only a (1 − ǫ)-fraction of (T2) constraints between V0 and V1,

(iii) there exists ~a ∈ F
d such that the variable set V can be partitioned into two disjoint sets

V = V0 ∪ V1 with V1 = {x~a1+~a,...,~ak+~a : x~a1,...,~ak
∈ V0}. The assignment corresponding to X

satisfies only a (1 − ǫ)-fraction of (T3) constraints between V0 and V1.

Either (ii) or (iii) implies that |X∩A| ≤ [1/2+(1−ǫ)1/2]|Fkd|. So, in summary, when ~v1+· · ·+~vk 6=
~t, we have for every clique of G, either |X ∩B| ≤ (1− ǫ)|F|2kd or |X ∩A| ≤ (1− ǫ/2)|Fkd|. In both
cases, every clique in G has at most (2 − ǫ/2)|F|2kd weight.

There are two problems needed to be solved:

(P1) In the real k-Vector-Sum problem, we are given k sets V1, . . . , Vk of vectors instead of k
vectors. How to test whether ~x~a1,...,~ai+~a,...,~ak

− ~x~a1,...,~ak
= ~vi ·~a for the same vector ~vi ∈ Vi?

In some bad scenario, it is possible that for each ~a, there exists a vector ~v~a ∈ Vi such that
~x~a1,...,~ai+~a,...,~ak

− ~x~a1,...,~ak
= ~v~a · ~a.

(P2) The k-Vector-Sum problem is W [1]-hard when d = kΩ(1) logn. Applying our reduction

directly would take at least |F|kd ≥ nkΩ(1)

time, which we cannot afford.

We handle these problems by sampling ℓ matrices A1, . . . , Aℓ ∈ F
h×d with h = k2, and replacing

each vector ~v ∈ Vi by an ℓ-tuple (A1~v, . . . , Aℓ~v) of h-dimension vectors. For every ~a1, . . . ,~ak ∈ F
h,

the value of the variable x~a1,...,~ak
becomes a vector in F

ℓ instead of just an element of F. The
number of variables become |F|kh instead of |F|kd. Since |F| = O(1), the reduction can be done in
FPT-time if ℓ ≤ O(log n+h). To ensure that the constraints in (T2) still work, we show that when
ℓ ≥ Ω(log n+h), with high probability, for all ~a ∈ F

h and distinct ~v, ~u ∈ Vi, (~aTA1~v, . . . ,~a
TAℓ~v) 6=

(~aTA1~u, . . . ,~a
TAℓ~u) and the bad scenario in (P1) will not occur. For constraints in (T3), we show

that with high probability, for all distinct ~t,~t′ ∈ F
d, (A1~t, . . . , Aℓ~t) 6= (A1~t

′, . . . , Aℓ~t
′).

1.2 Related work

The k-Clique problem is one of the first known NP-hard problems in [Kar72]. It was showned that
approximating k-Clique to a factor of n1−ǫ is also NP-hard after a long line of research [FGL+96,
BGLR93, BS94, Gol98, FK00, Has96, Zuc06]. As pointed out in [CL19], the classical inapproxima-
bility results of k-Clique inevitably produce instances with large ω(G). However, in parameterized
complexity, we consider instances with small ω(G) which does not depend on the size of G. In
order to show that k-Clique is still hard to approximate when k is small, a natural idea is to
use the PCP-theorem [ALM+98, AS98] to obtain a gap for the SAT problem and then use the
method of compressing to reduce the optimum solution size [HKK13]. Unfortunately, since the
PCP-theorem causes a polylogarithmic blow-up in the size of SAT instance, this approach cannot
rule out FPT-approximation for k-Clique.

To circumvent this, researches used stronger hypothesis to obtain a gap for the SAT problem.
Bonnet et al. [BEKP15] used ETH [IPZ01] and the linear PCP conjecture to show constant FPT-
inapproximability of k-Clique. Assuming Gap-ETH [Din16, MR16], it was shown that there is no
o(k)-FPT-approximation for k-Clique [CCK+17].

In [LRSZ20], a weaker conjecture called Parameterized Inapproximability Hypothesis (PIH)
was postulated. PIH states that binary CSP parameterized by the number of variables has no
constant FPT-approximation. It is easy to see that PIH implies k-Clique has no constant FPT-
approximation. Interestingly, it is not known if the hardness of approximation of k-Clique implies
PIH [FKLM20].

Assuming a conjecture called DEG-2-SAT, Khot and Shinkar [KS16] used a different ap-
proach to rule out FPT-approximation for k-Clique. Although the conjecture turned out to be

3

false [Kay14], their work is still inspiring. The idea of multiplying the input instance with matrices
in our reduction is from their paper.

In recent years, several gap-creating techniques have been successfully used to show FPT
inapproximabilities [Lin18, LKM19, Lin19, W lo20, KLN21]. We refer the reader to [FKLM20] for
a survey of these results.

2 Preliminaries

For every vector ~v = (v1, . . . , vd) ∈ F
d and i ∈ [d], let ~v[i] = vi. For every ~x, ~y ∈ F

n, we use
~x · ~y =

∑

i∈[n] ~x[i]~y[i] to denote the dot product of ~x and ~y. For X ⊆ F
d and ~v ∈ F

d, let

X + ~v = {~x + ~v : ~x ∈ X}. For ~a ∈ F
n and ~b ∈ F

m, let ~a ◦~b be the the result of concatenating ~a

and ~b. For any dn vectors ~v = (v1, . . . , vdn) ∈ F
dn and ~a = (a1, . . . , ad) ∈ F

d, let

F (~a,~v) = (
∑

i∈[d]

aivi, . . . ,
∑

i∈[d]

aivi+jd, . . . ,
∑

i∈[d]

aivi+(n−1)d) ∈ F
n.

For all n ∈ N, let ~0n and ~1n be the n-dimension all-zero vector and all-one vector respectively.

Definition 2.1 (Distance). For every d ∈ N and ~x, ~y ∈ F
d, let

dist(~x, ~y) =
|{i ∈ [d] : ~x[i] 6= ~y[i]}|

d
.

For ease of notation, let dist(~x) = dist(~x,~0d).

Let G and H be two groups and + be the group operator. For any δ ∈ [0, 1] and f, g : G → H ,
we say f is δ-far from g if Prx[f(x) 6= g(x)] = δ. A function f : G → H is a homomorphism if
f(x) + f(y) = f(x + y) for all x, y ∈ G. The follow theorem is from [BLR93, Gol16].

Theorem 2.2 (Linearity test). If a function f : G → H satisfies Prx,y[f(x) + f(y) = f(x+ y)] ≥
(1 − δ/2) for some small δ, then there exists a homomorphism function g : G → H such that f is
at most δ-far from g, i.e., Prx[f(x) = g(x)] ≥ (1 − δ).

Definition 2.3 (Constraint Satisfaction Problem (CSP)). Given an alphabet Γ, an instance
of constraint satisfaction problem contains a set of variables V = {v1, . . . , vk} and constraints
{C1, C2, . . . , Cm}. For every i ∈ [m], Ci = (~si, Ri), where ~si = (vj1 , . . . , vjℓi) is an ℓi-tuple of

variables for some ℓi ∈ [k] and Ri ⊆ Γℓi . The goal is to find an assignment σ : V → Γ such that

• for all i ∈ [m], σ(~si) ∈ Ri.

In parameterized complexity, the hypothesis of W [1] 6= FPT states that no algorithm can, on
input a graph G and a positive integer k, decide whether ω(G) ≥ k in f(k) · |G|O(1) time for any
computable function f : N → N. A parameterized problem L is W [1]-hard if there is a reduction
from k-Clique to this problem such that for every instance (G, k) of k-Clique, the reduction outputs
an instance (x, k′) of L in f(k) · |G|O(1)-time for some computable function f : N → N and:

• (G, k) is a yes-instance of k-Clique if and only if (x, k′) is a yes-instance of L,

• k′ ≤ g(k) for some computable function g : N → N.

Obviously, if a parameterized problem L is W [1]-hard, then no f(k) · |x|O(1)-time algorithm can
decide whether (x, k) is a yes-instance of L unless W [1] = FPT . We say approximating k-Clique
to a factor of c is W [1]-hard if the existence of f(k) · |G|O(1)-time algorithm that can distinguish
ω(G) ≥ k and ω(G) < k/c would imply W [1] = FPT .

Definition 2.4 (k-Vector-Sum). Given k sets V1, . . . , Vk of vectors and a target vector ~t in F
m,

the goal of k-vector-sum problem is to decide whether there exist ~v1 ∈ V1, . . . , ~vk ∈ Vk such that
∑

i∈[k]

~vi = ~t.

4

The W [1]-hardness of k-Vector-Sum was proved in [ALW13]. For the convenience of the reader,
we include a proof in the Appendix.

Theorem 2.5. k-Vector-Sum with F = F2 and m = Θ(k2 logn) is W [1]-hard parameterized by k.

3 Gap-reduction from k-Vector-Sum to k-Clique

Given an instance (V1, V2, . . . , Vk,~t) of k-Vector-Sum over F
m. Let V =

⋃

i∈[k] Vi, n = |V | and

h = Θ(k2). By Theorem 2.5, we can assume that m = h logn. Let F be a finite field with |F| = 4.
Vectors in the hardness instances from Theorem 2.5 can still be treated as vectors in F

m. Since
V only contains vectors in {0, 1}m, we have

~v 6= c~u for any distinct ~v, ~u ∈ V and nonzero c ∈ F. (1)

For any ℓ ∈ N, select ℓ matrices A1, A2, . . . , Aℓ ∈ F
h×m randomly and independently. For

every ~v ∈ F
m, let

g(~v) = (A1~v, · · · , Aℓ~v) ∈ F
hℓ.

For every vector ~α ∈ F
h and ~v ∈ F

m, let

f(~α,~v) = (~αTA1~v, · · · , ~α
TAℓ~v) ∈ F

ℓ.

Recall that for any d · n vectors ~v = (v1, . . . , vdn) ∈ F
dn and ~a = (a1, . . . , ad) ∈ F

d,

F (~a,~v) = (
∑

i∈[d]

aivi, . . . ,
∑

i∈[d]

aivi+jd, . . . ,
∑

i∈[d]

aivi+(n−1)d) ∈ F
n.

It follows that f(~α,~v) = F (~α, g(~v)). Note that for every ~v ∈ F
dn, F (·, ~v) : Fd → F

n is a homomor-
phism from F

d to F
n. Every homomorphism f from F

d to F
n is also a bitwise linear function, so

it can be written as f(·) = F (·, ~v) for some ~v ∈ F
dn.

Lemma 3.1. If 1/10 > (1/|F|)ℓh · 2m, then with probability at least 9/10, for all nonzero vector
~v ∈ F

m, g(~v)) 6= ~0ℓh.

Proof. For any nonzero vector ~v ∈ F
m, Pr[Ai~v = ~0h] = (1/|F|)h.

Pr[g(~v) = ~0ℓh] =
∏

i∈[ℓ]

Pr[Ai~v = ~0h] = (1/|F|)ℓh.

With probability at least
1 − (1/|F|)ℓh · 2m ≥ 9/10,

g(~v) 6= ~0ℓh for all nonzero ~v ∈ F
m.

Lemma 3.2. If A ∈ F
h×m is a random matrix, then for any nonzero vectors ~b,~c ∈ F

h and distinct
~v, ~u ∈ F

m with ~v 6= a~u for any a ∈ F \ {0},

Pr[~bTA~v = ~cTA~u] = 1/|F|. (2)

Proof. Let B be an h×m matrix with Bij = ~b[i]·~v[j]. Let C be an h×m matrix with Cij = ~c[i]·~u[j].
We can treat A,B as a vector of length hm and use A · B denote their dot product. It follows
that ~bTA~v = B · A and ~cTA~u = C · A. Since ~v 6= a~u for any nonzero a ∈ F, we have B − C is not
a zero matrix. Therefore,

Pr[~bTA~v = ~cTA~u] = Pr[B ·A = C ·A] = Pr[(B − C) · A = 0] = 1/|F|.

5

Lemma 3.3. If |V |2 · |F|h · (1/|F|)ℓ < 1/10, then with probability at least 9/10, f(~α,~v) 6= f(~α, ~u)
for any distinct ~v, ~u ∈ V and nonzero ~α ∈ F

h.

Proof. By (1), ~v 6= c~u for any nonzero c ∈ F. Apply Lemma 3.2 with ~b = ~c = ~α, we get

Pr[f(~α,~v) = f(~α, ~u)] =
∏

i∈[ℓ]

Pr[~αTAi~v = ~αTAi~u] = (1/|F|)ℓ.

There are at most |V |2 pairs of (~v, ~u) and at most |F|d choices of ~α. Since |V |2 ·|F|d ·(1/|F|)ℓ < 1/10,
with probability at least 9/10, f(~α,~v) 6= f(~α, ~u) for all nonzero ~α ∈ F

h and distinct ~v, ~u ∈ V .

Lemma 3.4. If |V |3 ·|F|2h ·(1/|F|)ℓ < 1/10, then with probability at least 9/10, f(~α,~v)+f(~α′, ~u) 6=
f(~α + ~α′, ~w) for any distinct ~v, ~u, ~w ∈ V and nonzero ~α, ~α′.

Proof. Observe that Pr[f(~α,~v) + f(~α′, ~u) = f(~α + ~α′, ~w)] = Pr[f(~α,~v − ~w) = f(~α′, ~w − ~u)] and
~w−~u = ~w+~u 6= ~v+ ~w = ~v− ~w. Since ~w−~u and ~v− ~w are vectors in {0, 1}m ⊆ F

m, ~w−~u 6= (~v− ~w)

implies ~w − ~u 6= a(~v − ~w) for any a ∈ F \ {0}. By Lemma 3.2, Pr[f(~α,~v − ~w) = f(~α′, ~w − ~u)] ≤
(1/|F|)ℓ. There are at most |V |3 pairs of (~v, ~u, ~w) and at most |F|2d choices of ~α, ~α′. Since

|V |3 · |F|2d · (1/|F|)ℓ < 1/10, with probability at least 9/10, f(~α,~v) + f(~α′, ~u) 6= f(~α + ~α′, ~w) for
any distinct ~v, ~u, ~w ∈ V and nonzero ~α, ~α′.

Construction of the CSP. Let ℓ = 2 logn + 2h. Then for large n,

(1/|F|)ℓh · 2h logn = 4−2h logn−2h · 2h logn ≤ 2−3h logn < 1/10,

and
|V |3 · |F|2h · (1/|F|)ℓ = n3 · 42h · 4−2logn−2h ≤ 1/n ≤ 1/10.

By Lemma 3.3, Lemma 3.4 and Lemma 3.1, with probability at least 7/10, g(~v) 6= ~0ℓh for all

~v ∈ F
h logn, f(~α,~v) 6= f(~α, ~u) and f(~α,~v) + f(~α′, ~u) 6= f(~α + ~α′, ~w) for all distinct ~v, ~u, ~w ∈ V and

nonzero ~α, ~α′.
Construct a CSP instance I with |F|kh variables {x~α1,...,~αk

: ~α1 . . . ~αk ∈ F
h}. The alphabet of

this CSP is Γ = F
ℓ. If the instance is a yes-instance, then each x~α1,...,~αk

is expected to take the
value f(~α1, ~v1) + · · · + f(~αk, ~vk) for some a solution ~v1, . . . , ~vk to the k-Vector-Sum problem. We
now describe three types of constraints.

(C1) For all ~α1, . . . , ~αk and ~β1, . . . , ~βk, check if x~α1+~β1,...,~αk+~βk
= x~α1,...,~αk

+ x~β1,...,~βk
. In other

words, the relation for variable tuple (x~α1+~β1,...,~αk+~βk
, x~α1,...,~αk

, x~β1,...,~βk
) is

Rx
~α1+~β1,...,~αk+~βk

,x~α1,...,~αk
,x~β1,...,~βk

= {(~a,~b,~c) ∈ Γ3 : ~a = ~b + ~c}.

(C2) For every i ∈ [k] and ~α1, . . . , ~αk, ~α ∈ F
h, check if x~α1,...,~αi+~α,...,~αk

− x~α1,...,~αk
= f(~α,~v) for

some ~v ∈ Vi. In other words, the constraint between x~α1,...,~αi+~α,...,~αk
and x~α1,...,~αk

is

Rx~α1,...,~αi+~α,...,~αk
,x~α1,...,~αk

= {(~a,~b) ∈ Γ2 : ~a−~b = f(~α,~v) for some ~v ∈ Vi}.

(C3) For all ~α1, . . . , ~αk, ~α ∈ F
h, check if x~α1+~α,...,~αk+~α − x~α1,...,~αk

= f(~α,~t). That is,

Rx~α1+~α,...,~αk+~α,x~α1,...,~αk
= {(~a,~b) ∈ Γ2 : ~a−~b = f(~α,~t)}.

Constraints of the form x~α1,...,~αi+~α,...,~αk
− x~α1,...,~αk

= f(~α,~v) in (C2) are also called (C2)-i-type
or (C2)-i-~α-type constraints. Similarly, constraints of the form x~α1+~α,...,~αk+~α − x~α1,...,~αk

= f(~α,~t)
are called (C3)-~α-type constraints.

Lemma 3.5. If the k-Vector-Sum instance has a solution, then so does I. If the k-Vector-Sum
instance has no solution, then there exists a constant ǫ > 0 such that for every assignment to the
variables of I one of the followings must hold:

6

• ǫ/2-fraction of constraints of (C1) are not satisfied,

• there exists i ∈ [k] such that ǫ2-fraction of (C2)-i-type constraints are not satisfied.

• ǫ-fraction of constraints of (C3) are not satisfied.

Proof. If the k-Vector-Sum instance has a solution ~v1 ∈ V1, . . . , ~vk ∈ Vk, then let x~α1,...,~αk
=

f(~α1, ~v1) + · · · + f(~αk, ~vk). It is easy to check that all the constraints are satisfied.
Now suppose that the k-Vector-Sum instance has no solution. Fix any assignment ~x ∈ F

ℓ. If
ǫ/2-fraction of constraints in (C1) are not satisfied, then we are done. Otherwise (1− ǫ/2)-fraction
of (C1) constraints are satisfied. By the linearity test [BLR93] and (C1), there exist ~c1, . . . ,~ck ∈ F

hℓ

such that for (1 − ǫ)|Fkh| many choices of (~α1, . . . , ~αk) ∈ F
kh, ~x~α1,...,~αk

= F (~α1,~c1) + F (~α2,~c2) +
· · · + F (~αk,~ck). Let

A = {(~α1, . . . , ~αk) ∈ F
kh : ~x~α1,...,~αk

= F (~α1,~c1) + F (~α2,~c2) + · · · + F (~αk,~ck)}.

We have that |A| ≥ (1 − ǫ)|F|kh.
Obviously, there are two cases:

• Either for every i ∈ [k], there exists ~vi ∈ Vi such that ~ci = g(~vi),

• or there exists i ∈ [k] such that ~ci 6= g(~v) for all ~v ∈ Vi.

In the later case, we will show that at least an ǫ2-fraction of (C2)-i-type constraints are not
satisfied. Call a vector ~α ∈ F

h good if at least (1 − ǫ)-fraction of (C2)-i-~α-type constraints are
satisfied. For every nonzero vector ~α ∈ F

h, F
kh can be partitioned into two disjoint sets X−

~α

and X+
α such that X+

~α = {(~a1, . . . ,~ai + ~α, . . . ,~ak) : (~a1, . . . ,~ak) ∈ X−
~α }. Now suppose ~α is a

good vector. There are |Fkh|/2 constraints of (C2)-i-~α-type. We construct a bipartite graph on
X−

~α and X+
~α . Two vertices (~a1, . . . ,~ak) ∈ X−

~α and (~a1, . . . ,~ai + ~α, . . . ,~ak) ∈ X+
~α are adjacent if

(~x~a1,...,~ak
, ~x~a1,...,~ai+~α,...,~ak

) satisfies the constraint between them. Since ~α is a good vector, there
are (1 − ǫ)|Fkh|/2 edges between X−

~α and X+
~α . These edges form a matching M . Observe that

min{|A∩X1|, |A∩X2|} ≥ (1/2−ǫ)|Fkh|. Since the size of matching M is (1−ǫ)|Fkh|/2, when 6ǫ < 1,
M contains an edge whose endpoints are both in A. In other words, there exists (~a1, . . . ,~ak) ∈ A
such that (~a1, . . . ,~ai + ~α, . . . ,~ak) ∈ A and (~x~a1,...,~ai+~α,...,~ak

, ~x~a1,...,~ak
) satisfies the (C2) constraint.

By (C2) and Lemma 3.3, we deduce that F (~α,~ci) = f(~α,~v) for some unique ~v ∈ Vi. To summarize,
for every good vector ~α, there exists a vector ~v~α ∈ Vi such that F (~α,~ci) = f(~α,~v~α).

Next, we show that there are at most (1 − ǫ)|Fh| good vectors, and hence at most (1 −
ǫ) + ǫ(1 − ǫ) = (1 − ǫ2)-fraction of constraints of (C2)-i-type are satisfied. Otherwise, pick an
arbitrary good vector ~α. All the vectors in F

h − {0, ~α} can be partitioned into two sets X1

and X2 such that X1 = X2 + ~α. There exists Y1 ⊆ X1 such that Y1 is a set of good vectors
and |Y1| ≥ (1/2 − ǫ)|Fh|. Since ~ci 6= g(~v~α), there is a set X of size at most |F|h−1 such that
for all ~x ∈ F

h \ X , F (~x, ~ci) 6= F (~x, g(~v~α)). Since (1 − ǫ)|Fh| vectors are good, there exists a set
Z ⊆ Y2 = Y1+~α such that |Z| ≤ ǫ|F|h and all the bad vectors of Y2 are in Z. When 2ǫ+1/|F| < 1/2,
we have |Y1| − |X | − |Z| > 0. Thus there exists a vector ~a′ ∈ Y1 − X − (Z + ~α). According to
the definitions, ~α′ and ~α + ~α′ are good and ~v~α 6= ~v~α′ . Since ~α + ~α′ is good, there exists ~u ∈ Vi

such that F (~α′ + ~α,~ci) = f(~α′ + ~α, ~u). Note that ~u 6= ~v~α, otherwise by F (~α,~ci) = f(~α,~v~α), we
can deduce that F (~α′,~ci) = f(~α′, ~u), which implies ~u = ~v~α′ 6= ~v~α, that is impossible. So we have
f(~α′ + ~α, ~u) = F (~α, ~ci) + F (~α′,~ci) = f(~α,~v~α) + f(~α′, ~v~α′), where ~α, ~α′ are nonzero vectors and
~v~α, ~v~α′ , ~u are distinct, contradicting Lemma 3.4.

Now assume that ~ci = g(~vi) for every i ∈ [k]. Note that ~v1 + · · · + ~vk 6= ~t. By Lemma 3.1,
g(
∑

i∈[k] ~vi) 6= g(~t). There exists a set B ⊆ F
h such that |B| ≥ (1− 1/|F|) · |Fh| and for all ~α ∈ B,

∑

i∈[k]

F (~α,~ci) =
∑

i∈[k]

F (~α, g(~vi)) = F (~α,
∑

i∈[k]

g(~vi)) 6= F (~α, g(~t)) = f(~α,~t).

Notice that |A| ≥ (1 − ǫ)|F|kh. We have

|{(~α1, . . . , ~αk, ~α) : (~α1, . . . , ~αk), (~α1 + ~α, . . . , ~αk + ~α) ∈ A, ~α ∈ B}| ≥ (1− 1/|F|) · (1− 2ǫ) · |F|k(h+1).

7

This implies that at least (1 − 1/|F|) · (1 − ǫ)|F|k(h+1) > ǫ|F|k(h+1) constraints in (C3) are not
satisfied.

Construction of the Gap-clique instance. For every ~α1, . . . , ~αk ∈ F
h and ~β1, . . . , ~βk ∈ F

h, introduce
a vertex set V~α1,...,~αk,~β1,...,~βk

= {(~x, ~y, ~z) : ~x, ~y, ~z ∈ F
ℓ, ~x = ~y + ~z}. Each vertex in this set is

corresponding to an assignment to three variables x~α1+~β1,...,~αk+~βk
, x~α1,...,~αk

and x~β1,...,~βk
which

satisfies the constraint of (C1). For every variables x~α1,...,~αk
and i ∈ [|F|kh], introduce a vertex set

V~α1,...,~αk,i = F
ℓ. Each vertex in V~α1,...,~αk,i is an assignment to the variable x~α1,...,~αk

.
Construct a graph G′ on vertice (

⋃

~α1,...,~αk,~β1,...,~βk
V~α1,...,~αk,~β1,...,~βk

) ∪ (
⋃

~α1,...,~αk,i
V~α1,...,~αk,i).

Two vertices in G′ are adjacent unless they are corresponding to inconsistent assignments or they
do not satisfy the constraint between the variables they assigned to.

Lemma 3.6. If the k-Vector-Sum instance has a solution, then the graph G′ contains a clique of
size 2|F|2kh.

Proof. For every vertex set, select the vertex corresponding to the assignment. According to the
definition, these vertices form a clique of size 2|F|2kh.

Lemma 3.7. If the k-Vector-Sum instance has no solution, then the graph G′ contains no clique
of size (1 − ǫ′)2|F|2kh for some small constant ǫ′ > 0.

Proof. Let ǫ be the constant in Lemma 3.5. Pick a small ǫ′ such that 4ǫ′ < min{ǫ/2, ǫ2}. Let X
be the clique in the graph of size larger than (1 − ǫ′)2|F|2kh. We have

|X ∩
⋃

~α1,...,~αk,~β1,...,~βk∈Fh

V~α1,...,~αk,~β1,...,~βk
| ≥ (1 − 2ǫ′)|F|2kh. (3)

In addition, since |X | > (1− ǫ′)2|F|2kh, there exists an index i ∈ [|Fkh|] such that X contains more
than (1− 2ǫ′)|Fkh| vertices with respect to index i. We will prove that this is impossible using the
following Claim 1.

Claim 1. For every i ∈ [|Fkh|], |X ∩
⋃

~α1,...,~αk∈Fh V~α1,...,~αk,i| ≤ (1 − 2ǫ′)|Fkh|.

Proof of Claim 1. Fix an index i ∈ [|F|kh]. Define an assignment σX as follows. For every
~α1, . . . , ~αk ∈ F

h, σX(x~α1,...,~αk
) = v if {v} = X ∩ V~α1,...,~αk,i, otherwise σX(x~α1,...,~αk

) = ~0ℓ. By (3)
and the definition of edge set, δX satisfies (1− 2ǫ′)-fraction of constraints in (C1). By Lemma 3.5,
either σX satisfies at most (1 − 4ǫ′)-fraction of constraints in (C3) or there exists an j ∈ [k] such
that σX satisfies at most (1 − 4ǫ′)-fraction of constraints of (C2)-j type.

• Assume that σX satisfies at most (1 − 4ǫ′)-fraction of constraints in (C3). We say a vector
~α ∈ F

h is δ-good if more than δ-fraction of (C3)-~α-type constraints are satisfied by σX . There
exists a vector ~α ∈ F

h that is not (1 − 4ǫ′)-good, otherwise δX satisfies more than (1 − 4ǫ′)-
fraction of constraints in (C3), contradicting our assumption. Now consider a partition
F
kh = V −

~α ∪V +
~α with V +

~α = V −
~α + (~α, . . . , ~α). Since ~α is not (1− 4ǫ′)-good, there are at most

(1− 4ǫ′)|Fkh|/2 tuples (~α1, . . . , ~αk) in V −
~α such that δX satisfies the (C3) constraint between

x~α1,...,~αk
and x~α1+~α,...,~αk+~α. Let

X−
~α = X ∩

⋃

(~α1,...,~αk)∈V −

~α

V~α1,...,~αk,i and X+
~α = X ∩

⋃

(~α1,...,~αk)∈V +
~α

V~α1,...,~αk,i

It follows that min{|X−
~α |, |X+

~α |} ≤ (1 − 4ǫ′)|F|h/2. Thus |X | ≤ (1/2 + (1 − 4ǫ′)/2)|Fkh| =
(1 − 2ǫ′)|F|kh.

• Now assume that σX satisfies at most (1 − 4ǫ′)-fraction of constraints of (C2)-j type for
some j ∈ [k]. Similarly, for every ~α ∈ F

h, we say ~α is δ-good if more than δ-fraction of
(C2)-j-~α-type constraints are satisfied by σX . There exists ~α ∈ F

h that is not (1−4ǫ′)-good,

8

otherwise δX satisfies more than (1−4ǫ′)-fraction of constraints of type (C2)-j, contradicting
our assumption. Now consider a partition F

kh = V −
~α ∪ V +

~α with

V +
~α = {(~α1, . . . , ~αi + ~α, . . . , ~αk) : (~α1, . . . , ~αk) ∈ V −

~α }.

Let
X−

~α = X ∩
⋃

(~α1,...,~αk)∈V −

~α

V~α1,...,~αk,i and X+
~α = X ∩

⋃

(~α1,...,~αk)∈V +
~α

V~α1,...,~αk,i.

Since ~α is not (1 − 4ǫ′)-good, we have min{|X−
~α |, |X+

~α |} ≤ (1 − 4ǫ′)|F|h/2. Thus |X | ≤
(1/2 + (1 − 4ǫ′)/2)|Fkh| = (1 − 2ǫ′)|F|kh.

3.1 Putting all together

For any instance (G, k) of k-Clique, we use Theorem 2.5 to reduce it to an instance (k′, V1, . . . , Vk′ ,~t)
of k′-Vector-Sum with k′ = Θ(k2). Then we use the reduction describe to obtain a graph G′ with

h = k′2 = Θ(k4) and small ǫ > 0 in 2k
O(1)

· |G|O(1)-time. By Lemma 3.6 and Lemma 3.7, we have

• if ω(G) ≥ k, then ω(G′) ≥ 24kh+1,

• if ω(G) < k, then with probability at least 7/10, ω(G′) < (1 − ǫ)24kh+1.

Using the graph product method, we can amplify the gap to any constant.

3.2 Derandomization

To derandomize the reduction, we need to construct O(log n + h) matrices A1, . . . , Aℓ ∈ F
h×m

such that the following conditions are satisfied. For all nonzero ~v ∈ F
m = F

h logn,

(A1~v, . . . , Aℓ~v) 6= ~0ℓh (4)

For all distinct ~v, ~u ∈ V and nonzero ~α ∈ F
h,

(~αTA1~v, . . . , ~α
TAℓ~v) 6= (~αTA1~u, . . . , ~α

TAℓ~u) (5)

For all distinct ~v, ~u, ~w ∈ V and nonzero ~α, ~α′ ∈ F
h

(~αTA1(~v + ~w), . . . , ~αTAℓ(~v + ~w)) 6= (~α′
T
A1(~u + ~w), . . . , ~α′

T
Aℓ(~u + ~w)) (6)

Let Ai ∈ F
h×m be the matrix such that Ai~v is the projection of ~v onto the its subvector with

coordinates between 1 + (i − 1)h and ih. Then A1, . . . , Alogn satisfy (4). It remains to con-
struct another O(log n + h) matrices A′

1, . . . , A
′
ℓ ∈ F

h×m satisfying (5) and (6). Then their union
A1, . . . , Alogn, A

′
1, . . . , A

′
ℓ would satisfy all the conditions. Note that we can think of a matrix in

F
h×m as an hm-dimension vector. The task can be formulated as given N = |F|2h · nO(1) vectors

C1, . . . , CN ∈ F
hm, find O(log n + h) vectors A′

1, . . . , A
′
ℓ ∈ F

hm such that for every i ∈ [N], there
exists A′

j such that A′
j · Ci 6= 0.

We show that, in NO(1)-time, a vector A ∈ F
hm can be found such that there are at most

N/|F| indices i ∈ [N] satisfying A · Ci = 0. Then we apply this algorithm logN/ log |F| times
to obtain the vectors A′

1, . . . , A
′
ℓ. The vector A can be found using the method of conditional

probabilities [Juk11, AS04]. Let A be a vector with A[i] selected randomly and independently
from F. Define a random variable X = |{i ∈ [N] : A · Ci = 0}|. We have E[X] = N/|F|. For
a1, . . . , ai ∈ F, let X |a1, . . . , ai = |{i ∈ [N] : A · Ci = 0, A[1] = a1, . . . , A[i] = ai}|. We have

E[X |a1, . . . , ai] =
∑

x∈F

E[X |a1, . . . , ai, x]/|F| ≥ min{E[X |a1, . . . , ai, x] : x ∈ F}.

For each i ∈ [hm], E[X |a1, . . . , ai] can be computed in NO(1)-time. For each i ∈ [hm], we pick the
value ai to minimize E[X |a1, . . . , ai]. We have E[X |a1, . . . , ahm] ≤ N/|F| and the vector A with
A[i] = ai(i ∈ [hm]) is our target vector.

9

4 Conclusion

This paper constructs a PCP verifier which always accepts yes-instances and with probability
Θ(1/k) rejects no-instances for a W [1]-hard problem and shows how to create a constant gap for
ω(G) using this PCP. I hope that the technique of this paper will help obtain a parameterized
version of PCP theorem, e.g. the Parameterized Inapproximability Hypothesis (PIH) [LRSZ20].

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998.

[ALW13] Amir Abboud, Kevin Lewi, and Ryan Williams. On the parameterized complexity of
k-sum. CoRR, abs/1311.3054, 2013.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Journal of the ACM (JACM), 45(1):70–122, 1998.

[AS04] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.

[BEKP15] Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th Paschos. On
subexponential and fpt-time inapproximability. Algorithmica, 71(3):541–565, 2015.

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient prob-
abilistically checkable proofs and applications to approximations. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing, pages 294–304, 1993.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. Journal of computer and system sciences, 47(3):549–
595, 1993.

[BS94] Mihir Bellare and Madhu Sudan. Improved non-approximability results. In Proceedings
of the twenty-sixth annual ACM symposium on Theory of computing, pages 184–193,
1994.

[CCK+17] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin
Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-
inapproximability: Clique, dominating set, and more. In Foundations of Computer
Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 743–754. IEEE, 2017.

[CGG06] Yijia Chen, Martin Grohe, and Magdalena Grüber. On parameterized approximability.
In International Workshop on Parameterized and Exact Computation, pages 109–120.
Springer, 2006.

[CL19] Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized
dominating set problem. SIAM Journal on Computing, 48(2):513–533, 2019.

[DF95] Rodney G Downey and Michael R Fellows. Fixed-parameter tractability and complete-
ness II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131,
1995.

[DF99] Rodney G Downey and Michael R Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[DF13] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity,
volume 4. Springer, 2013.

10

[Din16] Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover.
In Electronic Colloquium on Computational Complexity (ECCC), volume 23, 2016.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Inter-
active proofs and the hardness of approximating cliques. Journal of the ACM (JACM),
43(2):268–292, 1996.

[FGMS] Michael R Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh. Data reductions and
problem kernels. In Dahstuhl Seminar, number 12241. Citeseer.

[FK00] Uriel Feige and Joe Kilian. Two-prover protocols—low error at affordable rates. SIAM
Journal on Computing, 30(1):324–346, 2000.

[FKLM20] Andreas Emil Feldmann, C.S. Karthik, Euiwoong Lee, and Pasin Manurangsi. A survey
on approximation in parameterized complexity: Hardness and algorithms. Algorithms,
13(6):146, 2020.

[Gol98] Shafi Goldwasser. Introduction to special section on probabilistic proof systems. SIAM
Journal on Computing, 27(3):737, 1998.

[Gol16] Oded Goldreich. Lecture notes on linearity (group homomorphism) testing. 2016.

[Has96] Johan Hastad. Clique is hard to approximate within n1−ǫ. In Proceedings of 37th
Conference on Foundations of Computer Science, pages 627–636. IEEE, 1996.

[HKK13] M. T. Hajiaghayi, R. Khandekar, and G. Kortsarz. Fixed parameter inapproximability
for Clique and SetCover in time super-exponential in OPT. CoRR, abs/1310.2711,
2013.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[Juk11] Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer
Science & Business Media, 2011.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20-22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., pages
85–103, 1972.

[Kay14] Neeraj Kayal. Solvability of systems of polynomial equations over finite fields. A talk
given by Neeraj Kayal at the Simons Institute for the Theory of Computing, Berkeley,
CA [Accessed: 2017/20/7], page 1, 2014.

[KLN21] C.S. Karthik and Inbal Livni-Navon. On hardness of approximation of parameterized
set cover and label cover: Threshold graphs from error correcting codes. SOSA, 2021.

[KS16] Subhash Khot and Igor Shinkar. On hardness of approximating the parameterized
clique problem. In Proceedings of the 2016 ACM Conference on Innovations in Theo-
retical Computer Science, pages 37–45, 2016.

[Lin18] Bingkai Lin. The parameterized complexity of the k-biclique problem. Journal of the
ACM (JACM), 65(5):1–23, 2018.

[Lin19] Bingkai Lin. A simple gap-producing reduction for the parameterized set cover prob-
lem. In 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

11

[LKM19] Bundit Laekhanukit, C.S. Karthik, and Pasin Manurangsi. On the parameterized
complexity of approximating dominating set. Journal of the ACM (JACM), 66(5):33,
2019.

[LRSZ20] Daniel Lokshtanov, MS Ramanujan, Saket Saurab, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2181–2200.
SIAM, 2020.

[Mar08] Dániel Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

[MR16] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and com-
plexity of approximating dense csps. arXiv preprint arXiv:1607.02986, 2016.

[W lo20] Micha l W lodarczyk. Parameterized inapproximability for steiner orientation by gap
amplification. In 47th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 681–690, 2006.

Appendix

Theorem 4.1 (Theorem 2.5 restated). k-Vector-Sum with F = F2 and m = Θ(k2 logn) is W [1]-
hard parameterized by k.

Proof. We construct a reduction from k-Multi-Color-Clique to (k +
(
k
2

)
)-Vector-Sum. Let (G, k)

be an instance of k-Multi-Color-Clique with V (G) = V1 ∪ V2 ∪ · · · ∪ Vk. Set n = |V (G)| + 1. For
every v ∈ V (G), let σ(v) ∈ {0, 1}logn be the binary encoding of v. Since n > V (G), we can assume

that σ(v) 6= ~0logn for all v ∈ V (G). Let f :
(
[k]
2

)
→ [

(
k
2

)
] be a bijection. For every i ∈ [k] and

v ∈ V (G), let

~ηv,i = (

(i−1) logn
︷ ︸︸ ︷

0, · · · , 0 , σ(v), 0, · · · , 0)
︸ ︷︷ ︸

k logn

and ~γv,i = (

(i−1) logn
︷ ︸︸ ︷

σ(v), . . . , σ(v),~0logn, σ(v), . . . , σ(v)
︸ ︷︷ ︸

k logn

)

For any distinct i, j ∈ [k], let

~θi,j = (

f({i,j})−1
︷ ︸︸ ︷

0, · · · , 0 , 1, 0, · · · , 0)
︸ ︷︷ ︸

k(k−1)/2

and ~δi = (

i−1
︷ ︸︸ ︷

0, · · · , 0, 1, 0, · · · , 0)
︸ ︷︷ ︸

k

.

For every edge e = {v, u} with v ∈ Vi and u ∈ Vj , let

~we = ~0k ◦ ~θi,j ◦ (

(j−1)k logn
︷ ︸︸ ︷

(i−1)k logn
︷ ︸︸ ︷

0, . . . , 0 , ~ηv,j , 0, . . . , 0, ~ηu,i, 0, . . . , 0
︸ ︷︷ ︸

k2 logn

).

For every v ∈ Vi, let

~wv = ~δi ◦ ~0k(k−1)/2 ◦ (

(i−1)k logn
︷ ︸︸ ︷

0, . . . , 0 , ~γv,i, 0, . . . , 0
︸ ︷︷ ︸

k2 logn

)

The instance of vector sum is defined as follows.

12

• The target vector is ~t = ~1k+k(k−1)/2 ◦ ~0k2 log n.

• There are k(k − 1)/2 + k sets of vectors.

– For every {i, j} ∈
(
[k]
2

)
, let

Wij = {~we : e = {v, u} is an edge in G with v ∈ Vi and u ∈ Vj}.

– For every i ∈ [k], let
Wi = {~wv : v ∈ Vi}.

If (G, k) is a yes-instance, then there exist v1 ∈ V1, . . . , vk ∈ Vk such that {v1, . . . , vk} induces a
k-clique in G. It is easy to check that the sum of ~wvivj ’s and ~wvi ’s is equal to ~t.

On the other hand, if there exist ~wij ∈ Wij and ~wi ∈ Wi such that

∑

~wij +
∑

~wi = ~t.

Each wi is corresponding to a vertex vi ∈ Vi. Each wij is corresponding to an edge eij between Vi

and Vj . It is easy to see that vi is an endpoint of eij for all j ∈ [k] \ {i}. Therefore they form a
clique of size k.

13

	1 Introduction
	1.1 Overview of the reduction
	1.2 Related work

	2 Preliminaries
	3 Gap-reduction from k-Vector-Sum to k-Clique
	3.1 Putting all together
	3.2 Derandomization

	4 Conclusion

